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Preface

The Society for Artificial Intelligence in Medicine (AIME) was established in 1986
following a very successful workshop held in Pavia, Italy, the year before. The prin-
cipal aims of AIME are to foster fundamental and applied research in the application
of Artificial Intelligence (AI) techniques to medical care and medical research, and to
provide a forum at conferences for discussing any progress made. The main activity of
the society thus far has been the organization of a series of international conferences,
held in Marseille, France (1987), London, UK (1989), Maastricht, Netherlands (1991),
Munich, Germany (1993), Pavia, Italy (1995), Grenoble, France (1997), Aalborg, Den-
mark (1999), Cascais, Portugal (2001), Protaras, Cyprus (2003), Aberdeen, UK (2005),
Amsterdam, Netherlands (2007), Verona, Italy (2009), Bled, Slovenia (2011), Murcia,
Spain (2013), Pavia, Italy (2015), Vienna, Austria (2017), Poznan, Poland (2019), Min-
neapolis, USA (2020), Porto, Portugal (2021), Halifax, Canada (2022), and Portoroz,
Slovenia (2023).

The AIME 2024 goals were to present and consolidate the international state of the art
of Alin biomedical research from the perspectives of theory, methodology, systems, and
applications. The conference included three invited keynotes, presentations of full, short,
and demonstration papers, tutorials, workshops, a doctoral consortium, and posters.
Overall, AIME 2024 received 335 submissions from which 54 full papers and 22 short
papers were chosen for oral presentation at the main conference and for publication in
two volumes of conference proceedings. Submissions came from authors in 46 countries,
including submissions from Europe, North and South America, Africa, Australia, and
Asia.

All papers were carefully peer-reviewed by experts from the Program Committee,
and subsequently by members of the Senior Program Committee. Each submission was
single-blindly reviewed in most cases by three reviewers, and all papers by at least two
reviewers. The reviewers judged the overall quality of the submitted papers, together
with their relevance to the AIME conference, originality, impact, technical correctness,
methodology, scholarship, and quality of presentation. In addition, the reviewers pro-
vided detailed written comments on each paper and stated their confidence in the subject
area. One Senior Program Committee member was assigned to each paper, who wrote
a meta-review and provided a recommendation to the Organizing Committee. A dedi-
cated expert committee comprising the AIME 2024 general chairs, Joseph Finkelstein
and Robert Moskovitch, the Scientific Program Committee chair, Enea Parimbelli, and
the doctoral consortium chair, Gregor §tiglic, made the final decisions regarding the
AIME 2024 conference program. This process was carried out with virtual meetings
starting in February 2024. Each long paper was presented in a 20-minute oral presenta-
tion during the conference. Each regular short and demonstration paper was presented
in a 10-minute presentation, a poster or a demonstration session. The main conference
poster session hosted over 70 poster presentations.
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The papers were organized according to their topics in the following main themes:
(1) Predictive modelling and disease risk prediction; (2) Natural language processing;
(3) Bioinformatics and omics; (4) Wearable devices, sensors, and robotics; (5) Medical
image analysis; (6) Data integration and multimodal analysis; (7) Explainable Al

AIME 2024 had the privilege of hosting three invited keynote speakers: Nicholas
Tatonetti, Vice Chair of Operations in the Department of Computational Biomedicine
and Associate Director of Computational Oncology at Cedars-Sinai Medical Center,
Los Angeles, USA, giving the keynote entitled “Al-driven biomedical discoveries using
real-world data,” Hayit Greenspan, Co-director of the Artificial Intelligence and Emerg-
ing Technologies in Medicine PhD concentration at the Icahn School of Medicine at
Mount Sinai, New York, USA, who discussed “Al in Medical Imaging — Steps towards
supporting Detection and Monitoring of Disease,” and Yuan Luo, Director, Institute
for Artificial Intelligence in Medicine, Northwestern University, Chicago, USA, who
presented “Translational Science: Breakthroughs and Innovations in the new Age of
AL”

The doctoral consortium received 11 PhD proposals that were peer reviewed. AIME
2024 provided an opportunity for six of these PhD students to discuss their research
goals, proposed methods, and preliminary results in an oral presentation and for four
students to present a poster. A scientific panel, consisting of experienced researchers in
the field, provided constructive feedback to the students in an informal atmosphere. The
doctoral consortium was chaired by Dr. Gregor Stiglic (University of Maribor, Slovenia).

AIME 2024 invited researchers to submit proposals for workshops and tutorials.
Twelve workshops were selected by the Organization Committee. These workshops
were: (1) Advances in Generating Real-World Evidence from Real-World Data Using
Artificial Intelligence (RWE-AI), (2) Al Applications in Telemedicine and Digital Health
(TeleHealth-Al), (3) Artificial Intelligence in Oncology Workshop, (4) Third Interna-
tional Workshop on Artificial Intelligence in Nursing (AINurse-24), (5) Al for Drug
Discovery: Development in Pharmaceuticals, Academia, or Jointly in Collaborations,
(6) Al for Reliable and Equitable Real World Evidence Generation in Medicine, (7) Al
for Primary Care: Electronic Scribes and More, (8) Al and Precision Medicine: Innova-
tions and Applications, (9) Implementing Al in Healthcare: Bridging the Gap Between
Technical, Cognitive, and Sociotechnical Perspectives, (10) Al Applications in Public
Health and Social Services, (11) Mitigating Al Risk through Ethical Data Science and
(12) Veteran Health Administration: Al for Clinical Informatics Solutions. In addition
to the workshops, two interactive half-day tutorials were selected: (1) Process Mining
for Healthcare: From Theory to Practice with pMineR, and (2) Integrating Geography
with Al to Improve Decision Support in Public Health.

We would like to thank everyone who contributed to the AIME 2024 conference.
First, we would like to thank the authors of the submitted papers and posters and the
members of the Program Committee who helped with conducting a successful review.
Thank you to the Senior Program Committee for writing meta-reviews and the members
of the Senior Advisory Board for guidance. Thanks are also due to the invited speakers
as well as to the organizers of the tutorials, the workshops, and the doctoral consortium
panel. Many thanks go to the local Organizing Committee members, who managed all
the work making this conference possible: Yves Lussier, Penny Atkins, Yue Zhang,



Preface vii

Fatemeh Shah-Mohammadi, Aref Smiley, Te-Yi Tsai, and C. Mahony Reategui-Rivera.
We would like to thank Springer for sponsoring the conference, the AIME society for
sponsoring awards and the student travel grants, and the University of Utah, Department
of Biomedical Informatics, for all the support in organizing it. Finally, we thank the
Springer team for helping us in the final preparation of this LNAI book.

May 2024 Joseph Finkelstein
Robert Moskovitch
Enea Parimbelli
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Abstract. The study, conducted at two regional hospitals in Taichung, Taiwan,
aimed to analyze emergency room patient data using Gaussian Mixture Model
(GMM) for clustering based on intubation status. Out of 137,722 cases spanning
January 1, 2017, to September 30, 2023, 1.14% underwent intubation. The study
included the following variables: continuous variables such as WBC (White Blood
Cell count), Hb (Hemoglobin), Hct (Hematocrit), MCV (Mean Corpuscular Vol-
ume), Blood Sugar, Creatinine levels, HR (Heart Rate), RR (Respiratory Rate),
BT (Body Temperature), and SI (shock index). Additionally, categorical variables
encompass Gender and Diabetes Mellitus (DM). Patients were divided into Rule
In and Rule Out groups, with distinct intubation rates, 2.56% and 0.75%. Rule
Out group, with a low intubation rate, identified patients with minimal intubation
probability. We can infer that patients with elevated WBC, low Hb, low Hct, high
blood sugar, high creatinine, high heart rate, and high shock index are more likely
to require intubation compared to patients with normal values. Further research is
needed to explore its application.

Keywords: Gaussian Mixture Model - clustering analysis - emergency room -
intubation

1 Introduction

Intubation prediction is crucial in rapidly escalating conditions. Several studies have
explored machine learning (ML) and statistical models to forecast the need for intubation,
aiding in timely intervention and resource allocation. Bolourani et al. [1] developed an
XGBoost model achieving 0.77 AUC in predicting respiratory failure within 48 h of
admission, emphasizing predictors such as oxygen delivery method, age, ESI, respiratory
rate, lactate levels, and demographics. Venturini et al. [2] introduced cure-ML for early
intubation prediction in ICUs, while Stefan et al. [3] developed clinical risk scores for
NIV failure prediction, and Gaudet et al. [4] derived the CERES score for late respiratory
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failure prediction in severe COVID-19 cases. Additionally, Arvind et al. [5] developed an
ML algorithm for identifying high-risk COVID-19 patients, and Sakai et al. [6] identified
markers for impending mechanical ventilation in emergency room COVID-19 patients,
underscoring the importance of blood glucose and SpO2/FiO2 ratio in risk assessment.
However, there is no research using clustering methods to classify emergency department
patients based on whether they will be intubated. This study attempts to use GMM to
cluster emergency department patients and explore the differences between clusters.

2 Method

2.1 Subject Selection

In aretrospective analysis conducted at two Taichung, Taiwan regional hospitals, patient
data from emergency departments were collected from January 1, 2017, to September
30, 2023, totaling 246,259 cases. Exclusions comprised 22,981 pediatric cases, 53,521
cases lacking blood pressure measurements or with recorded values of zero, and 32,035
cases without blood test reports, resulting in a final sample size of 137,722 cases. Among
these, 1,570 cases (1.14%) intubated [7].

2.2 Clustering Algorithms and Clustering Variables

Using a Gaussian Mixture Model, we clustered all emergency department patients to
explore potential differences in intubation rates across sub-groups. The clustering vari-
ables comprised continuous measures such as WBC, Hb, Hct, MCV, Blood Sugar, Cre-
atinine levels, Heart Rate, RR, BT, and shock index, alongside categorical variables like
Gender (0 for female, 1 for male) and Diabetes Mellitus (DM, 1 for presence, 0 for
absence).

2.3 Using AIC and BIC to Determine the Optimal Number of Clusters

Firstly, we standardized the data intended for clustering. Subsequently, we applied the
Gaussian Mixture Model to partition the data into different numbers of clusters ranging
from 1 to 11. The AIC and BIC values were computed for each cluster configuration.
These values were then plotted as a line graph to observe the insensitivity of the data
after being segmented into K clusters. Specifically, even as the value of K increased,
the rate of decrease in AIC and BIC became minimal, resulting in the slope of the line
approaching stability. This is visually represented on the line graph as an approximately
horizontal state [8] (Fig. 1).

The Akaike Information Criterion (AIC), devised by Hirotugu Akaike, serves as a
statistical tool for model selection and comparison by balancing a model’s goodness of
fit with its complexity.

The AIC is computed as follows:

AIC =2k —21In(L) ey

where L : likelihood of the model given the data, k : number of parameters in the model.
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1e6 AIC and BIC Scores vs Number of Clusters
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Fig. 1. AIC and BIC Scores vs Number of Clusters

The Bayesian Information Criterion (BIC) is a statistical measure used in model
selection and evaluation, particularly in the context of Bayesian statistical inference.
The formula for BIC is given by:

BIC = —21In(L) + k - In(n) )

where L : likelihood of the model given the data, k : number of parameters in the model,
n : sample size.

2.4 The Selection of Cluster Numbers

After examining AIC and BIC scores plotted against cluster numbers, we found stable
patterns when segmenting the data into 2 or 4 clusters, indicating meaningful segmenta-
tion. Dividing patients into two groups revealed one with a higher intubation rate (2.56%)
and another with a lower rate (0.75%). Further division into four groups showed clini-
cal insignificance in the highest intubation rate group, while merging lower and higher
rate groups mirrored the distribution of the two-group division. Hence, we opted for
the simpler two-group division for clearer clinical interpretation, identifying a ‘Rule In’
group with higher intubation probability and a ‘Rule Out’ group with very low intubation
probability.

2.5 Using Two Sample t Test to Assess Whether There Are Significant Differences
Between Expected Outcomes and Variables After Clustering

Firstly, we use two sample t test to compare continuous variables, where:

. IXi — Xp| |Xo — Xn|
B si2 | Sp? B So? | Sn?
N T ap No T N

where X;, X),, X,, X,: Mean values of Rule In group, Positive group, Rule Out group,
and Negative group, respectively. S;, Sy, So, S,: Standard deviations of Rule In group,
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Positive group, Rule Out group, and Negative group, respectively. N; , Np, Ny, Ny:
Number of observations in the Rule In group, Positive group, Rule Out group, and
Negative group after grouping.

In addition, we use two sample t test to compare categorical variables, where:

INi — Np| _ [No — Nn|

\/ (Ni-+Np)(2N—Ni — Np) \/ (No+Nn)(2N—No — Nn)
N N

where N: Total cases number, Ni, Np, No, Nn: Number of observations in the Rule In
group, Positive group, Rule Out group, and Negative group after grouping.

P — value = 2 % [1 — CDF(t, df)] 3)

where CDF(s, df) : The Cumulative Distribution Function computes the probability of a
random variable, like the t-distribution with a specified degrees of freedom (df), being
less than or equal to a specific value (¢). P-value : A two-tailed p-value calculated from
CDEF(t, df).

3 Result

3.1 Using GMM for Clustering to Obtain Data for the Four Groups: ETI,
not ETI, Rule In, and Rule Out

Patients who have been intubated are classified as the ETI group, while patients who
have not been intubated are classified as the Not ETI group. After GMM clustering into
two groups, the Rule In group, with a higher intubation rate, comprised 29,679 cases
(2.56% intubated in the Rule In group), and the Rule Out group, with a lower intubation
rate, comprised 108,043 cases (only 0.75% intubated in the Rule Out group).

3.2 Comparison of Various Clinical Variables Between the Intubated
and Non-intubated Groups

We conducted analyses to identify differences between intubated and non-intubated
groups. Utilizing Two Sample t-tests for continuous variables, only body temperature
showed no significant difference, while all other variables exhibited significant dis-
parities. Then, we compared categorical variables and found significant differences in
proportions between intubated and non-intubated cases across all groups: Rule Out, Rule
In, Male, Female, With DM (Diabetes Mellitus), and Without DM. Chi-square tests con-
firmed these findings, reaffirming significant distinctions in proportions across the six
groups.

3.3 Comparison of Various Clinical Variables Between the ‘Rule In’ and ‘Rule
Out’ Groups

We conducted comparisons between continuous variables of the ‘Rule In” and ‘Rule
Out’ groups, revealing significant differences across all variables using Two Sample
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t-tests. Additionally, we examined categorical variables between these groups, finding
significant disparities in proportions of intubated and non-intubated cases within most
categories, except for Male and Female groups. Specifically, significant differences were
observed in proportions across Intubated, Non-intubated, With DM, and Without DM
categories. These results were confirmed through chi-square tests across the six groups,
indicating consistent disparities between the ‘Rule In’ and ‘Rule Out’ groups.

3.4 Compare the Differences in Confidence Intervals Among the Four Groups
of Continuous Variables: Intubated, Non-Intubated, Rule In, and Rule Out

We aimed to illustrate distribution trends of various continuous variables using confi-
dence intervals. Table 1 presents the ranges of Confidence Intervals for each of the four
groups: Intubated (ETI), Non-intubated (Not ETI), Rule In (RI), and Rule Out (RO).
These intervals were plotted into a chart, as depicted in Fig. 2. While the chart provides
a visual indication of distribution trends, particularly the extent of overlap between Con-
fidence Intervals of the RO and Not ETI groups, comparing solely through charts has
limitations. We can sense trends but cannot confirm differences’ existence or magnitude.
To address this, we employed Two Sample t-tests to quantify differences between groups
and assess their statistical significance.

Table 1. Confidence Intervals between the groups of Intubated, Non-intubated, Rule In, and Rule
Out

ETI CI Not ETI CI Rule_In CI Rule_Out CI

WBC | (1247675, | (9907.65,9965.71) | (11063.54, 11276.9) | (9620.76, 9668.13)
13812.17)

Hb (12.38, (12.92, 12.94) (11.53, 11.59) (13.29, 13.31)
12.66)

Het (37.56, (38.38, 38.46) (34.55, 34.72) (39.42, 39.49)
38.37)

MCV | (90.15, (88.34, 88.43) (88.97, 89.15) (88.19, 88.28)
91.04)

B/S (197.55, (152.39, 153.34) (228.4,231.94) (132.13, 132.61)
209.54)

Cr (1.86,2.08) | (1.34,1.36) (2.83,2.9) (0.94, 0.95)

HR (101.79, (92.55,92.77) (97.34,97.87) (91.33,91.58)
104.56)

RR (22.78,23.5) | (19.8, 19.83) (21.02, 21.13) (19.51, 19.53)

BT (36.68, (36.76, 36.77) (36.79, 36.82) (36.75, 36.76)
36.82)

SI (0.79,0.82) | (0.68, 0.68) (0.73,0.74) (0.67,0.67)
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3.5 Utilize Two Sample t Test to Quantify the Differences Between the Two
Groups in Comparison

In our analysis, we used two-sample t-tests to compare the RI and ETI groups, resulting
in t;, and the RO and Not ETI groups, resulting in ¢,. For temperature, #; had a non-
significant p-value (>0.05), indicating no significant difference between RI and ETI.
However, significant differences were found for other variables. Sorting #; and ¢, values
revealed trends, with smaller values suggesting narrower disparities and larger values
indicating greater disparity between groups, consistent with our hypothesis.

Comparison of Confidence Intervals

WBC Hb MCV BloodSugar

Hct
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Fig. 2. Comparisons of Confidence Intervals

4 Discussion

4.1 The Rule Out Group Can Assist Clinicians in Identifying Patients with a Very
Low Probability of Intubation

The Rule Out group, encompassing 108,043 cases, represents 78.45% of the total study
population, yet its intubation rate remains merely at 0.75%. Consequently, patients meet-
ing the Rule Out group’s criteria exhibit a notably high probability of not requiring intu-
bation in the emergency department, standing at 99.25%, with only a 0.75% chance of
intubation. Essentially, when a patient’s metrics align with specified ranges for variables
such as WBC, Hb, Hct, MCV, blood sugar, creatinine, BT, heart rate, and shock index,
the probability of intubation is exceedingly low.

4.2 The Differences Between the Rule Out Group and the Group of Patients
Intubated in the Emergency Department (ETI Group)

When comparing average values between the Rule Out and ETI groups, we notice that the
Rule Out group exhibits more normal values for WBC, Hb, Hct, blood sugar, creatinine,
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heart rate, and shock index, with MCV and BT showing similar values. This observation
aligns with clinical experience. Thus, patients with elevated WBC, low Hb, low Hct,
high blood sugar, high creatinine, high heart rate, and high shock index are more prone
to require intubation compared to those with normal values.

4.3 The Limitations of This Study

This study is a retrospective review of medical records, which may result in limited
data availability and a small number of cases due to missing data. Additionally, certain
variables could not be included for evaluation. Future directions for improvement could
include conducting prospective studies, optimizing data collection and integration meth-
ods, increasing the sample size, incorporating additional variables, exploring different
clustering methods, and comparing the performance of different clustering methods.
Furthermore, the application of the ¢ values in the analysis of clustering results could
also be explored.

RIV.S. ETI groups

RO V.S. Not ETI groups

Hearthate
shock index
wBC

R

o

BloodSugar

CREATININE

) 20 P ) 80
t-value (Absolute Values|

Fig. 3. Sorting the ¢ values from smallest to largest
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5 Conclusion

This study employed GMM for patient clustering and identified that patients with ele-
vated WBC, low Hb, low Hct, high blood sugar, high creatinine, high heart rate, and
high shock index are more prone to require intubation compared to those with normal
values. Furthermore, it introduced two-sample t-tests to quantify inter-group differences
within the same variable post-clustering. Further investigation is warranted to evaluate
the significance and practical implications of these inter-group differences following
clustering (Fig. 3).
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Abstract. Antimicrobial resistance is recognized by the World Health Organi-
zation (WHO) as a significant global health threat. The accurate identification of
bacterial susceptibility to antibiotics is crucial, but it often takes several days. On
the other hand, in medical decision support systems, such as the one proposed
in this contribution, it is crucial to assess the uncertainty of the model when a
decision is provided. In this work, we propose a model based on a Bayesian Neu-
ral Network to predict antibiotic resistance at different stages of the antibiogram
process for a set of 47 antibiotic therapies. Excellent results were achieved, with
the area under the receiver operating curve reaching up to 0.9 at the final stage,
while also providing a measure of the epistemic uncertainty. To enable clinical
usage of the proposed approach as a decision support system, the model has been
integrated into a user-friendly and responsive web application accessible on both
mobile phones and desktops.

Keyword: Bayesian Neural Networks - Antibiotic Resistance - Deep Learning

1 Introduction

Antimicrobial resistance has been declared by the World Health Organization (WHO)
as one of the gravest threats to global health [12]. The best way to control the spread
of resistance lies in prescribing the most appropriate treatment. An initial antimicrobial
treatment is often prescribed empirically, while awaiting the results of bacterial culture
and antibiogram—a process that can take several days, which represents a challenge even
for experienced physicians. Here, we propose the first approach using patient metadata
and antibiogram to predict bacterial resistance to a wide range of antibiotics and at the
successive stages of the antibiogram process [11]. Deep Learning (DL) offers a viable
solution, but in a field such as medicine, it is crucial to be cautious and precise. It is
difficult to understand its decision process and measure uncertainty. Various machine
learning (ML) algorithms have been proposed to address the problem of antibiotic resis-
tance [10, 13]. In this work, we propose the use of Bayesian Neural Networks (BNNs),
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a probabilistic approach of DL in which standard neural network weights are replaced
with probability distributions learned through Bayesian inference [7, 8]. BNNs allow
for the quantification of epistemic uncertainty, enabling the model to indicate its level of
certainty in its predictions. The utility of uncertainty in ML applied to health has been of
real interest lately [1, 5]. The data extracted from antibiograms, accumulated over time,
is thus sequential. To align ourselves with real-life applications, the developed model
can produce predictions at each stage of the antibiogram process.

2 Methods

2.1 Data

The dataset comprised 91,061 antibiograms collected between 2014 and 2022 in two
Marseille hospitals. It includes metadata, bacterial species, and susceptibility to 47 antibi-
otics. One key challenge was structuring the decision-making process into five stages,
akin to clinical practice. Here’s an overview of these stages: When the physician encoun-
ters a patient suffering from a bacterial infection, he collects patient information (site
of infection, patient history of multidrug-resistant bacterial (MDR) carriage, and the
medical unit) and send a sample for bacteriological analysis at the laboratory (stage 1).
When receiving the sample the bacteriologist makes a direct observation (Stage 2) and
then put the sample into culture. Over a period of up to 2 days, the culture grows bacteria,
and the results are then sent back to the physician (stage 3). After some more days, the
exact specie is identified (stage 5), sometimes only the genus is available (stage 4). The
final step is the antibiogram itself, telling for a set of antibiotics if the bacteria is resistant
or not, which constitutes our target variables. In alignment with medical practice, the
proposed model can provide predictions at each step of the process, aiding in empirical
prescription.

2.2 Bayesian Neural Networks

Bayesian Neural Networks can be understood as a combination of neural networks and
Bayesian inference. More precisely, they are defined as stochastic artificial neural net-
works trained using Bayesian inference techniques [4], a statistical inference method
based on Bayes’ theorem. In traditional DL, weights are fixed values (initially ran-
dom) that are iteratively updated using gradient descent to minimize a loss function. In
contrast, BNNs learn distribution parameters over weights; these distribution parameters
are optimized using Bayesian inference methods. This approach presents several notable
advantages, such as mitigating overfitting, allowing learning from small datasets, and
providing a measure of uncertainty over the predictions [9]. Blundel et al. [2] intro-
duced an algorithm to be able to do backpropagation with bayesian inference (i.e. learn
the distributions weights). In practice, we compute the prediction y w.r.t an entry x by
calculating the mean over a sample of the predictive distribution y = % Zszl F (%)
with K being the number of samples, and F,,, being the model with a set wy of weights
sampled from the posterior while also providing a measure of the epistemic uncertainty
of the model (i.e., a forward pass). This approach of calculating the empirical mean
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over a sample of the predictive distribution is analogous to a specific case of ensemble
learning. Each forward pass represents the outcome of a unique model with a distinct set
of weights. The variance of the predictive distribution is then a measure of the epistemic
uncertainty. Each F,,, in the ensemble corresponds to a different classification deci-
sion boundary; therefore, if the model is confident about its predictions, all the decision
boundaries will be similar.

The Proposed Model. The used architecture is displayed in Appendix A. After hyperpa-
rameters tuning using hyperband [6], best results were obtained with 3 dense variational
layers, 300 units each and batch normalization between each layer. In Bayesian neural
networks, the prior p(w) acts as a form of regularization. We used a multivariate normal
with a diagonal covariance matrix. This prior distribution is analogous to L2 regular-
ization. Regarding the posterior distribution, using an independent normal distribution
is a common practice for its mathematical convenience and enabling the usage of the
reparameterization trick [4]. The model must output sensibility prediction for a set of
47 antibiotics, thus the last layer of the model is a fully connected layer, with a sigmoid
activation to output independent predictions for each antibiotic. For binary classifica-
tion tasks, the usual loss function used is the binary cross-entropy function. The model
was cross-validated on 5 folds of the whole dataset, with each fold being trained for
30 epochs. To assess the model’s performance, the Area Under the Receiver Operation
Curve (AUROC) was used.

Table 1. AUROC and AUSE on the test set for the BNN and the baseline RNN, for each stage.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Overall mean

BNN 0.669 0.815 0.861 0.886 0.886 0.8234
RNN 0.676 0.82 0.865 0.896 0.896 0.831
AUSE 0.13 0.066 0.044 0.034 0.034 0.061

2.3 AUROC Scores

Results of the BNN are compared with the best traditional DL model developed, which
is a RNN. Both models have identical behaviours across stages, which signifies that the
BNN converges almost identically as the RNN. It differs in the scores, which are slightly
lower for the BNN. This loss of performance can be expected when doing Bayesian
inference. The AUROC for each stage averaged across all antibiotics can be found in
Table 1. Generally, the AUROC increases as the stages progress, which is coherent, as
more information is gained throughout the antibiogram process. The first stage performs
the least effectively (AUROC 0.67) and exhibits the highest variance compared to the
other stages, due to the absence of information about the bacteria. At stage 2, there is
a significant rise in AUROC (+14%). From this stage onward, the gap between stages
narrows, reaching a plateau at 0.896. There are no differences between Stages 4 and 5,
where the genus and species features are introduced, the model does not gain additional
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information from these two features. This is due to the fact that the specie is a more
detailed version of the genus, but are nonetheless close features. The Genus was used
for its potential utility on rare cases.

2.4 Uncertainty Estimation

To measure the quality of the uncertainty estimations, a common technique is using
sparsification plots [3]. The Area Under the Sparsification Error (AUSE) introduced in
[3] quantifies the difference between an oracle and the model’s sparsification plots by
computing the area between the two curves; ideally, the AUSE should be as small as
possible. As displayed in Fig. 1, it is generally low. Similarly to the AUROC, it decreases
at each stage, indicating that the uncertainty gets more calibrated as we gain information
on the bacteria. Thus, the uncertainty measure is meaningful and higher when the model
commits mistakes, which is, to some extent, a satisfying behavior.

3 Discussion

The achieved results are generally good, with AUROCSs reaching up to 0.9 for the last
stages (Table 1). We believe that having a measure of epistemic uncertainty can have
a significant impact in practice, as indicated by the well-calibrated uncertainties show-
cased by the AUSE. However, it is noteworthy that the uncertainty tends to be lower for
false positives than for false negatives, with false negative being the mistakes we must
avoid the most. It is plausible that some incorrect predictions may come from rare and
complex feature combinations inherent in the dataset, suggesting a need for estimating
aleatoric uncertainty in conjunction with the predictions. Furthermore, using a broader
dataset with additional features could potentially enhance the quality of predictions while
reducing overall uncertainty. Despite several attempts with different traditional neural
networks, achieving similar scores indicates that the dataset may have reached its max-
imum predictive capacity. Ideally, we would aim for an even lower AUSE, particularly
for the early stages. However, given the limited information available in these stages,
perfect calibration may be challenging to attain. Nevertheless, the model remains usable
in practice, demonstrating its utility despite these challenges. Even if there is a slight
loss of performance compared to the RNN, We consider that it is sufficiently minimal
and that the uncertainty represents a significant gain, in favor of the trade off.

4 Conclusion

We present a Bayesian Neural Network (BNN) for predicting antibiotic resistance, lever-
aging patient metadata data and antibiograms. Our model can generate resistance pre-
dictions across all stages of a typical antibiogram process. The Bayesian nature of the
model allows for uncertainty quantification, which, upon careful assessment, provides
well-calibrated uncertainty measures. We believe that this uncertainty measure consti-
tutes a significant added value, particularly considering the model’s intended use in
medical practice. Additionally, the model has been integrated into a user-friendly web
application, allowing for testing and assessment by professionals.
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A Model Diagram
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Fig. 1. The architecture of the model is composed of three dense layers, optimized using varia-
tional inference, with 300 units each, relu activated. Batch normalization was added between each
dense layer
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Abstract. The exploration of transfer effects and selection of useful
auxiliary tasks in multitask learning and foundation models with down-
stream tasks remain a largely empirical and computationally demanding
process. To reduce the computational cost while maintaining statistical
rigor, we investigate (1) the concept of direct transfer effect between
tasks, (2) the use of sequential learning to minimize the number of test-
train data splits, (3) the possibility of using partial data, and (4) the
applicability of gradient-based cross-training task affinities in auxiliary
task selection. We apply the methods to a drug-target interaction pre-
diction problem.

1 Introduction

Multitask learning and transfer effects have fundamental importance in arti-
ficial intelligence [6], also present in foundational models, general pre-trained
transformers, multimodal fusion, and large language models. However, negative
transfer effects between tasks are still unresolved [22]. Many recent works con-
centrated on efficient task decomposition, using various heuristics to decrease the
computational cost, such as using partial training data, lightly trained networks,
pairwise approximations, and gradient-based task affinities [8,18].

In this paper, we adopt the auxiliary task subset selection approach using hard
parameter sharing networks and investigate (1) the concept of multitask Markov
boundary to focus the filtering of auziliary tasks, (2) sequential learning methods
to minimize training cost in the auxiliary task search, (3) learning curves to select
minimally sufficient sample sizes for auxiliary task screening, and (4) gradient-
based cross-training task affinities to speed-up the search process. We demonstrate
our methods in a drug-target interaction (DTI) prediction problem [20] and
answer the following questions:

Q1 MTL transfer maps: What is the pairwise task landscape, when estimating
the ’indirect’ or ’direct’ transfer effects between the tasks?

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Q2 Multi-armed bandit efficiency: What is the advantage of using a multi-armed
bandit scheme over test-train splits in the search process?

Q3 Efficient performance estimates: What is the advantage of active learning
methods over test-train splits to provide uniformly good estimates?

Q4 Subsampling: For which tasks could we use only partial (e.g., 10-20%) data
sets to speed up the training in the search process for good auxiliary sets?

Q5 Gradient-based task affinity Could we use gradient-based cross-training task
affinities to speed up the selection of auxiliary tasks?

Q6 Pairwise heuristics What is the efficiency of greedy pairwise heuristics to
design higher order MTL?

2 Related Works

Transfer effects in MTL can be related to shared data, representation, and opti-
mization. We use the hard parameter sharing multiple output multilayer percep-
tron model in our investigations, which is still the most widely used MTL model
in drug-target interaction prediction and it can be viewed as a prototype for gen-
eral pre-trained models fine-tuned with downstream tasks [6,13,14]. Theoretical
analysis of transfer effects between tasks corresponding to "head’ networks using
shared representations through a common trunk is an active area of research (see
e.g. [10]. Empirical approaches to characterize the inductive aspects of transfer
adopted the concepts of learning curves and effective data sizes [12,19]. To avoid
negative transfer, various screening and task decomposition methods were pro-
posed [8,18]. The selection problem of auxiliary tasks was also formulated in
the multi-armed bandit (MAB) framework, as combinatorial multi-armed ban-
dits [7] and multi-bandits [9]. In the life sciences, the drug-target interaction
prediction problem has long been viewed as the ideal case for MTL, however,
results are still mixed and negative transfer is persistent [13,21]. Our application
domain consists of the nuclear receptors present in the NURA data set, which
were already investigated by MTL methods [20].

3 Formalization of the Framework and the Questions

We follow the notation from [10,18,19]. We assume that the MTL algorithm A
selects a multi-task binary decision function f : R — {0,1}¥ from a function
class F, where d denotes the input dimension and K denotes the number of tasks.
The input and output spaces are denoted by X and ), and their joint probability
distribution is denoted by Pxy . Following the hard parameter sharing approach,
the function f is defined as a composite mapping

f=hog, withgeGC{¢:R! - R"}and h; e HC {h:R" — {0,1}}. (1)

The shared feature map g is frequently called trunk, which provides a common
representation for all the classifier functions h; in a domain, and h = (hq, ..., hk)
denotes the vector of classifiers for each task i =1,... K.



Boosting Multitask Decomposition 19

We assume a loss function L(§,y) specifying the error for the prediction
9 = f(z) and true value y, where 9,y € {0,1}¥. This allows the definition of
an idealized performance measure for a given function f, usually with a loss
function decomposable for the tasks

K
L(f) = Epyy [L(f(X),Y)] where L(f(X),Y) =Y Li(fi(X).Y).  (2)
i=1

In practice, the learning algorithm A uses a data set D, to select a decision
function f = A(D,,). The expectation over the data set D,, defines the idealized
performance measure of A with sample size n:

Ly =Ep, [L(A(D,))]. (3)

In practice, L7} (F) is estimated using M train-test data sets [(D( ™) D’(m))]m 1

n’

M/—MZ AD), (D'7)). (4)

We expect complete z inputs, but in the case of high-dimensional outcomes,
outcomes are frequently incomplete. In this case, L(f, D/,) denotes the sum of the
respective estimated losses based on the n number of outcomes for Y; present in
the test data set D),. For losses, such as the Area Under the Receiver Operating
Curve (AUROC) and the Area Under the Precision-Recall Curve (AUPR), the
performance can be estimated analogously.

We define the model’s performance/loss for task 4, when trained with the
auxiliary task set s;, as L; 5;. There are four main training scenarios: single task
learning (STL) denoted L; _ (or L;), s; = 0; multitask learning (MTL) denoted
Lix, s ={1,... K} \ {i}; pairwise learning (PW) denoted L; ;, s; = {j} and
leave-one-out learning denoted L; j_, s; = {1,..., K} \ {4, j}.

In this predictive approach, the MTL problem is formalized as follows: for
each task ¢ find auxiliary task set s; minimizing L; s,, optionally satisfying that
the sum of the corresponding ¢; s, costs kept below a specific b budget (for a
related formalization, see [18]). In the paper, we assume that the auxiliary s;
task subsets for a task i are all the K — 1 singular sets, all the K — 1 leave-
one-out sets with size K — 2, and the set of all K — 1 other tasks. Our primary
goal is to identify the best models from these for each task and to estimate the
corresponding losses uniformly well.

3.1 Conditional Markov Boundaries for Direct Transfer Effects

In a probabilistic formalization of the MTL problem, we can exploit that tasks
can be conditionally dependent given the input X, if they share internal mech-
anisms and thus they may be confounded or their missing-not-at-random prop-
erties are coupled. This suggests a conditional extension of the well-established
concept of Markov blankets for the MTL problem.
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Definition 1. The task set s; is a conditional Markov blanket of task Y;, iff
I(Y;, Y \ s;|X,8:). If s; is minimal, then it is called a conditional multitask
Markov boundary of Y; (C(Y3)).

Note that the leave-one-out sets corresponding to L; ;— allow a test for the
membership of task j in the C; of task ¢ (j € C;), which can be used in a
complimentary pairwise heuristics to the MTL problem (see question Q1).

3.2 Multi-armed Bandit and Active Learning-Based Speed-Ups

We focus on the computationally most costly estimation in Eq.4 and try to min-
imize the number of evaluations/splits both in selecting the best model and in
their loss estimation (see questions Q2 and Q3). Below we illustrate the moti-
vation of using data-dependent exploring strategies in these MAB settings in
general. In both settings, we have K’ > 2 arms (depending on the number
K of tasks) and arm k is parameterized by a fixed (unknown) distribution vy
over [0,1] with mean p. When pulled, its associated reward/sample is drawn
at random from v independently of all previous rewards. In our case, each puy,
corresponds to L; 5, for some s;, and vy corresponds to the distribution of the
empirical estimates of this L; s, taking the form of Eq. 4.
Let p* = pp= = maxy—1,. i’ b5 the mean value of a best arm k*.

Pure Exploration. Finding a subset s; that is almost as good as the best
allowed subset can be formulated as a pure exploration problem, [3,4]. Here,
at round ¢, the forecaster chooses an arm I; to be pulled based on past (pulls,
rewards) till round ¢ — 1 (ezploration ), and sees the associated reward Y;. Then
it outputs a recommendation J; based on past till round ¢. In I; and J; external
randomization may be used. We evaluate the forecaster through its simple regret
at round n, that is, the regret r,, = p* — p s, for arm J,,. For simplicity, assume
that there is a unique optimal arm. Introduce the gaps and minimal gap

K/
* * . 1
Ap = p* — s for k # k¥, A:Ak*:&n}k, andle;A—i. (5)
Now, if the forecaster just naively allocated, e.g., uniformly and recommended
the empirically best arm (EBA, see also [4]), then for some {1}}’s, the sample
complexity for the simple regret rate would be of order at least K’'H; log(A/d):

Proposition 1. For uniform allocation and EBA recommendation for A <
1/V4K', there are Bernoulli {vy}’s such that for alln > K'/A,

ST LT R B 16n
n ———————exp | ——F7 | .
nr 8 +3/(44) P\ T KH,

The proof, given in Appendix F along with a detailed version, is based on the
well-known fact that one needs of the order of 1/A? samples to differentiate the
means of two distributions with gap A, as mentioned in [3].
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On the other hand, for the Successive Rejects (SR) algorithm described in
[3, Fig. 3], we have as an immediate consequence of [3, Theorem 2]

Proposition 2. With logK' = % + Zfig % for the expected simple regret of SR

K'(K' -1 - K’
Efr,] < ZE D o (_”>
2 HilogK'’

This yields a sample complexity of order at most K’ 4+ Hy log K'log(K'/6).

Active Learning. Providing uniformly accurate estimates for the performance
of all the allowed auxiliary subsets can be formulated as an active learning prob-
lem, [1,5]. For details see Appendix E,

3.3 Multi-task Learning Curve Based Speed-Up

The use of a partial data set is a practical choice to accelerate the MTL process,
see e.g. [18]. However, as formulated in question Q4, in many real-world problems
tasks are not saturated and frequently are in the low data regime. To investigate
the applicability of partial data sets in at least learning to rank the candidate
auxiliary subsets or to estimate the sign of their effect on the target we used the
concept of learning curves (LC). The expected performance at a given sample
size in Eq. 3 provides a formal definition for the LCs [19]. We use the following
power law approximation:

POW3(n) = ¢ —an™?, (6)

where n denotes the sample size, the parameters a and b influence the learning
rate, whereas parameter ¢ represents the asymptotic performance limit.

3.4 Gradient-Based Speed-Up

The estimation of inductive transfer is a costly computation; however, trans-
fer effects are also manifested during training. The Task Affinity Groupings
(TAG) method was designed to utilize this latter aspect to determine the opti-
mal clustering of tasks for training in multi-task neural networks [8]. Within this
framework, all tasks are integrated and trained within a comprehensive model.
A key feature of TAG is its assessment of the influence of parameter updates
for a specific task on the losses associated with other tasks, a process termed
inter-task affinity. Drawing inspiration from meta-learning, TAG employs an
approach by adjusting parameters for individual tasks and subsequently exam-
ining their effects on other tasks. By gathering data on task interrelations, TAG
distinguishes between tasks that exhibit positive and negative interactions. This
facilitates the formation of task groupings that amplify inter-task affinity, which
in turn augments model performance. We expanded TAG to collect information
about all three STL, MTL, PW scenarios used in the paper.
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4 Materials and Methods

Following [20], we use the NURA-2021 data set binarized as ’strong binder’ ver-
sus other labels. It includes 22 targets and 31006 compounds. Since completely
random train/test splits suffer from the compound series bias, leading to overop-
timistic performance estimations [14], we utilize a more realistic, scaffold-based
train/test split in the spirit of [16], which resulted in 6441 scaffolds.

Our definition of the shared parameter model in Eq. 1 follows the SparseChem
multiple output MLP model with the decomposition at the penultimate layer as
the g foundation model and a ReLU activation in the h for the task heads [2].
Trainings were performed using the SparseChem model, which consisted of a
32000 neuron-wide input layer, a 500 neuron-wide hidden layer, and an output
layer the width of which was determined by the number of tasks present in
the corresponding learning. ReLU and sigmoid activation functions were used
in the first two layers and on the output. Hyperparameters for the training of
neural networks were determined by grid search. During their training, ADAM
optimization scheme was used with a learning rate of 0.0001. Training was done
for a fixed number of 35 epochs.

5 Results

In the following, we present results for the questions Q1-Q6. To assess the perfor-
mance of the trained models, the following operations were carried out: (1) the
set of available scaffolds was split randomly into training and validation folds
with sizes 80% and 20%, respectively; (2) the evaluated neural network mod-
els were trained for 35 epochs and then evaluated by calculating their AUROC
and AUPR measures for each target contained by the corresponding data set.
This cycle of fold splitting-training-evaluation was repeated 100 times in order
to achieve a confident estimation of the mean and variance of AUROC/AUPR
performance. For each task, we evaluated the STL, MTL, and the two types of
pairwise scenarios, which means 2+ 2x (K — 1) options in the MAB. Throughout
the paper, we use the best option for each task as the reference.

5.1 Effect of Multi-task Learning (Question Q1)

We performed a systematic screening over all the tasks for the effect of multi-task
learning comparing the performance of the selected task composition settings
against single-task performance as a baseline: (1) all the tasks together, (2) two
targets together to assess their pairwise interaction, and (3) all the tasks except
one in a leave-one-out scheme (see Fig.1).

Overall, multi-task learning improved the AUROC performance for 14 tasks
at a nominally significant level (using Welch paired t-test for the assessment)
and the AUPR performance also for 14 tasks (with an overlap of 13 tasks).
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Fig. 1. Task-by-task comparison of AUROC and AUPR performances of the single-task
(horizontal axis), multi-task, and the best and worst of the pairwise and leave-one-out
cases (vertical axis).

5.2 Effect of Bandits (Question Q2)

We evaluated the UCB algorithm for each task with the STL versus MTL sce-
narios. Each MAB performed 5, 10,25, 50, and 100 draws and we calculated their
accuracy compared to the reference using 100 repeats (see Fig. 3).

5.3 Efficiency of Active Learning (Question Q3)

The efficiency of the active learning algorithms depends on the variances of the
arms (see Appendix E), i.e., on the variances of the AUROC and AUPR values
for the STL, MTL, and pairwise scenarios. Using the same systematic evaluation
with 100 train-test splits, we estimated the variances (Fig. 4 shows the variances
(min/max)). For illustrations of the convergence of standard errors, see B.

5.4 Learning Curves of Multitask Learning (Question Q4)

Figure 6 illustrates the LC with parameters for task 12 and shows the relations
per task between the reference transfer effects and the transfer effects estimated
using only the 10% of the available data set.

To test the applicability of partial data sets in the screening process, we
investigated the usability of x% of the data in a simple decision about the STL
versus the MTL options and compared this decision to a reference decision based
on the 100 train-test splits (see Table1).

5.5 Gradient-Based Cross-Training Task Affinities (Question Q5)

Analogously to the testing of the learning curves, we investigated the usability
of the gradient-based cross-training task affinities calculated using the first m
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epochs. Figure 7 illustrates the relation of the gradient-based task affinities and
the real differences. Table 2 shows the usability of gradient-based task affinities
to discriminate between the STL and the MTL options, compared to a reference
decision based on the 100 train-test splits.

5.6 Multivariate Effect of the Positive Pairwise Tasks (Question Q6)

Finally, we selected for each task the auxiliary pairwise tasks with positive effects
both with respect to AUROC and AUPR (see Fig. 2).

AUPR AUROC

paired_max

|
‘ \
0.02 ] : ‘; paired_max 0.02 ‘ I l
‘ = multi ol ' a1 ] = multi
001 \H ~ | =selected ohmbhmb L ’ILL e —— [\ = selected
. I I ‘ 11 | wssiectodmem wop 123496780 01LBUISIEY whlhak a———
113 )
'234‘ 7snmuummmmummm#i
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-0.03 -0.08
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Fig. 2. Effect of the inclusion of the auxiliary tasks with positive effects on AUROC
and AUPR (denoted by ‘selected’) and those auxiliary tasks, the removal of which from
the full multitask model has a negative effect (denoted by ‘selected_mbm’). The STL
scenario is the baseline, for comparison the full multitask learning (multi) and the best
pairwise options (paired_max) are also indicated.

6 Discussion

The presented results for questions Q1-Q6 offer systematic answers for the
heuristics reported in the multitask decomposition problem. As the results
shown in Fig.1 indicate most of the tasks can be significantly improved even
by simple MTL approaches (Q1). Surprisingly, the proposed conditional Markov
Boundary-based ’direct’ transfer effect in itself proved to be the most advanta-
geous in certain cases, which suggests that negative transfer can be linked to a
single detrimental auxiliary task. The tentative applicability of MABs over only
the restricted set of scenarios confirmed their efficiency (see Fig.3), although
their full-fledged application should encompass the use of combinatorial bandits
in the multi-bandit framework as the auxiliary task sets should be selected for
each task simultaneously (Q2). As Fig. 4 illustrates the variances of the perfor-
mance of the models are widely varying, which is probably related to the sample
size differences (Q3). Given the increasing relevance of tasks with limited data
and few-shot learning, the significance of this problem is expected to escalate.
Consequently, active learning methods may offer substantial utility in addressing
these challenges. The relative data scarcity does not allow the use of a partial
data set with fixed size in this domain (see Table1), but learning curves fit
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at well-selected sample sizes could offer efficient strategies to predict the per-
formance (Q4). Despite its attractively low computational cost, gradient-based
cross-training task affinities cannot be used to approximate the reference trans-
fer effects in this problem (Q5). The joint use of auxiliary tasks with positive
transfer effects could further improve the performances, indicating the viability
of the multitask decomposition approach in the DTI prediction problem (Q6).

7 Conclusion

Transfer effects in multi-task learning present both theoretical and practical chal-
lenges. The DTT prediction problem, characterized by its fundamental relevance
and industry-scale data sets, exemplifies these challenges. However, the data sets
are often highly incomplete, relatively scarce, and missing-not-at-random, with
the computational costs of training large multi-task models creating a bottle-
neck in reliably estimating generalization performance. In response, we explored
novel applications of active learning methods aimed at reducing the number
of test-train data splits, thereby facilitating more efficient explorations of vari-
ous heuristics proposed for the multitask decomposition problem. Our findings
further suggest that adaptive approaches to test-train data splits enable effec-
tive and scalable use of advanced multi-armed bandit methods in this context,
searching for optimal auxiliary sets. Efficiently utilized heuristics based on learn-
ing curves and gradient-based task affinities from partial training could guide
this process, enhancing the overall efficiency of multi-task learning.
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Appendix

The structure of the appendix is as follows:

— Section A provides a comprehensive overview of the background.

Section B presents results for the sequential learning approaches.

— Section C illustrates data sufficiency using learning curves.

Section D reports results about the use of gradient-based task affinities.

— Section E gives details and further explanations on the active learning app-
roach

Section F presents details and proofs about the pure exploration approach.
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A Background

In life sciences, the drug-target interaction prediction problem has long been
viewed as the ideal case for MTL [30,50,57]. However, results are still mixed
and negative transfer is persistent [13,21,38,39,45,58,65]. Transfer effects
and transfer learning are intensively investigated in many fields, such as in
multi-task learning (MTL) [61], in transfer learning and model transforma-
tion/distillation [22,24], in multimodal fusion [25,28,62], in curriculum learn-
ing [29], in learning with prior knowledge and few-shot learning [56], in meta-
learning [35,37,59], in active learning and adaptive study design [43,51], in
sequential learning [54], and in learning downstream tasks with foundation mod-
els [12].

The selection of multiple tasks for joint learning motivated a series of sequen-
tial learning methods [42]. Combinatorial multi-armed bandits (MABs) allow the
pull of multiple arms simultaneously resulting in an aggregate reward of individ-
ual arms [7]. Notably, the "top-k’ extension considers the subsets up to size k and
allows variants whether the rewards for the individual arms are available or only
their non-linear aggregations [23,49]. Another relevant extension to our formal-
ization with multiple auxiliary task subset selection problem for each task is the
multi-bandit approach, also allowing overlap between the arms [9,52]. Finally,
recent MAB extensions investigated the use of task representations and learning
task relatedness [32,46,54]. MABs are successfully applied in hyper-parameter
optimization and neural architecture search (see e.g. [34]).

A wide range of techniques was also proposed for MTL-specific optimiza-
tion [31,40,44,53,63,64], although systematic empirical evaluations indicate very
modest or not significant advance [61]. To avoid negative transfer, various screen-
ing and task decomposition methods were proposed [8,18,55].

Although the feature subset selection problem offers a direct analogue for
the task subset selection problem, this parallel is unexplored. For the intro-
duction and overview of the Markov blanket concept, see [47,48]). For its use
in the feature subset selection problem, see e.g. [26,33,41]. For dedicated DTI
architectures to explicitly model the DTT mechanisms, see e.g. [27,36,60] Fig. 5.

s
10
2
50
100

Fig. 3. The accuracy of MABs compared to the reference performing 5, 10, 25, 50, and
100 draws, which is repeated 100 times.
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Fig. 4. Histogram of variances of the models per task (only the minimal and maximal
variances are shown for the pairwise models).

B  Results of Sequential Learning Approaches

C Learning Curves

Table 1. Relations of STL versus MTL decisions estimates using varying amounts of

data.

meas AUROC AUPR

training data | ACCrLc | ACCai | ke |krce |ACCrc | ACCain |KLe | KLc
10.00% 54.55% | 54.55% |0.246|0.246 | 72.73% | 68.18% |0.340 | 0.364
20.00% 72.73% | T7.27% 0.377 | 0.545 | 63.64% | 81.82% |-0.023 | 0.560
30.00% 90.91% |86.36% |0.770|0.702 | 81.82% | 86.36% |0.560 |0.645
40.00% 86.36% | 81.82% |0.592|0.488 | 81.82% | 81.82% |0.488 |0.488
50.00% 90.91% |95.45% |0.744|0.879 | 81.82% |86.36% |0.488 | 0.582
60.00% 90.91% |90.91% |0.744 | 0.771]90.91% | 90.91% | 0.694 |0.694
70.00% 95.45% | 95.45% |0.879]0.879 | 90.91% | 86.36% |0.694 |0.492
80.00% 100.00% | 100.00% | 1.000 | 1.000 | 90.91% | 100.00% | 0.694 | 1.000

target: 12

e 4 19%, ser 0
2 sk, st 4 125, e 0.41%
2 70%, s 3.95%, ser: A0%,

Fig. 5. The evolution of the estimated losses and variances for the models in the case

of task 12.
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Fig. 6. The STL and MTL learning curves of task 12, the scatter plots on the right
depict the fit of the LC function to the actual observations.

D Gradient-Based Cross-Training Task Affinities

Table 2. Accuracy and Cohen’s k values characterizing the goodness of gradient-based
affinity scores w.r.t. observed differences in AUROC and AUPR scores, accumulated
over 5, 10 and 35 training epochs.

meas | AUROC AUPR
epochs | ACC |k ACC |k
5 54.55% | 0.241 | 54.55% | 0.241
10 54.55% | 0.173 | 54.55% | 0.172
35 59.09% | 0.038 | 68.18% | 0.252
AUROC AUPR
é: 10t . é 10* . .
% . . & . % ? o
-0.03 -0.02 -0.01 DOUd"('l(.gi'RoﬂC’OZ 0.03 0.04 0.05 o -0.04 fD.DdZ‘"(AUPR)D.OU 0.02

Fig. 7. The relation of affinity scores and actual differences taking into account mea-
surements from the whole (35 epochs) training, for pairwise and leave-one-out settings.
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E  Active Learning of Performance Measures

Below, we detail the motivation for using data-dependent active learning strate-
gies in general, mentioned at the end of Subsect. 3.2. In this setting, the objective
is to estimate all the p’s uniformly well given a budget of n pulls. At each round
t > 1, the learner (algorithm) selects an arm k; to be pulled sequentially, that
is, based on past pulls and samples up to round ¢ — 1 and receives an associated
sample Y; drawn from vy, independently of the past. Let Ty, = Zi’:l I{ky =k}
be the number of times arm k& was pulled up to round ¢. Denote the sequence
of associated samples for arm k also by X1, Xg2, ..., Xi 1, here, that is,
Y: = Xy, 1y, ,- After round n , the learner returns the empirical estimates

Tkn
. 1
fen = =3 Xee  (LSk< K
" ot=1

of pux’s (sample means). The accuracy of estimating py by figy is measured with
its expected squared error (loss) Ly, = E [(/l;m - uk)Q]. The overall performance
or loss of the learner to be minimized is measured by the worst loss over the K’
arms
L, = max Lj,.
1<k<K’

See [1] for motivation for this loss function.

Consider the non-sequential version of the problem, i.e., the problem of choos-
ing Ty, ..., Tk, such that Ty, + ...+ Tk, = n so as to minimize L,, . In this
case, due to the independence of samples!

2
Ik

L n = 5
¥ Tkn

where oi = Var [X}1] is the variance of v;. So a naive uniform allocation, when
each Ty, = n/K’ (up to rounding), yields

K’ maxi<p<i 0%
<k<K' Ok
L, = " . (7)

loss. Assume for a moment that we know each o7 > 0 (for simplicity assumed to
be positive). Then there is no value in making the choice of Tj,,’s data dependent,
and the minimizer of L,, is the allocation {7}, }; that makes all the losses Ly,
(approximately) equal, hence (apart from rounding issues)
2
* O-k;
Tkn = nﬁ
Here X2 = Zlel 0%, and the value of 07/%X? gives the optimal allocation ratio
for arm k. Hence to calculate the optimal allocations, all one needs to know

! This equality does not hold when the number of pulls is random, e.g., in adaptive
algorithms where the strategy depends on the random observed samples.
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about {vy} is {o2}. The corresponding loss is

22
Ly =—,
n
that can be significantly less than that of the uniform allocation in 7 above when
0?’s deviates. A good sequential algorithm A can achieve a loss L, (A) close to
Ly, that is, have small excess-loss or regret

Rn<A) = Ln(A) - L:m

and thus can well overtake the uniform allocation.

For example, [1] provides the GAFS-MAX algorithm and proves that its
regret is such that R,(Agars—max) = O(n‘3/2).2 (Note that both the
coefficient and the threshold in O depend heavily on the variances through
X2/  min o? in the result.)

Another algorithm mentioned in [1], GFSP-MAX, is detailed and empirically
shown to have regret of order O(n=/2) in [11].

In [5], two more algorithms were given motivated by the celebrated bandit
algorithm UCB, for fixed (known in advance) budget n.

The CH-AS algorithm has again the regret rate R, (Acu—_as) = O(n=3/2).
(In this result, only the constant coefficient in O depends moderately on the
above variance parameter, but not the threshold.)

The other algorithm, B-AS, has also the regret rate R, (Ap_as) = O(n=3/2).
(Here, the constant coefficient in O has an even weaker dependence on the above
variance parameter, but not the threshold. For Gaussian, v’s, a regret bound
independent of this parameter is also derived.)

Note that an interesting feature that is shared between both the pure explo-
ration and active learning settings is that good strategies should play all the
arms as a linear function of n. This is in contrast with the standard stochastic
bandit setting, at which the sub-optimal arms should be played logarithmically
in n.

F  Proof of Proposition 1

First, we restate a more detailed version of the proposition:

Proposition 3. For uniform allocation, that is, when Iy = i happens n/K'-
times (up to rounding) for all i, and EBA recommendation, for any A < 1/2,
there are Bernoulli {v;}’s such that for alln > K'/A,

Efr] > 3K’ 1 16n.A2
e\ T 813/ TP\ sk )

2 A nonnegative sequence {a,} is said to be O(fn), where {f,} is a positive valued
sequence, if a, < C f,, log?(f,) with suitable constants C,p > 0.
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Whenever A < 1/v4K' then also
E[r] > 3K’ 1 16n
n ————exp|———|.
" nr 8+3/(44A) TP\ K/H,
Proof. Let v; be Bernoulli distributions with parameters
1+A 1-A o _ A
9 M2 = 9 us = = MK = 9
respectively. Now k* =1, u* = g, Ay = A=A, Ag=---=Ax =1/2by 5
Consequently, H; = 2/A? + 4(K’' — 2). We have

E[rn] =E[p* — ps,] =Y AP {J, =k} > AP{J, #1}.
k=2

H1 =

For simplicity, we assume that n = mK’, so each arm was pulled m times till
round n. (Otherwise the proof is similar up to some rounding effect.) Denote
here Xy 1, Xk2, ..., Xi,m the sequence of associated rewards for arm k. Recall
that EBA recommendation means that

Jn € argmax— E Xis = argmax E Xi s
i=1,... K T =1, K’ %

so Jy, # 1 follows from 7" | X1 4 < > oo, Xa 5, hence

E[Tn] > AP{iXLS < iXQ}S} .
s=1 s=1

The probability on the right-hand side can be written as

P{i(l —Xl,s)-i-in,s > m} :]}”{i(l - X1,5) +iX2,s >m+ 1}>

s=1 s=1 s=1 s=1

where we have the sum of 2m independent Bernoulli((1 — A)/2) variables, that
is, a Binomial(2m, (1 — A)/2) variable. Now an inequality by Slud [17] states
that for all np < k < n(1 — p),

. . - k—mnp
P {Binomial( ,p>>k}>¢< T )>,

where @ is the standard normal distribution function. Hence this implies that,
whenever mA > 1, the probability P {Binomial(2m, (1 — A)/2) > m + 1} above
is at least

m+1— m(l1—A) L 14mA ~2V2mA
( V(i -4 <—A>/2>>_¢< m(l—m)/z)zé( =)

2m
>d| —44/—A
< 3 >
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using 1 < mA and A < 1/2. A bound in [15] assures that

1 X 2
Pl—p) > — 7 oT/2
0z et

45 (_4 mA) 4 V m/37TAe—16mA2/3

3 - 327§A2 + 1
4y/3m/TA e 16mA?/3 _ i 4 o 16mA?/3
= 32mA? + 3mA V mm 32A + 3 '

Putting together

3 1 —16mA2/3
> = .
Elra] 2 m7T8—|—3/(4A)e

If A<1/v4K' then

Hy =2/A* + 4(K' —2) < 2/A* +1/A% — —8 < 3/A?,

thus the bound above is further lower bounded by

[3 1 o
mm 8+ 3/(44) '
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Abstract. Hypercapnic respiratory failure (an accumulation of carbon dioxide,
CO», in the blood) is often missed in clinical practice. Arterial blood gas is the
standard diagnostic test, but it is painful and not routine. When clinicians fail to
make the diagnosis, it is often because an arterial blood gas was not obtained.
This ‘partial verification’ of CO; levels presents a challenge for machine learn-
ing algorithms. We assessed the accuracy of two machine learning methods using
demographics and routine lab work to estimate the likelihood that a patient has
hypercapnic respiratory failure at hospital admission. Hospitalized patients who
received an arterial blood gas sample constituted the training (n = 111,015) and
geographic validation (n = 20,834) sets. Acceptance of “silver standard” diagnos-
tic criteria and weighting observations by their modeled likelihood of receiving
arterial blood gas sampling were used to assess the stability of findings in the
presence of partial verification. Both regularized logistic regression and random-
forest-based models resulted in acceptable performance (area under the curve:
0.763 and 0.758 respectively), with minimal changes in the auxiliary analyses.
This work suggests that routinely available health record data can stratify the like-
lihood of hypercapnic respiratory failure among hospitalized adults, and findings
may generalize to patients who have not received arterial blood gas sampling in
clinical practice.

Keywords: Hypercapnic Respiratory Failure - Diagnostic Model - Machine
Learning - Partial Verification

1 Introduction

Hypercapnic respiratory failure is a condition where the amount of inspired air that
participates in gas exchange is insufficient to match the metabolic production of carbon
dioxide (COy) in the body, leading to a buildup of CO» in the blood called hypercapnia.
Hypercapnic respiratory failure is common among patients presenting to hospitals [1],
is associated with high rates of readmission [2], and indicates a high risk of death in the
months after recognition [3, 4].
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Clinicians often fail to recognize patients who have hypercapnic respiratory failure
[5]. Organ failure or death occurs when respiratory failure leads to low oxygen levels,
but high blood CO, levels are acutely better tolerated. Thus, unlike oxygen, blood CO,
monitoring is not routine in hospitalized patients. Arterial blood gas sampling is the
reference standard diagnostic test to confirm hypercapnia. It is painful [6] and can lead
to complications [7], so clinicians only order the test when their suspicion for hypercapnia
is particularly high.

Methods to reliably predict which patients have hypercapnic respiratory failure could
improve patient outcomes by helping to identify high-risk patients that are missed in
clinical practice. For many of these patients, evidence-based treatments exist to improve
their symptoms, lessen their risk of hospitalization, and improve their mortality[8].
Some routinely obtained lab values, like serum potassium and bicarbonate, change the
likelihood of hypercapnia substantially [9, 10]. Using additional data elements to model
the likelihood of hypercapnia being present, termed diagnostic modeling, might improve
diagnostic reliability. However, diagnostic models for hypercapnic respiratory failure
have not been previously reported.

A key challenge to developing such models is partial verification [11]: blood CO;
levels are known only for the patients who underwent arterial blood sampling. The
patients who would benefit most from more reliable diagnosis are less likely to have
received arterial blood gas testing, and are therefore under-represented among the cases
available for training a diagnostic model. In the literature evaluating medical tests, two
commonly used approaches to address partial verification bias are analyses accepting
“silver standard” diagnostic criteria and weighting observations by the likelihood that
they’d receive the definitive test. In this work, we aim to assess the accuracy of two
approaches to diagnostic modeling of hypercapnic respiratory failure in the presence of
partial verification blood CO; levels.

2 Methods

This was a retrospective analysis of de-identified electronic health record data from the
TriNetX research network database (TriNetX, LLC. Cambridge, Massachusetts) and
was exempted by the University of Utah Institutional Review Board (#00152089).

2.1 Data Source

The TriNetX research network is a federated network of electronic health record data
from 76 medical centers across the US, serving roughly 115 million patients [12]. All
adult, inpatient encounters occurring during the calendar year 2022 that met any of the
following criteria were requested: received a diagnostic code for any respiratory fail-
ure, had a condition known to cause hypercapnia (including severe obesity), received a
procedure code for the treatment of respiratory failure (non-invasive or invasive ventila-
tion), or had an arterial (ABG) or venous blood gas (VBG) obtained on the first day of
the encounter. These criteria indicate that consideration of hypercapnia was warranted,
which is the spectrum of patients in whom diagnostic modeling would be used [13].
First encounters for each patient were used. Data was cleaned to remove physiologically
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impossible data and encounters with evidence of incomplete data submission to TriNetX
(for example: missing categories of data such as no procedure codes or diagnoses for
the encounter of interest).

2.2 Model Creation and Feature Selection

Predictors (age, sex, body mass index [BMI], components of basic blood chemistry test-
ing [sodium, potassium, chloride, bicarbonate, urea, and creatinine], and hemoglobin)
were selected a priori on clinical relevance. Additionally, these data elements are rou-
tinely present in all hospital admissions and are clinically ascertained independent of
(and, generally, before) knowledge of the presence of hypercapnic respiratory failure.
No imputation was performed as data elements were selected for low missingness.

To focus on the influence of partial verification, two standard machine learning
approaches were used: logistic regression with L1-regularization (termed logistic least
absolute shrinkage and selection operator, or LASSO regression, for short) and random
forest modeling. LASSO and random forest models were selected for their ubiquity and to
balance understandble model outputs compared to possible performance gains from the
handling of non-linear relationships. For the LASSO regression, continuous predictors
were represented as restricted cubic splines with 4 knots, and 10-fold cross-validation
was used to select the minimum prediction error \. For random forest, hyperparameter
(tree depth, number of splitting features, and number of bootstrapped trees) tuning was
performed using grid search and 10-fold cross-validation.

2.3 Performance Analysis

Patients who had any ABG on the calendar day of admission showing a partial pressure
of CO; (PaCOy) over 45 mm Hg were considered to have hypercapnia. In the primary
analysis, diagnostic model predictions of the likelihood of hypercapnia were generated
for patients in whom ABG sampling was performed. Model discrimination (ability to
separate patients with hypercapnia from those without) was assessed using receiver
operating characteristic (ROC) curves and summarized as the area under the ROC curve
(AUC). Model calibration (how closely the predicted likelihood of hypercapnia corre-
lates with the true likelihood) was assessed by the full sample expected to observed event
ratio (E:O), calibration in the large (CITL; the relation of the mean predicted risk to the
mean observed risk), calibration slope (CS, slope; whether risks are too extreme for
high- and low-risk patients) and calibration plots visualized by decile of predicted risk.
Overall performance was summarized using Brier scores. The importance of individual
predictors was assessed using standardized regression coefficients (LASSO) and mean
decrease in impurity (random forest). Models were trained on data submitted from the
Western, Southeastern, and Northeastern US regions, and evaluated in hospitals from
the Midwestern region. The evaluation region was chosen arbitrarily by two coin flips
and sensitivity analyses holding out the other regions for evaluation show similar results
but are omitted for brevity. Geographic validation, rather than a random hold-out set,
was performed for a more severe test of the distribution shift associated with regional
variations in care practices.
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2.4 Evaluation of the Influence of Partial Verification

Two additional analyses were performed to assess the applicability of diagnostic mod-
eling to patients who did not receive reference-standard (ABG) blood CO; level assess-
ment. First, VBG sampling is considered a “silver standard” method of diagnosis, with
high venous CO; levels serving as an imperfect but usable surrogate for arterial CO,
levels [14]. The same performance metrics were calculated on patients who had either an
ABG or VBG that showed hypercapnia (an arterial PaCO, over 45 mm Hg or a venous
PCO; over 50 mm Hg) obtained on the day of admission.

Second, inverse probability weighting was used to create a pseudopopulation that
represents the sample where all patients had an equal probability of receiving ABG
sampling, conditional on the covariables used to model the propensity of receiving an
ABG sample [11]. Logistic regression was used to generate propensity scores, using prior
diagnoses, demographics, lab values, and outpatient medications clinically suspected to
relate to the propensity to receive an ABG. The missing indicator method was used to
account for missing data [14]. The model was then evaluated in the weighted population
to estimate the model’s performance if it had been applied across the entire population,
as opposed to only those who actually received an ABG.

Statistical analysis used Stata 18 (StataCorp, College Station, TX) with pmcalplot
[15] and scikit-learn (1.4.1) [16] via c_ml_stata_cv packages [17].

3 Results

Of 401,079 potentially eligible adult, inpatient encounters, n = 32,987 were excluded
for missing data, and n = 68,190 were repeat encounters (Fig. 1). For the primary
analysis, an admission-day ABG sample was obtained in 131,849 of 299,902 patients.
An additional n = 44,600 had a VBG and were included in the supplementary analysis.

Demographics of the included groups are given in Table 1. Among the patients who
underwent ABG sampling on the day of hospital admission, 30% (n = 39,676) had
hypercapnia. When VBG verification was accepted to determine hypercapnia status,
33% (n = 57,349) of patients who received either an arterial or venous blood gas showed
evidence of hypercapnia. All predictors had <10% missingness rates.

LASSO logistic regression modeling achieved an AUC of 0.763 and a Brier score of
0.180 in the test set (Midwestern US Hospitals), with adequate calibration (Fig. 2). Serum
bicarbonate, potassium, and BMI were the strongest individual predictors. Performance
dropped to an AUC of 0.749 and a Brier score of 0.190 in the silver standard analysis
and increased to an AUC of 0.792 and a Brier Score of 0.178 when inverse propensity
weighting was performed (Table 2).

Random forest-based predictions achieved clinically indistinguishable performance
in the primary (AUC 0.758, Brier score 0.184), silver standard (AUC 0.745, Brier Score
0.193), and inverse probability-weighted analysis (AUC 0.782, Brier score 0.184). Par-
ticularly in the silver standard analysis, there was a mild underestimation of the likelihood
of hypercapnia across all risk categories in both regression and random forest-based mod-
els. Serum bicarbonate had the highest feature importance, followed by serum creatinine,
hemoglobin, and potassium.



40 B. W. Locke et al.

Inpatient encounters in 2022 with a
reason to suspect hypercapnia (n=401079)

Excluded (n=101,177):

* Not all data element types present
(n=32,987)

* Subsequent encounter (n=68,190)

Target sample for the inverse propensity
weighting analysis (n=299.902)

Excluded (n=123 453):
H» * Received neither an ABG nor a VBG on
the first day (n=123453)

Included in the silver standard analysis
(n=176,449)

Excluded (n=44,600):
H» * Received only a VBG but no ABG on the
first day (n=44,600)

Included in the training dataset and the
primary analysis (n=131,849)

Fig. 1. Enrollment Flowchart. Only patients who received arterial blood gas sampling to verity
their hypercapnia status were included in the primary analysis. ABG = arterial blood gas. VBG
= venous blood gas

Table 1. Characteristics of included patients. Western, Northeastern, and Southeastern US hospi-
tals constituted the training set, while Midwestern hospitals were the testing set. Diagnoses were
based on diagnosis codes rendered up to the admission of interest. BMI = body mass index, COPD
= chronic obstructive pulmonary disease, ABG = arterial blood gas (threshold 45 mmHg), VBG
= venous blood gas (threshold 50 mmHg). EHR-recorded death occurred with a median follow-up
of 11 months.

Entire Cohort First-day ABG First-day ABG obtained
or VBG obtained
Silver standard analysis Training, primary analyses
N = 299,902 N = 176,449 N = 131,849
Training dataset Not applicable Not applicable 84% (111,015)
Testing dataset Not applicable 15% (27,138) 16% (20,834)
Age (years) 62 (£17) 62 (£17) 62 (£17)

(continued)
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Table 1. (continued)

Entire Cohort First-day ABG First-day ABG obtained
or VBG obtained
Silver standard analysis Training, primary analyses

N = 299,902 N = 176,449 N =131,849
Female 47% (141,032) 45% (79,805) 45% (58,792)
Black or African 18% (53,933) 17% (30,483) 17% (22,006)
American
Asian 2% (5,866) 2% (3,860) 2% (2,922)
White 68% (204,471) 67% (118,890) 68% (89,414)
Hispanic or Latino 6% (18,366) 6% (10,777) 6% (7,574)
Ethnicity
BMI (kg/m?) 30 (£9) 29 (£8) 29 (£8)
Heart failure 17% (50,053) 16% (27,761) 16% (20,675)
Chronic kidney disease 15% (45,599) 15% (25,670) 14% (18,521)
COPD 15% (45,301) 15% (26,137) 15% (19,309)
Neuromuscular disease 3% (10,338) 3% (6,015) 4% (4,686)
Obstructive sleep apnea 14% (42,029) 11% (20,052) 11% (14,512)
Hypercapnia on admission-day ABG
No ABG 56% (168,053) 25% (44,600) 0% (0)
All PCO; < threshold 31% (92,173) 52% (92,173) 70% (92,173)
PCO, > threshold 13% (39,676) 22% (39,676) 30% (39,676)
Hypercapnia on admission-day ABG or VBG
No VBG or ABG 41% (123,439) 0% (0) 0% (0)
All PCO; < threshold 40% (119,104) 67% (119,104) 66% (87,129)
Any PCO; > threshold 19% (57,349) 33% (57,349) 34% (44,722)
Critical care services 26% (78,937) 35% (60,943) 38% (49,917)
Death 16% (47,012) 18% (32,560) 19% (25,646)

Table 2. Performance Metrics. Only test set results are shown. Discrim. = discrimination, ABG
= arterial blood gas, VBG = venous blood gas, LASSO = least absolute shrinkage and selection
operator, RF = random forest, E:O = expected to observed ratio, CITL = calibration in the large,
CS = calibration slope, AUC = area under the receiver operating characteristic curve. A score of
1 is perfect for the AUC, E:O, and CS. For CITL and Brier Score, a score of 0 is perfect.

Analysis Patients Model Discrim | Calibration Overall
AUC E:O CITL |CS Brier Score
Primary ABG LASSO | 0.763 0.986 |0.028 |1.110 |0.180
RF 0.758 0.969 | 0.062 |1.127 |0.184

(continued)
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Table 2. (continued)

Analysis Patients Model Discrim | Calibration Overall
AUC E:O CITL |CS Brier Score
Silver Standard ABG or VBG LASSO |0.749 0.925 |0.156 |1.098 | 0.190
RF 0.745 0.912 | 0.180 |1.190 |0.193
Inverse Probability | ABG (weighted to full | LASSO |0.792 0.982 |0.041 |1.227 |0.178
Weighted sample) RF 0782 0957 |0.094 | 1251 |0.184

4 Discussion

Both LASSO logistic regression and random forest-based diagnostic models achieved
acceptable discrimination and calibration for identifying patients with hypercapnic res-
piratory failure at the time of hospital admission. Both models’ performance was main-
tained when two methods assessing the impact of partial outcome (PaCO,) verification
were applied. This suggests that either modeling approach may help identify patients
with hypercapnia that are currently not recognized in clinical care.

Both models exclusively rely on predictors collected in nearly all acutely hospitalized
patients (routine lab work and demographics). This modeling approach could be used to
risk-stratify patients that plausibly have hypercapnia. As can be seen from Fig. 2, panels
1A and 1B, both models were able to render stronger “rule-in” predictions (raising the
likelihood of hypercapnia) as compared to “rule-out” predictions, which suggests utility
flagging additional patients for further workup as opposed to identifying patients in
whom further testing is not indicated..

A key barrier to developing a diagnostic model for hypercapnic respiratory failure
is that not all patients receive an assessment of their blood CO; levels. To address
this, two approaches could be considered. Theoretically, a model could be trained on a
prospectively constructed research cohort where all patients undergo ABG assessment.
However, the representativeness of patients consenting to participate in this research and
the difficulty of enrolling enough patients to train robust machine-learning models limit
the feasibility of this approach. Alternatively, models can be trained on large, existing
databases, with the acknowledgment that the patients who receive arterial blood gases
(and thus are available for model training) may be different from those who do not (and
thus stand to benefit most from diagnostic modeling). The primary purpose of the current
analyses was to assess how problematic this difference might be.

Performance was relatively maintained when the models were applied to a broader
set of patients (those receiving either an ABG or VBG) and the re-weighted population
approximating if all eligible patients had been equally likely to receive an ABG. In
fact, the model’s performance improved in the re-weighted sample, likely because it is
easier to detect compensated hypercapnia (defined as hypercapnia where the kidneys
have been able to retain bicarbonate) while those patients are also less likely to undergo
ABG sampling due to subtler symptoms.

The findings of this study provide some preliminary reassurance that much of the
variability in the type of patients who receive ABG verification of hypercapnia status
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does not importantly confound the relationship between model predictions and the true
likelihood of hypercapnia. Ultimately, however, prospective validation of the model
predictions by assessing CO; levels in patients who have not received ABG sampling
will be required before clinical or research use is advisable.

A notable strength of the study is the large (over 100,000 patients in the training
set) and geographically diverse sample, which guards against overfitting and modeling
of local, idiosyncratic practice patterns. Only near-universally available predictors from
the same hospitalization were used in the model to minimize the influence of informed
presence bias and the dependence on inter-institution data linkages.

Several additional limitations exist. First, we used relatively simple machine learn-
ing approaches to estimate the generalizability of diagnostic predictions to patients who
did not receive arterial blood gas outcome sampling, but more advanced methods of
imputation, feature selection, and model choice may improve performance. Though
no benchmark for comparison exists, neither model is likely sufficient for stand-alone
diagnosis or labeling at the current accuracy. The inclusion of unstructured elements
(e.g. signs and symptoms) might improve performance enough for this use. The valid-
ity of inverse probability weighting analyses depends on several assumptions that do
not strictly hold, though the approximation of performance may still be useful. Simi-
larly, we cannot quantify how much of the performance drop when including venous
CO; as an outcome occurs due to the imperfect relationship of venous to arterial CO5.
Lastly, predictors and outcomes were matched only to the calendar day, and thus tran-
sient changes in blood CO; levels may be misclassified. However, actionable long-term
treatments for hypercapnic respiratory failure require the persistence of hypercapnia, so
the performance in patients with stable elevations may be more clinically relevant.

In summary, we show that diagnostic modeling of the likelihood of hypercapnia
using routine lab and demographic data is likely sufficient for risk stratification and may
perform well on patients who do not currently receive definitive ABG diagnosis.
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Abstract. The precise prediction of hypotension is vital for advanc-
ing preemptive patient care strategies. Traditional machine learning
approaches, while instrumental in this field, are hampered by their depen-
dence on structured historical data and manual feature extraction tech-
niques. These methods often fall short of recognizing the intricate pat-
terns present in physiological signals. Addressing this limitation, our
study introduces an innovative application of deep learning technologies,
utilizing a sophisticated end-to-end architecture grounded in XResNet.
This architecture is further enhanced by the integration of contrastive
learning and a value attention mechanism, specifically tailored to analyze
arterial blood pressure (ABP) waveform signals. Our approach improves
the performance of hypotension prediction over the existing state-of-the-
art ABP model [7]. This research represents a step towards optimizing
patient care, embodying the next generation of Al-driven healthcare solu-
tions. Through our findings, we demonstrate the promise of deep learning
in overcoming the limitations of conventional prediction models, thereby
offering an avenue for enhancing patient outcomes in clinical settings.

Keywords: Hypotension prediction - Contrastive learning + Real-time
monitoring

1 Introduction

Accurately predicting hypotension is crucial for effective patient care and man-
agement, particularly during surgical procedures. Traditional machine learning
methods, known for their interpretability and ease of implementation, have effec-
tively utilized structured historical clinical data and manual feature extraction.
However, these may not capture the dynamic nature of physiological signals
preceding a hypotensive event.

Deep learning, which excels at automatically learning data representations
without manual feature engineering, offers a robust solution for analyzing time-
series data such as ABP waveform signals. Our hypothesis suggests that these
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signals contain early indicators of cardiovascular instability, potentially leading
to hypotensive episodes. By leveraging deep learning to analyze ABP signals, we
aim to enhance the accuracy and timeliness of hypotension predictions, poten-
tially uncovering new predictive biomarkers.

In this paper, we utilize a modern time-series analysis architecture based on
XResNet, and extend it with a value attention structure to further improve its
performance and with contrastive learning for model training. This approach
significantly enhances the prediction of hypotension through ABP signals from
VitalDB [6] dataset when compared to the existing baseline models, showcasing
the potential of deep learning technologies in transforming real-time patient
monitoring and care. This integration marks a step forward in the application
of Al-driven medical prediction and intervention strategies.

2 Related Work

Various methods for detecting hypotension exist, yet real-time monitoring capa-
bilities are insufficient. Many studies significantly manipulate their datasets by
either removing many samples through strict criteria or discarding normal blood
pressure readings to balance data. This approach deviates from the goal of real-
time hypotension prediction, where normal conditions prevail and should be pre-
served. Effective real-time monitoring needs to include the full range of blood
pressure data to accurately reflect patient conditions. Over-simplifying datasets
for theoretical accuracy does not meet the urgent need for hypotension detection
in clinical settings. Predictive models should be developed and validated in real-
istic scenarios, emphasizing the ability to process and interpret data promptly
for practical and effective clinical use.

3 Methodology

Our model for hypotension prediction applies XResNet architecture for time-
series data [8,9] to ABP waveform data. We further enhance the architecture
with the attention layer able to integrate absolute blood pressure signals into
the waveform models. Finally, to improve the model learning we explore tempo-
ral and contextual contrasting (TS-TCC) [5], a time-series contrastive learning
framework to pre-train the models.

Intuitively, ABP signal’s value informs the XResNet model what is the base-
line blood pressure and how far it is from the hypotension region. We designed
a simple module external to XResNet that computes the average value of the
blood pressure signals and is concatenated with the output of XResNet. This
approach enhances the model’s ability to prioritize and weigh blood pressure
readings. The modification is shown in Fig. 1.
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Fig. 1. Our Xresnet architecture with added value attention (VA) structure.

4 Experiments

4.1 Data and Preparation Strategies

We utilized arterial blood pressure (ABP) signals from the public VitalDB [6],
which contains BP recordings from surgeries. Records from 3,458 patients, each
spanning several hours, were split into training, testing, and validation sets with
a ratio of 6:2:2, using 30-s samples. Hypotension events are defined as readings
under 90 mm Hg systolic or 60 mm Hg diastolic for over a minute.

Our goal is to predict hypotensive events 5-10 min before they occur. To
optimize training, we excluded data from 0-5 min prior and 10-20 min post-event
from both training and validation datasets. We developed two test strategies for
real-time monitoring conditions. Test strategy 1 predicts hypotension within
the next 5-10 min based solely on past and present data, excluding predictions
during ongoing hypotension or during the immediate recovery. Test strategy 2
mirrors the training set approach, where false positives may indicate either a
late prediction or early hypotension signs.

4.2 Baseline and Metrics

We conducted a comparison between our methods and a residual neural network
structure proposed earlier by Jo, Y et al. [7], which achieved a good predictive
performance on the hypotension prediction task with the same data source. We
note that past results for the method were obtained on a biased test dataset
with a balanced set of positive and negative instances, a common practice in
previous studies, that, however, does not align with priors observed in real-time
monitoring applications. To make the comparison we used ROC curve (AUROC),
AUPRC (Area Under the Precision-Recall Curve) and the Precision-Recall (P-
R) curve as metrics, while considering the extreme class imbalance typical of
real-time medical monitoring data.

4.3 Results

Results in Tables 1 and 2 show that our model architectures are superior to the
baseline model in terms of AUROC and AUPRC. Notably, the best results were
achieved using the XResNet combined with TS-TCC and the VA Structure. The
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Table 1. Performance Comparison on Table 2. Performance Comparison on

Test Strategy 1. Test Strategy 2.

Model AUROC |AUPRC Model AUROC |AUPRC
Baseline 0.6990 |0.1723 Baseline 0.7080 |0.1885
XResNet18 0.7114 |0.1811 XResNet18 0.7208 |0.2019
XResNet18+TS-TCC 0.7147 ]0.1836 XResNet18+TS-TCC 0.7240 |0.2016
XResNet184+VA Structure 0.7059 {0.1788 XResNet184+VA Structure 0.7149 |0.1964
XResNet184+TS-TCC+VA Structure|0.7194 |0.1876 XResNet184+TS-TCC+VA Structure|0.7297 |0.2065

TS-TCC uses scaling as data augmentation, which leads to the XResNet model
losing some focus on the absolute values of ABP. Our VA Structure effectively
mitigated this drawback by enhancing the model’s sensitivity to the numerical
values. Additionally, we conducted a comparative analysis of Precision-Recall
(PR) curves between the baseline and our model that combines XResNet18 with
TS-TCC and VA Structure. Figures 2 and 3 reveal that, at recall rates below
0.5, the precision of our method consistently exceeds that of the baseline. This
further substantiates the enhancement our approach offers in the context of real-
time monitoring, showcasing its superior performance in predicting events within
the specified recall threshold.

As anticipated, the overall AUPRC and PR curve metrics were somewhat
lower. This can be attributed to our ‘real-time’ monitoring test setup, which
leads to an unbalanced test set with positive instance prior of 0.084 for test strat-
egy 1 and 0.086 for test strategy 2. As expected, the imbalance made the task of
accurately identifying positive cases more challenging. Nevertheless, the results
show that it is indeed possible to predict future intra-operative hypotension
events from Arterial Blood Pressure waveforms signals at reasonable precision.
For example our best method was able to achieve the precision of 0.2 at approxi-
mately 30% coverage of future hypotension events which is very promising. This
warrants further development and exploration of the methodology.

10 — Baseline 10 —— Baseline
—— Xresnet18+TS-TCC+VA Structure ~—— Xresnet18+TS-TCC+VA Structure
-~ Prior=0.084 ~-- Prior=0.086

Precision
Precision

0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10

Recall Recall
Fig. 2. P-R curve comparison Fig. 3. P-R curve comparison
between baseline and our method between baseline and our method

(XResNet18+TS-TCC+VA  Structure) (XResNet18+TS-TCC+VA  Structure)
on test strategy 1. on test strategy 2.
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5 Conclusion

Our research presents a new solution to hypotension prediction that relies only
on ABP waveform signal and integrates XResNet with TS-TCC and a novel VA
structure. This hybrid approach compensates for the diminished focus on crucial
blood pressure values during data augmentation, thereby enhancing the model’s
predictive capabilities. Despite the challenges posed by an unbalanced dataset
reflective of real-time monitoring conditions, our models showed initial promis-
ing results in predicting future hypotension events from the history of ABP
measurements. In addition our models were able to consistently outperform the
current SOTA waveform-based hypotension prediction baseline. All this marks
an important step forward in the application of deep learning technologies for
real-time patient monitoring and hypotension prediction.
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Abstract. Clinical practice guidelines are typically designed for treat-
ment of a single disease, ignoring undesired interactions for comorbid
patients. A number of methods for detecting such guideline interactions
have been developed, based on computer interpretable representations
of guidelines. A recently published paper by Van Woensel et al. [7]
compared a number of methods for detecting and resolving interactions
between multiple guidelines. The current paper contributes to this com-
parative corpus by applying the same functional features and evaluation
dimensions to the TMR method for multimorbidity decision support.
Our comparison shows that TMR allows for more complex reasoning
compared to some of the methods discussed in [7]. It is one of the few
that supports automated detection of adverse interactions. However, it
falls short on temporal reasoning and reasoning about drug dosage. Our
study also represents the first independent validation of the evaluation
methodology published in [7].

1 Introduction

Clinical guidelines are crucial for ensuring high-quality medical care as they
provide evidence-based recommendations for diagnosing, treating, and manag-
ing health conditions. By synthesising the latest research findings and expert
consensus, these guidelines offer standardised protocols that help healthcare pro-
fessionals make informed decisions, reduce variations in practice, and improve
patient outcomes. Additionally, guidelines streamline decision-making processes,
enhance efficiency in healthcare delivery, and promote patient safety by minimis-
ing errors and adverse events.

Treating patients with multimorbidities presents significant challenges for
clinical guidelines. Firstly, guidelines typically focus on single diseases or condi-
tions, which may not adequately address the complex interactions and overlap-
ping symptoms present in patients with multiple comorbidities. This can result
in conflicting recommendations or difficulties in prioritizing treatments when
managing multiple conditions simultaneously. The sheer number of guidelines
and recommendations for each individual condition, multiplied by the number
of simultaneous conditions a patient might suffer from, can overwhelm clinicians
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and complicate decision-making when managing multiple conditions in a single
patient. Overall, the complexity and heterogeneity of comorbid patients present
significant barriers to effective treatment adherence.

Computer interpretable guidelines (CIGs) can help in managing guideline-
based care for comorbid patients. Such CIGs can help identify potential interac-
tions between treatments for different conditions, alerting clinicians to potential
adverse effects or contraindications.

A number of CIG models have been developed over the years. A recent survey
paper [7] has evaluated the functionality of five of these CIG models on their
ability to represent and detect interactions between multiple guidelines when
applied to comorbid patients. In this paper, we add the Transitions Based Rec-
ommendations (TMR) method to this corpus, thereby extending the insights
gained in [7]. As we will show, the TMR method adds a significantly different
member to the landscape of CIG models that were studied in [7].

Our study also represents the first independent validation of the evaluation
methodology published in [7].

In Sect.2 of this paper we will summarize the TMR method for modelling
guidelines, in Sect.3 we summarize the evaluation methodology from [7], in
Sect. 4 we apply this methodology to the TMR model, and in section compare
TMR with other SIG models. Section 6 concludes.

2 TMR

This section summarizes the Transitions Based Recommendations (TMR) model
for computer interpretable guidelines, as published in [8,9].

2.1 Core TMR Concepts

The central idea of TMR is to model medical interventions as state transitions,
hence the name “Transitions Based Recommendations”. The state of a patient
can be described through a number of atomic state descriptors, for example “the
patient is at high risk of a cerebro-vascular event”, and a specific care action,
such as “administer dipyridamole”, will cause a transition of the patient state
to become “at low risk of cerebro-vascular event”.
The interventions prescribed in a
medical guideline are then modelled P —r———

as a collection of such state transi- m M_,\’Amﬁf

tions (state — transition — state).

Each state transition is labelled with NN Fap ot (Corstie Jesguler &ren
the goal it is aimed to achieve. The l ‘A;T';TF"EL»“
second transition states to administer

Aspirin in order to avoid a stroke, which transitions the patient from a medium-
risk of a cerebro-vascular event to a low risk. The first transition states a contra-
indication: in order to avoid bleeding, do not administer aspirin since it will
transition the patient from a low risk of gastrointestinal bleeding to a high risk
thereof. These examples illustrate the four basic concepts used within TMR:
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Contradiction Interactions two recommendations that
should not be both followed at
the same time

1. Opposed recommendations to the - Do not administer aspirin to avoid

same care action increasing the risk of gastrointestinal
bleeding
- Administer aspirin to handle
inflammation

2. Opposed recommendations to - Do not administer beta-blockers to

similar transitions avoid lowering blood pressure

- Administer ACE inhibitor to lower
blood pressure
3. Recommendations to inverse - Administer ACE inhibitor to lower
transitions blood pressure
- Administer midodrine to increase
blood pressure

Repetition Interactions set of recommendations that
are susceptible to optimization
4. Repeated recommendations to the - Administer aspirin to reduce the risk
same care action of thrombus
- Administer aspirin to relief pain
- Admianister aspirin to handle
inflammation

Alternative Interactions set of recommendations that
hold as alternatives

5. Repeated recommendations to the - Administer aspirin to handle
similar transitions promoted by inflammation
different care action - Administer ibuprofen to handle
inflammation
- Administer naprozen to handle
inflammation
6. Non-recommended transition - Do not administer aspirin to avoid
whose inverse transition is increasing the risk of gastrointestinal
recommended bleeding

- Administer PPI to decrease risk of
gastrointestinal bleeding

External Interactions interactions detected from
external knowledge bases

7. Alternative drug - Administer ibuprofen as alternative
to aspirin
8. Incompatible drug - tbuprofen and aspirine are

incompatible drugs

A situation, which defines the state of a patient, with the pre-situation before
the transition (“low risk of gastrointestinal bleeding”) and the post-situation
after the transition (“high risk of gastrointestinal bleeding).

A transition is the possibility of shifting from one situation to another (“admin-
ister aspirin”).

A care action defines an action which can be taken. Such a care action causes
a transition (“avoid bleeding”)

A recommendation defines whether or not a transition should be pursued or
avoided
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TMR’s state-transition model allows for the detection of interacting treat-
ments in multimorbidity decision support as investigated in [7]. TMR can detect
six so-called internal interaction types. These interaction types are called inter-
nal because they are triggered internally within or between guidelines. TMR can
also detect two external interaction types, which are triggered by the combina-
tion of guidelines with external knowledge sources such as Drugbank or SIDER.
The table below shows these eight interaction types together with an example
for each of them. [8] further elaborates on the conceptual model of TMR.

A powerful feature of TMR is that each of these interaction types is defined
by a logical rule. Once a set of medical guidelines has been formalised as TMR
state-transitions, these rules can be applied to the set of state-transitions to
automatically detect interactions. This is done by analysing only the formal
model of the guideline, and no connection to patient data is required. As an
example, we give the rule for detecting contradicting recommendations due to
similar transitions (interaction type 2 above):

Vg : Guideline, 1,12 : Recommendation, ty,ts : Transition

(partOf(ry, g) A partOf(ra, g) A similarTo(ty,ta) A

recommendsToPursue(ry, t1) A recommendsToAvoid(ra, t2))

— 3i (ContradictionDueT oSimilarTransition(i) A
relates(i, 1) A relates(i, rg))

This rule states that if a guideline g contains two recommendations r; and
ro, with 1 recommending to pursue a transition ¢, but 7o recommends to avoid
a transition to, while ¢; and t5 are actually similar transitions, we have a case of
a contradiction due to similar opposing recommendations for similar transitions
(type 2 above). Similar rules exist for all the other interaction types. [9] shows
how the entire ruleset can be efficiently implemented in Prolog, with the external
interactions implemented as SPARQL queries to external knowledge graphs.

2.2 Simplified Example of Interaction Detection in TMR

In this subsection we give a simplified example of TMR’s mechanism for inter-
action detection that we described in general terms in the previous subsection.
We take as our example the combination of the Duodenal Ulcer (DU) guideline
with the guideline for Transient Ischemic Attack (TIA), which is also used as
one of the test cases in [7]. The TIA guideline contains the excerpt:

“Aspirin (50-325mg/d) monotherapy (Class I; Level of Evidence A) or the
combination of 25mg and extended-release dipyridamole 200mg twice daily
(Class I; Level of Evidence B) is indicated as initial therapy of TIA or
ischemic stroke for prevention of future stroke”

which (together with some additional context from the guideline text) is mod-
elled as the two TMR state transitions in Fig. 1(a).
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Fig. 1. Fragments of the TIA Guideline (a) and the DU Guideline (b) in TMR.

A fragment from the DU guideline reads:

“29. In patients with low-dose aspirin-associated bleeding ulcers, the need
for aspirin should be assessed. If given for secondary prevention (i.e., estab-
lished cardiovascular disease) then aspirin should be resumed as soon as
possible after bleeding ceases in most patients: ideally with 1-3 days and
certainly within 7 days.”

The first sentence of this fragment

leads to the TMR transition in DU +TIA Guidel] S

Fig. 1(b). (The second sentence would ("o e SJahf [ s e ol mono |
have to be modelled in a separate :

state-transition). The combination of R e Q) [ ™ e Fimnte™ ol o |
these transitions will trigger the logi-

cal rule for “ContradictionDueToSim-

ilarTransition” given above, signalling a conflict between the “do Administer
Aspirin” recommendation in the TIA guideline and the “do not Administer
Aspirin” recommendation in the DU guideline. Because these rules are specified
in a declarative logic, the result of the TMR analysis of side effects is independent
of the order in which these guideline recommendations are analysed.

3 Evaluation Methodology

We now summarise the evaluation methodology from [7], before applying this
methodology to the TMR model. Building on earlier work in [26], [7] distin-
guishes 18 functional features that are needed to solve the multimorbidity prob-
lem, derived from a literature review and validated by clinicians. These functional
features are divided into three groups:

Based on these functional features of CIG-models, [7] defines four evaluation
dimensions on which to evaluate the different CIG-models:

DET dimension: Automated detection of adverse interactions between
guidelines The DET dimension characterises the automated detection of
multimorbidity interactions (e.g., drug-drug, drug-condition) and conflicts
(e.g., starting and stopping the same drug). Hence, it covers functional fea-
tures related to detection (A1-A7 in the table above).
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Detection features

Mitigation features

Others

A1 Drug from a CG has an
effect on a comorbid
condition

B1 Adding a drug to
mitigate an ADE

C1 Patient preferences
and/or patient burden

A2 Two or more drugs
from different CGs may
interact

B2 Adjust drug dosage

C2 Optimization of
clinical resources

A3 Clinical goals from
different CGs may conflict

B3 Monitor the effect of a
drug

C3 explanation of the
mitigation strategy (ies)

A4 Conflicting actions
from different CGs

B4 Replacing a drug with
a safer or non-interacting
or a more effective drug for
comorbidity

C4 Alternative
mitigation strategies for
a single interaction

A5 Duplicate or redundant
advice from different CGs

B5 Discard unsafe or
interacting drug

A6 Temporal relationship
between different CGs

B6 Delay a task to avoid a
temporal overlap

A7 Multiple interactions
from different CPGs
occuring at the same time

B7 Add a task to ensure a
temporal overlap

STRAT dimension: Representation of conflict management strategies
Any method to detect and resolve multimorbidity conflicts applies manage-
ment strategies to detect and/or mitigate conflicts and adverse interactions
for a given multimorbidity. The STRAT dimension characterizes the rep-
resentation of these management strategies, and thus covers detection and
mitigation features (A1-A7, B1-BS8 in the table above).

IMPL dimension: Implementation paradigm The mitigation of conflicts
often reuse or tailor automated planning, graph-based or logical reasoning
paradigms. The IMPL dimension characterizes the utilized implementation
paradigm, and covers all mitigation features (B1-B8 above).

HUM dimension: Human in the loop mitigation support (HUM) Some
methods support interaction with clinicians to help find treatment plans;
explanations can be provided to support these interactions. The HUM dimen-
sion characterizes these human-in-the-loop aspects, and covers detection and
mitigation features (A1-A7, B1-B8 in the table above).
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[7] also defines four realistic case studies compiled by the CIG community
and validated by clinicians:

Case study 1: Transient Ischemic A + Duodenal ulcer + Osteoporosis
Case study 2: Chronic kidney disease + hypertension+ atrial fibrillation
Case study 3: Venous Thromboembolism + Urinary tract infection
Case study 4: Drug-eluting Stent + lung mass surgery

These different use cases have been chosen so as to fully cover all functional
features, as shown in the table below We refer to appendix A of [7] for a detailed
description of these case studies.

Case Number | Diseases Functional Features covered

Case 1 TIA/DU/Osteoporosis | [A1l, A4, A7, B1, B4, B5, C1, C3, C4]

Case 2 CKD/HTN/AF [Al, A2, B4, B5, C1, C2]

Case 3 VTE/UTI [A2, A6, B2, B3, C1]

Case 4 Stent/Surgery [A1, A3, A5-A7, B2, B4, B5-B7, C1, C3, C4]

[7] applies this apparatus of functional features, evaluation dimensions and
case studies to 6 different CIG models to evaluate to what extent they are able to
handle conflicts in each of the 4 multimorbidity case studies. These CIG models
are SDA [5], GLARE-SSCPM [4], PROforma-CMM [2], GoCom [1], MitPlan
[3] and CigIntO [6]. In the next section, we describe our work on applying this
evaluation apparatus from [7] to the TMR model that we described in Sect. 2.

4 Experiments

4.1 Description of the Experiments

We have modelled three of the four use cases of [7] as TMR state-transitions.
It was not possible to model case 3 (the VTE/UTI guidelines) in TMR because
it requires functional feature B3, which is linked with drug dosage which is
not representable in TMR. However, all the other features of case 3 are also
covered by the other three cases, so the loss of dropping case 3 is only limited to
feature B3. Of the remaining three, we present case 1 (the TIA /DU/Osteoporosis
guidelines), the others are in supplementary material®.

! https://cs.vu.nl/~frankh /spool/ AIME2024-supplementary-material /.
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This model includes the contradiction between administering Aspirin (to
avoid stroke) and not administering Aspirin (to avoid bleeding) described in
Sect. 2, as well as a similar conflict between administering Nexium (to avoid
bleeding) and not administering Nexium (to avoid osteoporosis). Besides these
internal interactions (i.e. interactions derivable solely from the text of the guide-
lines), the diagram also shows a number of external interactions, for example
the fact that Clopidogrel is an alternative treatment to Aspirin for reducing the
risk of a cerebrovascular event (a fact derived from DrugBank).

4.2 Scoring of TMR on the Functional Features

The following table shows which functional features TMR, can represent in all
three cases. We will discuss each of the features of case 1.

Al A2 A3 A4 A5 A6 A7 Bl B2 B3 B4 B5 B6 B7 C1 C2 C3 C4

Case 1
Case 2
Case 4

+
- -
+

+

- + 4

= +
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+A1: Drug from a CPG has an effect on a comorbid condition: Applying
TMR’s interaction rules, TMR detects that there exist a contradiction due to
same action: administer Aspirin to avoid a risk of stroke, avoid administering
aspirin to prevent internal bleeding (see the model for case 1).

+A4: Conflicting actions from different CPGs This feature is implemented
within TMR in the exact same way as feature Al. In short, Contradiction
due to same action: For case 1 Aspirin is recommended to both avoid and
pursue.

-A7: Multiple interactions from different CPGs interacting at the same
time The current version of TMR is incapable of dealing with temporal
aspects.

+B1: Adding a drug to mitigate an ADE This feature is visible in the
model for case 1 with the negative side effects of Aspirin being counteracted
by Nexium. TMR notices that the pre and post situations of two different rec-
ommendations are inverse of each other, therefore the one should be capable
of mitigating an Adverse Drug Effect of the other.

+B4: Replacing a drug with a safer or non-interacting or more effective
drug In case 1, TMR offers Clopidogrel as an alternative to Aspirin, which
does not interact with any other recommendation or drug, making it a safer
alternative. It should be noted that although the safer alternative is given,
TMR does not automatically mark it as such in comparison with Aspirin. It
is up to the user to make that distinction.

-B5: Discard unsafe/interacting drug This feature is not implemented. Sim-
ilarly to the previous point, TMR creates the ability for the user to see alter-
natives to existing recommendations.

-C1: Patient preferences These features are not implemented. TMR focusses
on the clinical aspects of guidelines, leaving patient preferences outside of the
model’s scope.

+C3: Explanation of the mitigation strategy(ies) This feature is partially
implemented. Although TMR’s output gives enough information to explain
the mitigation strategies, the current version of TMR does not use this to
create easy-to-read explanations.

+C4: Alternative mitigation strategies for a single interaction. C4 can
be observed throughout the whole of case 1 above. There are alternatives
found for most interactions. More specifically, TMR looks at which transitions
are caused by a specific drug and compares it to other drugs, by querying the
Drugbank API. If any drugs cause the same transitions then they are given
as alternatives.

5 Comparison

As shown in the table below (which combines the scores across all three cases),
TMR supports 10 out of the 18 functional features, 2 of which are supported
partially. The unsupported features are [A6, A7, B2, B5, B6, B7, C1, C2]. The
other models all support at least 10 features , which partially overlap with TMR.
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The main differences are in features [A6, A7, B6, B7] which all deal with the
temporal aspect of clinical guidelines and feature [B2] which deals with drug
dosages. TMR is capable of supporting features [A5, B3, C3, C4] which does
make it stand out from two of the six models.

Of particular interest is the comparison with SDA [5], since SDA is based on
state-transitions to model medical guidelines. SDA scores considerably higher on
many of the functional features. The strength of TMR is the fact that in SDA
every interaction must be explicitly specified by the author of the SDA model,
while TMR is able to automatically detect such interactions.

Al A2 A3 A4 A5 A6 A7 Bl B2 B3 B4 B5 B6 B7 Cl C2 C3 C4
TMR + + + 4+ + - - 4+ - £ 4+ - - - - - £ +
SDA + + + + + + + + + + + + + + -+ 4+
GLARE-SCPM |+ + + * + + + + + + + * + + + - + +
PROforma-CMM |+ + + + - + + + + + + - + + + - + +
Cocom + 4+ + + +F + + -+ + o+ o+ -+ +
Mitplan + + £ 4+ £ + + + 4+ 4+ 4+ + + + + £ - %
CigIntO + + £ + + + + + + + + + + £ - + - -

We also compare TMR, against the other guideline models in terms of the
evaluation dimensions from [7], summarised in the table below. Of the six other
methods, only two fully cover a category of a particular evaluation dimension.
TMR is part of that as it fully covers the category for automated detection
of adverse interactions between clinical guidelines. This makes it one of two
methods to fully support it, while half of the methods could not even partially
support this dimension. Shared with five other methods, TMR also has a logic-
based foundation. In the case of TMR this is first-order logic.

DET STRAT IMPL HUM
complex | querying |adaptation | predefined | CIG planning | graph- |logic- | explanations | mitigation| pull- push-
reasoning | sources algorithms | language based | based support | based | based
modules
TMR + + - + - - + + + -
SDA - - - - + - + + + + + -
GLARE-SSCPM | + - - + - + + + + + + +
PROforma-CMM | - - - - + + + n + _
GoCom + + - + - - + - + + +
MitPlan - - + R - + + R +
CigIntO - + + - - + 4 ~ +

6 Conclusion

Evaluating TMR. Our evaluation has shown that the TMR model for com-
puter interpretable clinical guidelines is only one of two methods able to automat-
ically detect adverse interactions (the first evaluation dimension), using generic,
reusable predefined first-order logic rules. However, it falls short on the functional
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features that require the representation of time and drug dosage. Furthermore,
TMR computes a list of interactions, but stops short of providing recommenda-
tions on how to resolve these interactions. For future work, TMR should also
be extended with temporal aspects and drug dosage. This should be possible
given that both the state descriptions and the interaction rules are expressed in
first-order logic.

Evaluating the Evaluation Methodology. Our study is the first independent
validation of the evaluation methodology published in [7]. We have found that
this methodology is executable in practice, and it enables the evaluation and
comparison of the methods based purely on their functionality, independent
of the specific implementation. Furthermore, the four cases of multi-guideline
interaction have been well chosen and together cover all functional features. A
possible weakness is that 8 of the 18 functional features are only covered by a
single case. More redundancy among the cases would make the evaluation more
robust. For future work, we encourage others to apply this methodology to other
computer interpretable guideline models, as well as providing additional cases
to use during the evaluation.
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Abstract. Childhood obesity is considered one of the main public
health concerns. Research in the field of obesity detection and preven-
tion is moving towards promising solutions thanks to the use of Artificial
Intelligence applied to data from cohorts of children. Previous studies
have analyzed the data without taking into account the relationship of
data regarding when they are collected. In this work, frequent pattern
mining is used to find the risk factors of childhood obesity, taking into
account the relationship among the data gathered in different visits. The
experiments carried out on the data collected from 386 children from
Girona and Figueres (Spain) demonstrate the relevance of discriminant
frequent patterns for childhood overweight prediction.

Keywords: Childhood obesity - Frequent pattern mining -
Discriminant patterns

1 Introduction

Childhood obesity is one of the most important public health problems of the
21st century worldwide due to its prevalence and its impact on both short and
long-term health [6]. Artificial Intelligence, and in particular Machine Learning
approaches, have been used to understand the factors of childhood obesity [1].
Most of the approaches conduct cross-sectional studies in which socioeconomic
and healthcare data of the parents and children are analyzed to understand
the key factors of obesity. Few approaches dealt with longitudinal data. One of
the exceptions is [4] that uses prenatal, perinatal, postnatal and 2 to 90 months
age infant data, to identify different groups of risks. Nevertheless, [4] does not
consider the relation of the variables according to the different visits in which
they have been gathered. In our research we employ frequent pattern mining
approaches, so that sets of variables are identified as key features instead of
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Fig. 1. Overview of the methodology.

variables in isolation. Moreover, managing longitudinal data poses a challenge in
dealing with missing values, because the follow-up of the visits is sometimes dis-
continued. On the other hand, feature selection methods are required to achieve
a good discriminating representation of patterns regarding the target variable
(overweight/obesity or normal weight). So the contribution of this work involves
coping with all the challenges to apply frequent pattern mining to the longitu-
dinal data for characterizing childhood overweight.

2 Related Work

The work [4] used longitudinal data similar to the one proposed in this work,
and [3] utilized electronic health record (EHR) data from the first two years of
life to predict the obesity status at age five. However, none of these works take
into account characterizing the baby according to frequent patterns as we do. A
more recent approach is [8], which accounts for a similar imbalanced dataset as
ours (14% of obese children), and reported the results using the AUC value as a
performance metric. Conversely, we are analysing recall together with precision
and accuracy, taking into account the minority class.

The use of frequent pattern mining is not new in Medicine, however. For
example, [2] uses pattern mining algorithms to identify trajectories of patients
from EHR.

3 Materials and Method

The methodology we propose is shown in Fig. 1. The dataset contains two cohorts
of babies, from Hospital Dr. Josep Trueta (Girona) and Hospital of Figueres,
both in Spain, collected from 2008 to 2014 (study with code 2010056 of the
Clinical Research Ethics Committee of the Girona University Hospital Dr. Josep
Trueta). Data were provided for 1175 infants, 212 variables each. Doctors who
have been part of the project, select 36 variables as being the most related to the
study, including variables related to the moment the mother gets pregnant, the
information regarding the pregnant trimesters, the information when the mother
give birth, and when the baby has 2 months until 6 years old. The target variable
is OBSESITY, which indicates if the baby has a normal weight (OBSESITY=1)
or has overweight or obesity (OBSESITY=2), according to the BMI measured
when the child is 5 years old.
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Missing Data Processing. First, the samples of the infants where values
were missing in more than 60% of the variables were eliminated. Next, given
the dataset D, for each numerical variable X; that contains missing values, a
subset of variables S, X; € S, with a high correlation with X; has been identified.
Second, a subset D; C D is obtained with all the instances that have the variable
X; also without information (missing). Third, for each instance I; of D;, a subset
A is selected with the variables of S, A C S, that for the sample I; do not have
any missing value, AN {NA} = (. Fourth, a subset D; C D is gathered from
the original dataset D, in which all the instances do not have missing values
either in X; or A, D; N {NA} = . Finally, a regression model is built from
the dataset D; to predict X;. This process is repeated for each Instance I; and
missing value X;. Regarding categorical data, we follow a similar process as
for numerical variables, but using the highest correlation variable instead of a
regression model.

Symbolic Transformation. Variables and their values should be transformed
into symbols in order to apply pattern mining methods. Numerical variables
(a total of 25), have been discretized each one in 4 bins. Boolean variables (8)
have been transformed into one symbol per value, and the remainder categorical
variables (2), one symbol per category.

Frequent Pattern Mining. Frequent pattern algorithms are applied to each
class separately. The DefMe algorithm [5] has been used, with a support thresh-
old of 0.3. From the two sets of frequent patterns, the symmetrical difference
of the 2 sets is calculated. Finally, the original dataset is transformed using a
binary variable for each pattern. For each instance, the value of a binary variable
is either 1 or 0, depending on whether this pattern is present or not.

Pattern Selection. First we obtain a ranking of the patterns by using the vari-
ant of the mRMR algorithm described in [7], and next we follow an incremental
process in which the different patterns are successively considered, according to
their ranking, to build a predictive model. The performance of the model is visu-
alized and with the collaboration of the medical team, the best N patterns are
finally selected. An example of frequent pattern is the following: [56 < Height
at 2months < 58, Smoking father = 0, 3 kg < Birth weight mother < 4 kg].

4 Results

To test our methodology, a total of three experiments have been carried out:
Baseline, Sensitive analysis and Hybrid versus frequent patterns alone.

Baseline. We compare the results obtained with the plain dataset and the
results obtained using the top 20 ranking frequent patterns. A 5-fold cross-
validation is used 386 times (equivalent to the number of instances). Figure 2
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shows the histograms obtained. The results are conclusive, the model makes
better predictions if it is trained with the most discriminant patterns.
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Sensitive Analysis. We analyse the contribution of the addition of frequent
patterns in the dataset (Fig.3 (purple line)). Analyzing the recall of this second
experiment, it can be deduced that using the first 20 patterns, the capacity of the
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Fig. 2. Results: Value added by patterns.

model to detect instances of the obese (minority) class increases progressively,
which confirms the discriminatory power of the first 20 patterns.
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Hybrid Versus Frequent Patterns Alone. We consider combining plain
data with patterns in a hybrid dataset (Fig.3). All the values obtained in the
experiment are higher than expected using only the plain dataset.

Discussion. Adding frequent patterns considerably increases the quality of
predictions compared to using only the original dataset. Regarding the results
obtained for the accuracy measure (0.82), we can see that are close to the results
of previous works: [8] 0.83 AUC; [3] 81.7 AUC for girls, and 76.1 for boys. On the
other hand, we consider the recall measure due to the high imbalance dataset
we have (14% of obese infants). The recall score is better if used in conjunction
with the original data (hybrid) when using a quantity of patterns lower than the
top 20 in the ranking.

Limitations. The results obtained represent certain limitations in clinical prac-
tice, due to the low values obtained in the performance metrics. One possible
direction under study is to deal with gradient values of variables between visits,
instead of actual ones, and use sequence pattern mining algorithms.

5 Conclusions

Childhood obesity is a disease that continues to grow around the world in an
alarming way. This work proposes the use of frequent patterns learned from a
dataset that contains longitudinal data of children and parents. The results of
the experiments demonstrate the great discriminatory power of frequent patterns
that capture the relationship between the data, versus other techniques. How-
ever, the results obtained have limited performance values. One of the lines of
future work could be to explore alternative methods as sequence pattern mining
algorithms.
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Abstract. The potential of diagnostic methodologies to improve preg-
nant women’s well-being is critical in preventing complications for moth-
ers and their unborn children. This paper introduces an interpretable
fuzzy neural network model that uses artificial intelligence (AI) tech-
niques for early risk detection in pregnancy. The model, which integrates
a fuzzy inference system and a defuzzification process across three layers,
provides deep insights by formulating fuzzy rules from the data. Com-
parative analysis with existing models shows that our approach achieves
high accuracy in maternal risk identification and offers enhanced inter-
pretability and detailed data analysis.

1 Introduction

Maternal health analysis is crucial for improving outcomes for expectant mothers
and children. Utilizing artificial intelligence (AI), significant insights into risk
factors are gained through data analytics, which helps in early detection and
personalized interventions, aiming to reduce maternal mortality globally [2].

AT is pivotal in identifying maternal health risks via data collection tech-
nologies. Despite its promise, the lack of interpretability in some AI methods
may cause uncertainty among users. Fuzzy neural networks, which merge fuzzy
system clarity with neural network training simplicity, are notably effective in
this domain [4].

The paper details a novel Interpretable Fuzzy Neural Network Uni-
Nullneuron-Based Approach (IFNN-Uninull), tailored for classification and
exploring dataset relationships. This model incorporates a fuzzification process,
Gaussian neurons, and uni-null neurons to establish interpretable fuzzy if-then
rules, thus enhancing model understandability [8]. Its efficacy in maternal health
risk identification is validated against existing models [1].

2 Literature Review

AI and its Influence on Maternal Risk Assessment. Maternal health
risks such as advanced maternal age and adolescent pregnancies are influenced
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by socioeconomic and ethnic disparities, significantly affecting mortality rates.
AT technologies enhance maternal healthcare by enabling remote monitoring and
early detection of complications, thus improving access in underserved areas.
Predictive models and Al-driven interventions like chatbots and telemedicine
help address these disparities, promoting personalized and inclusive healthcare
solutions [6].

Fuzzy Neural Networks Concepts. Fuzzy neural networks (FNNs) combine
neural networks with fuzzy systems to improve decision-making in complex sce-
narios. These networks utilize fuzzification processes to handle data and generate
fuzzy rules, useful in expert systems development. The structure of FNNs varies,
with configurations ranging from three to five layers, allowing for customized
solutions tailored to specific problems [10].

3 IFNN-Uninull Architecture and Training

This paper presents a new Fuzzy Neural Network (FNN) architecture that
improves interpretability and feature alignment through innovative neuron
designs and weight modifications [3]. The model consists of three layers: a fuzzi-
fication layer using Gaussian neurons to reflect data density, a middle layer with
uni-nullneurons for efficient fuzzy inference, and a final neural network layer
that synthesizes rules using leaky-ReLU functions. This enhanced FNN struc-
ture maintains all fuzzy rules for thorough knowledge extraction from the data.

3.1 First Layer: Data Density Fuzzification Approach

The IFNN-UniNull model’s first layer employs an advanced fuzzification pro-
cess using Gaussian neurons to convert inputs into fuzzy sets, thus improving
flexibility [7]. This setup, including the Self-organizing Direction-Aware Data
Partitioning (SODA) algorithm, adapts to changing data patterns effectively,
using methods like cosine similarity and Euclidean distance for optimal data
partitioning [5,7].

Inputs are transformed into membership degrees across L fuzzy sets per vari-
able, enhancing the model’s responsiveness to new data inputs. The output for
each neuron is derived from a structured fuzzification formula:

TjTe5l

_1 2
2z, cji,o5) =e 2( 73l ) , for j=1..N, I =1...L, (1)

where N is the number of inputs, L the number of fuzzy sets per input, c;; the
center, and o; the standard deviation for each Gaussian neuron.

3.2 Definition of Weights in the First Layer Neurons: Feature
Weight Calculation

De Campos Souza and Lughofer [5] enhance fuzzy rule interpretability in their
novel modeling approach by linking weight assignments directly to data fea-
tures using the Dy-Brodley criterion [8] (to reduce dimensionality, effectively
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streamlining learning and rule development). This criterion highlights the fea-
ture importance for class differentiation, improving clarity and rule conciseness.
Weights in the first layer are defined as:

wi, i=1...N, I=1... L (2)

indicating class separability.
Separability is quantified by:

J =06(5,"5), 3)

reflecting the sum of diagonal components of S, LSy, where S, and S,, denote
the between-class and within-class scatter matrices, respectively.

3.3 Second Layer: Fuzzy Rules

The second layer of the IFNN-Uninull model employs uni-nullneurons for trans-
forming data into IF-THEN rules using Type-III fuzzy logic. These neurons use
a combination of t-conorms and t-norms in their operations, enabling flexible
rule creation with AND and OR connectors:

0 ,(z,y9) €10,9[%,
U—-NU T _ max (fE,y) ,(I,y) € [gvu]za
N (z.9) = u (z,y) € lg,u]x]u, 1|Uu, 1] x [g,u]U]u, 1[, )

min(z,y) elsewhere.

Outputs from these neurons are aggregated into fuzzy rules that enhance inter-
pretability and classification flexibility. Weights and activation levels from the
first layer are integrated using a relevancy function to optimize rule precision
and adaptability [5].

p(w,a,9,u) = (wV g) A(wVu)A(aVu), ()

Rule synthesis is performed as follows, illustrating the modular and adaptable
nature of rule construction:

Ruler, : If xy is AlL with impact wyy, ...
AND/ORy.u) x2 is A} with impact wor, ... (6)
Then yr, is [vp1 ... vLo]
The defuzzification and output layer aggregation utilize leaky-ReLLU functions

to finalize the output based on the fuzzy rule results, ensuring dynamic response
to input variations [9].

L

g= ZfLeakyReLU(Zj»vj) , (7)

=0

reflecting the comprehensive approach to managing class-specific activations and
rule effectiveness in the model.



Fuzzy Neural Network Model 73

4 Experiment

4.1 Data Set Characteristics

We utilized a diabetes patient dataset specifically curated for analyzing common
risk factors and categorized them into risk levels with indicators such as Age,
SystolicBP, DiastolicBP, BS, BodyTemp, and HeartRate [1].

4.2 Models and Test Premises

The experiment evaluated the IFNN-Uninull model’s performance in pattern
classification against traditional models (e.g., K-nearest neighbors, Naive Bayes)
and other neuro-fuzzy models using a grid partition value of 4 and cross-
validation with - values ranging from 2 to 7. This setup was aimed at establishing
the model’s effectiveness in handling complex data structures, using overall accu-
racy as the evaluation metric. We used standard parameters provided by Orange
software for all models in the comparison.

4.3 Test Results

Table 1 compares traditional and fuzzy models’ performance; the best scores are
in bold, asterisks indicate scores comparable to our model. Experiments used a
Core 2 Duo CPU, 2.27 GHz, 3 GB RAM setup.

Table 1. Result of maternal health classification.

Model IFNN-Uninull RFNN DDFNN
Accuracy (%) | 79:33 (3.05) | 73.96 (2.36) | 38.47 (4.91)
Model UNT null-FNN SGD KNN
Accuracy (%) | 74.67 (3.19) | 63.39 (1.14) | 67.52 (0.03)
Model TR SVM RFR
Accuracy (%) | 76.78 (0.25) | 47.11 (2.23) | 79.17 (0.14)*
Model NN NB LR
Accuracy (%) | 67.71 (2.16) | 66.62 (2.04) | 62.34 (1.15)
Model GB CN2

Accuracy (%) | 78.70 (0.03)* 78.94 (0.02)*

4.4 Discussions

Table 1 demonstrates that our proposed model excels in maternal risk identifi-
cation compared to other neural networks and fuzzy models. This is evidenced
by the development of 210 rules, an here is an example:
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1. If (Age is small) 0.26 and (Systolic BP is medium) 0.68 and (Diastolic BP
is small) 0.67 and (BS is high) 1.00 and (Body Temp is medium) 0.68 and (Heart
Rate is medium) 0.67 then (Risk Level is low risk = high possibility and mid
risk = small possibility and high risk = small possibility).

IFNN-Uninull uses 250 fuzzy rules with “and/or” connectors for clear multi-
class classification in maternal risk. The SODA method prunes unnecessary clus-
ters, and Gaussian functions ensure complete coverage. Gaussian weights high-
light feature relevance, as shown in Fig. 1 (a).

THENClass  Disribution  Probabilties %] Quality Length

~ Risklevel=lowrisk  [0,10,0] 8:85:8 o0 5

- Risevelsmidrisk  [0.0.3]  17:17:67 000

- Risklevelsmidrisk  [0.0,5]  12:12:75 000

- Riklevel=midrisk  [0.0,6)  11:11:78 00 5
Risklevel=low sk [0,8,0] 9:82:9 000

Risklevel=lowrisk  (0.3,0]  17:67:17 00 s

Fig. 1. Feature evaluation scores and Rules extracted by CN2 rule inducer.

The IFNN-Uninull model prioritizes crucial dimensions like Blood Sugar (BS)
for assessing maternal risk, marking it with the highest weight, whereas age
is shown to have a minimal impact. This focus enhances interpretability by
simplifying rules and aiding in clearer problem understanding. For instance, the
model captures that high BS combined with moderate Systolic BP, Diastolic
BP, Body Temp, and Heart Rate typically indicates a low risk level, simplifying
complex risk assessments into understandable terms.

In contrast, the CN2 inducer’s use of numerical rules and strict AND connec-
tives limits flexibility and interpretability compared to IFNN-Uninull’s mixed
AND/OR structure, as shown in Fig.1 (b). This difference highlights IFNN-
Uninull’s superior capability to offer clear, linguistic explanations of risk factors,
facilitating easier comprehension of intricate data relationships.

5 Conclusions and Future Work

This study improved transparency in maternal risk identification using fuzzy
rules that clarify feature interrelationships and significance during pregnancy.
The rules’ certainty values and fuzzy sets offer insights into risk levels and feature
importance, enhancing interpretability compared to traditional models. Future
work will focus on refining training methods and weight adjustments to boost
this model’s clarity and effectiveness.
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Abstract. The COVID-19 pandemic has placed immense strain on healthcare
systems. In response to this challenge, our study employs machine learning tech-
niques to identify and analyze risk factors associated with COVID-19 all-cause
90-day readmission. Leveraging the Optum® de-identified COVID-19 Electronic
Health Record data set, we developed predictive models with comparable efficacy,
particularly the optimized XGBoost model in prognosticating readmission risks.
Our analysis reveals several key risk factors aligned with existing research and
finds specific laboratory tests that may serve as potential indicators of readmission
risk. By elucidating these critical determinants, our study expands the knowledge
base for clinical decision-making, offering healthcare practitioners deeper insights
into the factors affecting COVID-19 patient readmission risks. These findings can
potentially empower clinicians to refine interventions and care strategies, mitigat-
ing adverse outcomes and advancing healthcare delivery for individuals affected
by COVID-19.

Keywords: COVID-19 - Readmission Prediction - Machine Learning

1 Introduction

The coronavirus disease 2019 (COVID-19) has resulted in over six million hospital-
izations and one million deaths as of February 2024 in the United States [4]. These
overwhelming incidents pressured healthcare systems tremendously, increasing medi-
cal supply and resource demands [2]. Hospital readmission, a long-standing and costly
concern in public health, has become more critical in the context of the pandemic [9]. As
a fundamental indicator of healthcare quality, managing COVID-19-related readmission
is paramount to conserving medical resources and ensuring patient safety. Several studies
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[6, 11, 12] have explored the characteristics of the readmitted COVID-19 patient pop-
ulation and investigated related risk factors for readmission. While sample sizes vary,
prevalent risk factors such as congestive heart failure (CHF), chronic kidney disease
(CKD), chronic obstructive pulmonary disease (COPD), and diabetes emerge consis-
tently across studies. However, these studies are constrained by limited sample sizes of
readmitted patients and a narrow scope of risk factors, with relatively few risk factors
linked to laboratory tests. Although the 30-day readmission rate is a widely used quality
metric for hospital care, most readmissions for COPD patients occur after this period
[5]. Moreover, studies on 90-day readmission are limited and the risk factors influencing
90-day readmission may differ. These limitations emphasize the necessity for compre-
hensive research using large-scale datasets with more readmitted patients included in
the analysis.

In this paper, we utilize the extensive Optum® de-identified COVID-19 Electronic
Health Record data set to explore and identify risk factors associated with COVID-19
90-day all-cause readmission, employing advanced machine learning techniques. Our
study discovered key risk factors are consistent with established literature, validating
our methodology. Furthermore, our analysis uncovered additional potential risk factors
contributing to a deeper understanding of COVID-19 90-day readmission dynamics. This
research offers valuable insights into the factors associated with COVID-19 readmission
and the potential of machine learning in improving prognostic accuracy and guiding
clinical decision-making.

2 Methods

A positive COVID-19 case is confirmed by a patient with either: (1) a diagnosis with
ICD-10 code U07.1, or (2) a positive result from a COVID-19 related Polymerase Chain
Reaction (PCR) test, antibody test, or antigen test, or (3) a manually reviewed positive
lab test. Admission is determined for a COVID-19 patient’s visit exceeding 24 hours,
with either a corresponding COVID-19 diagnosis or a positive PCR test result. All-cause
90-day readmission is defined as inpatient readmission occurring 1 to 90 days after initial
admission discharge. Readmissions occurring within 24 hours of discharge or lasting
less than 24 hours are excluded. In case multiple readmissions are observed, only the
one with the earliest visit start date is considered. To efficiently process and retrieve the
Optum® COVID-19 data, we apply the Event-level Inverted Index [8], a fast temporal
query method. The initial extraction yields 1,498,140 patients between February 1, 2020,
and January 20, 2022. Only admitted patients with matching COVID-19 diagnoses or
positive PCR tests are retained for this study. Exclusions are applied to patients lacking
related visit records and whose visit duration is under 24 hours. Following these criteria,
46,106 COVID-19 patients with valid admission records remain for further analysis.
The primary outcome of this study is all-cause 90-day readmission status, “Yes” for
readmitted patients and “No” for not readmitted patients.

A total of 33 features are included in the analysis. The demographic features con-
tain age group, gender, race, and ethnicity. Six diagnosis features identified by existing
research [6, 11, 12] are included: CHF, CKD, COPD, diabetes, pneumonia, and sepsis.
Ten laboratory test results are comprised in the analysis: alanine transaminase (ALT),
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aspartate aminotransferase (AST), blood urea nitrogen, creatinine, estimated glomerular
rate (éGFR), hematocrit (HCT), hemoglobin (HGB), platelet count (PLT), red blood cell
count (RBC), and white blood cell count (WBC). The inclusion of ALT, AST, creatinine,
eGFR, and PLT is based on their potential to predict adverse outcomes in COVID-19
patients, as indicated by existing research [1, 3, 13, 14]. Three observational features are
entailed: body mass index (BMI), respiratory rate (RESP), and systolic blood pressure
(SBP). We also incorporate ten aggregated features to quantify each patient’s medical
history of visits, diagnoses, and laboratory tests [10]: (1) length of stay (LOS) in days;
(2) total diagnoses one year before the initial admission; (3) total unique diagnoses
one year before the initial admission; (4) total diagnoses during the initial admission
(DIAG_AD); (5) total unique diagnoses during the initial admission (DIAG_ UNIQ_
AD); (6) total visits one year before the initial admission (VIS_1YR); (7) total lab tests
one year before the initial admission (LAB_1YR); (8) total lab tests with results outside
the normal range one year before the initial admission; (9) total lab tests during the ini-
tial admission (LAB_AD); and (10) total lab tests with results outside the normal range
during the initial admission (LAB_AD_N).

Patients lacking the results of all laboratory tests and all observational records are
eliminated from the study to ensure data completeness. A mean value imputation is
implemented to address the remaining missing data. After data preprocessing, the study
consists of 43,610 patients, with 17,659 (40.49%) experiencing readmission, while
26,041(59.71%) patients were not readmitted.

We develop k-nearest neighbors (kNN), support vector machine (SVM), random
forest (RF), and XGBoost (eXtreme Gradient Boosting) models to predict COVID-
19 patient readmission. The feature importance derived from both RF and XGBoost
models provides critical insights into the determinants of readmission risk. All the models
are trained using the same set of 33 features. Bayesian optimization is applied to find
the optimal hyper-parameters for the XGBoost and RF models. Model performance is
assessed using the area under the receiver operating characteristic curve (AUROC) and
prediction accuracy.

3 Results

Table 1 displays the performance of six models trained to analyze risk factors for COVID-
19 90-day all-cause readmission. The optimized XGBoost model outperformed, achiev-
ing a mean accuracy of 0.72 with an AUROC of 0.75 over ten runs. Figure 1 presents
the key features identified by the optimally tuned XGBoost and RF models, with seven
features consistent between them. Laboratory tests are prominent among the key fea-
tures. The optimized XGBoost model highlights seven laboratory-related features, and
the optimized RF model reveals eight important laboratory-related features.

4 Discussion and Conclusion

The feature importance displayed in Fig. 1 demonstrates the consistency of our findings
with previous research, reinforcing the validity of our predictive models. Notably: (1)
we identify chronic kidney disease as a risk factor, aligning with the study by Verna et al.
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Table 1. Performance of the trained models based on ten runs.

79

Model kNN SVM XGBoost XGBoost RF RF
(default) (optimized) (default) (optimized)

Accuracy 0.58 0.60 0.68 0.72 0.66 0.68

AUROC 0.60 0.62 0.70 0.75 0.68 0.70

Creatinine
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DIAG_UNIQ_AD
HGB

CKD

PLT

Sepsis

Pneumonia
CHF

03 0.4 05 0.6 0.7 038 0.9 10 06 0.7 0.8 0.9 1.0
Relative Importance (Optimized XGBoost) Relative Importance (Optimized Random Forest)

Fig. 1. Feature importance of the optimized XGBoost and random forest models.

[12], which links CKD to higher readmission odds; (2) the eGFR is recognized as a key
laboratory test feature supporting the findings of Appelman et al. [1], which indicates
a direct correlation between lower eGFR levels and higher readmission rates; (3) our
analysis of length of stay data suggests that shorter hospitalization duration is associated
with an increased risk of readmission, which is in line with findings reported by Weaver
et al. [13]; (4) our investigation of serum creatinine levels as a risk factor is consistent
with the results of Yeo et al. [14]. Their study reveals that patients with high serum
creatinine levels during initial hospital stay had a higher risk of 30-day readmission; (5)
we also detect an association between PLT and increased risks of 90-day readmission,
consistent with findings by Boccatonda et al. [3], which links decreased PLT to increased
critical illness and all-cause mortality in hospitalized COVID-19 patients.

Our analysis suggests that RBC and WBC could be prognostic factors. Previous
study [7] has highlighted the correlation between elevated WBC counts at admission
and increased mortality rates in COVID-19 patients, suggesting that higher WBC lev-
els should be monitored and managed during COVID-19 treatment. Furthermore, the
aggregated features employed in our study have revealed that patient history can assist
in predicting readmission risks. For instance, the count of past hospital visits emerges
as the most influential feature in the optimized XGBoost model. For future work, we
could incorporate more features to enhance the models’ comprehensiveness and predic-
tive accuracy, such as more diagnoses related to COVID-19 and patients’ prescriptions.
Moreover, employing deep learning models could allow the exploration of complex
nonlinear relationships and the extraction of intricate features.
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Abstract. In this paper, we present a smart disease surveillance system
that reveals insights into disease trajectories indicating risks of subse-
quent diseases starting from the current health conditions, for individual
patients or populations. Using a pattern mining algorithm, we extract
disease trajectory patterns from temporally modeled encounters of 17
million patients in the medical knowledge graph and develop a disease
surveillance system on 477,933 mined patterns of disease progression.
The system predicts future disease trajectory of individual patients and
facilitates in-depth exploration into disease mechanisms, root causes and
future disease progression at a patient cohort level thereby enabling early
interventions for complex diseases and promoting an evidence based pre-
cision medicine approach for healthcare providers.

Keywords: Disease Trajectories - Knowledge Graph + Pattern
mining + Data Science

1 Introduction

The exponential growth in the availability of medical data, ranging from struc-
tured EMR/EHRs to unstructured patient notes, has opened new horizons in
the field of medicine. The ongoing revolution in precision medicine, characterized
by treatment and preventive measures tailored to the health profile of individ-
ual patients, is made possible by advancements in data analytics and machine
learning. One catalyst enabling this revolution is the capability of an Al model
to predict patient’s disease trajectories accurately [1] from the current health
profile of a patient. It empowers healthcare providers to extract new insights
from big healthcare data comprising of electronic health records.

Population level analytics of patient journeys and disease progressions have
been carried out in the past by focusing only a few diseases and limited applica-
tions [4]. A statistical study [3] extracted 1,171 trajectories consisting of a strong
temporal pair of any two diseases to find disease progression. Earlier studies have
also used network approaches that use specific demographics i.e. for people older
than 65 over a selected study period (i.e. 2-3 years) [2]. To the best of our knowl-
edge, little efforts are devoted to building disease and/or demographics agnostic
systems to provide a holistic overview of disease trajectories of patients.
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Our research introduces a disease-agnostic surveillance system that not only
predicts future disease trajectories for individual patients based on past and
current diagnoses, but also uncovers comprehensive disease trajectory patterns
across patient groups.

2 Methodology

The proposed disease surveillance system, shown in Fig. 1, presents an end-to-end
framework designed to harness temporally modelled patient encounters within
medical knowledge graphs. The key stages of the disease trajectories pipeline are
described in the following sections.
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Fig. 1. High Level Architecture of Disease Surveillance system.

Knowledge Engineering. The system begins by constructing a temporally
modelled knowledge graph from clinical events stored in an Enterprise Data
Lakehouse of CureMD. The knowledge graph contains 17 million patients and
all of their encounters attached to them temporally. Nodes in the graph repre-
sent clinical entities, such as encounters, diagnoses (ICD codes), prescriptions,
and vitals etc. Edges represent relationships between these entities. A sample
patient’s temporally modelled clinical encounters in knowledge graph is shown
in Appendix A (Fig.5). It represents the temporal progression, with specific
timestamps indicating when a particular set of clinical events occurred for a
given patient. This allows us to track the evolution of a patient’s health status.

Disease Trajectories Retrieval and Pre-processing. Using the medical
knowledge graph, we extract a patient’s disease trajectory from temporally mod-
elled encounters. For every encounter, we fetch 2 things: (1) ICD codes (disease
diagnosed), and (2) Date of the encounter in which different procedures were
performed by physicians. From these 17 million trajectories, we then shortlist a
set of patients having at least 3 encounters. The number of shortlisted patients
matching the above-mentioned criteria is approximately 3 million. A sample
disease progression trajectory is shown in Appendix B.

Temporal Pattern Mining. After extracting and pre-processing disease tra-
jectories, we use a pattern mining algorithm (shown in Appendix C) to mine
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disease progression patterns of varying lengths from 3 million patient’s dis-
ease trajectories. These trajectories represent sequences of clinical encounters
for individual patients and the algorithm extracts prevalent patterns from these
sequences It also keeps track of the patients’ demographics while mining the
patterns to ensure in-depth analytics enabling future analyses and retrospection
studies for each mined pattern.

Pattern Analysis. After mining all the patterns of lengths 3,4 and 5, all the
patient identifiers attached to each of them are back tracked for their demo-
graphics analysis to filter any bias in the patterns. Age and gender distribution
of patients are analysed and stored with each pattern. So now, for each pattern
(e.g. R53.8 — N40.1 — E11.9), we have the following information: (1) support,
is the number of patients who experienced the same disease progression pat-
tern;(2) time distribution is the time to disease progression for each patient; (3)
age distribution of patients supporting a given disease progression pattern; and
(4) gender distribution of the patients supporting a given disease progression
pattern.

3 Results

A total of 477,933 prevalent patterns, supported by 10+ patients each, were
mined from 247 million unique disease patterns of 3 million patients. Some
example patterns are tabulated in the Table 1. We take latest 3 encounters of
the patient, match the so far disease trajectory of the patient in the patterns
and then extrapolate the trajectory based on the mined patterns.

Table 1. Overview of Mined Patterns

Pattern Progression Time Patient Support | Avg. Age | Gender
(days) Distribu-
tion

K21.9 — K29.70 — B96.81 K21.9 — K29.70 3 weeks 547 55y M: 47%
K29.70 — B96.81 | 2 weeks F: 53%

K64.8 — K21.9 — K44.9 K64.8 — K21.9 1year 437 66y M: 41%
K21.9 — K44.9 3 weeks F: 59%

E78.5 — 173.9 — 187.2 — R09.89 | E78.5 — 173.9 2 weeks 107 73y M: 34%
173.9 — 187.2 1 week F: 66%
187.2 — R09.89 2 months

110 — 173.9 — 187.2 — R09.89 110 — 173.9 lmonth |122 T4y M: 34%
173.9 — 187.2 4 weeks F: 66%
187.2 — R09.89 6 months

3.1 Disease Surveillance for Individual Patients

Using patients’ past and current medical conditions, the system identifies pat-
terns and correlations that may indicate the likelihood of subsequent health
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Fig. 3. Pattern analysis of next potential diagnosis - K21.9

conditions. Lets consider a patient who is suffering from a functional agastroin-
testinal disorder (K59.00), unspecified abdominal pain (R10.13), other hemor-
rhoids (K64.8), and diverticular disease of the intestine (K57.30). Figure 2 shows
in detail the future disease trajectory for this patient based on current medi-
cal conditions. The nodes represent the ICD codes, and the thickness of each
pathway is indicative of the number of patients who have followed that specific
trajectory. Figure 3 provides a time distribution analysis indicating how quickly
patients might progress to the next diagnoses. The median time to a ‘K21.9’ diag-
nosis is 6 months (Fig. 3), whereas for ‘B96.81, it is 4 weeks (shown in Appendix
D, Fig. 6), highlighting the rapid progression of certain conditions in patients.

3.2 Patient Cohort Analysis

The disease surveillance system also facilitates cohort-level analysis for under-
standing the progression and root causes of medical conditions across a large
patient population of interest.

Trajectories to Colon Cancer: Mapping Prevalent Precursors. This
insight is of value for clinicians to explore the root causes of a particular disease,



Disease Surveillance System 85

say Malignant neoplasm of cancer (C18.9). Our system identifies most prevalent
antecedent conditions to colon cancer which will aid clinicians to proactively
intervene. Prevalent disease trajectories leading to a colon cancer are shown in
Fig. 4. It involves conditions like adenomatous polyps of the colon (D12.5), intra-
abdominal and pelvic swelling (R19.09), Polyp of colon (K63.5) etc. suggesting
that persistent gastrointestinal issues or certain benign polyps could potentially
escalate to malignancy over time.
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Fig. 4. Cohort level analysis of disease trajectories leading to Colon Cancer

3.3 Discussion

In addressing the challenges associated with evaluating our system, we imple-
mented a retrospective analysis to establish the probabilistic support for each
identified trajectory in addition to the absolute number of patients following that
pathway. This dual-parameter approach ensures that our predictions are not only
based on the pathways supported by a relatively large number of patients but
are also statistically significant. Last but not least, a panel of three expert physi-
cians from a partner healthcare facility has clinically validated all the use cases
presented in this paper.

4 Conclusion and Future Work

We introduced a disease surveillance system for predicting disease progression
trajectories by temporally modelling the clinical encounters of 17 million patients
in a knowledge graph. A novel algorithm identifies patterns in disease progres-
sion, enabling personalized prediction tools for healthcare professionals. The sys-
tem includes patient specific disease trajectories as well as cohort level disease
progression trends pinpointing prevalent precursors and aftereffects of a partic-
ular set of diseases, thus allowing early interventions. Future work will expand
the disease surveillance system to modelling the efficient and effective treatment
pathways.
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B Sample Disease Trajectory from KG

See (Table 2)

Table 2. A sample disease trajectory of a patient from the Knowledge Graph

Encounter # | Date

Diagnosis

Description

1

2019-12-26 | E03.9 E66.01

Hypothyroidism, unspecified
Morbid (severe) obesity due to excess calories

2 2020-01-13 | E55.9 Vitamin D deficiency, unspecified
3 2020-02-26 | E78.5 110 E53.8 | Hyperlipidemia, unspecified

Essential (primary) hypertension

Deficiency of other specified B group vitamins
4 2020-04-04 | E11.9 Type 2 diabetes mellitus without complications

C Algorithm for Disease Patterns Mining

Algorithm 1. Mine Encounter-Wise Disease Patterns

Require: A list of patient trajectories, 7 = {11, T2, ..., Tn }, and granularity G.
Ensure: Sorted mapping of encounter-wise patient cohort patterns, Psorted-

Calculate day differences AD; = {61, d2, ..., om—1}, where d; = d;j11 — d;.
for each combination C' in the Cartesian product of ICD codes from encounters

1: Initialize P as an empty mapping.

2: for each trajectory T; € 7 do

3: Initialize a set S; for patient pattern.
4: Extract encounter dates D; = {d1,ds,...,dm} from Tj,
5:

6:

in Tl do

7 for each n-gram « from I'g(C) do
8: if |unique(vy)| = G then

9: Append (v, AD;) to S;.
10: end if
11: end for

12: end for
13: for each pattern p = (y,AD;) in S; do
if v exists in P then

14:
15:
16:
17:
18:

Append AD; to P[v].

else

Set Ply] = [AD;].

end if

19: end for
20: end for
21: return Psorteq, the sorted version of P.
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Post-traumatic stress disorder (PTSD) is a complex somatic, cognitive, affec-
tive and behavioral disorder that emerges in response to traumatic life events.
PTSD is characterized by intrusive thoughts, nightmares and flashbacks of past
traumatic events, avoidance of reminders of trauma, hypervigilance, and sleep
disturbance, all of which lead to considerable social, occupational, and interper-
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Abstract. Traumatic experiences have the potential to give rise to post-
traumatic stress disorder (PTSD), a debilitating psychiatric condition
associated with impairments in both social and occupational functioning.
There has been great interest in utilizing machine learning approaches
to predict the development of PTSD in trauma patients from clinician
assessment or survey-based psychological assessments. However, these
assessments require a large number of questions, which is time consum-
ing and not easy to administer. In this paper, we aim to predict PTSD
development of patients 3 months post-trauma from multiple survey-
based assessments taken within 2 weeks post-trauma. Our objective is to
minimize the number of survey questions that patients need to answer
while maintaining the prediction accuracy from the full surveys. We for-
mulate this as a feature selection problem and consider 4 different feature
selection approaches. We demonstrate that it is possible to achieve up to
72% accuracy for predicting the 3-month PTSD diagnosis from 10 sur-
vey questions using a mean decrease in impurity-based feature selector
followed by a gradient boosting classifier.

Keywords: Survey optimization - PTSD prognosis + Feature
selection - Mean decrease in impurity - Gradient boosting - Random
forest

Introduction

sonal dysfunction [2].

Diagnosis of PTSD requires patients to undergo expensive and time consum-
ing clinical tests with specialists. On the other hand, traditional survey-based
psychological assessments are relative inexpensive and easy to administer. We
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consider the possibility of training a machine learning (ML) algorithm to predict
the PTSD diagnosis from the clinician using the survey data rather than hav-
ing patients frequently go through structured clinical interviews. However, these
surveys can become very long and repetitive for patients and lead to fatigue.

In this study, we design a shortened survey that enables an ML algorithm
to predict the PTSD diagnosis, ideally with a similar level of accuracy as using
a full survey. We formulate this survey minimization task as a feature selection
problem, where patients’ responses to different survey questions are treated as
the features. We explore four different approaches for feature selection: stability
selection using the LASSO, two variants of mean decrease in impurity (MDI)-
based selection, and a maximum depth limitation approach.

We find that an MDI-based feature selector followed by a gradient boosting
classifier is able to predict the PTSD diagnosis of patients 3 months post-trauma
with up to 72% accuracy using 10 questions from surveys taken within 2 weeks
post-trauma. Importantly, we find that this level of accuracy is comparable to
or even higher than the accuracy we obtain when training ML algorithms on
the full survey data, indicating that we can minimize the survey to 10 questions
without losing prediction accuracy.

2 Background

2.1 Feature Selection for Machine Learning Algorithms

The objective of a supervised ML algorithm is to accurately predict a target y
given a feature vector x representing an object. Given a set of training examples
{x1,x2,...,x,} and associated targets {y1,y2, ..., Yn}, an ML algorithm learns
a function f such that, for a new test example *, f(x*) is a good predictor of its
target y*. In the context of this paper, the object would be a patient, the target
would be the patient’s PTSD diagnosis, and the feature vector denotes relevant
information about the patient, such as the patient’s age, sex, and responses to
survey questions. Each subject is diagnosed as either PTSD or non-PTSD; in
this setting, the ML algorithm is a binary classifier, and the target is a label.

It is often the case that the entire feature vector & may not be necessary to
learn a good predictor f(x). For example, some of the features may be irrelevant
for predicting the label y. Feature selection algorithms aim to select a subset
of features to use to train the ML model. They are used to discard irrelevant
features from a classifier and result in a smaller model. They may also result in
higher classification accuracy in some instances.

A variety of feature selection algorithms are often employed for training ML
models. Some are generic “wrapper” algorithms that can be applied to any ML
model, including greedy algorithms such as forward and backward subset selec-
tion [1]. Others have been designed specifically for a class of ML models. For
example, the LASSO [24] is designed specifically for feature selection in linear
predictors, such as linear and logistic regression. It is sometimes used to perform
feature selection when using other non-linear machine learning algorithms. A
related feature selection approach is stability selection, where a feature selector
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Table 1. Demographic and trauma-related information on the 144 participants.

Information Mean (SD) or Number (%)
Age 33.2 (10.8)
Sex (Female) 98 (68.1%)
Trauma type
Motor vehicle accident 79 (54.9%)
Physical assault 53 (36.8%)
Sexual assault 8 (5.6%)
Other 4 (2.8%)
PTSD at 3 months post-trauma | 54 (37.5%)

such as LASSO is repeatedly applied to randomly sampled subsets of data [18§].
The features that are selected most frequently in the random subsets are then
chosen as the features used to train the ML model.

2.2 Related Work

The related work most relevant to this paper focuses on survey optimization. In
a survey optimization study, researchers employed a LASSO regression model to
best approximate the five most effective questions to put in their survey about
women’s agency. They trained 1,000 LASSO regressions, each on a random 50%
of the data, and tracked which features were selected by each model. Then, they
chose the 5 most frequently selected features (i.e., survey questions) to use in
their optimized survey [13], which is a form of stability selection. Their study
aimed to find exactly 5 features, but it is possible to extend their ideas to find
the optimal balance between relevant features and survey accuracy, which is
our focus. A similar approach was employed for household poverty classifica-
tion in [14], resulting in a survey with 10 questions. Finally, another related
approach for survey optimization formulates the problem as a Markov Decision
Process where possible actions are questions we can ask, states are the known
answers, and the reward function is how well the current state can predict the
outcome [15].

3 Data Description

3.1 Participants

We consider data collected from a longitudinal neuroimaging study [12,25] on
adult trauma survivors who seek medical treatment. Participants completed ini-
tial evaluation regarding behavioral and clinical symptoms using questionnaires
within 2 weeks post-trauma and underwent a clinical interview for PTSD diag-
nosis (CAPS-5) at 3 months post-trauma. The study was approved by the Uni-
versity of Toledo Institutional Review Board protocol #201575. All participants
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Table 2. Survey assessments used as features in this paper. Participants responded to
each survey question on a scale with the listed number of choices or scale points.

Survey Questions | Scale pts
Acute stress disorder scale (ASDS) [5] 19 5
Quick Inventory of Depressive Symptomatology (QIDS) [21] | 16 4
Pain Anxiety Symptoms Scale — Short Form (PASS) [17] 20 6
Difficulties in Emotion Regulation Scale (DERS) [11] 36 5
Childhood Trauma Questionnaire (CTQ) [3] 28 5
Pittsburgh Sleep Quality Index Addendum (PSQI-A) [10] 7 5

provided written informed consent and received monetary compensation for their
participation in the study. Summary statistics about the participants are shown
in Table 1.

3.2 Features

Based on the PTSD literature and previous findings using the data from the same
cohort [7,8,22,23,26], we compile a total of 129 features. The features include
participants’ demographic and trauma-related information (i.e., age, sex, and
trauma type), and behavioral and clinical symptoms in the form of responses to
individual questions from 6 validated survey instruments, listed in Table 2.

3.3 Imputation of Missing Data

Roughly 2% of our data are missing, corresponding to survey questions that par-
ticipants did not answer. The features with the highest rates of missing data are
QIDS questions 6 and 8, which focus on decreased appetite and weight, respec-
tively. They are followed by questions 7 and 9 on increased appetite and weight,
which may have led participants to ignore questions 6 and 8. Question 6 had
6.25% missing data (3.47% from PTSD and 2.78% from non-PTSD participants),
while question 6 had 5.56% missing data (3.47% PTSD, 2.08% non-PTSD).

In order to properly train and test our ML models, we perform data impu-
tation for the missing data. We use the IterativeImputer from the scikit-learn
Python package [20] to impute missing values on the entire data set. The impu-
tation approach is a single regression-based multivariate imputation based on
the Multivariate Imputation by Chained Equations (MICE) package in R [6].

4 Methodology

We first train a variety of classifiers on the full survey data to determine the
attainable PTSD prediction accuracy using all 129 features. We then compare
feature selection approaches to choose a smaller subset of features to use when
training the classifiers and investigate the prediction accuracy using different
feature selection methods and different numbers of features.
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4.1 Classification on Full Survey Data

We assess these models using a 5 x 5 nested cross validation (CV), with 5 outer
folds and 5 inner folds. The outer folds are used to evaluate the model’s predic-
tion accuracy, while the inner folds are used to select the hyperparameters used
to train the models via grid search. The hyperparameter values that maximize
the mean inner CV are chosen. These hyperparameters are then used to evaluate
prediction accuracy in the outer CV. Both the outer and inner CV are stratified
by the labels: the PTSD status at 3 months post-trauma. Using a nested CV
rather than a single CV prevents us from using the same CV to choose hyperpa-
rameters and evaluate accuracy, which may result in overly optimistic prediction
accuracy values that may not be achievable in practice.

We consider three different classification algorithms: logistic regression with
an elastic net penalty [27], random forest [4], and gradient boosting [9]. Logis-
tic regression makes a prediction using a linear function of the features, while
random forest and gradient boosting are non-linear ensemble predictors that
use multiple decision trees to arrive at a prediction. Logistic regression is sen-
sitive to feature scaling, while random forest and gradient boosting are not, so
we standardize the features for logistic regression only. The values and ranges
we consider for key hyperparameters are shown in Table 3. Random forest and
gradient boosting were trained using the Gini impurity and the mean squared
error improvement criterion (‘friedman_mse’ in scikit-learn) [9], respectively,
to measure the quality of a split.

Table 3. Hyperparameters and their ranges of values

Model Hyperparameter Values
Logistic Regression | [1-ratio {0.75,0.85,0.95}

Inverse regularization strength C'| {107%,1072,...,10%}
Random Forest 4 of trees {5,10,...,100}

Max. depth {1,2,...,9}

Max. features {None, ‘sqrt’, 0.2,0.5,0.7}
Gradient Boosting | # of trees {5,10,...,100}

Max. depth {1,2,3,4}

4.2 Minimizing Survey Questions Using Feature Selection

We formulate the objective of minimizing the number of survey questions as
a feature selection problem. Feature selection denotes selecting a subset of the
available features to use when training a classifier. It is used to discard irrelevant
features from a classifier and results in a smaller model. It may also result in
higher classification accuracy, but we are more interested in the smaller model.
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Any feature that gets discarded from the classifier corresponds to a survey ques-
tion that does not need to be asked. Thus, if a feature selection approach results
in only 5 questions selected, then those 5 questions now form the minimized
survey and are the only questions that the subject would be presented with.

We experiment with a variety of feature selection methods, described below,
to observe the relationship between classification accuracy and the number of
features used. We treat the participant’s age, sex, and trauma type as “always
available” features since they are not survey questions. These 3 features are
excluded from the feature selection process.

The LASSO stability selection and mean decrease in impurity (MDI)
approaches are applied before training the classification model, while the maxi-
mum depth limitation approach modifies how the classifier is trained. For LASSO
stability selection and MDI, we evaluate with the same 5 x 5 stratified, nested
CV as we use for the models on the full survey data. In each inner fold, we train
the given selector on the inner CV training set, rank the features, and then train
the classifier (with a grid search for hyperparameter values) on the top k features
for k € {3,5,10,13,15,20}. The maximum depth limitation approach does not
have any additional hyperparameters and thus uses only a single CV, which is
the same as the outer CV for the models on the full survey data.

LASSO Stability Selection: We train 1,000 logistic regression models with an ¢
(LASSO) penalty on a random 50% of the inner fold’s training data. We perform
stability selection [18] by ranking each feature by the number of times it was
selected by all 1,000 models. In order to rank the features, we tuned the logistic
regression C hyperparameter such that the logistic regression model had non-zero
coefficients for a large proportion of the total features (roughly over 30%).

Mean Decrease in Impurity (MDI): Tree-based models offer a “built-in” approach
for measuring feature importance, the mean decrease in impurity (MDI) [16].
When the impurity measure used is Gini impurity, it also goes by the name Gini
importance [19]. We use the MDI purely for feature selection by training a tree-
based ensemble model on the inner fold training data and then ranking features
by their importance in terms of the MDI. We consider two tree-based ensemble
models for MDI-based feature selection: random forest and gradient boosting. In
scikit-learn, the MDI-based is given by the attribute feature_importances_.
Note that we are training a random forest or gradient boosting model on
the full survey data just for the purpose of feature selection. Similar to LASSO
stability selection, we tune the number of trees used for random forest and
gradient boosting such that they produce a non-zero importance for a large
proportion of the total features (roughly over 30%). We discard the random
forest or gradient boosting model and then train the actual classifier on only the
selected features to evaluate prediction accuracy on the reduced survey.

Mazimum Depth Limitation: This approach is designed for boosted decision
trees, which typically use very shallow trees as the base classifier. If we constrain
the maximum depth of the tree to be 1, turning it into a decision stump, then a
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Table 4. Comparison of different measures of prediction accuracy and number of fea-
tures used across different classifiers trained using all of the survey questions. Reported
results are over a 5 X 5 nested cross-validation with mean + standard error over the
outer folds. Bold entries denote highest accuracy, sensitivity, specificity, and lowest
number of features used.

Classifier Accuracy Sensitivity Specificity Features Used
Logistic Regression | 0.653 4+ 0.034 |0.407 4+ 0.061 |0.800 4+ 0.067 | 37.4 + 10.4
Random Forest 0.659 £ 0.025 |0.513 4+ 0.086|0.744 £ 0.038 |70.6 = 15.0
Gradient Boosting | 0.666 + 0.027 | 0.402 4+ 0.092 | 0.822 + 0.021 | 38.0 + 18.3

boosting model with L trees can make at most L splits, and hence, use at most
L features. To use this maximum depth limitation with gradient boosting, we
constrain the model to use maximum depth of 1 and vary the number of trees L
according to Table 3. For each value of L, we record the number of features used.
Since this method does not require any hyperparameter tuning, we use a single
5-fold cross validation to determine the accuracy for all values of L. Unlike the
other feature selection approaches, this approach does not require first training
an additional classifier in order to perform feature selection. It is thus much more
computationally efficient than the other two approaches.

5 Results

5.1 Prediction Using Full Survey Data

The prediction accuracy for the three different classifiers is shown in Table 4. All
of the classifiers perform similarly in their prediction accuracy values, which are
within 1 standard error of each other. All classifiers had higher specificity than
sensitivity, likely due to the higher number of non-PTSD patients in the data.

While all of the models perform similarly in accuracy, we also consider how
many features a model uses to inform its prediction. Since we are aiming to
minimize the number of features by feature selection, choosing a classifier that
already uses a smaller number of features makes for a good starting point. The
model with the highest accuracy and lowest number of features is the best.
Given these criteria, we choose gradient boosting as the classifier to use for
survey minimization, as it has the highest accuracy and finishes a close second
in the number of features used.

5.2 Prediction Using Shortened Surveys

We plot the mean prediction accuracy for varying numbers of features used
in Fig.1 for each of the four feature selection techniques. The mean accuracy
values for all feature selectors are actually higher for some number of features
than the corresponding values for gradient boosting on the full survey. For the
MDI-based feature selection using random forest, increased accuracy is achieved
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Fig. 1. Comparison of gradient boosting accuracy with no feature selection (blue) and
using four different feature selection methods (other colors). Confidence bands denote
1 standard error for the mean accuracy over a 5-fold cross validation. (Color figure
online)

using as few as 3 features, while the other approaches require more features. All
are able to achieve higher accuracy than gradient boosting on the full survey once
the number of features is in the 10-20 range. The highest values of prediction
accuracy are shown in Table 5 for models with less than 5, 10, and 20 features.

These results suggest that it is indeed possible to significantly reduce the
length of the survey while maintaining or even possibly improving the prediction
accuracy. We note that, in most cases, the confidence band (+1 standard error)
overlaps with the confidence band for gradient boosting without feature selection.
This suggests that, while we cannot confirm that we are improving prediction
accuracy, it is likely that the prediction accuracy using the shortened surveys is
at least comparable to that using the full surveys. The feature selector with the
highest mean accuracy is the MDI-based selector using random forest.
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Table 5. Comparison of gradient boosting prediction accuracy using limited numbers
of features for different feature selection methods. Bold entries denote highest accuracy
for a fixed maximum number of features.

Feature Selector <5 Features <10 Features <20 Features
LASSO stability selection 0.653 £ 0.0322 | 0.653 £+ 0.0322 | 0.687 + 0.017
MDI using random forest 0.680 £ 0.030 | 0.715 £+ 0.037 | 0.715 + 0.037
MDI using gradient boosting | 0.666 £ 0.016 |0.666 £+ 0.016 |0.673 + 0.018
Maximum depth limitation |0.625 £+ 0.004 |0.639 4+ 0.023 |0.687 4+ 0.025

6 Conclusion

The objective of this paper was to devise an approach to minimize the number of
survey questions needed to predict a patient’s PTSD diagnosis. We demonstrated
that it was possible to predict PTSD with about 72% accuracy using <10 features
or 68% accuracy using <5 features, both of which are comparable to and possibly
exceed the prediction accuracy of a classifier trained using the full survey data.
We found that an approach based on optimizing the mean decrease in impurity
(MDI) from a random forest model resulted in the highest accuracy.

While this work provides a promising start to PTSD prediction using mini-
mized surveys, the overall prediction accuracy remains somewhat weak. This may
be partially due to using only survey data taken within 2 weeks post-trauma to
predict the PTSD diagnosis at 3 months post-trauma. In future work, we intend
to incorporate the longitudinal data collected in the study to improve the over-
all prediction accuracy using multiple adaptive surveys that may ask different
questions to different participants based on their past responses.
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1 Introduction

Cancer diagnosis can be devastating for an individual and lead to emotional distress,
anxiety or depression. Patients are usually faced with the immediate need to make a
treatment decision, which is a daunting and complicated process due to serious adverse
effects of chemotherapy. Often the treatment choice requires compromising between the
quality of life and the length of life [ 1]. There are many existing studies on cancer survival
analysis, but health-related quality of life (HRQOL) changes require more consideration
in literature. Understanding factors related with increased chemotherapy toxicity and
HRQOL fluctuations could personalise cancer care through enabling informed shared
decision-making process and early preparation for potential adverse effects [2].

Machine learning (ML) has been successful in predicting patient outcomes in health-
care [3], but ML models are often built on clinical and demographic data, overlooking
patients’ views. Patient-reported outcome measures (PROMs) are questionnaires col-
lecting patients’ perception on their own health status, unaffected by clinical opinion
[4]. PROMs added as input data in ML models have a potential to improve their predic-
tive performance [5]. Furthermore, patients’ perspective is often missed from the study
design process. Therefore, the development of new ML models might not serve its pur-
pose or address needs of diverse groups of people in an equal and fair way. Patient-centric
research is also crucial for building public trust in artificial intelligence and support the
implementation of the studied tools in clinical practice [6].

There is existing evidence that ML can predict chemotherapy toxicity, but research
papers often focus on acute hospital utilisation during treatment, rather than HRQOL [7].
Studies foreseeing HRQOL during chemotherapy tend to use statistical modelling, rather
than explore ML predictive opportunities [8]. Furthermore, the outcomes are usually
limited to specific time during the chemotherapy, without investigating the changes
from early to late stages of the treatment [9]. Patient and clinician involvement is also
missing from the study design.

This study is a part of a broader research on using PROMs and ML to predict
patient outcomes. In earlier work we have shown that baseline PROMs can predict
hospital utilisation and treatment management [7]. In this paper we focus on predicting
patients’ quality of life changes during chemotherapy following a patient-centric study
design. The study utilises PROMs in ML models to predict changes in physical well-
being, social functioning, role functioning, usual activities, and mobility at 6, 12 and
18 weeks of chemotherapy. The paper ensures rigorous reporting of model development
and evaluation, supporting reproducibility of research [10]. Stakeholder engagement
was an essential part of the study design and model evaluation.

2 Methods

2.1 Overall Methodology

Four machine learning models: logistic regression (LR), random forest (RF), extreme
gradient boosting (XGB), and multilayer perceptron (MLP) were used to predict patient-
reported HRQOL changes at 6, 12 and 18 weeks of starting chemotherapy treatment.
The overall study design is presented in Fig. 1.
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Fig. 1. Flow diagram illustrating the overall methodology of the study.

2.2 Patient-Centric Approach

A consultation with patient representatives was a part of a Data-driven Cancer Research
Conference 2024 in Manchester, UK, where initial study design was presented. Two
of the patient representatives were asked which chemotherapy effects would be the
most helpful to be aware of before treatment decisions. Patients stressed that apart from
physical symptoms, they would like to understand how chemotherapy would impact
their every-day activities and social life. Consequently, these aspects were selected as
outcome variables in this study.

The patients’ perspective was further considered, as a clinical oncologist was
involved in all stages of the study. Patient Centred Outcomes Research (PCOR) Group
at the Leeds Institute of Medical Research, University of Leeds, St James’s University
Hospital, a multidisciplinary research group, which includes oncologists, nurses and
psychologists, was also consulted during earlier project stages. Following discussions
with the group, the study includes feature importance analysis and ML model evaluation
on original (unprocessed) data.

2.3 Dataset

The dataset contains data from 508 patients initiating chemotherapy for colorectal, breast,
or gynecological cancers at Leeds Cancer Centre, collected in a prospective, randomized
two-arm parallel group study, called eRAPID clinical trial [11]. It consists of 90 variables,
42 of which are demographic (self-reported) and clinical (from Electronic Healthcare
Records). They include age at study entry, sex, marital status, level of education, employ-
ment status, body mass index (BMI), disease site (breast/gynecological/colorectal), pre-
vious chemotherapy (yes/no), disease type (metastatic/non-metastatic), and comorbidi-
ties presence: cardiovascular, respiratory, gastrointestinal, stomach/intestine, endocrine,
renal, neurological, rheumatologic, previous malignancy, substance abuse. The remain-
ing 48 variables consist of PROMs, completed by participants at 4 timepoints (baseline
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at the start of the trial, and at 6-, 12-, and 18-week follow-up). For each time-point,
6 variables were from Five-dimensional Visual Analogue Scale (EQ-5D-VAS [12]),
including self-reported data on mobility, self-care, usual activities, pain/discomfort, anx-
iety/depression, and self-rated health status; 4 variables from Functional Assessment of
Cancer Therapy - General 28 items (FACT-G [13]), including aggregated scores of phys-
ical, social, emotional and functional well-being; and 2 remaining variables were social
and role scale from EORTC Core Quality of Life Questionnaire (QLQ-C30 [14]).

2.4 Feature Engineering

The outcome variables were improvement and deterioration in: physical wellbeing (phys-
ical symptoms), social functioning (ability to engage in the society), role functioning
(ability to perform life roles), usual activities (ability to perform daily life activities),
and mobility (ability to move) at 6, 12 and 18 weeks. Baseline values were subtracted
from the values at the predicted time point. The improvement and deterioration were
transformed into binary variables with the threshold of minimally clinically important
difference (MCID) [15, 16] for physical well-being, social functioning and role func-
tioning to ensure clinical relevance. Usual activities and mobility were 5-level, 1-item
scale (from no problems to extreme problems) and have no MCID recommendations,
so the deterioration and improvement of these variables were considered any change of
<1 and <—1 respectively (Table 1). Input features are described in Dataset subsection.
Features correlated with Pearson coefficient higher than 0.6 were removed (leaving one)
to ensure ML models process information efficiently. The list of removed variables in
each feature set is presented in the Appendix Table 2.

2.5 Data Pre-processing

Continuous variables were standardised. Only rows (participants) with complete target
variable at the predicted time point were included in the analysis. Any missing data were
imputed using KNN imputer (k = 5) [17]. The number of missing data for each variable
in each outcome is presented in Appendix Table 3. The data was split to train (80%) and
test (20%) sets with stratification. Random sampling with replacement was performed
on train set to ensure that models are not biased towards one class [18]. Test set was left
imbalanced and models were evaluated on unprocessed data to have a potential to be
applied to clinical practice. Original class distribution is provided in Table 1.

2.6 Model Development and Evaluation

LR, RF, XGB and MLP were applied using Python sklearn library to predict each target
variable at each time point. The model selection was based on their frequency of use in
studies applying ML to PROMs data to enable between studies comparison. Hyperpa-
rameters were tuned on train sets through grid search with five-fold cross-validation. The
models were evaluated with accuracy, recall (also known as sensitivity), specificity and
area under the ROC curve (AUC). Feature importance was also conducted on LR and RF
models predicting 3 best performing outcomes at 18 weeks due to their explainability
potential. Furthermore, Analysis of Variance (ANOVA) with Tukey’s Honest Significant
Difference (Tukey HSD) tests were performed to compare model performances.
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Table 1. Predicted variables, questionnaires completed, change calculations, participants number
(N), including deterioration (D) and improvement (N) cases.

HRQOL Questionnaire Deterioration Improvement Time point (N, D, I)
6 weeks (N=439, D=252, 1=68)
Physical well-being Fact-G change < -2 change > 2 12 weeks(N=400, D=241, I=51)

18 weeks (N=382, D=219, I=58)
6 weeks (N=440, D=187, 1=101)
Social functioning QLQ-C30 change < -7 change > 8 12 weeks (N=407, D=209, I=73)
18 weeks (N=388, D=179, I=90)
6 weeks (N=438, D=190, I=100)
Role functioning QLQ-C30 change < —6 change > 11* 12 weeks (N=407, D=216, I=90)
18 weeks (N=385, D=171, I=78)
6 weeks (N=439, D=148, I=71)
Usual activities EQ-5D-VAS change > 1 change > —1 12 weeks (N=408, D=181, I=50)
18 weeks (N=384, D=183, I=51)
6 weeks (N=438, D=64, [=48)
Mobility EQ-5D-VAS change > 1 change > —1 12 weeks (N=408, D=98, I=40)
18 weeks (N=382, D=122, 1=31)
*MCID for role functioning improvement was the average from all cancer types due to availability [16].

3 Results

Accuracy, recall, specificity and AUC of all models are provided in Appendix Tables 4
and 5. The plots in Fig. 2 represent AUCs of all target variables apart from role
functioning, due to its similarity to usual activities, but worse performance.

3.1 Predicted HRQOL Changes

Physical Well-Being. Deterioration: LR models had the highest AUCs at 6 (0.710),
12 (0.661) and 18 (0.761) weeks deterioration predictions. Even though LR did not
provide the highest recall, it did not compromise the specificity unlike other models
(e.g., MLP at 6 weeks: recall = 0.902, specificity = 0.162), preventing false negative
predictions. All models had the best performance predicting deteriorations at 18 weeks,
compared to 6 and 12 weeks. Improvement: MLP had the highest AUC overall at 12 weeks
(0.843). This model also had high recall (0.800) and specificity (0.886). LR had the
highest performance at 6 (AUC = 0.718) and 18 weeks (AUC = 0.662). Generally all
models had poor recall (risking false improvement predictions), apart from LR (0.800)
and aforementioned MLP (0.800) predicting improvement at 12 weeks. The models
performed the best at 12 weeks, except for RF achieving highest AUC at 6 weeks.

Social Functioning. Deterioration: Overall, the best performing model was LR with
highest AUC of 0.685 at 18 weeks. MLP was the best classifier at 6 weeks (AUC =
0.595), and LR at 12 weeks (AUC = 0.562). The models were compromising either
specificity or recall, with at least one of them being lower than 0.600. Overall, 18 weeks
deterioration predictions had highest AUC for all models except MLP (highest AUC
of 0.595 at 6 weeks). Improvement: The best performing model was MLP at 6 (AUC
= 0.713), 12 (AUC = 0.533) and 18 (AUC = 0.736) weeks. These models also had
highest recall, which was 0.750 at 6 weeks and 0.722 at 18 weeks with specificity being
respectively 0.676 and 0.750. The MLP’s recall at 12 weeks was only 0.200, suggesting
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a bad performance of this model. RF had the highest specificity for all time points, but
compromised recall. All models achieved best predictive performance at 18 weeks.

Role Functioning. Deterioration: LR outperformed other models, achieving the highest
AUC:s at all time points: 6 (0.573), 12 (0.691) and 18 (0.675) weeks. Recalls of these
models were higher than specificity, with the highest value at 12 weeks (0.750). The
models had best overall performance at 18 weeks, even though LR was slightly better
at 12 weeks. Improvement: LR had the highest AUCs of all models at 6 (0.531) and
18 weeks (0.770), whilst MLP at 12 weeks (0.712). LR’s performance at 18 weeks was
the highest overall. This model also had the highest recall (0.688), but specificity of
0.852 was lower than XGB’s specificity (0.902). Overall, models performed the best at
18 weeks (except MLP with the highest AUC = 0.712 at 12 weeks) and the worst at
6 weeks.

Usual Activities. Deterioration: The best performing model was LR at 6 (AUC = 0.663)
and 12 weeks (AUC = 0.739), and MLP (AUC = 0.718) at 18 weeks. These models also
had highest recall, but not specificity, which was the highest for RF (6 and 12 weeks)
and XGB (18 weeks). In general, specificity was a lot higher than recall. The models
had the lowest performance at 6 weeks, while 12 and 18 weeks predictions had similar
performance. Improvement: LR outperformed all models at all time points with AUCs
of 0.684 (6 weeks), 0.731 (12 weeks), and 0.898 (18 weeks). LR at 18 weeks was
the highest performing model with excellent recall (0.900) and specificity (0.896). The
specificity of all models was high, but often compromised recall. Models predicting
18 weeks improvement performed much better than models at other time points.

Mobility. Deterioration: The models had poor overall performance with MLP having
the highest AUCs at 6 (0.529) and 12 (0.562) weeks, and LR (0.597) at 18 weeks. Recall
of the models was poor as well, with the highest value of 0.560. Specificity values of the
models were good overall, with the highest for RF at 6 weeks (0.973). It is unclear which
time point resulted in the best predictions. Improvement: MLP was the best performing
model overall achieving AUC of 0.904 (recall = 0.875, specificity = 0.932) at 12 weeks.
LR was the best models at 6 weeks (AUC = 0.829) with very good recall (0.800) and
specificity (0.859). At 18 weeks LR also outperformed other models with AUC of 0.715,
high specificity (0.930), but low recall (0.500). Overall, 18 weeks predictions resulted
in the lowest AUCs, while 6- and 12-week predictions depended on the model.
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3.2 Significance Testing

ANOVA results suggest that at least one model’s AUC mean is different from the rest
(F = 4.202, p = 0.007) and Tukey HSD indicated that LR was significantly better
than RF (0.011) and XGB (0.041). Outcome also affected prediction performance (F =
4.659, p = 0.002), as predictions of usual activities had higher mean AUC than role (p =
0.0364) and social (p = 0.001) functioning. The time point of prediction was also a factor
affecting AUC (F =5.676, p = 0.004), with Tukey HSD indicating 18-weeks predictions
resulting with significantly higher mean AUC than 6-weeks predictions (p = 0.003).
Welch Two Sample t-test indicated that improvement predictions were significantly
better than deterioration predictions (t = -3.079, df = 101.39, p = 0.003).

A) Physical well-being B) Social functioning
1000 1000
0900 0900
000 000
0700
0500
0500 0500
0.400 0400
0300 0300
0200 0200
0100 0100
0000 0000
6weeks 12 weeks 18 weeks 6weeks 12 weeks 18 weeks 6weeks 12 weeks 18 weeks 6weeks 12 weeks 18 weeks
Improvement Improvement
WLR mRF 5 XGB mMLP mLR mRF mXGB mMLP
C) Usual activities Mobility
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Fig. 2. AUC values of models predicting A) physical well-being, B) social functioning, C) usual
activities, D) mobility deterioration and improvement at 6, 12, and 18 weeks.

3.3 Feature Importance

Features with coefficients for LR and values of importance for RF are presented in
Appendix Tables 6, 7, 8. For prediction of physical well-being, LR looked mainly at
clinical information (comorbidities and cancer characteristics). RF considered Fact-G
and EQ-5D as most important predictors, as well as patients’ BMI. LR in predicting
mobility also found comorbidities the most meaningful predictors (including EQ5D
mobility score at baseline for improvement prediction), while RF mainly looked at
PROMs, cancer type and BMI. When predicting usual activities, LR also looked at the
clinical characteristics and usual activities baseline score, whilst RF focused on BMI,
cancer type and PROMs.
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4 Discussion

4.1 Discussion of the Study Findings

Overall results. The findings suggest that ML models applied on PROMs, clinical and
demographic data can successfully predict HRQOL outcomes throughout chemotherapy
which are meaningful to patients. Models provided excellent performance in predicting
improvement in physical well-being, usual activities and mobility at different stages of
cancer treatment. Consultation with a clinical oncologist endorsed the view that ML
prediction of HRQOL changes during chemotherapy can be useful in clinical practice.

Model performances. LR generally outperformed other models, which is a com-
mon outcome in medical research, as other models are more susceptible to overfitting
[19]. In some cases, MLP achieved higher performance than LR. Nevertheless, the lack
of explainability of MLP could affect public trust in this model. According to the con-
sulted clinical oncologist, even impossible to interpret models should be considered as
useful, as long as they are used alongside other well-performing models, which enable
explainability.

Change at given time points. Improvement predictions had generally higher per-
formance than deterioration, even though chemotherapy is associated with decline in
HRQOL [8]. However, the deterioration might depend on patient characteristics from
the start of chemotherapy. For example, metastatic disease may be more likely to
show improvement due to higher burden of cancer symptoms prior to treatment. These
differences will be further explored.

4.2 Strengths and Limitations

The main strength of this work is the patient-centric approach achieved through the
active engagement of a clinical oncologist, consultation with patient representatives and
patient reports used as input data. Three time points of HRQOL changes provided another
insight into fluctuation of chemotherapy symptoms and when they can affect individuals.
Finally, the rigorous reporting of data pre-processing methods, model development and
evaluation supports the reproducibility of this study. However, the ethical approval does
not allow data sharing, which might negatively impact the reproducibility. Furthermore,
this study has limitations typical for data collected in clinical trials. While the ML
models have been rigorously designed and evaluated, the data were subject to inclusion
and exclusion criteria, which can lead to bias. Temporal clinical trial data are usually
relatively small samples and are affected by participants drop outs. This limits the ML
methods that have been applied, yet the results are encouraging.
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4.3 Conclusions and Future Work

This study successfully applied ML models on PROMs, clinical and demographic data
to predict changes in HRQOL during chemotherapy, which could support preparation
for adverse effects of chemotherapy and inform treatment decisions. The results further
encourage the use of ML methods to identify factors related to chemotherapy toxicity and
explore how cancer treatment affects individuals’ lives. Patient and clinician involvement
ensured that the predicted variables are meaningful for patients and clinically relevant.
We are currently extending the stakeholder engagement by designing ways to explain ML
models and evaluate possible clinical adoption of the findings from a more representative
group of patients. We are also using longitudinally collected PROMs and symptom
reports for patient outcome predictions. This will consider traditional ML models and
deep learning methods to process multi-dimensional time-series data.
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Appendix

Table 2. Removed features based on correlation analysis.

6 weeks |'SOCO’, 'ROL0’, *AgeStudyEntry’, 'Sex’, 'TEWB _ overall0’

Physical well-being|12 weeks|FWB _overall0’, 'SOC0’, 'ROL0’, ’AgeStudyEntry’, 'Sex’, ’/EWB_ overall0’, ’CMRheuCTD’

18 weeks|AgeStudyEntry’, 'TEWB _overall0’, ’Sex’, 'SOC0’

6 weeks [SOCO’, 'TEWB _ overall0’, ’AgeStudyEntry’, 'ROL0’, ’Sex’

Social functioning [12 weeks|SOCO’, ’AgeStudyEntry’, 'EWB_ overall0’, 'CMRheuCTD’, ’CMCarHyperten’, 'TFWB _overall0’, '/ROL0’, 'Sex’
18 weeks|SOCO’, 'EWB _ overall0’, ’AgeStudyEntry’, ’Sex’

6 weeks [SOCOQ’, 'ROLO’, ’Sex’, 'AgeStudyEntry’, 'FWB_overall0’, '/EWB_ overall0’

Role functioning |12 weeks|SOC0’, 'ROL0’, Sex’, 'CMRheuCTD’, ’AgeStudyEntry’, 'TFWB_ overall0’, 'TEWB_overall0’, ’"CMCarHyperten’
18 weeks|[SOCO’, 'Sex’, ’AgeStudyEntry’, ’JEWB _overall0’, '"CMCarHyperten’

6 weeks |ROLO’, 'EWB _overall0’, 'FWB _ overall0’, 'Sex’, ’AgeStudyEntry’, ’'SOC0’

Usual activities |12 weeks|’ROL0’, 'TEWB _overall0’, '"CMCarHyperten’, 'FWB _overall0’, ’'CMRheuCTD’, ’Sex’, ’AgeStudyEntry’, 'SOCO0’
18 weeks[ EWB_overall0’, 'FWB_ overall0’, "Sex’, "AgeStudyEntry’, ’SOC0’

6 weeks |'AgeStudyEntry’, 'PWB_ overall0’, ’SOC0’, 'ROL0’, "Sex’, 'FWB_overall0’, 'EWB _overall0’

Mobility 12 weeks|’AgeStudyEntry’, 'ROL0’, ’'SOC0’, "Sex’, '"CMCarHyperten’, ’FWB _overall0’, ’"CMRheuCTD’, ’'EWB _overall0’
18 weeks|’AgeStudyEntry’, ’SOC0’, 'ROL0’, 'Sex’, 'EWB_ overall0’
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Table 3. Number of missing data in each variable for each outcome at 18 weeks.

Physical well-being Social functioning Role functioning Usual activities Mobility
StudyArm 0 StudyArm 0 StudyArm 0 StudyArm 0 StudyArm 0
DiseaseSite 0 DiseaseSite 0 DiseaseSite 0 DiseaseSite 0 DiseaseSite 0

Sex 0 Sex 0 Sex 0 Sex 0 Sex 0
PreviousChemo |0| PreviousChemo |0| PreviousChemo |0| PreviousChemo |0| PreviousChemo |0
AgeStudyEntry |0 | AgeStudyEntry |0| AgeStudyEntry |0| AgeStudyEntry |0| AgeStudyEntry |0
PrimaryorMet |0| PrimaryorMet |0| PrimaryorMet |0| PrimaryorMet |0| PrimaryorMet |O

BCBMI 1 BCBMI 1 BCBMI 1 BCBMI 1 BCBMI 2
Comorbidities |[0| Comorbidities [0| Comorbidities |[0| Comorbidities |0| Comorbidities |0
CMCarMI 0 CMCarMI 0 CMCarMI 0 CMCarMI 0 CMCarMI 0
CMCarAngina [0 CMCarAngina [0| CMCarAngina |[0| CMCarAngina |0| CMCarAngina |0

CMCarHeartFail |0 | CMCarHeartFail [0 | CMCarHeartFail [0| CMCarHeartFail [0| CMCarHeartFail |0

CMCarArrhythm | 0| CMCarArrhythm |0 CMCarArrhythm | 0| CMCarArrhythm |0 | CMCarArrhythm |0

CMCarHyperten |0| CMCarHyperten |0| CMCarHyperten |0| CMCarHyperten [0| CMCarHyperten |0

CMCarVenous [0| CMCarVenous [0 CMCarVenous |0 CMCarVenous |0 CMCarVenous |0
CMResCOPD [0[ CMResCOPD |0| CMResCOPD [0| CMResCOPD |0| CMResCOPD |0
CMResEmphys |0 CMResEmphys |0 CMResEmphys [0| CMResEmphys [0| CMResEmphys |0
CMResAsthma |0| CMResAsthma |0| CMResAsthma |0| CMResAsthma [0| CMResAsthma |0
CMResChronBron | 0 | CMResChronBron | 0 | CMResChronBron | 0 | CMResChronBron | 0 | CMResChronBron | 0
CMGasChronHep |0 | CMGasChronHep [0 | CMGasChronHep | 0 | CMGasChronHep | 0 | CMGasChronHep | 0

CMGasCirrhosis | 0| CMGasCirrhosis |0| CMGasCirrhosis |0 | CMGasCirrhosis |0 | CMGasCirrhosis |0

CMGasPancreas |0 | CMGasPancreas [0| CMGasPancreas |0| CMGasPancreas |0| CMGasPancreas |0

CMStomUlcers |0| CMStomUlcers |0| CMStomUlcers |0| CMStomUlcers 0| CMStomUlcers |0

CMStomMalabsor | 0 | CMStomMalabsor | 0 | CMStomMalabsor | 0 [ CMStomMalabsor | 0 | CMStomMalabsor | 0

CMStomInflamm |0 [ CMStomInflamm |0 [ CMStomInflamm |0 | CMStomInflamm |0 | CMStomInflamm |0

CMEndDiabetes | 0| CMEndDiabetes |0| CMEndDiabetes |0 | CMEndDiabetes |0 CMEndDiabetes |0

CMEndHypothy |0| CMEndHypothy |0| CMEndHypothy |0| CMEndHypothy |0 CMEndHypothy |0

CMEndHyperth |0| CMEndHyperth |0 CMEndHyperth (0| CMEndHyperth [0| CMEndHyperth |0

CMRenEndStage |0 [ CMRenEndStage |0 | CMRenEndStage [ 0| CMRenEndStage |0 | CMRenEndStage |0

CMNeuStroke |[0| CMNeuStroke |[0| CMNeuStroke [0 CMNeuStroke [0 CMNeuStroke [0
CMNeuMS 0 CMNeuMS 0 CMNeuMS 0 CMNeuMS 0 CMNeuMS 0
CMNeuParkins |0| CMNeuParkins |0| CMNeuParkins (0| CMNeuParkins (0| CMNeuParkins |0
CMNeuMyasth |0| CMNeuMyasth |0| CMNeuMyasth (0| CMNeuMyasth [0| CMNeuMyasth |0
CMRheuArth [0[ CMRheuArth |0| CMRheuArth [0| CMRheuArth |[0| CMRheuArth [0
CMRheuLupus |0| CMRheuLupus |0| CMRheuLupus [0| CMRheuLupus [0| CMRheuLupus |0
CMRheuCTD |[0| CMRheuCTD [0| CMRheuCTD |[0| CMRheuCTD |0| CMRheuCTD |0
CMRheuPolymyo | 0| CMRheuPolymyo | 0| CMRheuPolymyo | 0| CMRheuPolymyo (0| CMRheuPolymyo |0
CMRheuRhPolymy| 0 [CMRheuRhPolymy| 0 [CMRheuRhPolymy| 0 |[CMRheuRhPolymy| 0 |CMRheuRhPolymy| 0
CMPrevMal 0 CMPrevMal 0 CMPrevMal 0 CMPrevMal 0 CMPrevMal 0

CMSubstAlcohol |0 | CMSubstAlcohol [ 0| CMSubstAlcohol |0| CMSubstAlcohol |0 | CMSubstAlcohol |0

CMSubstDrugs |0| CMSubstDrugs |0| CMSubstDrugs |0| CMSubstDrugs |[0| CMSubstDrugs |0
DCMarital 4 DCMarital 4 DCMarital 4 DCMarital 4 DCMarital 4

DCEmployment (12| DCEmployment [12] DCEmployment [12| DCEmployment |12 DCEmployment (12

ed_lev 12 ed_lev 12 ed_lev 12 ed_lev 12 ed_lev 12
EQ5DMob0 4 EQ5DMob0 4 EQ5DMob0 4 EQ5DMob0 3 EQ5DMob0 2
EQ5DSelCar0 [3| EQ5DSelCar0 [3| EQ5DSelCar0 [3| EQ5DSelCar0 |2 EQ5DMob18 0

EQ5DUsuAct0 |3 | EQ5DUsuAct0 [3| EQ5DUsuAct0 [3| EQ5DUsuAct0 [2| EQ5DSelCar0 |2
EQ5DPain0 5 EQ5DPain0 5 EQ5DPain0 5| EQ5DUsuActl8 (0| EQ5DUsuAct0 |2

EQ5DAnxDep0 [5| EQ5DAnxDep0 [5| EQ5DAnxDep0 |5 EQ5DPain0 4 EQ5DPain0 4
EQ5DVASO 4 EQ5DVASO 4 EQ5DVASO 4| EQ5DAnxDep0 [4| EQ5DAnxDep0 |4

ROLO 2 ROLO 2 ROLO 2 EQ5DVASO 3 EQ5DVASO 3
SOCo 2 SOCo 2 ROL18 0 ROLO 2 ROLO 3

PWB_overalld) |8 SOC18 0 SOCo 2 SOCo 2 SOCO0 3

PWB_overalll8 [0| PWB_overall) [8| PWB_overalld |8| PWB_overall0 |8| PWB_overalld |9

SWB_overall) [4| SWB_overall) |4| SWB_overall) |4 SWB_overalld (4| SWB_overalld |5

EWB_overall) (1| EWB_overall) [1| EWB_overall) |[1| EWB_overall0 |1| EWB_overall) |2

FWB_overall) [1| FWB_overalld |[1| FWB_overall) |1| FWB_overall) [1| FWB_overall) |2
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Table 4. Deterioration prediction results with hyperparameters used for model development.

Role functioning

Data D¢
Outcome [Outcome at|Model|Accuracy]
LR 76 710, max_iter” 10000, Wnl.lty' 17", “solver”:
6 weeks
idden_layer_sizes”: (100, 50, 20), ‘max_iter’: 10000, ‘solver': ‘adam
Physical well-being| 12 weeks 1500
: (150, 60, 30), ‘max_iter’: 10000, 'solver’: "adam”
18 weeks 100
": (150, 60, 30), 'max _iter’: 10000, ‘solver’: "adam’
Gutcome [Outcome
6 weeks , 'n_estimators’: 500
v (100, 50, 20), “max_iter’: 10000, “solver’: "adam’
Social functioning | 12 weeks
100, 50, 20), 'max _iter’: 10000, "solver’: "adam”
n
18 np]l'. 2, 'n_cstimators: 500
Outcome |Outcome at|Mod:

100, 50, 20), ‘max_iter: 10000, ‘solver’: ‘sgd”

575[C" 0.1, “max_iter”: 10000, ‘penalty”: 712", ‘solver': ‘newton-cg

entropy’, ‘max_depth': 18, 'min_samples lph " _estimators- 100

¥
8

18 weeks

1 [learning_rate’: 1.0, '1_ “log_loss', 'n_estimators”:
uliv-uon relu le-o.'). wly ping ’m hnlden Tayer _sizes™
691

Stopy
" 12", solver': libline

{100, 50, 20), ‘max_iter: 10000, solver: ‘sgd"

100

|§|§1$§'§I

o
3

Outcome |Outcome
6 weeks
Usual activities | 12 weeks
18 weeks
Gutcome —[Outcome at|Model
LR
PR pe
6 weeks XGB :
MLP |
TR |
. RF
Mobility 12weeks 3GE
[MLP | 0: :
TR | 0. 10000, pcnnlly 17, “solver: “Thigs”
RF T 18, ‘min_samples_sphit: 2, n_estimators’: 100
18 weeks | ¥GB 0 Joe' "n_csmator’ 500
MLP 3 ping’:
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Table 5. Improvement prediction results with hyperparameters used for model development.

Data
Outcome [Outcome at|Model

6 weeks %GR |

00, max_iter”: 10000, | Y 12, solver” “newton-q

Physical well-being| 12 weeks

18 weeks

10000, “solver - “adam’

Outcome

), 'max_iter”: 10000, ‘solver: ‘adam’

nl ha’ ing

- 10000, “penalty: ‘12', “solver”: “liblincar”
max_depth”: 14, ‘min_samples_sphit’: 2, _estimators': 100
Toss": exponential’, 'n_estimators': 500

Social functioning | 12 weeks e

_E‘I:h[;p_ wer _sizes: (100,), ‘max_iter': 10000, ‘solver': ‘adam’
18 weeks | RF_| 0 658 [crtorion™ 'enllvpvy “max_depth: I8, "min_samples .pm 2, 'n_estimators - 500
IXGB | 0.656 [learning_rate”: nent imators':
MLP .736 tion™: 'hnh‘ ‘upm 0,01, "carly_stopping - True, 'mdden Tayor_sizes': (150, 60, 30), ‘max_iter': 10000, ‘solver” "adam’
Outcome [Outcome at| UC| Hyperparameters
LR .531(C" 100, ‘max_iter': 10000, "penalty”: 12, ‘solver': ‘newton-cg'
A RF 521 [criterion’ 'pm'. “max_depth: 18, 'min_samples_split’: 2, 'n_estimators': 100
XGB 462 [learni - 10, loss” “exponential’, 'n_estimators': 500
MLP 52 activation” 'un..'un.' 0,001, carl Sizes”: (150, 60, 30), “max_iter: 10000, ‘Solver': ‘adam”

ty':

.701|C': 100, ‘max_iter': 10000, per

Role functioning | 12 weeks 7’%"“— depth: 18,
MLP 150, 30), ‘max_iter’: 10000, ‘solver’: ‘adam’
IR
18 weeks XGB
MLP (100, 50, 20). “max_iter’- 10000, ‘solver' ‘adam”
Outcome [Outcome
IR
G weeks [0
LR
Usual activities | 12 weeks [0t 2
MLP |0 ; 100 (0,611 [acti X Stoppi 0o TS (10, 0,20, e 000, e
TR ; max 0000, “penalty™
18 weeks | BF Crterios ‘P . depth’ 1. i samples_spl" 2, 'n_estimators 100
XCB osrsing_faie’ 10, oo’ og Jow' 'n_estimtors 100
MLP : ¥ idden_layer _sizes': (150, 60, 30), ‘max_iter': 10000, ‘solver: ‘adam’ |
Model|A

ators': 100

100, 50, 20), ‘max_iter':

10000, "solver': '

Mobility 12 weeks

18 weeks
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Table 6. Feature importance ranks for physical well-being changes at 18 weeks prediction models
LR and RE.

Physical well-being
Deterioration Improvement
Logistic regression Random forest Logistic regression Random forest
PWB_overall) [1.569433| PWB_overall0 [0.133532] CMResCOPD [13.923359| PWB_overall0 [0.221759
CMRheuArth  |1.149526 BCBMI 0.09927 CMCarMI 13.066001 BCBMI 0.073412
CMStomInflamm [1.026601] FWB_overall) [0.081032] CMCarAngina |9.672283 EQ5DPain0 0.071416
PrimaryorMet  |0.879178) SWB_overall0 [0.075772| CMEndDiabetes | 4.327627 EQ5DVASO 0.064324
PreviousChemo [0.864974 EQ5DVASO 0.066705| CMEndHyperth |4.285474| SWB_overalld [0.062971
CMPrevMal 0.79102 DiseaseSite 0.050577| CMNeuStroke |3.695441 | FWB_overall) [0.062633
CMResCOPD  |0.764014)| DCEmployment [0.050358 CMEndHypothy |3.601606 ROLO 0.050095
CMCarMI 0.59501 ROLO 0.050047| Comorbidities | 2.922004 DiseaseSite 0.045489
DiseaseSite 0.564434| PrimaryorMet [0.041654| CMCarHyperten |2.919881 ed_lev 0.038387
CMEndDiabetes [0.501928 ed_lev 0.039405| PWB_overall0 |2.850354 | PrimaryorMet [0.035688
CMRheuCTD |0.444377| EQ5DAnxDep0 [0.034651| CMCarVenous |2.747976 | DCEmployment |0.03415
FWB_overall0) [0.444371 DCMarital 0.030691| CMCarArrhythm | 2.534306 DCMarital 0.028505
CMEndHypothy (0.426059 EQ5DPain0 0.028751| PreviousChemo |2.414958 | EQ5DUsuAct0 [0.026227
EQ5DAnxDep0 (0.383677| EQ5DUsuAct0 |0.028591 CMRheuArth 1.93644 Comorbidities  |0.025013
EQ5DPain0 0.364803| Comorbidities [0.028133| PrimaryorMet 1.54155 EQ5DAnxDep0 |0.024492
CMCarVenous (0.332789 EQ5DMob0 0.021961| CMResAsthma |1.499618 EQ5DMob0 0.020482
CMResAsthma |0.289044 StudyArm 0.019965 CMPrevMal 1.319404 StudyArm 0.020222
StudyArm 0.28145 | PreviousChemo [0.016012| CMSubstAlcohol |1.042471 | PreviousChemo [0.013142
BCBMI 0.252698| CMCarHyperten (0.015805 DiseaseSite 0.893342 | CMEndDiabetes |0.013136
CMEndHyperth [0.243022] CMResCOPD |0.012084 ed_lev 0.864195 | CMCarHyperten |0.01048
CMGasPancreas [0.228956)] CMResAsthma [0.011007 EQ5DVASO 0.832183 | CMEndHypothy |0.009797
ROLO 0.224995| EQ5DSelCar0 [0.010529| EQ5DSelCar0 |0.796896 | EQ5DSelCar0 [0.009597
CMStomUlcers |0.200148 CMPrevMal 0.009927| CMGasPancreas | 0.74042 CMPrevMal  |0.008038
CMNeuStroke [0.197854| CMEndDiabetes [0.009848) CMRheuLupus |0.703934 | CMResAsthma [0.006365
CMRenEndStage [0.178679 CMCarMI 0.006526 BCBMI 0.599315 | CMCarAngina |0.004794
ed_lev 0.135084) CMEndHypothy [0.006286|] FWB_overalld |0.560101 CMCarMI 0.003373
Comorbidities |0.127383| CMStomInflamm [0.004816] CMNeuParkins |0.392506 | CMEndHyperth [0.002924
CMCarAngina [0.123243| CMCarVenous [0.004777| CMStomInflamm |0.349838 | CMCarVenous [0.002866
EQ5DVASO 0.110928) CMCarAngina [0.002398| DCEmployment |0.189108 | CMNeuParkins |0.00223
CMCarArrhythm [0.106706] CMNeuStroke |0.001957 DCMarital 0.180942 | CMResCOPD  |0.001576
SWB_ overall) [0.102555| CMRheuArth ]0.001828 EQ5DMob0 0.171249 | CMCarArrhythm |0.001128
DCEmployment |0.100668)] CMRheuLupus |0.001095| CMStomUlcers |0.149692 | CMRheuArth 0.001108
EQ5DMob0 0.081411| CMCarArrhythm [0.000916 ROLO 0.100497 | CMStomInflamm |0.001044
CMCarHeartFail [0.078057| CMRheuCTD [0.000801| SWB_overalld) |0.099762| CMNeuStroke [0.000839
CMSubstAlcohol 0.076215| CMEndHyperth [0.000681| EQ5DAnxDep0 |0.085732| CMGasPancreas |0.000631
DCMarital 0.07464 | CMGasPancreas |0.000615 StudyArm 0.080389 | CMSubstAlcohol | 0.00056
EQ5DUsuAct0 [0.022877| CMSubstAlcohol [0.000385 EQ5DUsuAct0 |0.042851 | CMRheuCTD [0.000482
CMCarHyperten |0.012993| CMRenEndStage [0.000346 EQ5DPain0 0.042741 | CMRheuLupus | 0.00029
EQ5DSelCar0  [0.010388) CMStomUlcers [0.000227)] CMRheuCTD |0.035837 | CMStomUlcers [0.000284
CMRheuLupus [0.010197| CMCarHeartFail | 0.00004 | CMResChronBron | 0.005954 | CMResChronBron |0.000052
CMSubstDrugs 0 CMSubstDrugs 0 CMSubstDrugs 0 CMGasChronHep 0
CMResChronBron 0 CMGasChronHep 0 CMStomMalabsor 0 CMRheuRhPolymy 0
CMStomMalabsor 0 CMResChronBron 0 CMRheuRhPolymy 0 CMResEmphys 0
CMResEmphys 0 CMNeuMyasth 0 CMGasCirrhosis 0 CMRheuPolymyo 0
CMRheuRhPolymy 0 CMNeuParkins 0 CMRheuPolymyo 0 CMSubstDrugs 0
CMNeuMyasth 0 CMNeuMS 0 CMGasChronHep 0 CMNeuMyasth 0
CMGasChronHep 0 CMGasCirrhosis 0 CMResEmphys 0 CMNeuMS 0
CMNeuParkins 0 CMRheuRhPolymy 0 CMRenEndStage 0 CMCarHeartFail 0
CMGasCirrhosis 0 CMRheuPolymyo 0 CMCarHeartFail 0 CMGasCirrhosis 0
CMNeuMS 0 CMStomMalabsor 0 CMNeuMyasth 0 CMRenEndStage 0
CMRheuPolymyo 0 CMResEmphys 0 CMNeuMS 0 CMStomMalabsor 0
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Table 7. Feature importance ranks for usual activities changes at 18 weeks prediction models LR
and RF.

Usual activities

Improvement
Logistic regression Random forest

Deterioration
Logistic regression Random forest

EQ5DUsuAct0

2.348261

BCBMI

0.143117

CMSubstAlcohol

7.569993

EQ5DUsuAct0

0.252763

CMRheuLupus

1.244129

EQ5DUsuAct0

0.129836

CMRheuArth

3.585515

ROLO

0.115769

DiseaseSite

0.898524

DiseaseSite

0.077861

EQ5DUsuAct0

3.522745

PWB_ overall0

0.08537

CMPrevMal

0.865107|

EQ5DVASO

0.07398

CMCarVenous

2.355063

BCBMI

0.08323

CMResAsthma

0.771298

SWB_ overall0

0.068102

CMCarArrhythm

2.165607

EQ5DVASO

0.063433

CMCarHyperten

0.679204

PWB_ overall0

0.062277

CMStomInflamm

2.008561

SWB_ overall0

0.061488

CMGasPancreas

0.663488

ROLO

0.060521

CMEndHypothy

1.993451

DCEmployment

0.039528

CMEndHypothy

0.542003

DCEmployment

0.045276

CMRheuLupus

1.647547

EQ5DPain0

0.032502

BCBMI

0.506767|

EQ5DAnxDep0

0.0362

CMResCOPD

1.407293

DiseaseSite

0.026328

CMRenEndStage

0.498677|

DCMarital

0.03589

CMRheuCTD

1.285911

ed_lev

0.025657

EQ5DPain0

0.497696

ed_lev

0.033316

CMCarHeartFail

1.135531

DCMarital

0.025267

EQ5DSelCar0

0.47095

EQ5DPain0

0.032078

CMCarAngina

1.051474

EQ5DAnxDep0

0.023673

CMResCOPD

0.446885

Comorbidities

0.027761

CMNeuParkins

1.035357

EQ5DMob0

0.023085

CMCarVenous

0.422538

PrimaryorMet

0.024138

PWB_ overall0

0.911066

Comorbidities

0.021449

CMCarMI

0.40174

StudyArm

0.022059

CMNeuStroke

0.785979

EQ5DSelCar0

0.015177

CMCarArrhythm

0.317881

EQ5DMob0

0.020994

BCBMI

0.7132

StudyArm

0.01505

Comorbidities

0.280834

CMCarHyperten

0.017985

ed_lev

0.622446

PreviousChemo

0.013022

ROLO

0.276591

PreviousChemo

0.013151

EQ5DMob0

0.60776

PrimaryorMet

0.012692

CMEndDiabetes

0.266086

EQ5DSelCar0

0.011003

CMResAsthma

0.573449

CMPrevMal

0.009341

StudyArm

0.258236

CMEndDiabetes

0.010222

EQ5DVASO

0.556679

CMCarHyperten

0.00828

EQ5DAnxDep0

0.254403

CMPrevMal

0.009266

PreviousChemo

0.515102

CMResAsthma

0.00717

CMStomInflamm

0.24441

CMResAsthma

0.008121

ROLO

0.472313

CMResCOPD

0.005677

EQ5DMob0

0.236114

CMEndHypothy

0.006361

CMEndHyperth

0.433106

CMCarMI

0.005379

CMRheuArth

0.224756

CMSubstAlcohol

0.003922

CMPrevMal

0.405182

CMCarVenous

0.005169

CMCarAngina

0.176192

CMCarMI

0.003742

EQ5DAnxDep0

0.362858

CMEndHypothy

0.004344

EQ5DVASO

0.164569

CMRheuArth

0.003689

StudyArm

0.336571

CMEndDiabetes

0.004095

CMRheuCTD

0.150602

CMCarVenous

0.003277

SWB_ overall0

0.327688

CMCarArrhythm

0.002829

DCEmployment

0.142009

CMResCOPD

0.002494

Comorbidities

0.162286

CMCarAngina

0.00265

CMSubstAlcohol

0.136974

CMStomInflamm

0.002476

DCMarital

0.153898

CMRheuArth

0.002563

DCMarital

0.115902

CMRheuLupus

0.002339

PrimaryorMet

0.135378

CMSubstAlcohol

0.002274

CMNeuParkins

0.104832

CMGasPancreas

0.002232

CMRenEndStage

0.11648

CMStomInflamm

0.001276

CMNeuStroke

0.097995

CMCarAngina

0.001642

CMCarMI

0.109787

CMRheuLupus

0.000868

PrimaryorMet

0.096108

CMRenEndStage

0.001634

CMEndDiabetes

0.098698

CMEndHyperth

0.000723

PreviousChemo

0.082822

CMResChronBron

0.000892

CMStomUlcers

0.091996

CMRheuCTD

0.00058

SWB_ overall0

0.071112

CMNeuStroke

0.000826

CMGasPancreas

0.084078

CMRenEndStage

0.000444

CMResChronBron

0.063813

CMCarArrhythm

0.000588

EQ5DSelCar0

0.076894

CMCarHeartFail

0.000305

ed_lev

0.062876

CMEndHyperth

0.00042

DCEmployment

0.063975

CMNeuParkins

0.000191

CMEndHyperth

0.058035

CMRheuCTD

0.000215

CMCarHyperten

0.04455

CMResChronBron

0.000177|

PWB_ overall0

0.025423

CMNeuParkins

0.000096

EQ5DPain0

0.037622

CMNeuStroke

0.000131

CMGasChronHep

0

CMCarHeartFail

0

DiseaseSite

0.027685

CMStomUlcers

0.000052

CMCarHeartFail

CMGasChronHep

CMResChronBron

0.000317

CMGasCirrhosis

CMResEmphys

CMResEmphys

CMSubstDrugs

0

CMResEmphys

CMRheuPolymyo

CMSubstDrugs

CMGasCirrhosis

CMSubstDrugs

CMRheuRhPolymy

CMRheuRhPolymy]|

CMGasChronHep

CMGasPancreas

CMStomU]lcers

CMGasCirrhosis

CMRheuRhPolymy

CMRheuPolymyo

CMStomMalabsor

CMNeuMyasth

CMResEmphys

CMNeuMyasth

CMSubstDrugs

CMNeuMS

CMRheuPolymyo

CMNeuMS

CMNeuMS$§

CMStomMalabsor

CMStomMalabsor

CMGasChronHep

CMNeuMyasth

CMStomUlcers

CMNeuMyasth

CMStomMalabsor

CMGasCirrhosis

CMRheuPolymyo

CMNeuMS

CMRheuRhPolymy

CMRheuPolymyo

o|o(o|o|o|o|o(o|o|o|o

CMResEmphys

[ =] =] =] k=] =] §=] K] =) K] ) Kl

CMNeuMS

o|o(o|o|o|o|o(o|o

CMStomMalabsor

(=] =] [ =] k=] =] §=] ) f =) K] ) Kl
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Table 8. Feature importance ranks for mobility changes at 18 weeks prediction models LR and

RFE.

Mobility

Deterioration

Improvement

Logistic regression

Random forest

Logistic regression

Random forest

CMResChronBron

5.681567

FWB_ overall0

0.1055

CMEndHyperth

5.327951

EQ5DMob0

0.318964

CMGasPancreas

4.960102

SWB _ overall0

0.091013

EQ5DMob0

4.080502

BCBMI

0.078401

CMCarHeartFail

4.945931

PWB_ overall0

0.077668

CMCarAngina

3.690014

FWB_ overallQ

0.070807

CMCarArrhythm

4.130466

EQ5DVASO

0.073442

CMResCOPD

3.684776

DiseaseSite

0.068345

CMCarMI

3.865736

DiseaseSite

0.051927

CMCarVenous

2.94743

SWB_ overall0

0.055995

CMSubstAlcohol

3.775084

DCEmployment

0.048892

CMResChronBron

2.584025

PWB_ overall0

0.051819

CMEndHyperth

3.298455

ed_lev

0.040528

CMNeuParkins

2.409078

EQ5DPain0

0.048225

CMResCOPD

3.033808

EQ5DAnxDep0

0.040475

CMCarHyperten

2.35333

EQ5DVASO

0.042132

CMRheuArth

2.903339

Comorbidities

0.034333

CMResAsthma

2.132524

DCMarital

0.038277

CMRheuLupus

2.42351

DCMarital

0.034039

PreviousChemo

2.022009

EQ5DUsuAct0

0.037502

CMCarVenous

1.366612

EQ5DUsuAct0

0.033967|

CMCarMI

1.74107

DCEmployment

0.026439

CMEndDiabetes

1.287484

EQ5DPain0

0.033657|

CMEndDiabetes

1.617783

Comorbidities

0.021263

CMResAsthma

1.202195

StudyArm

0.020932

CMEndHypothy

1.571741

EQ5DAnxDep0

0.015872

PreviousChemo

1.0179

PrimaryorMet

0.019977

Comorbidities

1.328023

ed_lev

0.014929

CMNeuParkins

0.761727

EQ5DMob0

0.018281

DiseaseSite

1.312387

CMCarHyperten

0.01356

BCBMI

0.651666

CMResAsthma

0.013156

SWB_ overallQ

1.307746

PrimaryorMet

0.012237

DiseaseSite

0.57739

PreviousChemo

0.013074

BCBMI

1.165174

PreviousChemo

0.011418

CMPrevMal

0.561657

CMCarHyperten

0.011887|

CMCarArrhythm

1.071283

StudyArm

0.00947

PrimaryorMet

0.525226

CMPrevMal

0.010103

CMPrevMal

0.984691

EQ5DSelCar0

0.008962

CMStomInflamm

0.514437

EQ5DSelCar0

0.009966

CMNeuStroke

0.911514

CMPrevMal

0.008718

Comorbidities

0.489691

CMCarArrhythm

0.009579

EQ5DUsuAct0

0.856713

CMEndDiabetes

0.007119

EQ5DPain0

0.463356

CMEndDiabetes

0.009069

FWB_ overallQ

0.649634

CMCarMI

0.005435

EQ5DMob0

0.433626

CMCarMI

0.008925

CMRheuArth

0.530132

CMResAsthma

0.005372

CMNeuStroke

0.422049

CMRheuArth

0.008617

DCMarital

0.480517

CMEndHypothy

0.005295

EQ5DAnxDep0

0.41443

CMEndHypothy

0.008269

PrimaryorMet

0.457481

CMCarAngina

0.003963

EQ5DSelCar0

0.396671

CMResCOPD

0.003547

StudyArm

0.292456

CMEndHyperth

0.003086

EQ5DVASO

0.283777

CMCarVenous

0.003416

CMStomInflamm

0.249998

CMCarArrhythm

0.002581

ed_lev

0.263051

CMRheuLupus

0.00247

EQ5DSelCar0

0.224756

CMCarVenous

0.002577

CMCarHyperten

0.117272

CMStomInflamm

0.002402

CMRheuLupus

0.161346

CMResCOPD

0.002568

CMEndHypothy

0.10792

CMNeuStroke

0.002397

CMSubstAlcohol

0.118481

CMRheuArth

0.002414

CMCarAngina

0.087238

CMGasPancreas

0.001793

CMGasPancreas

0.10859

CMResChronBron

0.002178

FWB _ overall0

0.0783

CMCarHeartFail

0.001535

CMRenEndStage

0.1067

CMStomInflamm

0.001095

EQ5DUsuAct0

0.073808

CMEndHyperth

0.001213

EQ5DVASO

0.095971

CMNeuParkins

0.001007

DCMarital

0.057833

CMSubstAlcohol

0.001119

EQ5DAnxDep0

0.092543

CMSubstAlcohol

0.000952

PWB_ overall0

0.057653

CMCarAngina

0.000915

ed_lev

0.087568

CMNeuStroke

0.000509

StudyArm

0.048044

CMResChronBron

0.000548

EQ5DPain0

0.075561

CMRheuLupus

0.000224

SWB_ overall0

0.039861

CMNeuParkins

0.000193

DCEmployment

0.074864

CMGasPancreas

0.000151

DCEmployment

0.030947

CMResEmphys

0

PWB_overall

0.00146

CMCarHeartFail

0.00014

CMResEmphys

0

CMSubstDrugs

CMRheuCTD

0.000971

CMStomMalabsor

0

CMGasChronHep

CMRheuRhPolymy

CMCarHeartFail

0.000414

CMSubstDrugs

CMGasCirrhosis

CMGasChronHep

CMStomUlcers

0

CMGasCirrhosis

CMStomUIcers

CMRheuCTD

CMNeuMyasth

CMGasChronHep

CMRheuPolymyo

CMNeuMyasth

CMStomMalabsor

CMRheuRhPolymy

CMRheuRhPolymy

CMNeuMS

CMGasChronHep

CMRheuPolymyo

CMRenEndStage

CMRenEndStage

CMGasCirrhosis

CMRheuCTD

CMNeuMS

CMStomMalabsor

CMResEmphys

CMResEmphys

CMSubstDrugs

CMStomUIcers

CMRheuRhPolymy

CMNeuMyasth

CMNeuMyasth

CMGasCirrhosis

CMRheuPolymyo

CMNeuMS

CMRheuCTD

CMRheuPolymyo

olo|o|o|o|o|o|o|o|o|O

CMNeuMS

CMRenEndStage

CMStomMalabsor

CMSubstDrugs

CMStomUlcers

CMRheuPolymyo

olo|o|o|o|o|o|o|o|o|o|o

CMResEmphys

f=}

CMNeuMS

olo|o|o|o|o|o|o|o|o

CMStomMalabsor

olo|o|o|o|o|o|o|o|o|o|o
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Predicting Blood Glucose Levels
with LMU Recurrent Neural Networks: A
Novel Computational Model
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Abstract. Type 1 diabetes disrupts normal blood glucose regulation
due to the destruction of insulin-producing cells, necessitating insulin
therapy through injections or insulin pumps. Consumer devices can fore-
cast blood glucose levels by leveraging data from blood glucose sensors
and other sources. Such predictions are valuable for informing patients
about their blood glucose trajectory and supporting various downstream
applications. Numerous machine-learning models have been explored for
blood glucose prediction.

This study introduces a novel application of Legendre Memory Units
for blood glucose prediction. Employing a multivariate time series, pre-
dictions are made with 30-minute and 60-minute horizons. The proposed
model is comparable with state-of-the-art models on the OhioT1DM
dataset, encompassing eight weeks of data from 12 distinct patients.

Keywords: type 1 diabetes + blood glucose prediction - time series
forecasting - Legendre Memory Units

1 Introduction

Type 1 diabetes (T1D) is an autoimmune disorder causing abnormal blood glu-
cose (BG) levels due to the body’s incapability to produce insulin. The current
approach to treatment relies heavily on the patient’s self-management, which
means actively tracking glucose levels, injecting and dosing insulin, and manag-
ing diet and physical activity.

The problem of blood glucose prediction for patients with type 1 diabetes is
essential for developing tools that help patients make better decisions about
treatment, as well as systems for automatic insulin delivery. These systems
include BG alarms that can notify the patient about an upcoming high or low
glucose event, and closed-loop systems, which are capable of using the sensor
glucose readings, and possibly other data sources to calculate insulin dosage and
send a signal to an insulin pump to administer insulin.

Many state-of-the-art models for BG prediction utilize Long Short-Term
Memory units (LSTM) [1,8,11]. This work presents a novel application of a
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model based on Legendre Memory Units (LMU) [13] for BG prediction. As will
be shown, on the 2018 edition of the OhioT1DM dataset [7], our model outper-
forms current models in both 30-minute and 60-minute prediction horizons.

The model processes past blood glucose levels, glucose levels from finger blood
drop samples, insulin intake, and carbohydrate consumption in the form of a
multivariate time series and predicts future blood glucose levels. Formally, as the
input, the model takes n successive previous measurements of feature vectors in
past n time steps t1, to, . . . , t, from interval [t—(n—1)At, t], where t; = t— At(n—
1), as an input. Hence, extending n or At brings a longer historical context to the
model. Each component of a feature vector s = (2.1, Ts:2, - - -, Ts;p) Is associated
with one of the p features (BG, fingerstick, insulin, carbohydrates). The output
is the prediction GHPH of the BG level Gyipy at time ¢t + PH, where PH is
the prediction horizon indicating how long into the future the predictions are
being made. In our case, the model, represented by a function fa(xs,,..., s, ),
analogously to [15] predicts the change Gyipn — G-

It is expected that with a longer PH, the prediction performance will decrease.
It takes time for BG to change, and as PH increases, the BG has further oppor-
tunities to develop, leading to a wider range of possible BG values.

2 Dataset

This paper uses one of the most standard datasets - the OhioT1DM dataset’
[7]. Tt has two versions, 2018 and 2020. We evaluate the developed models on
both versions. The dataset comprises data spanning eight weeks from 12 indi-
viduals with type-1 diabetes. Patients logged daily events through a smartphone
application and a fitness band. This dataset contains continuous glucose moni-
toring (CGM) blood glucose readings taken every 5 min, alongside self-monitored
blood glucose levels via fingerstick, insulin administrations (both bolus and basal
doses), and self-reported instances of meal consumption with carbohydrate esti-
mates, physical activity, sleep, work, stress, and illness occurrences. Additionally,
the dataset features 5-minute summaries of physical activity metrics, including
step count and heart rate, as well as physiological and environmental measures
like galvanic skin response (GSR), skin temperature, and air temperature.

3 Related Work

Various models were previously used for the BG prediction task. The most signif-
icant ones are support-vector regression [4], statistical approaches like ARIMA
[14], and neural networks discussed primarily in the following. In this section,
we provide a selection of approaches that use the same OhioT1DM dataset.

! Available at http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html.
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3.1 Performance on OhioT1DM, 2018 Edition

This section introduces works that utilized the 2018 edition of the OhioT1DM
dataset. Chen et al. in [1] proposed a Dilated Recurrent Neural Network for a 30-
minute BG prediction task, utilizing the 1-hour input containing CGMs, bolus
insulin doses, and carbohydrate intake, achieving a mean root mean squared
error (mean RMSE) of 19.04. Performance was evaluated on all test data points.

Martinsson et al. in [8] implemented a LSTM based neural network that
utilized the past 30min of BG history to make BG prediction 30 and 60 min
in the future, achieving a mean RMSE of 20.1 and 33.2, respectively. Perfor-
mance was evaluated only on test points where at least 12 previous consecutive
measurements were available.

Rabby et al. in [11] implemented a stacked LSTM neural network, which
utilized the past 2h of BG values, carbohydrate intake from the meal, insulin
dose as a bolus, and 5-min aggregation of step count from the fitness band.
The carbohydrate and insulin features were transformed into continuous vari-
ables instead of using the raw discrete samples. They further experimented with
Kalman smoothing of the input and target BG time series. They report RMSE
for both 30 and 60-minute PH. The RMSE achieved for raw BG input and out-
put was 18.57 and 30.32, respectively. The best RMSE for the Kalman smoothed
BG was 5.89 and 17.24, respectively. The paper mentions that: “It is possible
to evaluate the model at a certain point in time if there are at least 24 prior
data points available (prior data points for 2h or 120 min)”, which suggests that
the performance was evaluated only on test points where at least 24 previous
consecutive measurements were available, but it is not stated explicitly.

3.2 Performance on OhioT1DM, 2020 Edition

This section introduces works utilizing the recent 2020 edition of the OhioT1DM
dataset. The reported performance is always evaluated on all provided test data
points of all test patients from the 2020 edition of OhioT1DM. Some works also
utilized the 2018 edition and/or other datasets for pre-training.

Zhu et al. in [15] proposed Generative Adversarial Networks (GAN) for BG
prediction, utilizing 1.5h of historical data, which contained BG, carbohydrate
intake, and bolus insulin. The first half of the cohort from the 2018 OhioT1DM
edition was used for model pre-training. The achieved RMSE was 18.34 and
32.21 for 30-minute and 1-hour PH, respectively.

Rubin-Falcone et al. in [12] developed an N-BEATS model, utilizing BG, fin-
ger stick glucose, bolus values, carbohydrate inputs, sine and cosine of time, and
missingness indicators for BG values. They’ve built an ensemble of models, each
using a different length of input, and used the median as the ensemble prediction.
The models were pre-trained on the 2018 version of the OhioT1DM dataset as
well as the Tidepool dataset [9] and then fine-tuned per patient. The achieved
mean RMSE was 18.22 and 31.66 for 30-minute and 1-hour PH, respectively.
The authors further mention that without pre-training on OhioT1DM 2018 and
Tidepool, the 30-minute PH performance was 18.87.
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Daniels et al. in [3] proposed a multi-task learning approach by training a
convolutional RNN (CRNN) with subject-specific layers. The model was trained
on 2-hour-long inputs with BG, insulin bolus, carbohydrate intake, and reported
exercise. The achieved RMSE was 19.79 and 33.73 for 30-minute and 1-hour PH,
respectively.

4 Preprocessing and Feature Engineering

The OhioT1DM dataset contains two files, train and test, for each patient. The
training dataset is loaded and further split into training and validation sets, with
the first 80% of the data points used for training the models and the last 20%
for validation. Models evaluated on the 2020 dataset use both train and test
portions of the 2018 dataset for training and validation.

Glucose readings are expected every 5min in the BG sensors used in the
OhioT1DM study. Occasionally, gaps occur in the sensor’s BG readings. This
may happen due to loss of signal, malfunction, or patient not wearing the sensor.
Both train and test datasets are resampled to a 5-minute sampling frequency.
The missing values for carbohydrates, insulin, and fingerstick are simply set to 0.
Missing BG values are first marked missing and later interpolated/extrapolated
when creating the input windows (vectors) for the models (see Sect. 4.3).

The length of the input was chosen to be 30 min (6 samples). In the conducted
experiments, longer input windows did not lead to better performance. Surpris-
ingly, sometimes, they produced worse performance of the models. It is sus-
pected that the feature engineering applied to insulin and carbohydrates might
have helped with decreasing the input length needed (as discussed further). This
assumption is made because the transformed carbohydrate and insulin features
effectively stretch out the influence of insulin and carbohydrates in time. E.g., a
model with a 30-minute input window may still see the effects of insulin taken
more than 8h ago.

4.1 Insulin Feature Engineering

Insulin models are used to bring more information to the BG prediction model
about insulin properties. Specifically, instead of giving the model only raw insulin
doses in time, a rate of insulin release and/or insulin concentration is provided.
The rate of insulin release indicates how active the injected insulin is at a par-
ticular time. Insulin will first build up its activity and then gradually lower it.
The implementation of the Hovorka insulin model [5] is used to transform
discrete bolus insulin samples into a continuous feature. The implementation
is inspired by the work of Price [10]. It is a two-compartmental insulin model
that provides an estimate of the amount of insulin in subcutaneous tissue and
blood plasma. The parameter of the model is the time-to-max absorption of
subcutaneously injected short-acting insulin, and this value was set to 100 min
for all patients. Numerous values were explored for the time-to-max absorption,
and it was seen that the models performed similarly well with values as low as 60
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and as high as 180. Figure 1 (a) shows an example of this insulin transformation.
The insulin in the subcutaneous tissue feature was used to train the models.
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Fig. 1. Example of transforming discrete insulin (a) and carbohydrate (b) samples into
a continuous feature.

4.2 Carbohydrates Feature Engineering

Similarly to insulin, discrete carbohydrate values are also transformed into a
continuous feature using an implementation from [5] of a two-compartmental
meal model. The model estimates the amount of glucose available in the gut and
blood plasma. A parameter of the model is the time of maximum glucose rate
of appearance, which was set to 60 min for all patients, which is the same value
as the one used by Rabby et al. [11], although their carbohydrates model imple-
mentation is different. Figure 1 (b) shows an example of this transformation. The
carbohydrates in the gut feature were used to train the models.

4.3 Handling of Missing Blood Glucose Values

Missing BG values are first filled with the fingerstick glucose if it is available.
Then, in the training and validation set, missing BG values are linearly inter-
polated if there are less than 7 continuous missing samples (30 min). The inter-
polation is done on the whole sets, meaning that both inputs and targets of the
models during training and validation may be interpolated.

Interpolation is not applied to the test dataset as a whole since this could
introduce data leakage. Here, for each input and target, the following decision-
making process is applied: (1) if all input BG values are missing, the input-target
pair is dropped, (2) if the target BG value is missing, the input-target pair is
dropped; (3) else, that is, when the target value exists, and input BG has at
least 1 value, the rest of the missing samples in the input are interpolated and
forward and backward filled from the existing BG values in the input.
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5 Model

Our proposed model is a neural network fa consisting of one hidden layer of
recurrent Legendre memory unit (LMU) cells followed by a single output neuron
that predicts the change G¢ypy — Gt of the BG values at t and ¢+ PH. The final
BG prediction is then given by Gyypu = fa(®,, ..., ®.,) + Gy

5.1 Legendre Memory Units

Legendre Memory Units (LMUs), introduced in [13], are a relatively less known
type of recurrent neural network (RNN) architecture designed to process time-
series data efficiently. They leverage the mathematical properties of Legendre
polynomials to create a fixed-size memory cell, enabling them to achieve high
precision in capturing and representing temporal information over sequences
with long-range dependencies.

Having the input s at time s, memory mg,_; and hidden state h,_; at
previous time s — 1, the LMU cell first computes the memory input as us =
ef:cs + e{hs_l + eﬁms_l where e, ey, e,, are trainable parameters. Then it
updates the memory vector as ms = Amg_1 + Bus, where A, B are trainable
parameters. Finally, it uses a hidden unit g with its own trainable parameters
to produce the output being also a new hidden state as hy = g(@s, ms, hs_1).

Table 1. Optimal hyper-parameters for LMU models tuned on 2018 and 2020
OhioT1DM cohorts and 30-minute and 60-minute PH

Cohort | PH [min| |order [ HM |MM |IH | units |dropout |recurrent dropout
2018 30 52 True | False | False | 72 0.1 0

2018 60 54 False | True | False | 144 |0.1 0

2020 30 60 True | False | False | 72 0.1 0.2

2020 60 64 False | False | True | 156 | 0.1 0.1

5.2 Hyper-parameter Tuning

LMUs have several hyper-parameters that can be set: hidden-to-memory con-
nection (HM), memory-to-memory learnable connection (MM), input-to-hidden
connection (IH), memory dimension, number and type of hidden units, dropout,
and recurrent dropout rate, and the order, which is the number of degrees in the
transfer function of the linear time-invariant system used to represent the sliding
window of history. The type of hidden units in the LMU cells was chosen to be
LSTM as it was experimentally proven to achieve the best performance. The
memory dimension was set to 4 as this respects the dimensionality of the input,
the rest of the hyper-parameters were tuned. Furthermore, the input length was
manually tuned, and a 30-minute long input history led to the best performance.
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The other hyper-parameters of the model were tuned using Hyperband [6].
The tuning was performed separately for the individual dataset editions and
PHs. The final optimal values of hyper-parameters can be seen in Table 1.

5.3 Model Implementation and Training

The models for the 2018 OhioT1DM edition were trained on the data from all
patients from the 2018 cohort. The models for the 2020 edition were trained on
both train and test portions of the 2018 edition and on the training datasets of
all patients from the 2020 cohort. All models utilized the same input features:
BG, fingerstick, insulin in subcutaneous tissue, and carbohydrates in the gut.
The input length of 30 min (6 samples) also remained the same for all models.
The evaluated PH was 30 min and 1 h.

All models were trained and evaluated 5 times. All of them were trained
using Adam optimizer with a learning rate set to 102, maximum of 300 epochs
and early stopping with the patience of 35, meaning the model training was
stopped if validation loss did not improve in 35 epochs. The loss function used
was mean squared error. Furthermore, a learning rate reducer was used, which
reduces the learning rate during the training by a factor of 10~ when validation
loss stagnates for 10 epochs. Model checkpoints were implemented to preserve
the model with the best validation loss in each training.

Source codes of all performed experiments and further details about the
model architecture can be found at https://github.com/MrBlueHere/Predicting-
Blood-Glucose-Levels-with-LMU-RNNs.

6 Results and Discussion

Each model is evaluated by calculating the RMSE for each patient and comput-
ing the mean RMSE as the mean of RMSEs of all patients. It should be noted
that this leads to each patient’s RMSE having the same weight in the final mean
RMSE, even though the number of test samples is different between patients.

Table 2. Test evaluation of the best LMU model on the 2018 OhioT1DM edition.

Patient ID | RMSE (30-min PH) | RMSE (60-min PH)
559 17.63 £ 0.04 30.81 £ 0.14
563 17.54 + 0.06 29.24 £+ 0.14
570 15.23 £ 0.06 27.15 £ 0.12
575 21.28 + 0.07 33.59 £ 0.18
588 16.83 £ 0.05 28.24 £ 0.14
591 20.51 + 0.04 32.92 £ 0.19
Mean RMSE | 18.17 £ 0.02 30.33 £ 0.08
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Table 3. Test evaluation of the best LMU model on the 2020 OhioT1DM edition.

Patient ID | RMSE (30-min PH) | RMSE (60-min PH)
540 20.50 £ 0.05 37.70 £ 0.14
544 16.51 £ 0.07 28.72 £ 0.17
552 15.72 £ 0.06 28.98 £ 0.11
567 20.41 £ 0.06 36.13 + 0.15
584 21.92 + 0.07 35.90 £ 0.16
596 16.32 £ 0.06 28.00 £ 0.13
Mean RMSE | 18.56 £ 0.03 32.57 £ 0.09

Table 4. Test Clarke error grid distribution (in %) on the 2020 OhioT1DM edition.

Zone for 30-min PH Zone for 60-min PH
Patient ID | A B C D E |A B C D E
540 85.25 12.43 0 2.33 0 60.06 34.02 0.10 5.82 0
544 92.62 6.90 0 0.48 0 74.02 24.37 0 1.61 0
552 90.48 8.32 0 1.20 0 66.29 30.23 0.04 3.40 0.04
567 86.80 10.94 0 2.26 0 59.57 | 31.65 0.30 8.48 0
584 87.33 11.64 0.08 0.95 0 69.32 28.16 0.50 2.02
596 90.82 7.19 0 1.99 0 73.32 23.71 0.04 2.94
Table 5. Mean RMSE comparison on the 2018 OhioT1DM edition.

Model Mean RMSE (30-min PH) | Mean RMSE (60-min PH)

LSTM [§] 20.1 33.2

Dilated RNN [1] 19.04 not-applicable

Stacked LSTM [11] | 18.57 30.32

LMU (ours) 18.17 30.33

Table 6. Mean RMSE comparison on the 2020 OhioT1DM edition.

Model Mean RMSE (30-min PH) | Mean RMSE (60-min PH)
GAN [15] 18.34 32.21
N-BEATS [12] | 18.22 31.66
CRNN [3] 19.79 33.73
LMU (ours) |18.56 32.57
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(a) Predictions (b) Clarke error grid
Fig. 2. Example of BG predictions (a) and the Clarke error grid plot (b) for 30-minute
PH and the patient with ID 552 on 2020 OhioT1DM edition.

Tables 2 and 3 show the performance of the evaluated LMU models. Figure 2
(a) shows an example of predictions made by the best LMU model. Moreover,
Tables 5 and 6 show the comparison of the best LMU models with other works
mentioned in the related work, evaluated on the 2018 and 2020 editions of
OhioT1DM, respectively.

It can be seen that the performance on the 2018 edition of the dataset is
the best in the case of 30-min PH and comparable to the best in the case of
the 60-min PH. One should also note that for the Stacked LSTM introduced by
Rabby et al. in [11], the authors skipped testing inputs with any missing values
of BG. If we do it as well, the results are further improved to 18.03 mean RMSE
for 30-min PH and 30.18 mean RMSE for 60-min PH.

The performance of our model on the 2020 edition of OhioT1DM is slightly
worse than the state-of-the-art model N-BEATS [12]. However, as was mentioned
in Sect. 3.2, they use more datasets for training which has a positive influence.

In addition to RMSE, we evaluated the Clarke error grid [2] as a semi-
quantitative tool to obtain clinical relevance. An example is provided in
Fig.2 (b) , and the values for all patients on the 2020 edition of OhioT1DM
are reported in Table 4. The results confirm the promising performance.

7 Conclusion

This work presents a novel application of Legendre Memory Units on the task of
blood glucose prediction. We focus on both 30-minute and 60-minute prediction
horizons. Based on the experiments conducted, LMUs were proven to reach and,
on smaller datasets (2018 edition of OhioT1DM), even outperform the state-of-
the-art models. Further, the LMUs can achieve such performance while utilizing
significantly fewer parameters than competing models. This would be especially
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important if the network should be deployed on an embedded device requiring an
energy-efficient implementation. The success of the proposed model is possibly
due to the ability of LMUs to capture long-range dependencies. Future work
should focus more on the observation of this phenomenon and also on more
sophisticated preprocessing, which seems to have a substantial impact.
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Abstract. Nursing scales play an important role in the evaluation of patients’
clinical and social frailty. Filling out correctly the scales, allows the early iden-
tification of patients at risk of prolonged hospitalization or difficult discharge,
and enables an estimation of care complexity during hospitalization. Given the
high predictive value of these scales, it is important that the measurements are
reported precisely. In this paper, we provide a general methodology to estimate
the quality of data related to nursing scales and we introduce an approach to infer
a certain scale based on other ones that share common fields in their calcula-
tion. The former is for measuring the reliability of the scoring values, and the
latter is to reduce data entry time and costs. Our experimental setting focuses on
two scales: Blaylock Risk Assessment Screening Score Index (Brass scale), that
evaluates the risk of difficult discharge, and Care Dependency Index (IDA scale),
that evaluates the degree of care complexity. These two scales have several fields
which often provide similar or correlated information about the patient’s clinical
condition. Preliminary results show the possibility to reduce oversights in filling
out the scales use an automatic evaluation metric, which allows reproducing better
the clinical condition of the patient. Moreover, the opportunity to predict value of
one scale using the data of the other one allows the nurse to reduce the time for
completing and to focus more on patient care.
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1 Introduction

Clinical assessment is assuming an increasingly crucial role in evaluating and moni-
toring patients throughout their care pathway, enabling the identification of care needs,
diagnostic pathways, and appropriate settings, while also providing prognostic value.
However, the increase in bureaucratic workload and the imperative to “quantify clinical
data”, both during initial assessments and throughout hospitalization and discharge, are
leading to a significant rise in the number of scales demanded from healthcare providers.
This approach risks to compromise the quality of acquired data, reducing the time dedi-
cated to patient care and interaction, and increasing the risk of caregiver burnout. In some
cases, different tools require similar or overlapping information, and the clinical benefit
may not be immediate or readily tangible. Therefore, within the daily clinical activities
of healthcare providers, these tools may be perceived as an unnecessary burden, leading
to a diminished attention and accuracy in completing the scales, as well as rendering
them ineffective for their intended purposes.

The use of Electronic Health Records (EHRs) has increased data availability with-
out requiring subsequent input. However, compared to prospectively collected data for
pharmacological research, which undergo subsequent reviews and checks, data collected
retroactively from EHRs exhibit undoubtedly inferior quality due to collection circum-
stances (a high number of different operators, sometimes inadequately trained, working
conditions with frequent interruptions, sometimes a lack of awareness of their utility
within daily activities). For this reason, several works about the data quality control in
real-world data from EHR are proposed [4, 5, 8, 9].

Filling out the scales precisely requires time from nurses that could be dedicated to
patient care. For this reason, scales are filled out precipitously, with a higher chance of
running into oversights. Our objective is to evaluate two scales utilized in our hospital by
nursing staff upon patient admission and according to a well-defined timing. These two
scales were developed for different purposes and aim to address two distinct aspects of
care needs. Along with others, such tools are part of the nursing flowsheet defined in the
hospital protocol and are used by nurses to assess the clinical and physical condition of
patients in the early days of hospitalization and whenever the patient’s clinical condition
changes. Obviously, some fields of the different scales have overlaps.

The first scale is the Index of Dependency Assessment (IDA) [2], which deter-
mines the necessary level of care during hospitalization. Its primary goal is to define the
patient’s optimal care setting and needs during hospitalization, considering his or her
clinical severity and prognostic stratification. The use of this scale could reduce potential
complications and contain costs without exposing patients to additional risks. IDA is
based on a series of dependency variables, assessed through professional involvement,
with a scoring system identifying patients with high care complexity (score from 7 to
11), medium complexity (score from 12 to 19), and low complexity (score from 20 to
28).

The second scale is the Blaylock Risk Assessment Screening Score (Brass) [1], which
identifies patients at risk of prolonged hospital stays or challenging home discharge: bed
occupancy due to one of the previous reasons, in a structural deficit situation, could
cause overcrowding in emergency departments. The Brass scale comprises 20 elements,
including age, housing situation, functional status, cognitive and behavioral patterns,



130 C. Dachena et al.

mobility, sensory deficits, and previous hospitalizations. Depending on the final score,
patients may with prolonged hospital stays may be considered with one of the three
following risk levels for patients: low risk, medium risk, and high risk, with the highest
class activating the care continuity unit. This risk screening scale can be used from the
beginning of hospitalization to identify patients in need of a discharge plan. In our facility,
such assessment directly impacts the activation of standardized company procedures. A
Brass score equal to or greater than 20, indicating a population of patients at high risk
of prolonged hospitalization, needs an evaluation by the Central Care Continuity (CCA)
unit [3, 7]. A patient with a medium risk, i.e. with a Brass score between 11 and 19,
requires an additional evaluation from the CCA unit in case any additional need emerges
from the clinical evaluation.

To avoid the risk of a non-correct evaluation of the patient clinical condition, the
concept of developing a metric to assess the reliability of each scale measurement is being
considered. Moreover, the high overlap among the two scales, suggests a possibility to
identify a score that quantifies the correct overlap between two measurements performed
in a short time period. Analyzing together each measurement and the score that evaluate
the overlap among scales, it is possible to define a subgroup of reliability scores to use
in a predictive model.

The aim of this predictive model is to obtain the final value of one scale starting from
the data of the other one.

2 Materials and Methods

Adult patients (over 18 years old) admitted from January 1st 2020 to December 31st
2022 at Fondazione Policlinico Universitario A. Gemelli IRCCS in Rome (Italy), who
transited at least once to a medical area department during their hospitalization were
included in the study. Clinical data were automatically extracted from the hospital’s data
warehouse and processed by the Gemelli Generator Real World data (G2 RWD) facility.

For these patients, all measurements of Brass and IDA scales collected during the
hospitalization are analyzed. The selected cohort includes 16.534 patients and 21.544
hospitalization, 39.544 Brass scales (16.287 patients (98%) with at least one Brass mea-
surement and 20.877 hospitalization (97%) with at least one Brass measurement) and
184.570 IDA scales (15.408 patients (93%) with at least one IDA measurement and
19.674 hospitalization (91%) with at least one IDA measurement). Patients with at least
both one Brass and IDA measurements represent the final cohort, with 15.269 patients
and 19.411 hospitalizations. This final patient cohort covers more than 50 inpatient
wards, and scales were performed by more than 900 different nurses.

For this analysis, the first step is to calculate of each scale the metric described in the
following Sect. 2.1. This pre-processing step was performed using R [6]. Following the
pipeline, a good reliability is expressed with a low metric value. Secondary, all couples
of Brass and IDA scale for each patients are considered. As illustrated in the following
Sect. 2.2, scales within a maximum time interval of 2 h are used for the overlap analysis.
Analyzing the data, measurements are close in time as to mean that are often executed
one after the other by the nurses.

To identify the reliable measurements, we decide to tolerate a 20% of error on the
overlap between the two scales and on the metric calculated for each scale. For this
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reason, a good overlap is considered if 5 out of 6 conditions reported in the following
Sections are verified. Brass and IDA scales with a metric value less or equal to 1 and
1.3, respectively, are taken into account in the analysis. Finally, of the remaining scale
measurements, only those with a maximum time of 2 h are analyzed. 18.630 couples of
Brass and IDA scales are effectively used to analyze a predictive model.

2.1 Data Quality Assessment: Proposed Metric

Within both scales, there are fields that could be evaluated automatically from the patient
hospitalization information, i.e. age in Brass and origin in IDA. The correct compilation
of these two fields is easily obtained by cross-referring information about the hospital-
ization. At the same time, there are some fields in both scales that could influence the
other ones, such as comatose state in the cognition field affects the mobility field, which
will only be non-ambulatory. These simple examples are the basis for the construction
of the single scale assessment metrics. For each scale, incompatible clinical condition
extracted from the choices of the fields are highlighted, and a final score for the mea-
surement is assigned. The score is evaluated based on the severity of the association.
The more severe the discordance between fields, the greater will be the score.

Brass Metric. As described above, the Brass scale is composed of 20 items and the
total value may range from O to 40, and it is obtained by adding the value from each
item. The proposed pipeline is showed in Fig. 1:

— If the age is wrong, a value equal to 1 is assigned to the metric. This is the highest
score since the value is easily obtainable by the nurse.

— If the cognition field is set to “comatose”, the mobility field will only be “non-
ambulatory”. Different choices in the mobility field are evaluated with a score equal
to 0.9.

— Atthe same time, if the cognition field is set to “comatose”, the functional field cannot
be filled with the choice “autonomous”. If such situation occurs, a value equal to 0.9
is added to the metric.
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— If the cognition field is set to “comatose”, the functional field must contain all of
the following choices: “dependent in nutrition”, “dependent in hygiene”, “depen-
dent in toileting”, “dependent in movement”, “urinary incontinence” and “bowel
incontinence”. For each missing choice, a score equal to 0.2 is added to the metric.

— Focusing on the functional field, if the choice “autonomous” is set, none of the choices
described above should be reported. For this reason, if also “dependent in nutrition”,
“dependent in hygiene”, “dependent in toileting”, “dependent in movement”, “urinary
incontinence”, “bowel incontinence”, “dependent in food preparation”, “dependent
in drug’s use”, “dependent in money’s use”, “dependent in shopping” and “dependent
in means of transport’s use” are set in the field, for each choice a score equal to 0.2
is added to the metric.

— If the mobility field is set to “non-ambulatory”, in the functional field the choices
“dependent in movement” and “dependent in toileting” should be present. For each

missing choice, a score equal to 0.1 is added to the metric.

The maximum total score obtained with the above condition is equal to 6.4 and
indicates a low agreement between the fields of the scale. All the aforementioned
weights have been proposed by qualified medical personnel with extensive experience
in managing hospitalized patients.

IDA Metric. As described above, the IDA scale is composed of 10 items: the final score
is obtained by adding the value from each item and may range from 7 to 28. Similar to
the Brass scale metric, clinical observations are used to define our pipeline to obtain the
final score and evaluate the reliability of the scale’s measurement. The proposed pipeline
is showed in Fig. 2:

— If the choice in the origin field is wrong, a score equal to 1 is assigned to the metric.
This is the highest score since the value is easily obtainable from the hospitalization
information.

— If the sensory perception field is set to “soporific state, coma”, the mobilization
field will only be “non-ambulatory” or “armchair mobilization”. Different choices in
mobilization field are evaluated with a score equal to 0.9.
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— At the same time, if the sensory perception field is set to “soporific state, coma”,
the nutrition field cannot be filled with the choice “independent”. If such situation
occurs, a score equal to 0.9 is added to the metric.

— Ifthe sensory perception field is set to “soporific state, coma”, the hygiene and comfort
field cannot be “independent” or “intimate hygiene in bed but independent in the use
of services”. For any of these choices, a score equal to 0.9 is added to the metric.

— Following the previous case, if the sensory perception field is set to “soporific state,
coma”, the hygiene and comfort field cannot be “hygiene in bed with patient help”.
In this case the score is lower and equals 0.1.

— If the sensory perception field is set to “soporific state, coma”, the elimination field
cannot be “independent”. In this case the score is equal to 0.5.

— If the sensory perception field is set to “soporific state, coma”, the therapeutic proce-
dures field cannot be “oral therapy only or no therapy”. In this case the score is equal
to 0.1.

— Finally, if the mobilization field is set to “non-ambulatory”, in the hygiene and comfort
field the choice “independent” is not correct. In fact, the other choices involve hygiene
in bed, that is the proper condition if the patient is bedridden. For this case, a score
equal to 0.9 is added to the metric.

The maximum total score obtained with the above condition is equal to 5.3 and
indicates low agreement between the fields of the scale.

2.2 Overlap Analysis

Analyzing the two scales in detail, it is immediate to see that many fields provide the
same information about the patient’s clinical condition. In fact, both scales analyze
the dependency in some activity of daily living (ADLs), such as nutrition, hygiene,
mobilization, elimination, and cognitive status. Exploiting this high overlap, it is possible
to estimate the match among two scales compiled close in time.

For this reason, the pipeline in Fig. 3 is proposed. The first step is to individuate all
the couples of IDA and Brass scales measured for the same patient within a maximum
time interval of 2 h. This time range makes it possible to compare two scales that refer to
the same clinical condition of the patient, avoiding different interpretations of cognitive
or functional status. In addition, the analysis on the cohort of patients proposed in this
study revealed that the two scales are often performed close together in time.

Six conditions are analyzed: nutrition, elimination, hygiene, mobilization, cognitive
status and care intensity. Nutrition, elimination and hygiene conditions compare only
the independent status, that in Brass scale is explained in functional status, whereas
in IDA scale in nutrition, elimination and hygiene and comfort fields. Mobilization
condition, instead, can be compared with three distinct cases; patient walks, not-walks
or walks with help. These different choices are allowed in mobilization field in both
scales and in this way it is possible to distinguish several clinical conditions. Also, there
are more overlap cases between fields for the cognitive status, that in Brass is explained
in cognitive status field and in IDA in sensory perception field. The overlap conditions
are for comatose, oriented and disoriented. Disoriented condition is expressed in Brass
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scale with the choices “always disoriented, sedatives day and night” and “occasionally
disoriented, with or without sedatives”; in IDA is expressed with the choices “occasional
temporal-space disorientation (day and night sedatives)” and “constant disorientation
temporal-space (sedatives day and night)”. This consideration was made in order to
avoid possible different interpretation and fast changes in patient clinical condition.
Lastly, care intensity level can be easily compared between the scales. In fact, for each
scale, three levels of intensity of care are possible, low, medium and high.
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Table 1. Summary of the included variables in the predictive models for each scale.

Scale Variables

IDA Origin, Nutrition, Elimination, Hygiene and Comfort, Mobilization, Diagnostic
Procedures, Therapeutic Procedures, Sensory Perception, intensity of care, value

Brass Age, Life Condition, Number of Previous Hospital Admissions, Number of actual
clinical problems, Cognitive Status, Functional Status, Behavioral Model,
Mobilization, Sensory Deficits, Number of Drugs Taken, intensity of care, value

For each explained condition, the possible overlap is evaluated. Lower percentage
of overlapping represent lower concordance between the clinical condition reported in
the two scales.

3 Results

In the following Sections, we report the obtained results about the prediction model.

3.1 Prediction Model

The aim of this study is to predict the value and the intensity of care of one scale starting
from the information of the other one. Four predictive models are analyzed to consider
all possible combination, i.e. Brass scale that predicts value of IDA scale, Brass scale
that predicts intensity of care of IDA scale, IDA scale that predicts value of Brass scale
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and IDA scale that predicts intensity of care of Brass scale. This analysis was performed
in Orange.

70% (13.041 measurements couples) and 30% (5.589 measurements couples) of the
samples are split into training and test cohorts. Logistic regression (LR), decision tree
(DT) and random forest (RF) algorithm with five-fold cross-validation (CV) technique
are implemented to estimate the intensity of care, whereas only the last two for the scale
value. Variables used in the algorithms are listed in Table 1. All variables are categorical
expect for the value’s scale.

IDA Scale Predicts Brass Scale. Two models are developed to predict intensity of care
and value of the Brass scales. The developed models are tested with the test set. As
shown in Fig. 4 (a)—(c), for each intensity of care class the powerful predictive capacity
is evidence by AUC in three basic models. For simplicity, average of high, medium
and low scale AUC obtained are reported: LR = 0.984; DT = 0.937; RF = 0.978. In
this case, the high and low intensity of care, Fig. 4 (a) and (c) respectively, are easier
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Fig. 4. ROC curves obtained from the prediction models. IDA scale predicts Brass scale: (a) High,
(b) Medium and (c) Low intensity of care. Brass scale predicts IDA scale: (d) High, (¢) Medium
and (f) Low intensity of care.
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Actual Value

(a)

Fig. 5. Scatter plot of actual values and predicted ones obtained with RD model: (a) Brass scale
values and (b) IDA scale values.

to predict compare the medium level (Fig. 4 (b)). DT and RF models are also used to
predict Brass value and to evaluate the algorithms, root mean square error is calculated.
RMSE obtained with DT is equal to 2.665 that is higher than it obtained with RF, that is
2.606. Figure 5 (a) shows the scatter plot of actual values and predicted ones obtained
with RF model.

Brass Scale Predicts IDA Scale. Also in this case, two models are developed to predict
intensity of care and value of the IDA scales. The developed models are tested with the
test set. In Fig. 4 (d)—(f) the AUC for each intensity care is showed, with the comparison
of the three predictive models. For simplicity, average of high, medium and low scale
AUC obtained are reported: average AUC LR = 0.992; DT = 0.934; RF = 0.992. In
this case, the medium and low intensity of care, Fig. 4 (e) and (f) respectively, are easier
to predict compare the high level (Fig. 5 (d)). Specifically, the DT model result is very
lower than the other ones (AUC LR = 0.980; DT = 0.822; RF = 0.980). Predicted IDA
values by the DT and RF models are evaluated with RMSE. Following the previous
results, RMSE obtained with DT higher than it obtained with RF, and are equal to 1.855
and 1.669, respectively. Figure 4 (b) shows the scatter plot of actual values and predicted
ones obtained with RF model.

4 Conclusions

Nursing scales represent one of the evaluation tools that allows to quantify patient’s
clinical condition in an immediate way. In this study we analyze two different scales,
Brass and IDA, with the twofold purpose of develop a metric to assess the quality of a
single measurement scale and of create a predictive model to estimate one scale using
the information of the other one. Preliminary results shown the possibility to create a
generic metric that evaluates the concordance of the information selected in each scale.
In this way, is possible to create a database of reliable measurements for the proposed
predictive model. That model shows promising results to evaluate one scale from the
other one. The goal of this work is not only to demonstrate that one scale can be predicted
from the other one, but also to provide a possible tool that allows clinicians to save time
in filling out the scales and focus more on clinical work.
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Abstract. Intra-hospital patient transport (IHPT) service is one of the important
contributors to efficiency in hospitals due to its high prevalence. The efficiency of
this service is, in turn, dependent on proper planning of capacities and resources.
Although there is extensive research focusing on improving capacity planning,
there is little research available on posterior analysis of real-life executions of
transport activities and evaluation methods. Therefore, this paper first provides
a set of Key Performance Indicators to measure the efficiency of IHPT services
using process mining approaches. Second, it conducts an extensive multidimen-
sional analysis to support capacity planning by examining data containing various
event- and case-specific information from IHPT process for a period of 42 months
beginning from January 2019 in a German hospital. Different perspectives are
considered to enable multidimensional analysis and provide insights regarding
the behavior of different elements involved in the transport process. Daily and
hourly assignments are evaluated to investigate transport capacities, activity inter-
vals, automatically and manually dispatched assignments, as well as the most
significant routes concerning transport delays. The analysis showed that 34.2%
of the transports experienced delays of ten or more minutes. After identifying
the causes of these delays and process bottlenecks, several technical and opera-
tional solutions are proposed, which are evaluated by domain experts in the case
hospital. This paper shows the capability of process mining methods to provide
holistic and clear insights into processes, which can help hospitals better under-
stand the organization of their processes and address the challenges outlined in
IHPT services.
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1 Introduction

Capacity planning is an essential process in hospitals to ensure that resources are man-
aged efficiently and that quality of care meets high standards. Planning of resources for
logistic activities includes not only material flows, but also transport of patients within
the hospital. Intra-hospital patient transport (IHPT) is a challenging task, since itinvolves
medical aspects and requires coordination between different functional areas to prevent
medical complications for patients and avoid long waiting times [4]. Due to its broad
use, IHPT plays a crucial role in providing efficient and timely medical treatments [5,
7, 16]. IHPT refers to the internal patient transfer within a hospital, e.g. between differ-
ent functional areas and wards [12]. The effectiveness of this service and its associated
processes have major impacts on both patient satisfaction and clinical outcomes [5].

To support the planning of IHPT capacity in a hospital, it is necessary to analyze to
what extent the capacity used in logistic activities meets transport requirements. Process
mining can help identify bottlenecks and inefficiencies in processes [17], which can help
hospitals accordingly improve their capacity allocation.

Generally, [11] worked out ten specific challenges to using process mining in the
healthcare domain, of which our work addresses the following: discover beyond dis-
covery, deal with reality, pay attention to data quality, and take care of privacy and
security.

With the help of Process Mining, we examine the IHPT process in a German hospital,
covering a period of approximately 3.5 years, from different perspectives, and conduct
multidimensional analysis. The goal is to examine which decisions or parameters were
favorable or disadvantageous based on particular key performance indicators (KPIs).
The remainder of the paper is organized as follows: Sect. 2 reviews literature on the
application of different approaches to design and organize IHPT processes in hospi-
tals. Section 3 gives an overview of our research questions and objectives. The IHPT
investigation is conducted in Sect. 4. This section discovers the process models, pro-
cess bottlenecks, examines the related KPIs and gives tailored improvement proposals.
Finally, the paper concludes with limitations and future work in Sect. 5.

2 Related Work

Different quantitative approaches such as mathematical programming or simulation
models have been developed to design and evaluate IHPT. For example, [14] used statis-
tical methods and a mixed-integer model to determine the best distribution of employees
on the most popular routes to reduce the completion time of patient transport activities.
[6] proposed a computer-based planning system based on fast heuristics to provide an
efficient and timely IHPT service. [10] developed an integer programming model and
a discrete event simulation to standardize IHPT processes and improve the planning of
the transport staff.

Mathematical programming models are mostly based on closed-form expressions
developed for case-specific problems [15]. Therefore, they are sensitive to the level
of detail and complexity of the problem under study [15]. They often require many
assumptions and therefore hardly represent real-life processes [19]. In contrast, simula-
tion models are less sensitive to complexity [15] but the problem is the high modeling
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effort, which is one of the barriers to the application of simulation by healthcare managers
[9].

In recent years, process mining has been introduced to overcome these limitations,
although it tends to focus on historical process data. However, it can also be used as
input for prescriptive approaches. Process mining can help to discover, analyze, and
improve processes from a large amount of data stored in an information system. [13]
analyzed 263 articles on process mining in healthcare and emphasizes that only about
7.6% of the articles deal with analysis of organizational processes and only another
15.2% deal with organizational processes in part. [2, 18, 20] developed DES models on
the basis of process mining analyzes to optimize organizational health care processes
and, thus, also capacity management. However, there is little or no reported research on
the application of process mining to plan resources in IHPT services. In [8], a process
discovery and conformance analysis was performed on an IHPT data set of one year to
show the capability of process mining analysis on event data captured in the hospital
logistics system. However, the solutions presented are in an early stage and capacity
analyses were not applied or tested.

3 Research Questions and Objectives

There are three mainly established subareas in process mining, namely process discovery,
process conformance, and process enhancement [3, 17]. This paper will focus on pro-
viding specific solutions for the enhancement of the IHPT process and capacity planning
and will underpin them with observations from the process discovery and conformance
analysis of a data set of 3.5 years. Our research questions are defined as follows:

RQ 1: How can mining in real-life data sets with multiple case- and event-related
attributes help to analyze capacity planning in IHPT beyond process discovery?

RQ 2: What are the important factors and limitations to consider when proposing capac-
ity improvement measures in IHPT based on real-life data sets with multiple attributes
related to case and event?

This paper illustrates the substantial potential of process mining techniques to ana-
lyze the IHPT process and to propose concrete process improvement ideas (i.e., pro-
cess enhancement) based on previously derived KPIs taking into account different
perspectives, time periods, data quality aspects, and data privacy requirements.

4 Patient Transport Analysis

The insights and ideas presented in this section were discussed in multiple sessions
with hospital process managers and thus validated to reflect reality. Their assessment
is incorporated into the analysis. For the analysis, the Celonis® Execution Manage-
ment System, which can generate simple visualizations using Directly-Follows Graphs
(DFGs), is used. DFGs typically do not consider concurrencies and causalities [1]. To
ensure proper sequencing in the case of equal event timestamps, a unique sorting number
for each event is added based on the activity executed during data preparation in con-
sultation with the process managers. COVID-19 also had an influence on the process,
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but the investigations in this paper will be on an aggregated level over a longer timespan
and therefore not COVID-19-specific.

4.1 General Process Information from Different Perspectives

The data analyzed covered transports where the first activity occurred within the period
from 01/01/2019 to 30/06/2022, which reflects a period of around 182.5 weeks (a handful
of transport cases had some activities on July 1, 2022, although their first registered
activity took place beforehand). Only transports that were completed fully and in which
patients were transport subjects were examined, and there was no additional special
service in addition to transport. To conduct the analysis, first the assignment ID of a
transport (i.e. unique number for each individual transport), and second, the transporter
ID related to the transport is considered as the case ID to gain insights into the transport
processes. A transporter ID is understood to be a combination of a specific number of
a unique mobile device (that receives transport assignments) and the date on which the
specific device appeared in the logs so that a unique transporter ID can be derived and
equated with a transporter on a specific day.

Other information, like the patient ID, can allow one to examine the processes from
the perspective of the patients. However, this will not be the scope of this paper.

Assignment ID is Case ID. There were 256,266 patient transport cases conducted and
completed, resulting in an average of 3.7 transports per patient (there were 69,810 unique
patient IDs in the data set). After being requested, transports can be assigned manually
(by an employee) or automatically (directly by the logistics system). After selecting a
transporter, the transport assignment is forwarded to the transporter device. However,
34.2% of all transports experienced delays of ten or more minutes, that is, the transport
is completed ten or more minutes after the pre-planned completion time. This limit,
above which transports are classified as significantly delayed, was defined by process
managers. The event log examined contains different activities. Table 1 in the appendix
shows in how many cases logged activities occur and also how often the activities occur
in total over all cases (activities can occur multiple times within a case).

Transporter ID is Case ID. On the whole, there were 10,089 different transporter IDs
(combination of a unique device number being present on an individual day) involved
in the patient transport within the hospital, each representing a transporter on a specific
day. On average, approximately ten different transporters from Monday to Friday and
about three different transporters from Saturday to Sunday participated in the transports
per day and there were 25.4 transports per day per transporter.

4.2 Process Analysis - Deep Dive

In this subsection, a deeper analysis is made from the point of view of the transports
(a transport’s assignment ID is the case ID) and multiple KPIs are presented. First,
the different variants of the process are considered. Then, activity intervals are exam-
ined and critical transport routes are highlighted. Subsequently, analyses are carried out
with regard to the assignment situation during the course of the day and the weekday



142 T. Kropp et al.

to allow comparisons with the transport capacities provided by the hospital to derive
recommendations for action.

Process Variants and Activity Intervals. Within the 256,266 patient transport cases,
there are 1,977 different variants in the activity control flow. The main variant (left)
and the first 9 variants (right) together are shown in Fig. 2 in the appendix. Figure 2
also shows the delay rates of the respective process variants. Variant I reflects the main
variant that covers about 45% of all cases and consists of eight activities. The activity

CLINNT3 LEINNTS

sequence is: “transport request’, “waiting list for commissioning”, “assignment sent

LEINY3 <

to device”, “assignment accepted”, “arrival at pick-up location”, “transport started”,
“arrival at target location”, “transport completed”. The first nine variants together show
loops and variations exclusively in the first half of the process. Variant 4 (see left model
in Fig. 3) and Variant 8 (see right model in Fig. 3 in the appendix) stand out in particular
because of their increased rate of delays. Since detailed event-specific information is
also included in addition to the case-specific attributes that provide information about
the case as a whole, a root cause analysis can be performed within the two variants on
an event level in addition to the analysis of general activities and throughput times. It is
noticeable that in Variant 4 it is mainly the failure of the transporter to react that leads to a
new request for transport before the same process flow like that of the first variant starts.
Variant 4 lead to a delay probability greater than 61% in the subsequent processing of
the transport assignment. Variant 8 shows the same behavior as Variant 4, but in Variant
8§ there is also the step “transport is preregistered” as the first activity. A transport can
be pre-registered if, e.g. it is a return transport that is required after an initial transport
has been requested. Adjustment ideas to reduce the delay rate are given after examining
the relevant activity intervals.

In general, pre-registering assignments decreases the delay rate. This can be read
from the delay rates in Fig. 2 in the appendix. Variant 2 has the activity “transport is
preregistered” before the activity “transport request” and flows further like Variant 1.
Variant 2 has a slightly lower delay rate than Variant 1. Variant 1 and Variant 2 reflect
the planned process flow, while all other variants are considered non-conforming in
discussion with process managers.

Between the activity “assignment sent to device” and the acceptance of the assign-
ment by the transporter (“transport accepted”), on average it takes about two to three
minutes and even zero minutes in the median, which means that the acceptance of the
assignment happens in most of the cases instantly (89% of all cases are accepted within
zero and three minutes after being sent to a device). This observation was also con-
firmed by the process managers, who have experience in the field that transporters are
already accepting new assignments while executing previous ones. If a transporter does
not respond and the assignment has to be re-requested, it almost always leads to delays
(see the delay rates in Fig. 3 in the appendix). To reduce this problem, the buffer time
between “transport received at end device” and a transporter not responding, which leads
to a re-assignment, is to be reduced. In the future, the appropriate time interval appears
to be around three minutes, since 89% of all cases are currently accepted within zero
and three minutes after being sent to a device. In approximately 80% of all transports
(transports of all variants), the interval between the “transport request” and the “wait-
ing list for commissioning” takes between zero and eight minutes. If it takes between
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zero and four minutes, the resulting delay rate for the transports is around 25%. If it
takes between four and eight minutes, the resulting delay rate is already around 40%.
If more than eight minutes elapse between the “transport request” and the “waiting list
for commissioning”, the resulting delay rate for transports is 66%. An alarm could be
established if more than, for example, four minutes elapse between “transport request”
and “waiting list for commissioning” to promptly re-request the transports and keep
delay rates as low as possible.

Data show a delay already at the patient’s pick-up location in about 50% of all cases.
Compared to the planned end time of transports, around 34% are still delayed by the
time a transport is logged as completed (see Subsect. 4.1). This shows that overall,
despite delays at the pick-up location, certain transports manage to arrive on time at
the arrival point and that the later activities, which in turn represent the accompanied
transport, tend to be classified as less critical in terms of throughput times or delays.
This raises questions about the efficient planning of transport capacities and distribution
of transports, including the initial activities up until “arrival at pick-up location”. Here,
it should be mentioned that data quality and thus delay rates depend on the manual
confirmation of individual work steps by the transporters via their devices. Therefore,
they may not always reflect the correct timestamp at which an activity was performed.
To make the data more reliable in the future, it might also be useful to introduce quick
response (QR) code or radio frequency identification (RFID) scanning at all relevant
locations (pick-up and target locations) in the hospital to precisely capture when the
transporters fulfill their process steps.

Critical Routes. Table 2 in the appendix presents the most critical transport routes in
terms of their delay time at the end of the transport process. They are sorted by the total
number of delayed minutes that occurred on each route. The total delays are calculated
by multiplying the average delay per case on each transport route by the number of
delayed cases. Only transports that had a delay of at least ten minutes are considered
for this calculation. The ranking according to the highest sum of minutes of delay on
the respective routes, which results from the combination of the average delay time per
transport and the number of delayed transports, ensures that Table 2 in the appendix
reflects the most problematic routes, in general, in all the cases considered. In particular,
the route between a ward “Station A4.2” and a functional area “Endoscopy” (both in
the same building House A) stands out in the first (one transport direction) and fourth
(reverse transport direction) rows. In general, it is recommended to increase the scheduled
throughput times for transports on this route and also on the other routes identifiable in
Table 2 in the appendix.

Capacity Evaluation. Delayed assignments are more common on Mondays and Fri-
days than on the other days of the week. Generally on Mondays, the most transport
activities take place. On Saturdays and Sundays, there are fewer transports per day than
in the rest of the week, and the delay rate is lower during the weekend. Table 3 in the
appendix shows the statistics for all weekdays.

Delays occur most frequently between 10:00 and 12:59. A cause for these delays can
be found in the event-specific data and is because the transporters’ devices are full and
assignments cannot be sent. This observation starts already increasing from 07:00. There
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are also many delays between 09:00 to 09:59 and 13:00 to 13:59. Mainly, between 09:00
and 13:59, either the number of requestable planned starts should be regulated, or more
transport capacities (i.e., transporters) should be available. In addition, there are peaks
in relatively delayed cases between 06:00 and 07:00. Since the number of cases is not
very high during this time, it seems more meaningful to increase the transport capacities
rather than to limit the number of assignments. Table 3 in the appendix shows that even
though on Mondays there is the highest number of transports per day, the number of
transporters is just the fourth highest compared to the other days of the week. Figure 1
shows a comparison of planned transports by hour and the corresponding transporters
available who started transports at specific times, using Monday as an example. The
same comparisons could be made equally for all other days of the week.

Figure 1 shows that there is a peak in assignments between 10:00 and 10:59. At the
same time, there is a peak of approximately 4.6 assignments per transporter. To avoid
a backlog of assignments, transportation capacity should be increased in the morning
(until 12:00/13:00), as the assignment peak is reached around 11:00 and then the absolute
number of assignments per hour decreases. For alower delay rate, there should generally
be no more than three to four assignments per available transporter per hour (a trans-
porter completes his transport task in 19-20 min on average or 14 min on median, from
acceptance to the end of the transport) to reduce delays caused by backed up assignments
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Fig. 1. Comparison of planned transports (upper part) and available transporters (lower part)
on average on Mondays (the minutes of each timestamp are rounded down to zero, e.g., 14:49
becomes 14:00) (adopted from Celonis®).
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in the afternoon. These observations were made equally on the days from Tuesday to
Friday, and the solutions mentioned should also be applied on these days. In Table 3
in the appendix it can be observed that fewer transporters are active on Mondays and
Fridays than on other days of the week, despite the highest delays. However, due to the
highest number of assignments on Mondays, a slight increase in transportation capacity
should be considered. The load of the transporters is lower on the weekend, with a peak
of 3.9 transports per unit per hour on Saturdays and 2.8 on Sundays than during the
week (see Table 3 in the appendix). This KPI certainly seems to have a major influence
on the delay rate. Furthermore, the delay rate of the automatically assigned transports
(by the automatic dispatching system), with 30%, is slightly better than the delay rate
of the manually assigned transports (by an employee), with 36%. But the automatic dis-
patching system only handles less than half of the cases compared to manual dispatchers
and works mainly at times when there are fewer transports requested (usually outside of
core working hours and on weekends). The way in which manually and automatically
assigned transports were put together seemed to influence delayed cases, too. The more
both were conducted in parallel, the more delayed cases resulting from automatically
assigned transports could be observed. From this it can be inferred that the automatic
system and the manual dispatcher should operate only in a timely separated manner.

5 Conclusion and Future Work

The investigations show the distribution of transportation assignments and the availabil-
ity of capacity at times of the day and days of the week. Therefore, capacity evaluations
are performed and improvement ideas are developed through root cause analysis. The
average peak number of requested transports per available transporter per hour needs to
be reduced for less delayed transport cases.

In addition, the automatic dispatching system and the manual dispatcher should oper-
ate at completely separate times (not in parallel) so that both can efficiently contribute
to less delayed transport cases. However, an investigation of how many orders are open
at any given time could be interesting for further interpretation. For this purpose, in the
future it should be examined on every day of the week and every hour how many orders
have been requested and which have not yet been closed. These necessities can also be
transferred to other hospitals. Discussions with domain experts ensure the validity of the
investigations and help them understand and interpret process data effectively.

Data such as the number of transport orders that are on the transporters’ devices
at the respective times when individual transports are executed (currently up to three
assignments per device are possible) are not reflected in the data. Therefore, adjustment
ideas towards the maximum number of receivable transports per transporter cannot be
supported with historical information at this point. Data management should be improved
accordingly.

It is generally noticeable that the possible adjustments that can be made seem relent-
less and that it is difficult to commit to specific measures. Many of the possible solutions
result of individual attribute filtering of the analysis and custom KPI evaluations. Of
course, these depend highly on the know-how of the data analysts and the input of the
domain experts. It is now necessary to transfer individual solution approaches into prac-
tice and to check the results with analogous analysis, as has been done in this paper, on
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the basis of the identified KPIs. However, it would be very helpful to use e.g. simulations
to predict the resulting KPI developments after adjusting the parameters of processes.
It is the goal to develop prediction models on the basis of historical data and expert
knowledge. Such models could support decision making in process change manage-
ment by running several adaptation variants before practical implementations, and the
best variant could be transferred to practice with data support.
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Appendix

Table 1. Statistics on all activities. They are sorted by case count and within the same case count,
furthermore alphabetically according to the German activity name.

Activity (German - in system) | Activity (English translation) | case count | activity count
Auftrag abgeschlossen transport completed 256,266 257,205
Auftrag an Endgerit assignment sent to device 256,266 282,505
Auftrag angenommen assignment accepted 256,266 262,262
Transport begonnen transport started 256,266 256,556
Warteliste Kommissionierung | waiting list for commissioning | 256,266 302,271
an Abholort arrival at pick-up location 256,265 257,334
an Ankunftsort arrival at target location 256,266 256,376
Anforderung transport request 256,261 317.641
Vorgemerkt transport is pre-registered 111,906 127,579
Verfall - nicht zugestellt expiration - not delivered 6,021 9,714
Dispo transport assignment 145 153
Storniert transport canceled 33 39
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Table 2. Critical routes (only delayed cases) that lead overall to a high sum of delayed minutes.

pick-up | pick-up target house | target delayed |avg. delay |sum of delay
house location location cases per case [min]
[min]

House A | Station A4.2 | House A Endoscopy | 2,871 37.68 108,175.80
House B | Station B2.2 | House H Radiology 1,776 40.55 72,012.82
House A | Station A2.1 | House A FUDIEKG |1,972 36.09 71,538.31
House A | Endoscopy | House A Station A4.2 | 1,492 39.99 59,664.18
House B | Emergency | House A Station A4.2 | 1,267 37.25 47,191.63

Dpmt

Table 3. Weekday statistics.

weekday absolute cases | average cases | average average peak | rate of delayed
per day per day number of | number of cases [%]
transporters | transports
per day requested per
available
transporter per
hour
Monday 49,105 269 9.65 4.6 39.30
Tuesday 47,484 260 10.31 4.4 32.55
Wednesday | 48,364 265 10.55 4.2 34.98
Thursday 45,286 248 10.18 4.3 31.41
Friday 44,532 244 9.44 4.6 37.70
Saturday 11,641 64 3.25 39 23.74
Sunday 9,854 54 3.16 2.8 22.61
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Fig. 2. Process model of the most frequent variant (representing 45% of all cases) on the left and
process model of the first 9 variants (representing 91% of all cases) on the right with case counts
on paths and activities. Delay rates of the respective process variants are represented in yellow
highlighted percentages. Bar charts reflect relative frequency and the numbers to the right of the
bar charts reflect the median throughput time of the variants (adopted from Celonis®). (Color
figure online)
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(Color figure online)
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Abstract. A radiation therapy plan finds an equilibrium between goals with no
universal prioritization. The delicate balance between multiple objectives is typi-
cally done manually. The optimization process is further hindered by complex
mathematical aspects, involving non-convex multi-objective inverse problems
with a vast solution space. Expert bias introduces variability in clinical practice,
as the preferences of radiation oncologists and medical physicists shape treatment
planning. To surmount these challenges, we propose a first step towards a fully
automated approach, using an innovative deep-learning framework. Using a clin-
ically meaningful distance between doses, we trained a reinforcement learning
agent to mimic a set of plans. This method allows automatic navigation toward
acceptable solutions via the exploitation of optimal dose distributions found by
human planners on previously treated patients. As this is ongoing research, we
generated synthetic phantom patients and associated realistic clinical doses. Our
deep learning agent successfully learned correct actions leading to treatment plans
similar to past cases ones. The incapacity to reproduce human-like dose plans hin-
ders adopting a fully automated treatment planning system; this method could
start paving the way towards human-less treatment planning system technologies.
In future work, we hope to be able to apply this technique to real cases.

Keywords: Radiotherapy - Dose Optimization - Reinforcement Learning - Deep
Learning

1 Introduction

In contemporary radiation therapy, photon intensity modulated radiation therapy (IMRT)
is a pivotal technique to attain precise and conformal dose distributions within target vol-
umes [18]. This achievement owes its realization to the advent of the multileaf collimator
(MLC) [5]. Radiation therapy is now a reliable treatment for oncology [14]. Despite this
consensus, the way to deliver radiotherapy for its best result remains very dependent
upon doctors. Moreover, there appears to be a large variability across physicians and
centers, in terms of 3D structures contouring and irradiation, constrains priorities [3].
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To achieve the best treatment, doctors must solve a complex inverse mathematical
optimization problem with multiple trade-offs [10, 15]. However, a lack of standard-
ized prioritization of constraints makes the optimization a real challenge. The standard
procedure nowadays is to guide computer optimization manually: dosimetrists manu-
ally update the settings of an optimizing software so-called Treatment Planning System
(TPS) [1].

There have been many tries to create a metric that quantifies the quality of a treat-
ment plan, such as Normal Tissue Complication Probabilities (NTCP), target coverage,
conformity index, and heterogeneity index, among others/to name a few [7, 8]. How-
ever, they have yet to satisfy all radio-oncologists, and the only reliable way to assess a
doctor’s plan is to evaluate the dose-volume histograms (DVHs) themselves.

As a result, Pareto surface exploration is unsuitable due to the lack of impartial
quantitative measurement for a particular plan [6]. Other meta-optimization techniques
are similarly bounded for the same reason [16, 17]. An extra challenge to attend for those
is the fact that not all cases have the same difficulty. Hence, for an “easy” case, doctors
will require an excellent dose (in terms of the metrics mentioned above), while they can
be more permissive for “harder” cases. The context-aware acceptability criteria make
the acceptability of a plan hard to define in general.

Reinforcement learning (RL) is a machine learning paradigm that trains agents to
make sequential decisions in dynamic environments [2]. Agents learn to optimize their
actions to achieve long-term objectives through trial and error guided by rewards or penal-
ties. The decisions taken by dosimetrists when optimizing treatment can be formalized
as an RL problem. Moreover, dosimetrists can guide the TPS towards an acceptable
plan but usually struggle to explain their decision while interacting with the TPS. The
difficulty in explaining why certain decisions are taken suggests using deep RL over
expert-based methods. This setup is similar to image recognition, where one can say a
picture represents a car or a boat but struggles to explain why.

The study’s primary hypothesis is that all the information needed to decide what
weights should be changed in the objective function used by the optimizer relies on
the Dose Volume Histograms (DVHs). Our hypothesis is supported by the fact that
dosimetrists almost solely use DVHs plots. In order to learn the actions of dosimetrists
who use a TPS to optimize doses, we leverage deep learning. This is done by training
an agent that takes the DVHs as the input of the current optimized dose, and predicts the
evaluation of possible weights changes.

Typically, access to the exact actions taken by human dosimetrists on the TPS is
unavailable (as clinics do not usually store this data; only the final plan is held). Therefore,
we only use the dose distributions of previously treated patients to train our model. This
partial availability of data suggests the use of RL.

2 Materials and Methods

We introduce a new paradigm for reward-based dosimetrist RL agents. This new reward
system aims to improve how human-optimized doses are mimicked.
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Fig. 1. Classical reinforcement learning reward for automatic dosimetry.

2.1 Reinforcement Learning Reward

In classical RL, we want V(S;) = R; + yV(S:+1) (so the update is V(S;) <«
1 =)V (S) + a[R; + YV (St+1)]). In the context of dose optimization, the reward
R, is defined as R, = £(Sy4+1) — £(S;), where £ is a function that evaluates the quality
of a state (such that higher is better; if lower is better, then swap S; and S;41) (Fig. 1).

The evaluation £ can be one or a mixture of the metrics mentioned in the introduction
(Sect. 1) [9, 12, 13]. This setup may leverage knowledge about which actions to perform
instead of guessing randomly, as a meta-optimizer would do. This could potentially gain
some computation time.

However, this technique does not use past plans; it only needs the optimizer inputs
(CT, structures contours). We propose using the availability of past treatment plans to
more accurately reflect the complexity of decisions made by dosimetrists and better
match their expectations of a fully automatic treatment planning system.

As developed in previous work, we can derive a distance between dose plans [11].
If we consider the clinical dose of past cases (used for training) as the best achievable
one, we can evaluate a dose plan by computing its distance from the clinical dose plan.

Let D; be the dose associated with S;, and D¢ the clinical dose. We then define
E(S;) = D(Dy, D¢). Since, in that case, £(S;) should be minimized, we will define the
reward as

R = &E(Sp) — E(Si41) = DDy, Dc) — D(Di41, D).

This reward can be interpreted as the “distance gained to the clinical dose”.

2.2 Architecture

We use a dense neural network, which inputs the DVHs and current normalized weight
values. It outputs the Q(s, a) value for each possible action a. Dense layers are very prone
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to overfitting. In order to force the network to actually predict the following evaluation
for each possible action, without overfitting, we incorporated a bottleneck in the network
(Fig. 2). Compressing the information stops the network from overfitting. Networks with
such architecture show very little difference between training and validation sets (see
Fig. 2).

\ —— Training loss
‘ < / Validation loss
|

Q(sa)

Loss
3

Constraints , L] 50 100 150 200 250 300 350 400
Weights | 4
(6*100+7)

(3'7)

Fig. 2. Neural network architecture and loss evolution while training.

2.3 Avoiding Off-Distribution

We generated a training set of over 125k actions (this took five days on an NVIDIA
GeForce GTX 1080). Despite this relatively large dataset, we have not explored exhaus-
tively the state-actions space, and the network still lands off distribution. This can easily
be spotted when the predicted Q value is greater than the current distance to the clinical
dose; we choose to ignore those predictions, and in fact all outlier predictions. The jus-
tification is that our set of actions is limited, no action will suddenly drastically improve
the plan. It is the combination of several sequential actions that allows good plan opti-
mization. Therefore, while testing, we choose the action with the best prediction, while
passing the outlier test just mentioned.

3 Results

Figure 3 shows how the distance between our RL agents performs over five steps on 30
test patients (unseen during the training). A lower distance is interpreted as an improved
dose, since it is closer to the best dose, which is the clinical one.
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Fig. 3. Average distance between RL agent’s dose and clinical dose.

3.1 Quantitative Results

The network converged on the training data, and validation showed minor overfitting.
For testing, we generated 30 brand new cases that we again manually optimized. We then
used the RL model to perform the optimization of these 30 unseen cases. On average, our
model was able to reduce the dose distance with manually optimized dose by a factor of
3 (from 1.8 at iteration O to 0.6 at iteration 4), as shown in Table 1. We remark from the
Table 1 that the homogeneity score and conformity score give similar results. Classical
meta-optimization performs well, but needs a metric to elect the best dose (during the
test, the clinical dose is unknown, so the DVHSs distance metric is not available). We
also observe that clinical doses are not always scoring high (in this test set, a high
conformity, but low homogeneity compared to automatic techniques). This show the
difficulty to create a metric that capture all the complexity of a clinically acceptable
dose.
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Table 1. Average performances of four algorithms tested on DVHs distance to clinical dose, dose
homogeneity-based score, and conformity-based score.

Agent Mean Final Distance? | Homogeneity Score? Conformity Score?
RL on Distance Score 0.612 1.871 0.406
RL on Homogeneity Score | 2.012 4.387 0.567
RL Conformity Score 1.770 4.017 0.507
Meta-optimization N/A 4.117 0.610
Clinical doses 0 1.541 0.580

aDistance is improved performance through a lower score.
bScore is improved performance through a higher score

3.2 Qualitative Results

Figure 4 shows the DVHs at each of the first four optimization steps on one of the test
patients, unseen by the agent during the training. Our model drastically reduced the dose
distance with manually optimized doses. Visual inspection of the DVHs plot shows that

the dose optimized by the RL agent is very close to the clinical (manually fine-tuned)
one.

Iteration 1 Iteration 2

Volume (%)
Volume (%)

0 60 80 100 0 20 40 60 80
Dose (Gy) Dose (Gy)

Iteration 3 Iteration 4

— ptv
—— organ_1
—— organ_2

— ptv
—— organ_1
— organ_2
— organ_3
~—— organ_4
— organ_s

— organ_3
~—— organ_4
— organ_5

Volume (%)
Volume (%)

20 40 60 80 0 20 40 60 80
Dose (Gy) Dose (Gy)

Fig. 4. RL Agent DVHs after each action taken on a test (unseen) patient. Solid lines are the
agent’s dose DVHs; dotted ones are the reference dose DVHs (manually finetuned).
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4 Discussion

Our study demonstrates the potential of deep RL for automating radiotherapy treatment
plan optimization. A key strength of our approach is its ability to learn from past treatment
plans, capturing the complex decision-making processes of human dosimetrists. This
data-driven approach avoids the limitations of predefined metrics, which may not fully
capture the nuances of optimal treatment planning.

However, our study also has limitations. The agent’s performance relies on the qual-
ity and quantity of available training data. Cases with limited historical data or com-
plex anatomical features may require additional strategies. Moreover, while the agent
achieves promising results regarding dose distance reduction, the dose is not guaranteed
to be clinically acceptable. Although this study demonstrates the promise of our RL
approach in a controlled setting, one final limitation to mention is that extending it to
real-world radiotherapy planning would necessitates addressing additional complexities
and constraints.

Several avenues exist for further research. Firstly, we plan to investigate strategies
for incorporating additional information, such as patient characteristics and anatomical
complexities, into the training process. Secondly, we aim to explore techniques for
improving the interpretability of the agent’s decision making process, allowing for better
understanding and potential clinical validation.

5 Conclusion

Our approach differs from previous RL-based methods for radiotherapy planning in
two key aspects. First, we avoid relying on pre-defined metrics for evaluation, which
can be subjective, and limit the agent’s ability to learn complex optimization strategies.
Second, compared to traditional meta-optimization approaches, our method leverages
past treatment data, potentially leading to more informed decision-making during the
optimization process.

This study demonstrates deep RL’s feasibility and potential benefits for automating
radiotherapy treatment plan optimization. Our approach is capable of directly predicts
state evaluations, and shows promise in achieving significant improvements in efficiency
and, potentially, treatment outcomes. Further research is needed to address limitations,
improve interpretability, and ensure safe clinical integration. This approach could revo-
lutionize radiotherapy planning, leading to more standardized, efficient, and improved
patient care.

Appendix

As this is very new and ongoing research, we generated synthetic phantom patients and
associated trustable clinical doses. In future work, we hope to apply this technique to
real cases.
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Synthetic Phantom Patients

We generated 130 patients with oval axial section bodies. We set the body density to
water density. We then added an ellipsoid PTV within the body, with a slightly different
density (following A (1, 0.05)). Likewise, we generate five organs gravitating around
the PTV, aligned on the axial section (Fig. 5).

—— body
— ptv
—— organs

dose [Gy]

— ptv
organ_1
—— organ_2
—— organ_3
—— organ_4
—— organ_5

Volume (ratio)
e
o

o
>

0.2

0.0

0 10 20 30 40 50 60 ] 70 80
Dose (Gy)

Fig. 5. Example of a (generated) patient:

Top-left: Main axial slice (center of the PTV) CT.

Top-right: Main axial slice (center of the PTV) of the clinical dose.

Bottom: Associated clinical dose DVH.

Clinical Dose

After generating the patient’s CT and structures, we needed to create a reference dose that
our agent should mimic. We manually set weights and performed a standard optimization.
The dose prescription is a standard 80Gy on PTV, the same across all patients. We used
a seven-beam IMRT irradiation technique on all the cohorts.

Optimization

We optimize the plan using the LBFGS optimizer (shown to be the most appropriate in
[4]). For each DVH constraint (e.g. for PTV, D95 > 80 Gy), we used a linear penalization
of the overdose.
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Abstract. Sepsis, a severe reaction to infection, presents significant challenges in
intensive care units (ICUs), often resulting in high mortality rates. Traditional treat-
ment approaches, primarily reliant on clinicians’ judgment and standard guide-
lines, frequently fail to deliver personalized care. Moreover, clinical decisions may
vary considerably among healthcare providers managing identical patient cases.
In this study, we propose an innovative method for optimizing sepsis treatment
strategies through Deep Reinforcement Learning (DRL), leveraging patient data,
medical expertise, and comprehensive sepsis research. Additionally, we develop an
interpretable reward formulation to guide the DRL agent in learning from real clin-
ical data, aiming to enhance treatment outcomes and mitigate mortality risks. Our
results demonstrate that the DRL approach surpasses existing methods, leading
to safer sepsis treatment decisions and correlating with increased patient survival
rates. This investigation underscores the potential of Artificial Intelligence (Al) in
enhancing treatments for sepsis and other intricate medical conditions.

Keywords: Sepsis treatment - Optimal policy - Reward function -
Reinforcement learning - Clinical decision support systems (CDSSs)

1 Introduction

Sepsis, a life-threatening infection response, presents a major challenge in ICUs globally,
with high mortality rates [1]. It contributes to about 20% of global deaths, varying by
severity [2]. The variability in clinical decisions and the pressing need for improved man-
agement strategies emphasize the importance of advancing sepsis treatment. Traditional
sepsis treatment emphasizes hemodynamic management and blood pressure stabiliza-
tion, but optimizing intravenous fluid volumes and vasopressor dosages remains com-
plex, often leading to suboptimal outcomes [3—6]. In 2016, Komorowski et al. pioneered
the use of reinforcement learning (RL) to optimise the dosage combination of intra-
venous fluids and vasopressors in treating sepsis patients, setting a precedent for future
research in this domain [7]. They employed terminal reward at the end of each trajectory,
contingent on 90-day clinical outcome (life or death). And they used value iteration tech-
niques to discover the optimal policy. However, relying on 90-day clinical outcome as a
reward did not effectively differentiate between patients with varying survival lengths,
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and the evaluation based on Q-values provided by the network lacked persuasive power.
In a recent reproducible study on the dosage combination of intravenous fluids and
vasopressors, Wu et al. utilized reward functions based on the Sequential Organ Failure
Assessment (SOFA) scores and 90-day clinical outcomes, concluding that patient sur-
vival rates are highest when the model achieves the maximum expected return [8]. This
finding underscores the model’s sensitivity to patient survival rates, although it does not
guarantee high survival rates under all circumstances. Therefore, beyond reward func-
tions, there is a need to explore further in terms of evaluation methods to establish more
objective and convincing standards.

To date, related studies have not thoroughly investigated reward functions nor ana-
lyzed their impact on model decisions. Furthermore, evaluation methods still require
improvement. Hence, we embark on research into reward functions, leveraging offline
reinforcement learning algorithms proven for their stability in this research domain, and
proposing more persuasive evaluation methods.

Specifically, we begin with the logic of drug effects, exploring the impact of indica-
tors influenced by medication on the human body throughout the sepsis progression, thus
resulting in a more interpretable reward function. We further propose a new evaluation
method. By grouping patients based on strategy distance and comparing survival curves
across different SOFA scores segments and treatment groups, we demonstrate that our
approach can effectively identify inappropriate clinician decisions. Patients whose treat-
ment trajectories were closer to our agent’s decisions indeed experienced higher survival
rates.

2 Methods

2.1 Reinforcement Learning Framework for Sepsis Treatment

Utilizing Komorowski’s data extraction scheme [7] and the Medical Information Mart
for Intensive Care (MIMIC)-III v1.4 database [9], we access a dataset of ICU patient
records to analyze sepsis treatment. [lluminated by a methodology aligned with Wu et al.
[8], our model adopts a continuous state space derived from patient vital signs over 4-h
intervals and a discrete 25-action space, ranging from (0,0) to (4,4), for combination
of vasopressors and intravenous fluids. To facilitate comparison, we also employs the
strategy of WD3QN method [8], using the same network architecture, that leverages an
adaptive dynamic weight p to achieve a trade-off between Dueling DQN and D3QN,
thereby deriving the optimal policy. The Q-value calculation formulas are shown in Egs.
(1) and (2).

O(Sr,a) = p x H};?XQ(S[, ar; 0~ ) + (1 —p) x Q(S;, argmax,, O(S;, ar; w); w~) (1)

O(Si—1,a-1) =1+ yQ(Si, ar) )

The Q-function, Q(S, a), represents the expected return for a state-action pair,
updated by weighting contributions from the main w and target w~ networks using
p. r is the reward for an action at state S;_1, and y is the discount factor. We primarily
focus on the configuration of the reward function.
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2.2 Reward Formulation

In this study, we scrutinize the reward function previously reliant on the SOFA score.
Although SOFA correlates with mortality, using it for immediate rewards in reinforce-
ment learning may not be entirely suitable. We observed that agents tend to over-
administer vasopressors when SOFA scores guide rewards. Our analysis investigates
changes in organ-specific SOFA scores after vasopressor administration. Changes in
total SOFA score are highly correlated with changes in circulatory SOFA score, as
shown in Fig. 1 and Table 1.
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Fig. 1. Histograms of SOFA score changes across six systems. In each system, the most frequent
change between adjacent time points is ‘0’. However, to better illustrate the statistics of the changed
values, ‘0’ is not included in the diagrams.

Table 1. Slope and bias obtained from linear regression of SOFA changes for each system against
the total SOFA changes. “Correlation” denotes the correlation coefficient.

Parameter Respiratory | Coagulation | Liver Circulatory | Nervous | Renal

Slope 1.0047 1.2042 1.0410 1.0959 1.1110 1.0224
Bias —0.0700 —0.0729 —0.0714 | —0.0041 —0.0591 | —0.0641
Correlation 0.4186 0.1741 0.4364 0.5341 0.4807 0.3906
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It is noteworthy that the calculation method for the circulatory SOFA takes into
account the use of vasopressors (see Table 2 in appendix). That is, when vasopressors
are administered, the circulatory SOFA is elevated, and once the patient’s blood pressure
increases and medication is stopped, the circulatory SOFA decreases. This suggests that
while vasopressors are effective in enhancing circulation and thereby reducing the total
SOFA score, they may lead to a tendency within the agent to favor higher dosages due to
their immediate beneficial effects, overlooking potential adverse effects. Consequently,
although the total SOFA score serves as a credible indicator of patient health status,
its application as a reward in reinforcement learning algorithms requires adjustment
to prevent the encouragement of excessive vasopressor administration. To formulate
the immediate reward in more details for clinical reinforcement learning, we analyze
vasopressor and fluid treatment in sepsis, consulting a wide range of medical literature
to understand key principles and their interplay, which constructs the causal hierarchy
diagram for sepsis treatment, shown as Fig. 2.
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Fig. 2. Causal hierarchy diagram for sepsis treatment.

The causal relationships between the nodes depicted in Fig. 2 are supported by the
following medical standpoints [10, 11]. Intravenous Fluids: Fluid resuscitation and
management are crucial for maintaining blood volume and homeostasis, affecting solute
distribution in vascular and extravascular spaces by altering blood volume and osmotic
pressure. Vasopressors: By inducing vasoconstriction, vasopressors raise blood pres-
sure, affecting microcirculation and organ perfusion, and modulate cardiac output. Fluid
Balance and Osmotic Pressure: Body fluid equilibrium influences solute distribution,
impacting tissue perfusion and oxygenation, which affects lactate production and clear-
ance. Elevated osmotic pressure can shift fluids out of cells, with albumin playing a key
role in fluid distribution and beyond. Microcirculation: Essential for tissue oxygenation
and nutrient delivery, microcirculation is influenced by osmotic pressure, vasoconstric-
tion, cardiac output and blood pressure, crucial for organ perfusion, especially renal
function. Life and Death: Outcomes are shaped by fluid balance, arterial pressure,
microcirculation, and lactate levels.

According to the observable variables in Fig. 2, we formulate the immediate reward,
focusing on blood pressure, fluid balance, albumin, lactate, excluding urine output as it
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is already encapsulated within fluid balance. A linear reward function, Rimmediate, CON-
sidering the changes over adjacent four-hour intervals in mean arterial pressure AMAP,
fluid balance AFB, albumin AALB, and lactate levels ALAC for simplicity is shown in
Eq. 3.

Rimmediate = ¢ AMAP+BAFB+y AALB + §ALAC 3)

Due to mean arterial pressure and fluid balance being the most densely connected
observable nodes and closely linked to action nodes, they are directly influenced by ther-
apeutic actions. Conversely, albumin and lactate, situated further from direct therapeutic
interventions and affected by numerous factors, will be assigned a reduced weight in the
reward function. Following the principles of classical reinforcement learning [12], we
target an immediate reward range between —1 and 1 for reinforcement learning algo-
rithms. For mean arterial pressure and fluid balance, we determine their coefficients in
such a manner that the coefficient multiplied by the absolute value of the median change
observed in the MIMIC-III dataset over every four-hour interval approximately equals 1.
For albumin and lactate, we adjust their coefficients so that the product of the coefficient
and the absolute value of their median change aligns closely with 0.1.

We further formulate a continuous terminal reward, Rierminal, varying linearly with
survival days for nuanced feedback and optimizing for long-term patient survival, not
merely limited in a 90-day cutoff. Patients who survive for 90 days or more will receive a
constant reward of R. This refined approach is aimed at providing a more comprehensive
and detailed evaluation of the treatment outcomes, ensuring that the evaluation process
captures a broader range of patient experiences and outcomes.

R/45 x survive_days — R, when survive_days < 90
R, when survive_days > 90

Rierminal = { (4)

Equations 3 and 4 as the Balanced Clinical Reward explicitly aim to strategically
guide the agent towards an optimal equilibrium between immediate treatment effects
and long-term health outcomes.

3 Experiments

Integrating findings from a recent pivotal study in this field, we have selected the recent
work [8] as our benchmark. A 5-fold cross-validation method was applied, with outcomes
averaged after training both models over 100 epochs each.

3.1 Action Distribution

Given the application of reinforcement learning algorithms in the clinical decision sup-
porting for sepsis treatment, where their real-world efficacy remains unverified, analyz-
ing the action distribution offers crucial insights into the algorithmic decision-making
preferences. The aggregate action distribution of physician and two agents across the test
set at each time point, derived from averaging five experimental outcomes, is illustrated
in Fig. 3.
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Fig. 3. Actiondistribution of physician policy (left), policy by our agent (center) and WD3QNE[8]
policy (right). The height of the bars represents the frequency of actions.

The analysis indicates significant differences in how actions are chosen, largely
due to different reward systems. When changes in total SOFA scores are utilized as
immediate rewards and clinical outcomes serve as terminal rewards, we see a unique
pattern in the agent’s decisions: a decrease in moderate actions with an increase in
either minimal or maximal interventions. This suggests a tendency towards extreme
strategies—either minimal use or maximal application of treatment options. This pattern
aligns with previous concerns about using SOFA score changes for immediate rewards,
leading to an emphasis on short-term gains without fully considering long-term risks.

However, under the setting of Balanced Clinical Reward, the agent tends towards a
more moderate approach. The action distribution primarily shows a peak for moderate
strategies and decreases for extreme actions. This suggests that the Balanced Clinical
Reward encourages the agent to find a middle ground between immediate advantages
and potential long-term disadvantages.

3.2 90-Day Mortality Rate

While action distribution offers insights into the overall tendencies in decision-making,
it lacks direct clinical applicability.

A more empirically grounded method of assessment is warranted. We recognize the
limitations inherent in previously suggested methodologies, such as comparing model
strategies to those of physicians using Q values [13] or observing the relationship between
expected returns and mortality rates [8]. These methods fall short of objectivity. The
comparison of model strategies against physician decisions through Q values inherently
skews towards the algorithmic decisions, given that reinforcement learning algorithms
prioritize actions with the highest Q values. Consequently, the model invariably positions
the physician’s decisions at a Q value that is not higher than the agent’s chosen action,
undermining objective assessment. And it’s acknowledged that Q values derived from
reinforcement learning models are heavily influenced by the reward function. With an
emphasis on the terminal outcome of life or death in the traditional reward function, the
model’s Q values predominantly reflect the likelihood of mortality. However, this does
not guarantee that the model can consistently achieve high Q values with its proposed
strategies across all states. Therefore, comparing mortality rates across models based
merely on reward intervals highlights the varied sensitivities of models towards patient
mortality rather than the efficacy of decisions. A more robust agent may accurately depict
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an individual’s survival probability through expected returns, yet this does not validate
the utility of the agent’s decisions. Our focus should pivot towards making the most
effective decisions by examining comprehensive data from the entire patient cohort.

Komorowski et al. explored the association between mortality and dosage excess,
where dosage excess denotes the deviation between administered and recommended
dosages of intravenous fluids and vasopressors, averaged across all patient time points
[13]. However, the quintessential clinical challenge in sepsis decision-making is opti-
mizing the balance between vasopressor and fluid dosages for an improved therapeutic
outcome. Consequently, we introduce a novel comparative approach that amalgamates
both strategies rather than isolating the examination to the disparity and mortality rate
between physician and algorithmic strategies within a singular framework. The distance
between two decision strategies for intravenous fluids and vasopressors at time ¢, given
their respective actions ranging from 0 to 4, can be mathematically represented using
the Euclidean distance formula. For two strategies A and B, with A represented by the
action pair ary, ayp and B by byy, byp, where ary and ayp are the actions for intravenous
fluids and vasopressors for strategy A, and bry and byp are the actions for strategy B,
the formula for the strategy distance is shown as Eq. 5.

Dy = (@ — bi)? + (ave — byp)? 5)

This definition interprets the distance between different action combinations on the
action distribution graph’s xOy plane as the Euclidean distance between two points
representing actions. It facilitates a comprehensive strategy comparison, aligning with
the objective of addressing sepsis clinical decision-making challenges. With this distance
definition, the correlation between the algorithm’s decision distance to physician choices
and patient mortality is shown in Fig. 4.
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Fig. 4. Relationship between the 90-day mortality rate and the strategy distance between doctors
and algorithms per patient at each time point. The dots represent the original data, and the line
represents the trend line obtained by linear fitting the data.
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Figure 4 illustrates the linkage between mortality rates and strategy distances across
distinct SOFA score categories. Within the framework of the Balanced Clinical Reward,
a consistent pattern is observed across all SOFA segments: the greater the divergence
between the physician’s and the algorithm’s decisions, the higher the mortality rate
observed. Conversely, under a reward configuration emphasizing clinical outcomes and
SOFA scores, a discernible trend correlating strategy distance with mortality rates was
not evident.

Nonetheless, relying solely on a 90-day mortality-strategy distance chart does not
adequately address the disconnect between the decisional discrepancies of physicians
and algorithms and the patients’ overall health trajectory. Matters of life and death, while
instantaneous, are the culmination of a series of decision-making processes. The 90-day
mortality-strategy distance chart, which treats each point in the patient’s treatment jour-
ney as an independent sample, fails to capture the temporal aspect of these decisions.
What is necessitated is an analysis that incorporates a four-dimensional event model:
strategy distance, temporal progression, the patient’s initial SOFA score at sepsis diag-
nosis, and the eventual outcome of life or death. This realization prompts the inclusion
of temporality as a critical dimension for evaluation, leading to the adoption of survival
curves for a more systematic and comprehensive analysis.

3.3 90-Day Survival Curves

To conduct time-series analysis, we defined the average strategy distance between the
algorithm and doctors throughout the entire treatment process as Eq. 6.

T
2
Average Strategy Distance = Z (D;lg 3 doc) /T (6)

=1

Considering treating strategy as a vector, the average distance between two sequential
strategies still utilizes the Euclidean distance calculation method. Dividing by T inside
the square root ensures that the average strategy distance can maintain the same range
as the strategy distance at a single time point.

A survival curve allows observing a patient group’s survival status from two dimen-
sions: time and life/death. Therefore, to conduct an objective survival analysis, we need
to segment the other two dimensions (average strategy distance and initial patient SOFA)
to define patient groups. For initial SOFA, we divided it into four segments. For average
strategy distance, we used half the maximum distance as the boundary shown in Fig. 5.

It’s apparent that, under the Balanced Clinical Reward setting, there are significant
differences between survival curves of different patient groups within the SOFA 5-9
and SOFA 10-14 segments, aligning with findings in previous research. Patients within
the SOFA 0-4 segment, having relatively good conditions, are insensitive to treatment
strategies, showing no significant differences in survival curves. Patients within the
SOFA 4-14 segment are in a transitional state where treatment can affect their outcomes,
showing sensitivity to different treatment strategies. For patients in the SOFA 15-24
segment with poor conditions, different treatment strategies do not significantly diverge
the survival curves.
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Fig. 5. Kaplan-Meier survival curves illustrate the outcomes for patient groups under different
treatment strategies. Each subplot corresponds to a specific initial SOFA segment. Three survival
curves are depicted for each segment: one for patients with an average strategy distance from
doctors to algorithms less than 2+/2, one for distances greater than 2+/2, and one representing
the overall patient survival under doctor decisions. The shaded areas around the curves indicate
the 95% confidence intervals. Statistically significant differences between the “near” and “far”
survival curves, as identified by our agent, were observed across all SOFA segments.

3.4 External Validation

It was noted that in the MIMIC-III dataset, doctors tend to use a significant amount
of fluid administration. This might be a reason why fluid balance shows outstanding
results in the Balanced Clinical Reward. To validate the universality of the reward, we
extracted treatment records of sepsis patients from the eICU database, selecting 3200
records with a low missing rate. We conducted external validation on the records using
an agent trained on MIMIC-III dataset. The survival curves for external validation are
illustrated in Fig. 6.

SOFA 5-9 SOFA 10-14 SOFA 14-24
1.00 — near 1.0 — near 1.0 — near
—— physician —— physician —— physician
— far — far 0.9 — far
= 0.95
2 0.8
a
& 080 0.7
[
a 0.6
3 0.85
5 0.5
5
32 080 0.4
0.75 0.3
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Time (days)

Fig. 6. Kaplan-Meier survival curves resulting from external validation on the eICU dataset. In
the 3200 patient records we extracted, with low missing data rates (50%), there were only 20
patients in the initial SOFA 0—4 segment, which does not have significant statistical meaning;
hence, it is not depicted in the graph. External validation demonstrates that the reward function
proposed in this paper is generalizable across different datasets.
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4 Conclusion

In this paper, we propose a novel method for optimizing sepsis treatment strategies based
on Deep Reinforcement Learning, and we further design an interpretable reward func-
tion that guides the DRL agent in learning from real clinical data to improve treatment
outcomes and reduce mortality risks. Our findings show that our DRL agent outperforms
existing methods in making safer sepsis treatment decisions and is linked to higher patient
survival rates, demonstrating the potential of reinforcement learning in healthcare. This
work marks a significant step towards the interpretability and practical application of
reinforcement learning in clinical decision-making for sepsis. We have provided a valu-
able methodological foundation for applying this technology in other clinical scenarios.
Through detailed analysis and empirical validation, we have showcased the immense
potential of reinforcement learning to enhance treatment outcomes, paving the way for
further research and practice. Future endeavours will integrate mathematical models
from sepsis pathology for more accurate modeling, aiming to improve survival curves.

Appendix

Calculation method of SOFA Score for Cardiovascular System is shown in Table 2.

Table 2. SOFA Score for the Cardiovascular System. Drug abbreviations: Dop = Dopamine, Dob
= Dobutamine, Epi = Epinephrine, Nor = Norepinephrine.

Score Mean arterial pressure/Administration of vasopressors required

0 MAP >= 70 mmHg

1 MAP < 70 mmHg

2 Dop <=5 mcg/kg/min or Dob (any dose)

3 Dop > 5 mcg/kg/min, Epi <= 0.1 mcg/kg/min, or Nor <= 0.1 mcg/kg/min
4 Dop > 15 meg/kg/min, Epi > 0.1 mcg/kg/min, or Nor > 0.1 mcg/kg/min

We conducted an ablation study, with results shown in Table 3.

Table 3. 90-day survival rate results of ablation study. The abbreviations MAP, ALB, FB, LAC,
and Terminal represent the scenarios without each item.

SOFA Patients MAP ALB FB LAC Terminal All
near 83.95% 83.76% 83.99% 84.29% 83.83% 84.22%

04 phys 83.11% 83.11% 83.11% 83.11% 83.11% 83.11%
far 80.87% 80.05% 82.70% 79.12% 80.55% 79.24%
near 79.85% 80.35% 75.78% 80.29% 80.03% 80.52%

(continued)



Reinforcement Learning with Balanced Clinical Reward 171

Table 3. (continued)

SOFA Patients MAP ALB FB LAC Terminal All
5-9 phys 78.00% | 78.00% |78.00% | 78.00% |78.00% 78.00%
far 73.49% | 71.05% |78.60% | 72.14% |72.67% 71.76%
near 72.24% | 72.85% |64.44% | 72.99% |73.10% 73.53%
10-14 | phys 67.84% | 67.84% |67.84% 67.84% |67.84% 67.84%
far 59.93% | 57.45% |69.04% | 58.30% |57.63% 57.37%
near 52.05% |55.43% |44.07% | 5549% |54.60% 57.41%
15-24 | phys 4599% | 45.99% |45.99% |45.99% | 45.99% 45.99%
far 39.39% |35.85% |47.00% |36.84% |36.71% 35.26%
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Abstract. Cerebrovascular accident (CVA) outcome predictions could
improve patient-centered care by informing individual patients on reha-
bilitation and expected outcomes. However, CVA patients’ data is verti-
cally distributed across hospitals and rehabilitation clinics. Centralizing
distributed medical data in a central repository leads to difficulty con-
cerning data privacy and data ownership. Vertical federated learning has
been introduced as a solution, but it is not secure. We introduce our
secure vertical federated learning (SVFL) protocol that prevents label
and data leakage through encrypted active-party backpropagation. We
use this to produce the first CVA outcome model using hospital and
rehabilitation data in a vertically federated setting. Data from 825 CVA
patients admitted to the St. Antonius Hospital, the Netherlands was col-
lected, including their rehabilitation trajectory in three clinics, to predict
functional status (dichotomized mRS score) after 3 months. Our results
show that a model trained on the vertically integrated hospital and reha-
bilitation data performs better than a model trained on either of these
sets alone. Training using SVFL yields a slightly lower predictive perfor-
mance compared to training on a fully centralized data set. No differ-
ence in predictive performance between secure and unsecured VFL was
observed, although secure VFL is computationally more expensive. This
highlights that SVFL is a promising alternative for situations where it is
not possible (or desired) to centralize vertically partitioned data.

1 Introduction

Like for many other diseases, patients with a cerebrovascular accident (CVA)
have a long aftercare process after hospital treatment [fDCP23]. The first
3months after a CVA can have a great influence on the eventual recovery.
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To deliver patient-centered care and make informed choices on rehabilitation,
it is important to inform individual patients about the right rehabilitation and
expected outcomes. A personalized outcome prediction is an essential component
of this. Using readily available clinical data, such as data collected for evalua-
tion and comparing of care initiatives (as in value-based health care [PT06]), can
lead to quicker adoption of prediction models [BIJC+20]. Previously, we have
shown that even with a small dataset, some deep learning (DL) models can have
better predictive performance than standard ML algorithms like random forests
and gradient boost classifiers [BAvH24]. [HLJ+21] showed that incorporating
patient data collected after discharge can lead to better predictions. However,
as CVA patients are usually treated sequentially in multiple healthcare institu-
tions, their data is distributed across these institutions such as the hospital and
rehabilitation clinics. Centralizing distributed medical data through a central
repository leads to difficulty both in data privacy and in data ownership, for
example leading to issues with shared data structuring, analysis, and matching
of patient records. In this paper, we examine how vertical federated learning can
be used to overcome these challenges securely.

There are two different types of federated learning (FL): Horizontal FL
focuses on scenarios where the data samples are different but share the same
features (see Fig.la), while vertical FL (VFL) addresses scenarios where par-
ties possess different features but share data samples (Fig.1b). In the case of
patients being managed by multiple care institutions, this refers to vertically
partitioned data. Recent developments in VFL have opened up the possibility
of developing Al algorithms without bringing data into a central repository. A
common way to perform vertical federated learning is through vertically split
networks [CSM+20], which consist of a neural network split among the different
parties (Fig.2). Multiple (passive) parties have a subset of the features, and the
central or active party has the labels. The passive parties calculate the bottom
layers of the network, and the active party uses the representations to train the
top layers of the models. As such, all parties retain ownership of their data and
their part of the network.

Parti- Parti-

Partition 1 . -
tion2 tionn

a) b)

Fig. 1. Shows (a) Horizontally partitioned data and (b) Vertically partitioned data,
with rows representing samples or patients and columns representing features

There are several issues with VFL. It can lead to lower predictive performance
[AKBVH22], but most importantly, it is not secure: it can lead to data leakage,
where parties can recover input data of the other party, and label leakage, where
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Fig. 2. Vertical Federated Learning with split networks. Left shows a centralized neural
network, with right the vertically federated version distributed over two institutions
and a central party.

the party without the label can recover the labels of the patients. Some papers
use differential privacy to counteract these security issues [LWXO21], but this
leads to a loss in predictive performance [JCH+21] and might not prevent label
leakage. Another option is encryption to ensure security for example through a
two-party system [FXC+22] or by secret sharing the cut layer [YHL+22], but
this can still be vulnerable to attacks [NHDC23]. We aim to provide an improve-
ment of the current methods of VFL by providing security against label leakage.
This is achieved by letting the party with the labels perform the backpropaga-
tion in its entirety, but have partial models and datasets be encrypted with a
cryptographic function with homomorphic properties. Thus, no information can
be extracted during backpropagation. Moreover, we apply this secure VFL to
provide an analysis of the use of vertically partitioned data for CVA outcome
predictions. For this purpose, we have collected a federated dataset on CVA
rehabilitation from the St. Antonius Hospital and three adjacent rehabilitation
clinics, to predict the functional outcome three months after a CVA. As far as we
know, this will be the first vertical federated learning model for CVA outcome
prediction. We will also provide evaluations of two public stroke datasets for a
more robust analysis. As such, our contributions are as follows:

— A secure vertical federated learning protocol that prevents label and data
leakage through encrypted active-party backpropagation

— The first CVA outcome model using hospital and rehabilitation data in a
vertically federated setting

— Evaluation of secure vertical federated learning on predictive performance,
and its trade-offs with security, privacy, and efficiency using multiple clinical
datasets

2 Proposed Protocol

Consider a situation where the hospital and the rehabilitation clinics want to
cooperatively train a VFL network, where the hospital has part of the data
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and the labels, and as such is the active party. The rehabilitation clinics (pas-
sive parties) have data to contribute. A trusted third party (TTP) is present to
distribute and encrypt the models and train the top layers of the model. Cryp-
tographic functions with homomorphic properties enable computations directly
on encrypted data, maintaining confidentiality throughout the process, such as
encrypted backpropagation. After decryption, the results are the same as if the
computations were performed on the plaintext data. This allows us to set up an
SVFL with encrypted partial models and data. There are several constraints to
ensure security: To prevent label leakage, (1) Only the hospital has access to the
labels. To prevent data leakage, (2) The hospital and rehabilitation clinic are not
allowed to share their data. (3) Parties with data or labels have no access to the
full model, only in encrypted form, so the TTP does not share the (combined)
model in unencrypted form. (4) The hospital and rehabilitation clinic only send
their partial outputs and partial models to the TTP so the TTP cannot extract
any information. As such, we create a protocol where the data and models are
encrypted by the TTP public key, all parties train their partial model locally,
and the active party performs the encrypted backpropagation and uses the result
for forward propagation. The functions detailed in Fig. 3 are defined below. For
simplicity, we consider a situation with one rehabilitation clinic.

INTI Initializes the model randomly based on the inputs and possible labels
ENC Cryptographic encryption function with homomorphic properties.
DEC Cryptographic decryption function with homomorphic properties.
EFW Encrypted forward propagation, which forward propagates the input over
an encrypted model, and outputs the encrypted results.
EBP Encrypted backpropagation, which backpropagates the encrypted model
and outputs an updated, encrypted model.
CMB function that takes two models and combines them into one model.
SPT function that splits a model into partial models.

3 Experiments

3.1 Datasets

St. Antonius Dataset: CVA Outcome Prediction. The goal of the use case
is to predict functional status in the form of a dichotomized modified Rankin
scale (mRS) score of the CVA patients after 3 months at discharge, based on
data collected retrospectively in the hospital and subsequent rehabilitation clin-
ics. The hospital data was based on the Dutch Acute Stroke Audit (DASA)
[KWvdBV+18], a stroke national registry. An overview of the data can be found
in Table 1. Data from patients that were admitted to the CVA unit of the St.
Antonius Hospital in the Netherlands between October 2018 and December 2019
were included in this study (n = 1014). Three (geriatric) rehabilitation clinics,
that patients were discharged to, provided data about patients’ rehabilitation
trajectory. Three months after the CVA, all patients or their caregivers were
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Fig. 3. Communication and secure processing protocol. O refers to the encrypted out-
puts of the models, C refers to the encrypted models. Forward and backward propaga-
tion are repeated until convergence.

contacted by phone for a follow-up to determine functional status. Patients
who died during hospital stay, could not be reached for, or opted out of the
three-month follow-up were excluded from the study (n = 189), leaving 825
patients. The mRS score represents functional outcome on a scale from 0 (no
residual symptoms) to 5 (severe disability), with 6 signifying the patient has
passed away. The scores were dichotomized to favourable outcomes (0-2) and
unfavourable outcomes (3-6). Patient data was matched between the hospital
and rehabilitation based on personal identifiers, or if not available, on other
known characteristics such as gender and age. For patients who did not receive
inpatient rehabilitation, days in rehabilitation and rehabilitation time were set
to 0. Missing hospital data was imputed using simple imputation, and missing
rehabilitation data was imputed with simple imputation with grouped averages
based on the type of dismissal.

Additional Public Datasets. To provide a more complete analysis of our
SVFL set-up, we also applied our protocol to the following two medical bench-
marks public datasets related to CVA, as summarized in Table2. CVA predic-
tion [Kag23] predicts the likelihood that a person will get a CVA based on
medical and lifestyle data. Public CVA rehabilitation [OOK16] follows patients’
rehabilitation after CVA. The dataset includes demographics, medical history,
questionnaires, and medical examinations at multiple time points in a year-long
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observational study. These datasets are suitable as vertically partitioned data
and more detailed information can be found in [AKBVH22].

3.2 Experimental Setup

We compared our SVFL setup to several baseline prediction models, creating
the following 5 scenarios:

1.

Ideal scenario: Fully centralized model trained and evaluated on a central
repository of both hospital and rehabilitation data
Hospital scenario: Centralized model trained and evaluated on only hospital

data set

Rehabilitation scenario: Centralized model trained and evaluated on only

rehabilitation data

Table 1. Patient characteristics. Abbreviations: FS = functional status (Barthel score),
MSR = Medical Specialist Rehabilitation, NH = nursing home, NIHSS = National
Institutes of Health Stroke Scale %nm = percentage of non-missing data, O/U =
other /unknown, *of patients who had rehabilitation ** FS in rehabilitation uses a
different metric (Barthel) than mRS

Hospital data

Rehabilitation data

Avg(std) %nm Avg(std) %nm*
Age 72.4(14.1) 99 | Time in rehab. (days) 56.4(38.0) 100
NIHSS 6.0(6.1) 94 | FS admission** 12.2 (5.6) 93
Time to hosp. (hrs) 17.1(174) 100 | FS discharge** 17.5 (4.6) 81
Time in hosp. (days) 7.1(8.2) 100 | Active treatment (min) 198 (22.8) 100
Time to IVT (min) 45.0(26.6) 20
Time to IAT (min) 81.6(73.9) 15
n(%) n(%)
Gender (Male) 57 99| Type None 75
Atrial Fibrillation 19 63 | of rehabilitation MSR 7.5
Referred 17 99 Geriatric 17.5
Discharged to Home 49 Discharged to Home 76
NH 1.6 NH 12
MSR 7.6 Rehab. 2.5
Hospital 8.6 Hospital 2.5
Geriatric 18 0/U 7
0/U 7.9
Intra-arterial therapy (IAT) 16 100
Intravenous thrombolysis (IVT) 21 100
CVA upon wake-up 22 99

Table 2. Additional datasets. FeatureSplit refers to the number of features in the first
partial dataset.

Dataset | # Samples | # Features | FeatureSplit | % pos. lab.
[OOK16] 1219 200 141 26
[Kag23] | 5110 12 5 5
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4. Unsecured scenario (VFL) Non-encrypted VFL model trained and evaluated
on hospital and rehabilitation data, adapted from [AKBVH22]
5. SVFL: Our proposed scenario, based on the protocol in Sect. 2.

The SVFL protocol and the four baselines were implemented for our St.
Antonius dataset and the two public datasets. Models were multilayer percep-
trons, hyperparameter tuning was performed with Optuna [ASY+19] for all
three centralized models. Distributed models were based on the finetuned cen-
tralized model for the full dataset. Only scenarios of vertically partitioned data
among 2 nodes (hospital and rehabilitation center) were considered. For the split
of the model among the local nodes, the division in terms of nodes per layer
was proportional to the feature division among the nodes. The dataset sam-
ples were divided 8:1:1, for the training, validation, and test sets respectively.
The experiments were evaluated for predictive performance in AUC and speed
in seconds. Experiments were performed in Python 3.7, with the unencrypted
models developed with PyTorch 1.8.1 and the encrypted models with CrypTen
0.4.0 [KVH+21], on i5 12th Generation Intel CPU with 8 GB RAM, running
the Windows Subsystem for Linux.

4 FEvaluations

4.1 Predictive Performance

We evaluated the 5 different scenarios with the aforementioned three datasets,
results can be seen in Table 3. While the predictive performance differs between
the datasets, we see a similar pattern over the 5 scenarios for each dataset:
The centralized model on the full dataset gives the best performance, and the
models only on the partial datasets lead to the worst performances. The VFL
scenario provides an increase in predictive performance compared to the best-
performing partial model, with an AUC of respectively 0.81, 0.94, and 0.81 for
[OOK16,Kag23], and the St. Antonius dataset. There is a decrease in predictive
performance compared to the ‘ideal’ scenario, the fully centralized dataset, of
respectively 0.01, 0.02, and 0.03. As expected, we saw no difference between the
secure and non-secure versions of VFL in terms of AUC.

Table 3. Area under the ROC curve for the 5 different scenarios on the 3 datasets

Dataset Centralization | Hospital | Rehab. | VFL | Secure VFL
[OOK16] |0.82 0.79 0.74 0.81 |0.81
[Kag23] 0.96 0.92 0.90 0.94 1 0.94
St.Antonius | 0.84 0.77 0.76 0.81 1 0.81




Secure and Private Vertical Federated Learning 179

4.2 Feature Importance

To provide insight into the cause of the small differences in model performances
between the centralized and federated scenarios, we calculated feature impor-
tances. To this purpose, we used SHAP, a method that provides local explain-
ability based on a game theory approach [LL17]. We give an overview of the
feature importances for the fully centralized and the VFL scenario for the St.
Antonius dataset. The beeswarm plot of the ten most important features in
both scenarios can be seen in Fig. 4. We can see that there are small differences
between the feature importances, with intra-arterial therapy (IAT) being part of
the top 5 predictors for the centralized scenario, whereas in the VFL scenario,
this is replaced by whether the patient had a CVA at wake-up.

High
High

Discharged to home | e Discharged to home .. «clefy - wargoe .
NIHSS . woggisepepos - . NIHSS .. ifismes st F
4 Age - - WEFEes. - ;
Age - & pdlesde. . . H g
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Gender s ol e Gender R A
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04 02 Lo 02 00 02 04

00 02 04
a) SHAP value (impact on model output) b) SHAP value (impact on model output)

Fig. 4. shows the 5 top features of (a) centralized scenario and (b) vertically federated
scenario of the St. Antonius dataset

4.3 Efficiency

We compare unencrypted VFL (scenario 4) with secure VFL (scenario 5) to see
the added computational complexity of the secure scenario. For [Kag23, O0OK16]
and our dataset, we see that the unencrypted scenario respectively took an aver-
age of 0.061, 0.045, and 0.031 s per epoch, whereas the SVFL scenario took 88.7,
23.0, and 16.7s. This implies that the encryption increases the computational
time by orders of 2,5-3 of magnitude, which is comparable to the results found
in [KVH+21]. We saw the increase was the largest for [Kag23], which contained
the largest sample size.

5 Discussion

Overall, the experiments show that the VFL scenarios have added benefit for all
tested datasets compared to their partial counterparts. For some datasets, there
is a slight decrease in predictive performance compared to the fully centralized
scenario. Moreover, we show a more secure version of VFL, at the cost of effi-
ciency. These two points highlight that SVFL is especially a good alternative
in situations where centralization of data is not a possibility. This is also true
for the St. Antonius dataset we have collected. There is an added benefit of
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combining the partial models for CVA rehabilitation prediction, where the VFL,
both secure and non-secure, outperformed the centralized scenarios of only one
partial dataset. We noticed a difference in the feature importances between the
centralized and the vertically partitioned model. This could explain the small
drop in performance, where the VFL network might struggle to extract the pre-
dictive value of certain features and focused on learning from other features
instead. Next to better predictions, this also offers the opportunity to provide
predictions at different points in time, by improving both the predictions at the
rehabilitation clinic and the hospital. We previously found that there is a need
for patients to have access to such predictions, also at different points in their
rehabilitation process [AvHH+24]. It is still essential to have agreements and
proper infrastructure between the different care institutions, but the avoidability
of data sharing that SVFL offers could make this easier to facilitate. Moreover,
SVFL could also be applicable in other domains than healthcare where sensitive
personal data is vertically distributed, like the financial sector.

There are some limitations to this study that have to be considered, both
with our collected dataset, as well as with the developed SVFL framework. We
were only able to collect a relatively small dataset for deep learning purposes
and data quality was affected by data collection being retrospective and some
rehabilitation clinics having privacy restrictions on the sharing of data. While
both these issues highlight the necessity of an SVFL framework, having a more
complete and high-quality dataset could have significantly impacted the predic-
tive performances among the different scenarios. Other limitations of the SVFL
framework are concerning the secure Crypten-based aspect of the framework.
The security is limited in our setup, as it is honest-but-curious which does not
protect against a malicious adversary [KVH+21]. Moreover, due to the com-
putationally expensiveness of the framework, an extensive vertically federated
hyperparameter search is currently not possible in a realistic timeframe. As such,
a more efficient SVFL could offer opportunities to further increase predictive
performance. Future research is needed in several other areas. For example, full
decentralization, without a third party, would be preferable to a TTP by limit-
ing the risk for the involved parties. Moreover, previous studies have shown that
including imaging, such as CT-perfusion, would lead to an increase in predictive
performance for CVA rehabilitation [BAvH24]. Creating an SVFL that allows
for imaging data, would require a more efficient protocol combined with a split
network that could handle different data modalities.
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Abstract. Electronic health records often lack consistent and orga-
nized documentation regarding lifestyle-related risk factors. This study
addresses this by presenting methodologies aimed at standardizing the
recording of patients’ smoking status. Different types of machine learning
methods are applied to an anonymized set of German-language clinical
narratives in order to categorize smoking status as a multi-class clas-
sification task utilizing SNOMED CT as a terminology standard. Our
findings demonstrate the effectiveness of downstreaming medBERT.de,
an openly available medical language model in German, achieving the
best performance with an Fl-measure of [0.969-0.976] 95% CI, in com-
parison to CNN, LSTM and an SVM baseline.

Keywords: Natural Language Processing - Electronic Health
Records + Machine Learning

1 Introduction

Smoking tobacco is still one of the leading causes of chronic obstructive pul-
monary disease (COPD) [12], and was placed third in the top causes of death
by the World Health Organization in 2019 [24]. Since then, the introduction and
uptake of e-cigarettes have caused an increase in tobacco use, especially in a
younger generation, switching from e-cigarettes to conventional ones [22]. The
act of smoking and the smoke itself have secondary factors besides affecting air-
ways, lungs, oral and dental health of smokers, and introduce changes to the
human body in various forms, e.g., metabolic changes and mental health related
challenges. In clinical information systems, details about a patient’s smoking sta-
tus are frequently confined to the narrative content of electronic health records
(EHRs). These texts are often riddled with jargon and abbreviations, posing
challenges for automated extraction of smoking status in order to obtain struc-
tured data. In 2022, an in-depth analysis by Kukhareva et al. [11] of relevant
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smoking information from EHR data revealed that in 80% of patient records,
various types of inaccuracies and data inconsistencies resulted in an underesti-
mation for lung cancer screening. Examples of inaccuracies were missing data,
outdated information or missing metadata, such as quit year or pack years esti-
mations.

Particularly with smoking status as part of social determinants of health [5],
studies have shown that the application of machine learning (ML) methods
can positively impact prediction and classification tasks [20,26]. In this work,
we undertook the task of distinguishing between different kinds of patients’
smoking habits, moving beyond a simple binary classification into smokers and
non-smokers. Addressing the needs of physicians, a scale was created to estab-
lish more nuance in the differentiation of smoking habits of patients, based on
the clinical narrative data and biomedical literature in this field. In conjunc-
tion, an annotated free-text German dataset was coupled with classical ML and
deep learning (DL) methods for automated smoking status classification and
evaluation.

2 Related Work

Yang et al. [25] extracted 200 clinical narratives from the University of Florida
Health Integrated Data repository to build a natural language processing (NLP)
tool for smoking status classification. The aim was to extract smoking-related
quantitative data to better gauge the smoking status of a patient, e.g., number
of packs per day, active smoking years, quit year, etc. In order to automatically
annotate clinical narratives accordingly, a two-layer rule-based approach was
employed, i.e., highly specialized rules were created in a two-step process. The
system reached a lenient and strict F1-measure of 0.963 and 0.946, respectively,
for evaluation on the test set. Ruckdeschel et al. [18] explored the classification
of English smoking status mentions into five distinct classes: Active Smoker,
Former Smoker, Never-Smoker, History of Smoking, or Unknown. A rule-based
extraction with named entity recognition from clinical narratives was combined
with a DL sentence classification model to determine the smoking status. To
this end, a transformer-based model was used with transfer learning to fine-tune
BlueBERT [16], a large language model (LLM), trained on clinical notes from
the MIMIC-IIT [8] database, and the model performed chronological processing
of clinical narratives, i.e., the last smoking status mention was favored. During
the processing, the extraction of two main criteria was focused on: pack-years
smoked, and time from quit date, if applicable. These two factors helped in the
classification of patients into Active Smokers, Former Smokers, and Unknown,
with sub-categorizations. As the goal was to determine, which patients quali-
fied for low-dose computed tomography, the Fl-measure for correctly selecting
patients was 0.88. Bae et al. [1] performed a smoking status classification for
a bilingual EHR dataset with 4,711 clinical notes in English and Korean. The
classification used the classes Current Smoker, Past Smoker, Never-Smoker, and
Unknown. A linear support vector machine (SVM) approach trained from uni-
gram and bigram bag-of-words was compared to a keyword expansion and search
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based mainly on vector similarity, achieving an F1-measure of 0.90. The keyword
classification algorithm improved upon the baseline by as much as 1.8%. Cac-
camisi et al. [3] processed Swedish EHR data to classify sentences into the classes
Current Smoker, Ex-Smoker, Non-Smoker, and Unknown. SVM was combined
with four macro settings of the tool Weka, i.e., sequential minimal optimization
(SMO), k-nearest neighbor, Naive Bayes, and J48 (decision tree). For train-
ing, 85,509 rows of information entered into a smoking status text field were
processed, while 177,110 rows were utilized for testing. The results showed the
best model to be the SVM-SMO model, with an Fl-measure of 0.98. Karlsson
et al. [9] applied BERT (Bidirectional Encoder Representations from Transform-
ers) [4] and ULMFiT (Universal Language Model Fine-tuning for Text Classi-
fication) [7] models for the classification of smoking status for a Finnish can-
cer cohort of 29,823 patients into the classes Never-Smoker, Former Smoker,
Persistent Smoker, and Missing data. The processing consisted of a rule-based
extraction of random 5,000 tobacco-related smoking status mentions, which were
manually labeled for the training of DL models. If multiple classifications over
time were found, a rule-based decision with classification class and metadata was
finalized. Both models performed similarly, i.e., the ULMFiT and BERT models
reached 0.87 and 0.88 in precision respectively. Rajendran and Topaloglu [17]
used English clinical narratives from 781 patients to classify the smoking sta-
tus according to a binary (Smoker, Never-Smoker) and multi-class classifica-
tion (Current Smoker, Former Smoker, Never-Smoker) schema. Three classical
ML algorithms, Naive Bayes, SVM, and logistic regression, and three DL meth-
ods, unidirectional long-short term memory (LSTM), bidirectional LSTM, and
convolutional neural network (CNN), were compared. Extensive rule-based pre-
processing of clinical narratives to correct language, spelling, as well as removal
of punctuation, repeat sentences, and stop words, was executed. For binary clas-
sification, the best performance was found in CNN with pre-trained word embed-
dings, reaching an F1l-measure of 0.85. For the multi-class classification schema,
CNN still remained the best method in terms of accuracy, with 0.68 in F1-
measure, while Naive Bayes performed comparably well, with an F1-measure of
0.69.

3 Data

De-identified German clinical discharge letters from cardiology, dermatology,
and oncology were processed with rules to extract smoking related mentions
from KAGes, an Austrian Hospital Network. The extraction was supported by
an expert in Extract-Transform-Load (ETL)-based processes. Any clinical nar-
ratives matching the regular expression [ikotin|F17| [“bB]lrauch|Rauch|Zig]
were included in the initial dataset, with the aim to extract any mention of nico-
tine, smoke inhalation, smokers, or cigarette consumption. 100 characters to the
left and right of the match were extracted, with the signal expression occurring
in the middle. With these snippets, a gold standard was created, where each of
the snippets was classified by a physician into one of the following six categories:
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Past Smoker, Current Smoker, Current Non-Smoker, Never-Smoker, Current or
Past Smoker, and Smoking Consumption Unknown [10]. Twenty percent of the
dataset was independently re-annotated by a second annotator to calculate the
inter-rater agreement [14]. A Cohen’s kappa « of 0.89 indicates a high agreement
between the annotators [13]. The categories were created through a bottom-up
approach in combining a thorough analysis of the dataset with existent termi-
nologies, i.e., SNOMED CT!. Table 1 gives an overview of the classifications and
class distributions over the whole dataset.

Table 1. SNOMED CT value set and class distributions.

Class | SCTID Preferred Term Counts
0 8517006 Ex-Smoker 2,182

1 77176002 Smoker 4,255
2 8392000 Non-Smoker 27

3 266919005 Never Smoked Tobacco 432

4 410511007; 77176002 | Current or Past Smoker 85

5 266927001 Tobacco Smoking Consumption Unknown | 261

All classes were assigned SNOMED CT codes. Because Class 4 “Current or
Past Smoker” has no SNOMED CT code, it was represented by the combination
of the code of “Smoker” with a temporal context value.

4 Methodology

4.1 Overview of Machine Learning Approaches

Four ML approaches were utilized for a comparative analysis of smoking status
classification. SVM acts as a baseline, as a classical ML algorithm. SVMs calcu-
late and find the optimal hyperplane that separates classes in a feature space.
Additionally, with three different DL models, three aspects of DL for multi-
class classification are under investigation with CNN, LSTM and BERT models.
CNNs apply layers to extract local features from texts, i.e., local patterns in
texts are primarily focused on. LSTM, a type of recurrent neural network, is
designed to capture sequential data. Lastly, a transformer-based BERT archi-
tecture leverages bidirectional attention mechanisms via a pre-trained language
model to understand the context in a sentence.

! https://www.snomed.org/five-step-briefing.
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4.2 Text Preprocessing and Representation

Line breaks within the contextual information in the texts were removed prior
to the extraction of the data. No other pre-processing was performed, particu-
larly no cleaning of misspellings and other non-standard uses of language. For
each chosen methodology, different textual representations are needed. For SVM,
TF-IDF?, was applied to have a weighted bag-of-words schema of the line under
investigation. For LSTM and CNN, label encoders are used to transform categor-
ical values, i.e., the assigned classes, into numerical values for processing, as well
as an embedding representation was leveraged. For BERT, the pre-trained lan-
guage model “GerMedBERT /medbert-512” [2] trained on German medical texts,
clinical narratives and health-related medical information was downstreamed to
the problem domain. This particular language model is BERT-based and exploits
the multi-layer bidirectional transformer encoder to capture the contextual infor-
mation present in the dataset.

4.3 Cross-validation, Hyperparameter Tuning and Grid Search

A 10x5 nested cross-validation was implemented to measure how well a trained
model type can adapt to a dataset, as well as to give an indication on how
generalizable methods truly perform independent of the dataset split. Addition-
ally, cross-validation in conjunction with grid search helped in selecting the best
hyperparameters for each method. The selection of the best hyperparameters
was based on the metric “accuracy”. For SVM, the regularization parameter,
type of kernel function and gamma were tuned. For LSTM and CNN, the learn-
ing rate and the batch size were varied. For BERT, no hyperparameter tuning
was performed, and the base model settings for learning rate and batch size were
applied. During training, the goal remained to establish, which of the variations
in parameter settings performed the best for each method.

4.4 Model Evaluation

The performance of the best model per random state was measured with the
weighted average metrics precision, recall and F1-measure. The weighted average
was chosen based on the imbalanced multi-class dataset being processed. Due
to the ten chosen random states, the mean and standard error (SE), as well as
the confidence intervals (CIs), across all ten random states for each method, are
reported on.

4.5 Processing Pipeline

The dataset consists of the context from the clinical narrative and the label
that was assigned by the annotators (see Table 1). The separation of the dataset

2 TF-IDF: term frequency - inverse document frequency.
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into training and test was achieved with the train_test_split function from scikit-
learn [15], into an 80% train and 20% test set. In conjunction with 10x5 nested
cross-validation, 10 different random states® were computed. After transforming
the textual input data, grid search was utilized for hyperparameter tuning. After
training each model and predicting on the test set, the best parameters for each
random state were saved. The performance metrics in the results refer to the
best performing hyperparameter model between the computed random states.

5 Results

The mean performance metrics per model show that BERT, based on the confi-
dence intervals, significantly outperformed all other methods, with a mean F1-
measure of 0.973. CNN followed closely with 0.942, followed by SVM and LSTM,
with 0.891 and 0.850, respectively. This trend is also mirrored in mean preci-
sion and recall metrics. In Table 2, the final weighted average mean scores with
standard errors and confidence intervals are listed.

Table 2. Mean performance metrics for SVM, CNN, LSTM, BERT models on the test
data reported with precision, recall and F1-measure.

Classifier | Metrics Mean + SE | 95% CI

SVM Precision 0.894 £ 0.002 | [0.889 — 0.900]
Recall 0.894 £ 0.003 | [0.888 — 0.900]
Fl-measure | 0.891 + 0.003 | [0.885 — 0.897]

CNN Precision 0.951 £+ 0.003 | [0.944 — 0.957]
Recall 0.940 £ 0.002 | [0.934 — 0.945]
Fl-measure | 0.942 £ 0.002 | [0.937 — 0.948]

LSTM Precision 0.866 £ 0.004 | [0.856 — 0.875]
Recall 0.845 £ 0.005 | [0.834 — 0.856]
Fl-measure | 0.850 £ 0.006 | [0.838 — 0.862]

BERT Precision 0.973 £0.002 | [0.970 — 0.976]
Recall 0.972 £ 0.002 | [0.970 — 0.975]
Fl-measure | 0.973 £ 0.002 | [0.969 — 0.976]

For hyperparameter tuning, SVM reached optimal performance between all
random states with the regularization parameter C at 10, gamma set at scale,
and kernel function set to radial basis function. Similarly, for LSTM and CNN,
the selection of best parameters resulted in a batch size equal to 64 and 128,
respectively, with a learning rate set to 0.01. For BERT, the standard preset
values, i.e., batch size at 8 and learning rate set to 0.0004, achieved state-of-the-
art results.

3 [509, 906, 331, 172, 729, 250, 762, 629, 926, 392].
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6 Discussion

In 2024, a recent systematic review on smoking status determination by Haque
et al. [6], summarized that a majority of articles applied rule-based methods,
followed by 44% of articles applying NLP methods, with 29% belonging to SVM
models. From the described related work in Sect. 2, we can assume that a pure
rule-based approach can reach optimal results above 0.963 in F1-measure. When
considering the approaches covered in this paper, the linear SVM approach by
Bae et al. [1] reached a similar performance of 0.900 in F1-measure as the SVM
method employed by us, with a mean F1l-measure of 0.891. Similarly, Caccamisi
et al. [3] have shown that an optimized SVM model would even be able to
improve upon the baseline. Rajendran and Topaloglu [17] compared classical
and DL algorithms for a multi-class classification schema. CNN outperformed
all other methods, including SVM, Naive Bayes, logistic regression, and LSTM
with an F1-measure of 0.690. Comparably, the same methodology for our dataset
reached a high mean F1-measure of 0.942, and similarly outperformed the LSTM
method with 0.850. Without the application of the BERT methodology, CNN
would have resulted in the best performance, as reported on by Rajendran and
Topaloglu [17]. However, the transformer-based architecture for our German-
language dataset was applied, and it outperformed all other methods. Ruckde-
schel et al. [18] stated that a fine-tuned BERT model, trained on clinical notes
in English, resulted in an Fl-measure of 0.880, while Karlsson et al. [9] simi-
larly applied a language-specific BERT model with a performance of 0.880 in
precision. Especially regarding the characteristics of German-language clinical
narratives, which are complex and filled with short forms and jargon expres-
sions [19], classifications of smoking status or other social determinants of health
can be ambiguous. Most information in clinical texts rely on contextual infor-
mation to be understood. The applied pre-trained language model and BERT
method seemed to increase contextual understanding, and resulted in a mean
F1l-measure of 0.973.

6.1 Error Analysis

For better understanding of the performance results per method, a summary
error analysis of the best performing model per method was done. On class level,
SVM and BERT methods accomplished a robust and high performance across
all classes. LSTM and CNN both seemed to have one class in the multi-class clas-
sification schema, which was either missed completely or performed very poorly.
LSTM completely missed the “Current or Past Smoker” class, which mainly con-
sisted of two contextual descriptions: (i) prescription of nicotine products, e.g.,
“Nikotinell 14 mg in 24 Std” (nicotine patch with 14mg in strength per 24 h), or
(ii) patient reported nicotine abstinence with quit year estimation, e.g., “seit 5
Jahren Nikotin-Karenz” (past 5 years nicotine abstinence). Furthermore, LSTM
also has shown slight decreases with classes that are less frequently represented
in the dataset, i.e., dataset imbalance seems to have a larger effect with LSTM
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compared to other models. As for CNN, the class “Current Non-Smoker” per-
formed very poorly, with a weighted F1l-measure of 0.213. Most entries in the
test set were classified incorrectly, and from the false positives and negatives,
the compound noun word “Nichtraucher” (“non-smoker”), was not contextually
understood by the CNN model.

6.2 System Limitation

The models were trained with narrative content from Austrian EHRs, which is
why the application is limited to the German language. Furthermore, deviations
from medical practice in the description of nicotine status cannot be recog-
nized by the models, as these do not occur in the data set. As the data was
only collected from three clinical departments, a selection bias can be assumed.
Depending on the medical specialty, documentation of smoking status are han-
dled differently, or even collected in the first place. Further data from a pul-
monology and an angiology department would have been interesting, because of
a much higher smoking prevalence of their patients, who typically suffer from
smoking-related diseases.

7 Conclusion and Outlook

In this paper, a comparative analysis of ML techniques was performed to auto-
matically classify smoking status mentions in clinical narratives with SVM,
LSTM, CNN, and BERT methods. Cross-validation, hyperparameter tuning and
grid search were applied for optimal customization and robust evaluation results.
BERT outperformed all other methodologies and reached state-of-the-art results,
with CNN, SVM and LSTM following, in that order.

Future work will focus on enhanced robustness of the models with data from
other clinical departments, but also from other countries and languages. Thus,
varied practices of clinical documentation would also be reflected in the training
dataset. Besides a first positive evaluation on the performance of the classi-
fication task, a technical integration of an UIMA-based [21] natural language
processing component is planned as a next step.

In accordance with the FAIR criteria (Findable, Accessible, Interoperable,
Reusable) [23], a consideration of smoking status in the context of HL7-FHIR,
in combination with SNOMED CT would be of high interest for international
standardization of lifestyle data, particularly those related to global health, with
tobacco smoking being a leading cause of preventable diseases, such as lung
cancer, heart disease and stroke.
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Abstract. Data augmentation is the practice of applying various trans-
formations to existing data to increase their size and diversity without
collecting new data. While augmentation strategies are widely recog-
nized and implemented in image-based deep learning (DL) workflows,
the degree to which they are effective in the time series domain is unclear.
This paper experimentally evaluates the utility of various common time
series augmentation techniques, especially those relevant to the medical
sector where data limitations are prevalent. We thoroughly examine pop-
ular time series augmentation and synthetic data generation methods to
evaluate their effectiveness in downstream classification tasks, encom-
passing both traditional and DIL-based approaches. This research aims
to offer insights into the applicability and efficacy of data augmentation
strategies in improving model generalization and mitigating data scarcity
challenges, with a focus on biomedical time-series data.

Keywords: Time Series - Data Augmentation - Classification

1 Introduction

Data augmentation is a technique for enhancing the size and diversity of training
datasets in machine learning. It involves creating modified versions of existing
data or synthesizing new data samples based on the statistical properties of
the original dataset. This method is instrumental across various data types,
including images, audio, video, and text. Our focus, however, narrows down to
the application of data augmentation techniques on time series data, a domain
that presents unique challenges and opportunities, especially within the medical
field.

The infusion of augmented data into the training process of time series models
offers significant advantages. It aids in the development of robust, flexible models
capable of generalizing effectively to new, unseen data. By introducing a variety
of scenarios and patterns through augmentation, models can better learn the
complex, non-linear relationships and temporal dependencies that characterize
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time series data. This is particularly crucial in mitigating the risks of overfitting
and enhancing the performance of models trained on limited, imbalanced, or
noisy datasets. Moreover, by limiting augmentation to the training phase, the
integrity and authenticity of the data during inference are preserved, ensuring
the models’ applicability to real-world scenarios remains uncompromised.

However, these advantages come with their own set of limitations. Despite
not directly affecting the inference phase, the process of data augmentation must
navigate the complexities of medical data’s sensitivity, specificity, and multidi-
mensional nature. The creation of augmented data requires careful consideration
to avoid introducing biases or artifacts that could mislead the learning process or
obscure critical information. Some augmentation techniques that directly apply
to other domains, for example, image flipping or rotating, may be ineffective or
even detrimental for time series data because they distort the inherent temporal
dependencies. Additionally, ethical and privacy concerns are paramount, as the
augmentation process involves manipulating sensitive patient data, necessitating
stringent adherence to data protection and privacy regulations. In conclusion,
while augmenting time series training sets offers a pathway to developing more
capable and generalizable models, it necessitates a careful, ethically mindful
approach.

In this paper, we present a survey of existing time series augmentation tech-
niques and their effectiveness on different types of time series data. We categorize
augmentation techniques into two parts: (1) traditional methods and (2) genera-
tive methods (Fig. 1). Traditional methods involve simple signal transformations
such as jittering, scaling, magnitude warping, time warping, and window slicing.
Augmented copies of the original training samples are added to the training set.
Deep learning-based generative methods introduce new data samples by first
modeling the statistical properties of the dataset and then generating new data
that obey these statistical properties but are not identical to any of the original
samples on which the models were trained. The three most popular categories of
generative methods at the time of writing are Generative Adversarial Networks
(GANS) [7], Variational Autoencoders (VAEs) [1], and Diffusion models [8].

We assess the impact of these augmentation techniques on four distinct
time series datasets — pertaining to human activity recognition, sleep studies,
heart disorder recognition, and epileptic seizure detection (see Sect. 3.1 for more
details) — and use the original and augmented versions of the data for down-
stream classification tasks with three popular deep learning time series classifi-
cation architectures, namely LSTM [5], CNN [3], Transformer [14].

Our experimental findings underscore the nuanced effects of different aug-
mentation strategies on model accuracy, influenced by the specific characteris-
tics of the data and the architecture of the classifiers. These insights highlight
the absence of a universally optimal augmentation approach, advocating for a
tailored selection of techniques based on the specific requirements of each task.
A detailed discussion of our empirical observations and their implications for
machine learning practice in time series analysis will be elaborated in subse-
quent sections of this paper.
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Fig. 1. Overview of various Time series augmentation techniques.

2 Background

The exploration of time series data augmentation techniques has evolved signif-
icantly, with various methodologies being developed to enhance the robustness
and performance of machine learning models. This body of work encompasses
a range of strategies aimed at enriching training datasets, thereby improving
model generalization across diverse applications such as classification, forecast-
ing, and anomaly detection. Previous studies, such as those by Wen et al. [12]
and Iglesias et al. [2], have provided comprehensive overviews of augmentation
methods, discussing their applications, the metrics for evaluation, and the chal-
lenges encountered with each technique. Despite these efforts, a gap remains
in directly comparing the effects of these augmentation methods across differ-
ent types of datasets, particularly those related to human activity and medical
diagnosis.

In this context, our paper endeavors to bridge this gap by offering a detailed
experimental comparison of traditional and deep learning-based generative aug-
mentation techniques. Figure 1 provides an overview of the augmentation tech-
niques compared in this work. We assess their impact on datasets pertinent
to human activity recognition and medical diagnosis, employing various model
architectures to evaluate the effectiveness of each augmentation method.

2.1 Augmentation Techniques Overview

In this section, we delve into several common augmentation techniques examined
in this work and provide a brief formal definition of each.

Rotation: Rotation augmentation involves applying a transformation matrix to
the original time series data to generate new samples. This method is mathe-
matically represented as: Xotateda = R(6)X where X is the original data, R(6) is
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the rotation matrix defined by the rotation angle 8, and X, otateq is the rotated
data.

Jittering: Jittering introduces small, random variations to the data, effectively
modeled as: Xjitterea = X +N(0,02) where X is the original data and N (0, 0?)
represents Gaussian noise with mean 0 and variance o2.

Flipping: Flipping reverses the time series data, mathematically described by:
Xiipped[t] = X[IN —t] where X is the original series, IV is the length of the series,
and t is the time step.

Scaling: Scaling adjusts the amplitude of the data either by magnifying or by
shrinking the data point range of values. Xcaleda = multiplier X X iginal where X
is the original data and multiplier is a scaling factor which can be either greater
or less than 1.

Permutation: Permutation reorders the data points randomly: Xpermuted =
X|[n(i)] where X is the original data and 7 represents a permutation of the
indices i.

Window Slicing: Window slicing segments the data into windows, formally:
Xalice = X[t : t +w] where X is the original series, ¢ is the starting point, and w
is the window size.

Time Warping: Time warping alters the temporal scale: Xyarpea(t) = X (At)
where X is the original series and A is the warping factor.

Window Warping: Window warping applies localized transformations:
Xwindow warped = Lransform(Xyindow) where Xyindow is a segment of the original
series and Transform denotes the applied warping.

Magnitude Warping: Magnitude warping modifies the amplitude:
Xmagnitude warped = X - A where X is the original series and A is the warping
factor.

Fourier Transform: Fourier Transform augmentation modifies the frequency
components: F(Xaugmented) = F(X) + AF where F(X) is the Fourier trans-
form of the original data, and AF represents the modifications in the frequency
domain.

Generative Adversarial Networks (GANSs): GANs generate synthetic data
by training a generator GG to produce data that a discriminator D cannot distin-
guish from real data, represented as: G(z) &~ X where z is random noise input
and X is the real time series data.

Variational Autoencoders (VAEs): VAEs generate synthetic data by encod-
ing input data X into a latent space z and then decoding it, shown as:
Xsynthetic = Decoder(Encoder(X)).

Diffusion Models: Diffusion models represent a class of generative models that
gradually transform data from a simple distribution (e.g., Gaussian noise) into
complex data distributions by learning to reverse a diffusion process, X;_1 =
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f (X4, 6), where X; represents the data at step ¢, X;_; is the data at the previous
step, and f is a learned function parameterized by 6. In the context of time series
data augmentation, diffusion models can be employed to generate synthetic time
series data that captures the intricate temporal dynamics and distributions of
the original dataset.

3 Methodology

Our methodology encompasses a rigorous approach to evaluating the efficacy of
various data augmentation techniques applied to time series datasets, ensuring
the integrity of our experimental setup and the reliability of our results. To
address the challenges inherent in time series data analysis, particularly the
risk of data leakage, we meticulously partition the datasets based on subjects.
This strategy guarantees that each subject is exclusively included in either the
training or testing set, thereby preserving the independence of our test data and
ensuring it remains unseen during training.

In our analysis, we explore both traditional and deep learning-based aug-
mentation methods. Traditional techniques such as jittering, scaling, magnitude
warping, time warping, window warping, and window slicing are systematically
evaluated. Each technique is parameterized to quantify the extent of augmenta-
tion, with experiments conducted across a spectrum of parameters using 10-fold
cross-validation. This process allows us to identify the parameter setting that
maximizes mean accuracy for each augmentation method. Using the selected
parameter, we augment the training data doubling the size of each class. Thus
the entire training data is doubled and the class ratios remain unaltered. Using
the best augmentation hyperparameter, we again shuffle the data 10 times and
calculate the accuracy for each shuffle. Using the 10 accuracies, we calculate the
technique’s average accuracy and 95% confidence intervals.

For the task of classification, we leverage three distinct classifier models:
LSTM, CNN, and Transformer-based models, utilizing the TSAI library [11]
for state-of-the-art implementations. Specifically, we employ the LSTM-FCN
architecture [5] for the LSTM model, the Inception Time model [3] for the CNN,
and the TST architecture [14] for the Transformer model, as implemented in the
TSAI library [11].

Data preprocessing forms the initial phase of our methodology, where data
from four distinct datasets are prepared for analysis. This involves loading data
from various channels, processing it through data loaders, and splitting it into
training, testing, and validation sets based on subjects. This subject-based split-
ting is critical for avoiding data leakage in time series analysis.

Our augmentation pipeline is depicted in Fig.2 for traditional methods. In
contrast, the pipeline for deep learning-based methods differs in the final step
by eliminating the need for multiple shuffling iterations, instead requiring only
a single iteration of data generation. We apply six traditional augmentation
methods, sourcing implementations [4]. For deep learning-based augmentation,
we investigate three techniques: a Transformer-based GAN [7], a Variational
Autoencoder [1], and a Diffusion model [8], each implemented from recent liter-
ature.
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Fig. 2. Overview of augmentation and testing pipeline for traditional time series aug-
mentation techniques.

Through this comprehensive methodology, we aim to provide a detailed com-
parison of the impact of various augmentation techniques on time series datasets,
focusing on human activity recognition and medical diagnosis. Our approach
ensures a robust evaluation framework, leveraging advanced classification models
to assess the effectiveness of each augmentation technique in enhancing dataset
quality and model performance.

3.1 Dataset Description

The four datasets described below were selected as representative of typical
biomedical applications using machine learning models.

Human Activity Recognition: The UniMiB SHAR [9], is a dataset of acceler-
ation samples acquired with an Android smartphone designed for human activ-
ity recognition and fall detection. The dataset includes 11,771 samples of both
human activities and falls performed by 30 subjects of ages ranging from 18 to
60 years. The dataset contains 9 types of daily living activities. The 9 types
of daily living activities include: Standing Up From Sitting, Standing Up From
Laying, Walking, Running, Going Upstairs, Jumping, Going Downstairs, Lying
Down From Sitting, Sitting Down.

Sleep Event Detection: The Polysomnography (PSG) dataset [6] used in this
work contains data recorded on 212 individuals in a hospital setting for sleep
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apnea syndrome (SAS) diagnosis. Five categories of abnormal events were anno-
tated by a medical team (“respiratory”, “neurological”, “limb activity related”,
“nasal”, and “cardiac”). In this study, we detect only the respiratory events,
thus forming a binary classification task. We use only the 12 signal channels
that are most relevant to the respiratory events. Nine of the channels (3 x EEG,
2 x EMG, 2 x EOG, 2 leg sensors, and ECG) were downsampled from 200 Hz to
100 Hz to match the remaining three sensors used (flow thermistor plus thoracic
and abdominal respiratory belts).

Heart Disorder Detection: The MIT-BIH disorder dataset [10] contains 48
snippets of ambulatory ECG recordings spanning half an hour each from 47
subjects across five heart conditions. The samples, originally recorded at 125 Hz,
have been adjusted to 187 in length for U-Net compatibility. The training set has
87554 samples, with the majority class having 72471 samples and the smallest
class having 641. The test set includes 21892 samples, ranging from 162 to 18118
samples per class. The majority class of both the training and testing set was
reduced to 10% to prevent class imbalance.

Epileptic Seizure Recognition: This dataset [13] consists of 5 different fold-
ers, each with 100 files, with each file representing a single subject/person. Each
file is a recording of brain activity for 23.6s. The corresponding time-series is
sampled into 4097 data points. Each data point is the value of the EEG record-
ing at a different point in time. So we have a total of 500 individuals, with each
having 4097 data points for 23.5s. The five different folders represent five differ-
ent situations in which the EEG signal is recorded from the brain. The folders
include eyes open, and eyes closed, recordings from healthy brain areas with a
tumor in the brain, recordings from the part of the brain with the tumor, and
the last folder, recordings of seizure activity. A binary classification is performed
with this data for recording of seizures against others.

4 Results

In Fig. 3, we show the downstream classification of each combination of aug-
mentation technique and classification architecture on the four datasets used
in this study. Each of the four plots shown in the figure corresponds to a dif-
ferent dataset, as indicated by the label on the top of the plot. Each plot is a
bar chart, with the bars separated into three groups corresponding to the three
deep-learning classification architectures. Each bar within a group corresponds
to a different augmentation technique, showing the mean accuracy accomplished
when applying that augmentation technique to data. Along with the accuracy,
a 95% confidence interval range is shown at the top of each bar. The order is
maintained across groups and plots for comparison consistency.

Due to space limitations, only the plots are shown here. For the detailed
numeric results in tabular format and specific parameter values used by each
augmentation technique, the reader should refer to the Appendix of this paper.
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Fig. 3. Classification accuracy results for the combination of four datasets, three clas-
sifier architectures, and ten augmentation techniques explored in this study.
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5 Discussion

Our investigation into data augmentation’s impact on time series classification
accuracy has elucidated several crucial insights. Notably, while augmentation
typically boosts classification accuracy, the effectiveness of specific techniques
varies depending on the dataset and classification architecture used.

Traditional augmentation methods, such as jittering and scaling, generally
enhance model performance across various datasets by introducing necessary
variability without significantly distorting the time series’ inherent dynamics.
However, the mixed results observed with window warping and slicing highlight
the context-sensitive nature of augmentation effectiveness, indicating that a tai-
lored approach, possibly involving a combination of techniques, might yield the
best results.

The effectiveness of generative deep learning-based augmentation methods
also varies. It appears that the addition of synthetic examples with class ratio
distribution equal to the original dataset does not significantly boost the overall
accuracy. However, the boost in performance may be more pronounced when
the class distribution is imbalanced and synthetic examples are introduced to
the minority class(es) to mitigate the class imbalance.

Furthermore, our findings reveal that multi-channel datasets tend to benefit
more from augmentation than single-channel datasets, likely due to the richer
information content that provides more scope for effective augmentation without
loss of signal integrity. Conversely, the application of augmentation techniques,
especially in datasets with low signal-to-noise ratios like EEG data, requires
careful consideration to avoid degrading the classification accuracy.

Interestingly, the impact of augmentation appears to be relatively consis-
tent across different classification architectures, indicating that the benefits of
data augmentation transcend architectural differences and largely depend on the
quality and diversity of the training data.

In summary, data augmentation emerges as a valuable tool for improving
time series classification models, with its effectiveness highly contingent on the
dataset characteristics, augmentation technique, and classification architecture.
A judicious, context-aware application of augmentation techniques is essential
to optimize model performance, highlighting the need for ongoing research to
refine these strategies for diverse applications.

6 Conclusion and Future Work

Our comprehensive exploration of data augmentation strategies for time series
classification in the biomedical domain has illuminated their varied impacts on
model performance. We have shown that the effectiveness of augmentation tech-
niques is highly context-specific, with no one-size-fits-all solution. This under-
scores the necessity for a tailored approach, informed by the dataset’s charac-
teristics and the model’s requirements.

Moving forward, the development of more sophisticated, adaptive augmen-
tation methods that can autonomously determine the most effective strategies
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for a given dataset and task is an exciting area for further exploration. While
this study has focused on biomedical time series data, the insights gained are
broadly applicable across various domains, pointing towards the broader goal of
improving model robustness and generalization through strategic data augmen-
tation.

Appendix

The tables below show the detailed classification accuracy results for each
dataset, augmentation technique, and classification algorithm architecture. The
LSTM, CNN, and Transformer table headers correspond to the LSTM-FCN [5],
the Inception-Time CNN [3], and the TST [14] architectures respectively, as
implemented in the TSAI library [11]. The “Par.” table header indicates the
tuned hyperparameter value used for that particular augmentation technique in
the corresponding experiment. For example, a jittering value of 0.03 corresponds
to the standard deviation value of the added Gaussian noise, a scaling value of
0.7 corresponds to the scaling factor multiplier, etc. For the generative models,
the default hyperparameters recommended by the original model authors were
used without tuning (Tables 1, 2, 3 and 4).

More implementation details can be found in the public source code page of
the project: https://github.com/imics-lab/time-series-augmentation

Table 1. Results for Human Activity Recognition dataset.

Augmentation |Par. | LSTM Par. | CNN Par. | Transformer

Original Null | 80.54% + 0.1 |Null | 88.68% =+ 0.61 | Null | 90.85% + 0.71
Jittering 0.03 |85.91% + 0.6 |0.05 | 89.58% + 0.43 0.8 |91.09% + 0.43
Scaling 0.7 |86.01% + 0.58 |3 91.23% + 0.45| 3 93.22% + 0.47

Mang. Warp. |0.1 |84.8% + 0.5 |0.1 |88.62% =+ 0.34 0.3 |90.04% =+ 0.29
Time Warp. 0.1 [83.38% £+ 1.19|0.1 |89.02% =+ 0.64 0.1 |91.38% =+ 0.52
Window Warp. | 0.01 | 85.62% =+ 0.62 0.9 |90.28% =+ 0.46 | 0.01 | 91.43% =+ 0.54
Window Slic. 0.9 |88.14% + 1.13/0.9 |91.62% + 0.44 0.9 |93.37% =+ 0.22
TTS GAN Null | 74.21% =+ 1.05 | Null | 86.22% =+ 0.57 | Null | 89.59% =+ 0.25
VAE Null | 79.37% =+ 0.45 | Null | 85.41% =+ 0.56 | Null | 88.06% =+ 0.44
Diffusion Null | 80.14% + 0.67 | Null | 84% + 0.47 Null | 87.6% =+ 0.54
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Table 2. Results for Sleep Event Detection dataset.
Augmentation Par. | LSTM Par. | CNN Par. | Transformer
Original Null | 68.72% =+ 2.35 | Null | 63.43% + 4.2 |Null | 75.49% + 1.12
Jittering 0.01 | 66.04% =+ 1 0.03 |63.51% + 2.3 |0.07 | 77.39% =+ 0.86
Scaling 11 | 78.04% + 0.29 |11 | 73.15% + 4.09 9 77.94% + 1.37
Magnitude Warping | 3 77.39% + 244 |11 | 77.92% 4 0.02 |9 75.62% + 1.42
Time Warping 3 73.06% + 2.04 | 11 74.91% + 2.6 0.1 |76.63% + 1.33
Window Warping 0.9 |68.36% =+ 1.69 0.7 |69.69% =+ 3.94|0.09 | 74.7% + 2.3
Window Slicing 0.2 |75.48% + 1.21]0.1 |74.55% +£1.88 |0.7 |72.89% + 1.93
TTS GAN Null | 63.3% =+ 3.68 | Null | 68.8% =+ 2.8 Null | 71.09% =+ 3.18
VAE Null | 67.87% =+ 2.19 | Null | 75.25% + 0.77 | Null | 76.47% + 1.6
Diffusion Null | 62.29% =+ 2.89 | Null | 65.23% + 4.6 |Null | 72.57% + 2.43
Table 3. Results for Heart Disorder Detection dataset.
Augmentation | Par. | LSTM Par. | CNN Par. | Transformer
Original Null | 94.32% + 0.1 | Null | 94.5 % + 0.09 | Null | 95.01% =+ 0.08
Jittering 0.01 |94.91% + 0.07 |0.01 | 94.87% =+ 0.05 | 0.03 | 95.23% =+ 0.1
Scaling 0.1 [94.97% 4+ 0.09 0.1 |94.92% =+ 0.08 0.1 |95.28% =+ 0.08
Mang. Warp |0.1 [94.92% + 0.14 | 0.1 [94.93% + 0.13|0.1 |95.26% =+ 0.09
Time Warp 0.1 ]93.84% + 0.12 |0.1 | 94.08% =+ 0.08 | 0.1 |94.82% =+ 0.1
Window Warp | 0.01 |95 % =+ 0.08 0.03 1 95.09% + 0.150.03 | 95.47% + 0.07
Window Slic | 0.01 [ 93.88 % & 0.12|0.01 | 94.24% 4 0.15| 0.01 | 95.26% =+ 0.09
TTS GAN Null | 94.2% + 0.09 | Null | 94.33% =+ 0.12 | Null | 94.87% =+ 0.08
VAE Null | 93.61% =+ 0.06 | Null |94.23% + 0.12 | Null| 95.03% =+ 0.11
Diffusion Null | 93.73% =4 0.08 | Null | 94.69% =+ 0.07 | Null | 95.09% = 0.08
Table 4. Results for Epileptic Seizure Detection dataset.
Augmentation Par. | LSTM Par. | CNN Par. | Transformer
Original Null | 97.16% =+ 0.17 | Null | 97.21 % + 0.13 | Null | 96.53% =+ 0.2
Jittering 0.2 197.32% + 0.07 |04 |97.14% + 0.2 |1 96.67% =+ 0.2
Scaling 0.1 |97.27% + 0.11 0.1 |97.12% £+ 0.11 | 0.1 |96.81% + 0.24
Magnitude Warping | 0.1 |97.16% + 0.17 | 0.1 |97% + 0.1 0.1 |96.81% + 0.15
Time Warping 7 97.13% + 0.16 |3 97.07% + 0.14 | 0.1 |96.69% + 0.17
Window Warping 0.07 1 97.36 % £+ 0.13 0.7 |97.26% 4+ 0.14 | 0.1 |96.85% + 0.23
Window Slicing 0.3 19739 % £+ 0.12/0.3 |97.34% £+ 0.05 | 0.9 |96.48% + 0.27
TTS GAN Null | 96.71% + 0.22 | Null | 96.42% =+ 0.12 | Null | 97.06% =+ 0.12
VAE Null | 97.3% 4+ 0.09 | Null | 97% =+ 0.13 Null | 96.03% =+ 0.31
Diffusion Null | 96.95% £ 0.2 | Null |96.78% + 0.17 | Null | 95.81% + 0.37
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Abstract. Lack of real-world data in clinical fields poses a major obstacle for
training deep learning models. Using data augmentation can increase data volume,
making the training of deep learning models more effective. This paper aims to
investigate different techniques for generating realistic multivariate synthetic fall
data, addressing the challenge of limited fall data availability. We experimented
with three traditional time series data augmentation techniques, a generative Al
approach with diffusion, and extraction of data from public video recordings of
older adults falling. We evaluated the effectiveness of the generated data with both
an LSTM model trained offline and using the SmartFall App running the LSTM
model in real-time. Initial results indicate a 7-10% increase in the F1-score for
the fall detection model when trained with additional data generated through the
diffusion method during offline evaluation and a notable improvement of 24% was
observed with the real-time evaluation of the model.

Keywords: Time series data generation - Fall detection - Diffusion model -
Video data extraction

1 Introduction

Falling poses a significant health risk for older adults globally [9]. In fact, the injury posed
by falling in older adults are the leading cause of unintentional death in individuals over
85 years old [15]. Research on wearable device technologies like smartwatches and
IMU sensors for fall detection has become popular due to their affordability, portability,
and non-intrusiveness. In complex physiological processes like fall onset, deep learning
struggles with limited training data as fall events are rare and large data collection
is difficult. Researchers have collected simulated fall data in controlled environments,
a costly and labor-intensive process. Data augmentation or synthetic data generation
techniques are one of the standard approaches to addressing the issue of small datasets
[5]. Generative Al, like GANs, VAEs, and Diffusion Models, is prominent in creating
synthetic data for images and time series. Diffusion models have become a popular
method among deep generative models, showcasing outstanding performance in diverse
applications [17]. More recently, virtual IMU signal has been reported as a reliable
alternative way for synthetic data. For instance, an engineering pipeline was proposed
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to generate on-body virtual sensor data utilizing data of a different modality (i.e., video)
[6]. Therefore, we have adopted the methodology presented in [8] for the extraction of
video fall data publicly available from two long-term care facilities in British Columbia
[14]. In this work our contributions include: A) Introducing the Diffusion model for
data generation. B) Extracting fall data from videos using pose estimation. C) Validating
synthetic data techniques. D) Comparing fall detection model performance with real and
synthetic data using the SmartFall App. E) Showing the effectiveness of data generated
with the Diffusion model and video extraction in improving fall detection models.

2 Experimental Setup

Datasets: We employed three fall-based datasets as input to different synthetic data
generation techniques and one video dataset for extraction of fall data for impact assess-
ment. Those are SmartFallMM’s smartwatch data (accelerometer data) (collected in our
laboratory) [2], the UniMiB [11], and the K-Fall [18]. All those datasets have various
simulated falls and activities of daily life performed by healthy young adults. The video
dataset is a real-life video recording of older adults falling in a long-term care facility in
British Columbia [14].

Data Preprocessing, Deep learning Model, Training and Evaluation: We used a
basic LSTM deep learning model, which is favored for time series data due to its capa-
bility to learn temporal dynamics. The detail of the architecture can be found in our
technical report [1]. Our model, deployed and tested in our SmartFall App, outperformed
1D CNN, Gradient Boosting, and Random Forest [10].

The input data is pre-processed by segmenting into overlapping windows with a
step size of 10, using a window size of 128 across all experiments. Different training
scenarios are explored, with baseline models trained solely on original datasets, without
any synthetic data. The dataset is split into training, validation, and test sets at a ratio of
70/20/10, and a 5-fold validation method is applied. Baseline models serve as the refer-
ence. New LSTM models are trained using combined original and synthetic data, while
validation and testing are conducted solely on real data. Performance evaluation includes
standard metrics: Precision, Recall, F1-score, and Accuracy, to assess the effectiveness
of synthetic data from various methods.

We validate the best model using generated data with the SmartFallMM dataset
in a real-world setting via the SmartFall App [12]. Three students participated in the
evaluation under IRB 7846 at Texas State University. They wore watches on the left
wrist with the SmartFall App installed, executing falls on an air mattress and daily
activities. Both correct and incorrect predictions were recorded.

3 Synthetic Data Generation

Basic Data Augmentations: We employed three data augmentation techniques, namely
Jittering [13], Magnitude Warping [13], and Rotation [16]. Jittering involves augmenting
time series data with random Gaussian noise. Magnitude warping is a technique applied
to time series datasets where the magnitude of each sample is modified. This modification
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is achieved by multiplying the original time series with a cubic spline curve. The rotation
augmentation technique serves as a means to simulate various sensor placements (e.g.
left vs right wrist), introducing the diversity of data patterns without modifying the
inherent labels associated with the data.

Diffusion Method: Denoising Diffusion Probabilistic Models (DDPMs) represent a
class of generative Al models that have demonstrated remarkable success in synthesizing
high-quality data across domains such as images and audio [4, 7]. We have integrated
diffusion models with a U-Net architecture adapted from previous work [7]. Originally
designed for image analysis, this U-Net architecture has been reconfigured for time-
series data using one-dimensional (1D) convolutional layers with a kernel size of 7 and
padding of 3, capturing essential temporal dependencies in time series data. Figure 1
represents the architecture used for this work.

Upon receiving the time-series input, the data undergoes normalization with
RMSNorm, which stabilizes the training process. The network architecture, comprising
ResNet blocks and Linear Attention units, executes down sampling and up sampling
operations to refine features and preserve temporal information. Time and sinusoidal
positional embeddings are integrated within each block, ensuring the model’s respon-
siveness to the diffusion timesteps and sequence positions. Li’s original model [7] posed
challenges in handling variable-length accelerometer data for different types of falls and
lacked a stable normalization technique. We improved the model by incorporating a
padding strategy during preprocessing, enabling consistent input size, and avoiding loss
of information. Details of the method can be found in our technical report [1].

Kernel size of 7 Pre-normalized with
with padding 3 RMSNorm

prrsZCemoNme----oo-----; Residual Connectioing  go--szzzoozmmoeooeooeeeeey

i among same size layers ; Up Sample 2x
e
Time

lembeddings
and
sinusoidal
positional
embedding:

S — ]

1D Conv
Resnet Block
ResNet Block
Linear Attention

Resnet Block
1D Conv

Resnet Block
ResNet Block
Linear Attention

Resnet Block
Resnet Block

Linear Attention

Fig. 1. Schematic of the U-Net Architecture Adapted for Time-Series Data.

Extraction of fall data from video via Pose Estimation: We have adopted the method-
ology presented in [8] for the extraction of video fall data. To extract the fall data correctly,
we edited 34 publicly available videos sourced from [14]. We first isolated the falling
person in the video by cropping the frame around them to reduce the time for the extrac-
tion process and to zoom in on the most relevant data to extract. We ensure to include
1 to 2 s of pre-fall and post-fall segments. Resolution and brightness adjustments are
made for each video. The 3D pose estimation extracted 17 joint positions from each
video’s detected human skeleton. For generating synthetic data, if we aim to add video
fall data to the SmartFallMM dataset, we focus on extracting accelerometer data from the
left wrist joint position. Alternatively, for UniMiB, we extract accelerometer data from
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the left and right hips’ joint positions. If we are creating synthetic data for UniMiB,
we will extract accelerometer data from the left and right hips’ joint positions. After
pose estimation, we use 3D key points to extract acceleration data. Calculating velocity
from position changes, then acceleration from velocity changes, we extract about 30 fall
samples. Figure 2 outlines this methodology for deriving accelerometer readings from
a video capturing an elderly person’s fall.
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Fig. 2. Accelerometer data extraction process from video frames.

4 Results

Offline Evaluation of Fall Detection Model: Figure 3(a) compares datasets and syn-
thetic data using three methods. Results from 5-fold validation, including precision,
recall, F1-score, and accuracy, are shown for each. Each colored line represents the vari-
ation of each metric across different datasets. Abbreviations SF, UM, and KF represent
SmartFallMM, UniMiB, and K-Fall datasets, while DF, VE, Jit, MW, and Ro stand for
Diffusion, Video Extraction, Jittering, Magnitude Warping, and Rotation. Only Smart-
FallMM dataset (SF) achieves F1 score of 0.72 and accuracy of 0.77. With synthetic
data, especially using diffusion, SF’s F1-score improves to 0.80, nearly 10% better. Pose
estimation-based data extraction also boosts performance. We additionally assessed and
compared results across two other public datasets, UniMiB and K-Fall. The baseline
F1 score and accuracy for UniMiB (UM) are 0.79 and 0.78, respectively. We noted a
enhancement in performance by incorporating synthetic data generated via the diffusion
method. The F1 score increased from 0.79 to 0.85, reflecting an improvement rate of
nearly 7%. Despite incorporating diffusion-generated and video-extracted data, there
was no improvement observed for K-Fall (KF). This could be attributed to the larger
size of the K-Fall dataset compared to the other two datasets, the added data does not
lead to more generalization with the simple LSTM architecture.

The better performance gap of synthetic data from diffusion and pose extraction
methods as compared to basic augmentation likely stems from the quality of the
added information. Data from diffusion and pose extraction enriches the dataset with
meaningful patterns and the generated data aligns better with real data.

Real-time Evaluation of Fall Detection Model: Figure 3(b) showcases the real-time
evaluation result for the top-performing offline model. We only tested the offline model
with SmartFallMM watch data because our SmartFall app exclusively uses watch-sensed
data. We share results from testing the SmartFall App across three participants, starting
with an initial F1 score of 0.62 using basic LSTM model for SF. Next, we evaluated
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Fig. 3. (a) Evaluation of SmartafallMM, UniMiB, and K-Fall with Synthetic Data Generated
using three different methods. (b) Real world result with SmartFallMM.

top models trained with a mix of synthetic and real data: SF with Diffusion and SF
with Video Extracted. The top SmartFall App model, trained with diffusion-generated
data, achieved an F1 score of 0.86 (24% improvement), while the video-extracted data
model reached 0.76 (14% improvement). Real-time testing confirms synthetic data’s
effectiveness in enhancing fall detection methods.

5 Discussion and Future Work

This study explores methods to generate synthetic fall data to overcome data scarcity.
Enhanced performance is observed in offline evaluation for SmartFallMM and UniMiB
with diffusion and video-extracted synthetic fall data. Additionally, promising real-time
performance is demonstrated for SmartFallMM with synthetic data from diffusion and
video extraction. In the future, we aim to identify the ideal balance of real and synthetic
data for training robust models, alongside exploring video extraction methods via Al
platforms like Sora [3], which generate videos from textual descriptions.
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Abstract. The advent of Large Language Models opened new perspec-
tives concerning their usage within the digital health domain. However,
their intrinsic probabilistic and unpredictable behavior needs the design
of trustworthy strategies aiming to avoid the creation of hallucinations
that, especially within the digital health domain, may lead to severe
harm. Such an issue has been addressed with the adoption of Retrieval-
Augmented Generation solutions, where the text generation task is sup-
ported by controlled knowledge injected into the prompts. Even if the
hallucination issue is mitigated, the generation of certified information
(such as trustworthy content granted by the system’s owner) requires
more sophisticated strategies. In this work, we propose an approach
where the classic Retrieval-Augmented Generation pipeline is enhanced
with a further initial step where the Large Language Model is asked
to generate a preliminary text used to query the repository of certified
information for presenting the appropriate content to the final user.

1 Introduction

Large Language Models (LLMs) such as BERT [3] and T5 [18] possess the ability
to generate factual information based on learned patterns from extensive training
data [16]. However, their accuracy without external sources may vary due to sev-
eral factors like data quality, task complexity, and parameter density. Therefore,
they may generate inaccurate or fictional content, i.e., hallucinations [23,27].
Recent efforts aim to tackle these challenges by augmenting external knowledge
to empower LLMs to interact effectively with users and their surroundings.

Retrieval-Augmented Generation (RAG) [11], explicitly incorporates exter-
nal knowledge into LLMs’ prompts to contribute to the enhancement of their
trustworthiness [6]. This involves retrieving documents relevant to the user’s
query and subsequently generating a comprehensive response considering the
contained factual information. The efficiency of RAG systems relies on suffi-
cient and diverse training data, with the risk of observing a low accuracy if
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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the retrieval system lacks robustness and reliability. In particular, the retrieval
phase struggles with issues like semantic ambiguity coupled with basic matching
techniques that lead to inaccurate data retrieval. While, the augmentation and
generation phases struggle with integrating context and coherence, resulting in
superficial responses that fail to meet sophisticated query demands’.

Previous research predominantly employs traditional RAG pipelines, which
involve retrieving documents relevant to user input from a non-certified database
before sending the user query to the LLM. The novel contribution of this paper
lies in (i) using a certified document repository to inject factual knowledge into
the LLM; and, (ii) proposing a novel enhancement to the classic RAG framework
by introducing a further preliminary interaction with the integrated LLM?.

We present the theoretical framework and discuss its preliminary adoption
within an FAQ-based chatbot designed to support pregnant women followed
by the Trentino Healthcare Department in Italy, i.e., the TreC-Mamma applica-
tion®. Our goal is to answer the following Research Questions: (RQ1) How do the
LLMs be integrated effectively into digital health solutions? (RQ2) Can LLMs
generate certified content (the meaning of the term “certified” is explained in
Sect. 3)? (RQ3) Can a RAG strategy be enhanced to solve semantic ambiguity
and avoid hallucinations?

Through the empirical evaluation discussed in Sect. 4, we demonstrate the
effectiveness of the proposed RAG-based strategy in addressing the limitations
of LLMs and enhancing the overall user experience in domains targeted by the
current work, i.e., maternal health. Moreover, we suggest that our methodology
may represent a promising direction for leveraging advanced language technolo-
gies to tackle the certified information challenges effectively.

2 Related Work

In recent years, there has been an increase in research efforts to improve the cred-
ibility and effectiveness of LLMSs, particularly in domains that prioritize accuracy
and reliability, such as modern medicine and digital health [17]. Conversational
Artificial Intelligence (AI) in healthcare suffers several challenges that are crucial
to address, including the lack of suitable evaluation metrics, concerns regarding
fairness, bias, and hallucination in chatbot responses, the balance between per-
sonalization and oversimplification, and obstacles in implementation [1]. In this
context, RAG demonstrated to be a suitable candidate for mitigating hallu-
cination issues, enriching factual content generation in LLMs, and integrating
external knowledge sources. We believe these advancements can enhance the
utility of conversational Al in healthcare settings.

RAG has recently gained attention for its explicit incorporation of external
knowledge into LLMs’ prompts. By leveraging Information Retrieval (IR) tech-
niques, RAG aims to enhance the credibility and relevance of generated content

! https://arxiv.org/abs/2401.05856.
2 In this work, we adopted the GPT4 LLM.
3 https://trentinosalutedigitale.com /blog/portfolio/trec-mamma,/ .
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by retrieving documents pertinent to user queries. RAG utilizes both parametric
and non-parametric memory, drawing upon pre-trained seq2seq models [11] and
Dense Passage Retrieval (DPR) [10]. This approach has led to surpassing state-
of-the-art performance on tasks like QA and summarization and has been noted
for enhancing language generation by producing more specific, diverse, and fac-
tual language compared to parametric-only seq2seq models [22]. Nevertheless,
while RAG has shown promise in improving the output of LLMs, it faces con-
straints when confronted with data outside its training set. Several approaches
have been explored to address this issue.

Building upon the works by [10,11], Retrieval-Augmented Language Model
pre-training (REALM) [6] integrates a knowledge retrieval mechanism to
enhance neural language models’ performance in question-answering tasks,
demonstrating superior accuracy and interoperability. A two-stage Approach
proposed by [8] combines DPR with generative sequence-to-sequence language
models, leveraging the strengths of both approaches to provide comprehensive
and contextually relevant responses for open-domain QA tasks.

I-RetGen (Iterative Retrieval-Generation) [21] iteratively integrates retrieval
and generation processes, enhancing relevance for complex queries while min-
imizing overhead by utilizing the LLM’s generation output to guide retrieval.
RAGE (Retrieval-Augmented Generation with Rich Answer Encoding) [7] com-
bines retrieval and generation techniques to produce informative and coherent
answers, enhancing the richness and relevance of generated content. FLARE
(Active Retrieval-Augmented Generation) [9] dynamically decides when and
what to retrieve throughout the generation process, offering a proactive app-
roach to content augmentation.

Recent advancements have further expanded the capabilities of retrieval-
augmented generation, including techniques such as Augmentation-Adapted
Retriever (AAR) [28] and Knowledge-Augmented Language Model Verification
(KALMV) [2]. These approaches aim to enhance language model accuracy across
different domains by integrating external knowledge and detecting errors in both
knowledge retrieval and text generation processes. Additionally, frameworks like
Induction-Augmented Generation (IAG) [29] and domain adaptation techniques
for RAG models [22] demonstrate ongoing efforts to improve implicit reasoning
and adaptability in question-answering tasks.

Despite the diversity of approaches, prior studies have concentrated on tra-
ditional RAG pipelines, which focus exclusively on enhancing text generation.
Our proposed approach differs significantly by involving instead the use of a
certified repository as well as the injection of knowledge directly into the LLM.
By reconfiguring the RAG process and integrating retrieved information into the
answer-generation pipeline, we aim not only to mitigate hallucination issues but
also to ensure the generation of certified and contextually informed responses.
This novel methodology represents a significant advancement in addressing the
challenges of factual content generation within LLM frameworks, particularly in
sensitive domains like digital health. Furthermore, our approach holds promise
for improving user trust and satisfaction in automated systems by providing
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reliable and contextually relevant information. Additionally, our empirical eval-
uation and comparative analysis demonstrate the effectiveness of our method in
enhancing the user experience, particularly in domains such as maternal nutri-
tion and health, as evidenced by our preliminary adoption of the TreC Mamma
application.

3 Method

This Section presents a preliminary discussion about how RAG may be a suit-
able strategy to mitigate the hallucination issues affecting LLMs followed by a
description of how we implemented our strategy.

3.1 Preliminaries

As introduced in Sect. 1, the variability of LLMs’ responses poses a substan-
tial issue when operating in contexts where certified information is needed. In
this work the term “certified information” refers to text created or verified by
healthcare professionals, ensuring it aligns with current scientific knowledge in
the specific domain. To preserve the nature of “certified information”, it is essen-
tial that the content remains unchanged in its textual form. Moreover, it should
be semantically predetermined, i.e., each specific question consistently corre-
sponds to a particular set of semantic equivalent answers. Using LLMs, even
with RAG, cannot guarantee this requirement.

Indeed, a standard RAG pipeline in a FAQ-based chatbot would employ
the user’s question to query the certified documents. Usually, RAG converts a
user query into a vector embedding representation, which is then employed to
evaluate semantic similarity across the document repository. Yet, there can be
significant differences between the vector representations of the query and the
documents within the semantic space. This disparity poses a notable limitation
as it could result in relevant documents being overlooked during retrieval.

Moreover, RAG provides additional opacity to the algorithm since the user
does not know which information is being used to provide the answer. Although
our conversational agent is not directly involved in diagnostic processes, some
ethical questions about possible bias of LLMs remain valid [24] as well as the
need to build a system as much as possible transparent and accountable [25].
Given the intrinsic opacity of LLMs, it is nonetheless our effort to pursue “expli-
cability”, i.e., the new ethical principle that Floridi et al. [4] introduced alongside
the traditional ones (beneficence, non-maleficence, autonomy, and justice). This
ethical principle is already largely used in the field of explainable AT [20]. Hence,
in our chatbot, we want to provide the sources used in the RAG process to ensure
transparency at the epistemic level [26]. This strategy aims to prevent possible
trust issues towards the agent [14] or at least to mitigate them.
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3.2 Implementation

The solution we propose in this paper is summarized in Fig. 1.

Our goal is to address the limitations mentioned above with a modular app-
roach aiming to enhance the classic RAG pipeline with the integration of the
Hypothetical Document Embeddings (HyDE) framework [5]. The HyDE intro-
duces a further step at the beginning of the pipeline where the LLM is asked
to produce a hypothetical document (HyDoc) based only on the input query
provided by the user. The hypothetical document represents the query’s infor-
mation request and is also meant to capture relevant textual patterns that might
be present in the certified repository connected to the pipeline. It is important
to mention that, at this stage, the output generated by the LLM model might
contain hallucinations since any check is performed. However, the HyDoc gener-
ated should lie in the semantic space in a neighborhood of similar real documents
that contain the correct and certified answer to provide to the user.

Thus, the main idea is to use the HyDoc generated by the LLM to augment
the initial query. To do that, we need to transform the HyDoc into a semantic
vector, namely a sentence embedding. Creating an embedding representation of
a sentence is challenging because the meaning of each word needs to be contex-
tualized concerning the other words in the sentence. Anyhow, many LLMSs are
trained to predict the next word in a sequence, so the embedding representation
of a sentence cannot be easily extracted. Indeed, unlike universal word embed-
dings methods, e.g., word2vec [15], a widely accepted general-purpose sentence
embedding technique is still a very active research field [13].

In our work, we integrated the paraphrase-multilingual-mpnet-base-v2 Bi-
Encoder model [19] and we used it to both create the embeddings of our HyDoc
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and the vector-based representation of the whole repository. The model works
by adding a pooling operation, which generates a fixed-size embedding represen-
tation normalized to have a total length of 1.00. Such a representation eases the
comparison of each vector by adopting cosine similarity. After calculating the
cosine similarity between all pairs of type <HyDoc, D;> with i = 1...n, where n
is the number of documents contained in the certified repository and D; the i,
document contained in the certified repository, we ranked the documents and
selected the k = 50 most similar ones. The rationale behind the choice of k = 50
is that from an information retrieval perspective, this is an acceptable number
of documents that may grant the inclusion of the most relevant ones [12].

The Bi-Encoder is a computationally efficient method for semantic search,
but it works well only when we have documents of comparable lengths. Hence,
if the HyDoc is either significantly shorter or longer than the documents to
retrieve, the risk of retrieving non-relevant documents is considerable.

For this reason, we integrated a Cross-Encoder module to re-rank the list of
retrieved documents. This post-retrieval operation ensures the selection of the
most informative documents. For this task, we use the ms-marco-MiniL M-L-6-
v24 cross encoder. The Cross-Encoder is thus more accurate than the Bi-Encoder
although it is computationally more expensive. For this reason, we applied it only
to the list of candidate relevant documents to reduce the overall computation
time of each user’s request aiming to preserve the usability of the system.

Once the re-ranking process is completed, we select the top 7 = 3 docu-
ments that are most similar to the HyDoc, according to the Cross-Encoder out-
put. These three documents are then used to augment the original prompt and
retrieve the textual part of the final answer sent to the user. Here, a Guard-Rail
module® is applied to ensure that the reply generated by the LLM satisfies the
length requested through the prompt. The response of the agent will therefore
contain the generated text as well as the pointers to the original certified sources,
i.e., the three selected documents, used to generate the answer.

4 Evaluation and Discussion

For this study, we have curated a document repository certified by the Trentino
Healthcare Department. This dataset forms the backbone of the strategy we pro-
posed in this work, by ensuring that the information fed into the integrated LLM
is both accurate and authoritative. The primary source of our dataset comes
from the Obstetrician Department of the Hospital of Trento. This includes a
comprehensive collection of 1512 documents split as follows. A set of 179 infor-
mative cards associated with each pregnancy week offering information pertinent
to maternal health, pregnancy, and fetus status. These cards have been written
and certified by healthcare professionals, providing a reliable foundation for our
model. In addition to the informative cards, this set contains additional content

* https://huggingface.co/cross-encoder /ms-marco-MiniLM-T-6-v2.
5 For a detailed description of how this strategy works see the paper of Mangaokar
et al. https://arxiv.org/abs/2402.15911.
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extracted from videos released by the same department. Then, documents from
two certified repositories: UPPA (953 documents) and ISS-Salute (380 docu-
ments) have been incorporated. Both sources have been considered certified by
our healthcare department for their evidence-based approach to parenting and
child health. The inclusion of both repositories introduces a broader perspec-
tive on child care, complementing the information provided by the Obstetrician
Department of the Hospital of Trento. This amalgamation of resources from both
the hospital and repositories ensures a comprehensive and well-rounded dataset
that covers the spectrum of maternal and child health.

To address the research questions provided in Sect. 1, our system combines
the generative capabilities of LLMs with a retrieval mechanism performed on
the repository of certified documents. This hybrid approach ensures that the
generated responses are not only linguistically coherent and contextually relevant
but also grounded in verified medical knowledge.

To rigorously assess the performance of our solutions, we devised a compre-
hensive evaluation strategy that encompasses both the accuracy of the answers
provided and the quality of the supporting documents retrieved from the certi-
fied repository. This dual-focus evaluation is crucial for ensuring that the solu-
tion delivers precise information and enriches its responses with credible and
authoritative sources, thereby enhancing the trustworthiness and reliability of
the system.

The evaluation task consisted of a set of 100 questions, which were consid-
ered representative by the experts involved in the evaluation process and that
represent typical inquiries made by new mothers regarding pregnancy and early
childcare. These questions were designed to cover a broad spectrum of topics
within the domain, ensuring a thorough evaluation of the system’s capabilities.
The questions were then presented to a group of five test users, who interacted
with the TreC Mamma application and collected the answers. The users were
instructed to evaluate the responses based on seven criteria: (i) the relevance of
the answer to the question, (ii) the relevance of the links (documents) provided,
(iii) text quality, (iv) reliability, (v) clarity, (vi) completeness, and (vii) an over-
all evaluation score. These metrics were chosen to provide a holistic view of the
system’s performance, encompassing both the quality of the generated text and
the relevance and certified documents provided within the answers.

The results of the evaluation are summarized in Table 1, which presents the
average scores across all test users for each evaluation criterion. The first column
contains the name of each metric; the second column contains the average score
computed by considering the judgments provided by each user on all questions;
the third and fourth columns contain the highest and the lowest scores obtained
for that metric, respectively; and, the fifth column contains the variance. The
metric [M1] involves binary classification (relevant, not relevant), and its score
is interpretable as a percentage. The metric [M2] is a three-way classification
(on-topic, partially on-topic, off-topic) and can similarly be interpreted as a
percentage. The metrics from [M3] to [M7] employ a 5-level evaluation scale
ranging from 1 (insufficient) to 5 (great).
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Table 1. Summary of the results provided by the test users.

Evaluation Criterion Avg | Max | Min | Var
[M1] Is the answer relevant to the question? |0.93 | 1.00 | 0.50 | 0.02
[M2] Links relevance 0.44 1.00 | 0.00|0.05
[M3] Text quality 4.59 | 5.00 |3.33]0.06
[M4] Reliability 3.7914.75 | 2.33 1 0.40
[M5] Clarity 4.60 | 5.00 |3.33/0.05
[M6] Completeness 3.3814.75 |1.33]0.81
[M7] Overall evaluation 3.40|4.75 | 1.67 0.59

The high relevance score ([M1]), i.e., 0.93, indicates that the chatbot is highly
effective in providing answers that are pertinent to the users’ questions. How-
ever, the relevance of the links provided ([M2]), i.e., 0.44 suggests that there is
significant room for improvement in the selection and presentation of support-
ing documents. The text quality, clarity, and reliability scores are relatively high,
demonstrating the system’s ability to generate well-written, clear, and somewhat
reliable responses. Completeness and overall evaluation scores, while above aver-
age, highlight areas where further enhancements could be made to improve user
satisfaction and the comprehensiveness of the answers provided. By consider-
ing the variance values, we may observe how the criteria [M4], [M6], and [M7]
required further investigations. A preliminary further analysis revealed how, for
some of the queries contained within the test set, the final output produced by
the LLM did not satisfy the expectations of the evaluators.

As a final consideration, we state that we can positively answer the three
research questions presented in Sect.1. We can positively answer RQ1 since
the average score observed for the criterion [M7] proves an effective behavior
of the proposed solution within the digital health domain. We can positively
answer to RQ2 as well, since the high values obtained for metrics [M1], [M3],
and [M4] demonstrate how the content generated by the LLM can be considered
certified. Finally, we can also positively answer to RQ3 given the high values
obtained for metrics [M2], [M4], [M5], and [M6] showing how, on average, the
content of the final text sent to the evaluators has been considered correct, i.e.,
no hallucinations were included. The only point of attention related to the metric
[M2] whose value demonstrates that there is still room for improvement, even
if, on average, half of the documents included in the links sent to the users have
been considered fully relevant.

5 Conclusions

In this work, we presented a framework showing how the RAG pipeline can be
enhanced by introducing a further interaction with the integrated LLM before
the retrieval step to support scenarios where the answer provided to users must
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contain only certified information. We tested our approach in the context of the
local project TreC-Mamma, promoted by the Trentino Healthcare Department,
which includes a mobile application used by pregnant women with an FAQ facil-
ity. Preliminary results demonstrated the suitability of the proposed strategy and
paved the way for further steps in this research direction and future implementa-
tion in other domains. In particular, the effort will focus on the main limitation
we observed, i.e., the retrieval module. Such a module is in charge of retrieving
the certified information and, in the current setting, registered the lowest score
compared with the other criteria adopted to evaluate the performance of the
proposed solution. Finally, we intend to explore the integration of open LLMs
that may represent a strong requirement concerning the deployment of this type
of solution into production environments.

Acknowledgments. We acknowledge the support provided by the PNRR ini-
tiatives: INEST (Interconnected North-East Innovation Ecosystem), project code
ECS00000043, and FAIR (Future AI Research), project code PE00000013. These
projects are part of the NRRP MUR program, funded by the NextGenerationEU.
This paper is supported by the TrustAlert project, funded by Fondazione Compagnia
San Paolo and Fondazione CDP under the “Artificial Intelligence” call.

References

1. Abbasian, M., et al.: Foundation metrics for evaluating effectiveness of healthcare
conversations powered by generative AI. NPJ Digit. Med. 7(1), 82 (2024). https://
doi.org/10.1038/s41746-024-01074-z

2. Baek, J., Jeong, S., Kang, M., Park, J., Hwang, S.: Knowledge-augmented lan-
guage model verification. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
1720-1736. Association for Computational Linguistics, Singapore (2023). https://
doi.org/10.18653/v1/2023.emnlp-main.107, https://aclanthology.org/2023.emnlp-
main.107

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 4171-4186. Association for Com-
putational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/
v1/N19-1423, https://aclanthology.org/N19-1423

4. Floridi, L., et al.: Al4people-an ethical framework for a good Al society: opportu-
nities, risks, principles, and recommendations. Mind. Mach. 28, 689-707 (2018)

5. Gao, L., Ma, X., Lin, J., Callan, J.: Precise zero-shot dense retrieval without rele-
vance labels. In: Rogers, A., Boyd-Graber, J.L., Okazaki, N. (eds.) Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023. pp. 1762-1777.
Association for Computational Linguistics (2023). https://doi.org/10.18653/V1/
2023.ACL-LONG.99

6. Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.: Retrieval augmented lan-
guage model pre-training. In: 111, H.D., Singh, A. (eds.) Proceedings of the 37th


https://doi.org/10.1038/s41746-024-01074-z
https://doi.org/10.1038/s41746-024-01074-z
https://doi.org/10.18653/v1/2023.emnlp-main.107
https://doi.org/10.18653/v1/2023.emnlp-main.107
https://aclanthology.org/2023.emnlp-main.107
https://aclanthology.org/2023.emnlp-main.107
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/V1/2023.ACL-LONG.99
https://doi.org/10.18653/V1/2023.ACL-LONG.99

222

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Ghanbari Haez et al.

International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 119, pp. 3929-3938. PMLR (13-18 Jul 2020). https://proceedings.
mlr.press/v119/guu20a.html

Huang, W., Lapata, M., Vougiouklis, P., Papasarantopoulos, N., Pan, J.Z.:
Retrieval augmented generation with rich answer encoding. In: Proceedings of the
13th International Joint Conference on Natural Language Processing and the 3rd
Conference of the Asia-Pacific Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1012-1025. Association for Computational
Linguistics (2023)

Izacard, G., Grave, E.: Leveraging passage retrieval with generative models for
open domain question answering. In: Merlo, P., Tiedemann, J., Tsarfaty, R. (eds.)
Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume. pp. 874-880. Association for Computa-
tional Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.eacl-main.74,
https://aclanthology.org/2021.eacl-main.74

Jiang, Z., et al.: Active retrieval augmented generation. In: Bouamor, H., Pino,
J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 7969-7992. Association for Computational
Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.emnlp-main.495,
https://aclanthology.org/2023.emnlp-main.495

Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering.
In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769-6781.
Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/
2020.emnlp-main.550, https://aclanthology.org/2020.emnlp-main.550

Lewis, P.; et al.: Retrieval-augmented generation for knowledge-intensive nlp tasks:
Adv. Neural. Inf. Process. Syst. 33, 9459-9474 (2020)

Li, H.: Learning to rank for information retrieval and natural language processing.
Springer Nature (2022)

Li, R., Zhao, X., Moens, M.: A brief overview of universal sentence representation
methods: a linguistic view. ACM Comput. Surv. 55(3), 1-42 (2023). https://doi.
org/10.1145/3482853

Martens, M., De Wolf, R., De Marez, L.: Trust in algorithmic decision-making
systems in health: a comparison between ADA health and IBM Watson oncology.
Cyberpsychology 18(1) (2024)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. Adv. Neural Inform.
Proc. Syst. 26 (2013)

Petroni, F., et al.: Language models as knowledge bases? (2019) arXiv preprint
arXiv:1909.01066

Pham, K.T., Nabizadeh, A., Selek, S.: Artificial intelligence and chatbots in psychi-
atry. Psychiatr. Q. 93, 249-253 (2022). https://doi.org/10.1007 /s11126-022-09973-
8received 26 September 2021, Revised 23 January 2022, Accepted 26 January 2022,
Published 25 February 2022

Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(1), 5485-5551 (2020)

Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP


https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://aclanthology.org/2023.emnlp-main.495
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3482853
https://doi.org/10.1145/3482853
http://arxiv.org/abs/1909.01066
https://doi.org/10.1007/s11126-022-09973-8
https://doi.org/10.1007/s11126-022-09973-8

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A Retrieval-Augmented Generation Strategy 223

2019, Hong Kong, China, November 3-7, 2019. pp. 3980-3990. Association for Com-
putational Linguistics (2019). https://doi.org/10.18653/V1/D19-1410

Saeed, W., Omlin, C.: Explainable AT (XAI): a systematic meta-survey of current
challenges and future opportunities. Knowl.-Based Syst. 263, 110273 (2023)
Shao, Z., Gong, Y., Shen, Y., Huang, M., Duan, N., Chen, W.: Enhancing retrieval-
augmented large language models with iterative retrieval-generation synergy. In:
Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pp. 9248-9274. Association for Computational
Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.findings-emnlp.
620, https://aclanthology.org/2023.findings-emnlp.620

Siriwardhana, S., Weerasekera, R., Wen, E., Kaluarachchi, T., Rana, R.,
Nanayakkara, S.: Improving the domain adaptation of retrieval augmented gen-
eration (RAG) models for open domain question answering. Trans. Assoc. Com-
put. Linguist. 11, 1-17 (2023). https://doi.org/10.1162/tacl a 00530, https://
aclanthology.org/2023.tacl-1.1

Wang, B., et al.: Decodingtrust: A comprehensive assessment of trustworthiness in
GPT models. In: Advances in Neural Information Processing Systems (NeurIPS)
(2023)

Wang, C., Liu, S., Yang, H., Guo, J., Wu, Y., Liu, J.: Ethical considerations of
using CHATGPT in health care. J. Med. Internet Res. 25, e48009 (2023)
Williams, R., et al.: From transparency to accountability of intelligent systems:
moving beyond aspirations. Data Policy 4, e7 (2022). https://doi.org/10.1017/
dap.2021.37

Winter, P.D., Carusi, A.: (De) troubling transparency: artificial intelligence (AI)
for clinical applications. Med. Humanit. 49(1), 17-26 (2023)

Xu, Y., Namagzifar, M., Hazarika, D., Padmakumar, A., Liu, Y., Hakkani-Tur,
D.: KILM: Knowledge injection into encoder-decoder language models. In: Rogers,
A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 5013-5035. Association for Computational Linguistics, Toronto, Canada
(2023). https://doi.org/10.18653/v1,/2023.acl-long.275, https://aclanthology.org/
2023.acl-long.275

Yu, Z., Xiong, C., Yu, S., Liu, Z.: Augmentation-adapted retriever improves gener-
alization of language models as generic plug-in. In: Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, Volume 1: Long Papers,
pp. 2421-2436. Association for Computational Linguistics (July 9-14 2023)
Zhang, Z., et al.: Iag: Induction-augmented generation framework for answering
reasoning questions. In: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. pp. 1-14, Association for Computational Linguis-
tics (Dec 6-10 2023)


https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://aclanthology.org/2023.findings-emnlp.620
https://doi.org/10.1162/tacl_a_00530
https://aclanthology.org/2023.tacl-1.1
https://aclanthology.org/2023.tacl-1.1
https://doi.org/10.1017/dap.2021.37
https://doi.org/10.1017/dap.2021.37
https://doi.org/10.18653/v1/2023.acl-long.275
https://aclanthology.org/2023.acl-long.275
https://aclanthology.org/2023.acl-long.275

)

Check for
updates

Beyond Self-consistency: Ensemble
Reasoning Boosts Consistency
and Accuracy of LLMs in Cancer Staging

Chia-Hsuan Chang'®, Mary M. Lucas'®, Yeawon Lee'®,
Christopher C. Yang!®®, and Grace Lu-Yao?

! College of Computing and Informatics, Drexel University, Philadelphia, PA, USA
{cc3859,mm1367,y13427,chris.yang}@drexel.edu
2 Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson
University, Philadelphia, PA, USA
Grace.LuYao@jefferson.edu

Abstract. Pathologic cancer stage, crucial for treatment decisions, is
often buried in unstructured pathology reports. This study investigates
using pre-trained clinical LLMs for stage extraction, leveraging prompt-
ing techniques like chain-of-thought to enhance model transparency.
While self-consistency methods further improve LLLM performance, they
can introduce inconsistencies in reasoning paths and predictions. We pro-
pose an ensemble reasoning approach, aiming for reliable cancer stage
extraction. Utilizing an open-source clinical LLM on real-world reports,
we demonstrate that the ensemble approach improves consistency and
boosts performance, paving the way for utilizing LLMs in healthcare
settings where reliability and interpretability are paramount.

Keywords: Large language model - Prediction consistency - Cancer
stage classification - Pathology report

1 Introduction

The standardized TNM cancer staging system is an essential part of cancer diag-
nosis and management, classifying the extent of cancer based on tumor size (T),
lymph node involvement (N), and distant metastasis (M). Pathology reports
detail this information based on tissue sample analyses to determine the patho-
logic TNM (pTNM) stage, but their free-text format complicates large-scale,
rapid data extraction. In our previous study [1], we found that large language
models (LLMs) perform better than fine-tuned models without needing training
samples which can be costly and time-consuming to prepare. LLMs can benefit
from different prompt engineering techniques, like the Chain-of-Thought app-
roach [4,7], which can improve the interpretability of the model’s predictions.
However, LLMs’ stochastic generation process can lead to varying reasoning
paths and inconsistent responses, which can be problematic in clinical scenar-
ios where accountability is essential [5]. To address inconsistent responses, we
develop an Ensemble-Reasoning (EnsReas) approach, building upon the con-
cept of self-consistency [6]. EnsReas enhances LLM analysis of pathology reports

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Finkelstein et al. (Eds.): AIME 2024, LNAI 14844, pp. 224-228, 2024.
https://doi.org/10.1007/978-3-031-66538-7_23


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66538-7_23&domain=pdf
http://orcid.org/0000-0001-9116-8244
http://orcid.org/0000-0002-0413-7499
http://orcid.org/0009-0009-4209-2672
http://orcid.org/0000-0001-5463-6926
http://orcid.org/0000-0002-2925-7737
https://doi.org/10.1007/978-3-031-66538-7_23

Ensemble Reasoning in Cancer Staging 225

by first leveraging self-consistency as an intermediate step to generate multiple
reasoning and prediction responses. These reasonings are then grouped by pre-
dicted outcomes, forming a revised prompt that guides the LLM to re-assess
inconsistent initial answers, ensuring a more robust and reliable output. Our
results demonstrate that EnsReas performs better than the baseline zero shot
(ZS) and zero shot chain-of-thought (ZS-CoT) methods regarding predictive per-
formance. Moreover, it outperforms ZS-CoT with self-consistency (ZS-CoT-SC)
in predictive performance and consistency, suggesting that LLMs can enhance
their decision-making process using the EnsReas approach, leading to more con-
sistent and reliable responses for complex tasks like determining cancer staging
from pathology reports. This advancement underscores LLMs’ potential in inter-
preting and utilizing clinical data for effective cancer treatment planning.

2 DMaterials and Methods

Data and Language Model. We use a real-world corpus of breast cancer
pathology reports from the Cancer Genomic Atlas (TCGA) project. The raw
reports, in PDF format, are available from the National Cancer Institute (NCI)
Genomic Data Commons (GDC) portal. We utilize a preprocessed subset of
reports curated and described in [3] and made available for download!. We focus
our experiments on predicting pathologic T and N stage for breast cancer because
it is one of the top diagnosed cancers in the United States? and has good rep-
resentation of reports and ground truths in the dataset. Because some of the
pathology reports do not report all pTNM stages within the same report, we
follow [2] and treat the T stage and N stage prediction as two different tasks.
As a result, we have 1,031 reports for T category (T1:589, T2:273, T3:131, and
T4:38) and 800 reports for N category (N0:316, N1:300, N2:110, and N3:74).
We utilize Med42-70B3, an open-access clinical LLM, installed on a local server.
Med42-70B is derived from Llama2-70B and instruction-tuned on a dataset of
medical knowledge, with reported superior performance in the zero shot setting
compared to GPT-3.5. When compared with other open access clinical genera-
tive LLMs, Med42-70B outperforms ClinicalCamel-70B.

Baselines and Ensemble-Reasoning (EnsReas). We first implement three
prompting strategies, zero shot (ZS), zero shot chain-of-thought (ZS-CoT) [4],
and ZS-CoT with self-consistency (ZS-CoT-SC) [6], to obtain baseline perfor-
mance for our task. For ZS prompting we provide the LLM with the report and
instruction to return the predicted stage p for the pathologic T stage or the
pathologic N stage. In ZS-CoT, we provide the report and instruct the LLM to
first “think step by step” to retrieve the generated reasoning c, and treat c as
the context for the LLM to predict the stage p. We adopt greedy decoding for
ZS and ZS-CoT to get the most likely stage prediction p for each report, and we
measure the performance of ZS and ZS-CoT based on their generated p for each

! https://github.com/tatonetti-lab/tcga-path-reports.
2 https://seer.cancer.gov/statfacts/html/common.html.
3 https://huggingface.co/m42-health/med42-70b.
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report. As for ZS-CoT-SC, for each report we adopt temperature sampling* on
ZS-CoT to obtain 10 responses from the LLM, denoted as (C, P), where C' is a
list of 10 generated reasonings and P is a list of 10 generated predicted stages.
The majority vote (the most frequent answer) from P is considered to be the
final prediction for a report, and is used to measure performance.

EnsReas requires the outputs of ZS-CoT-SC for each report r. Therefore,
each report r € R has a list of 10 reasonings C' and a list of 10 predicted answers
P. By analyzing the P for each report, all reports can be automatically separated
into reports with consistent predictions R°°™ and reports with inconsistent pre-
dictions R¥¢. The R" are reports that have only one unique predicted stage in
their P, and the R*™¢ are a subset of reports by filtering out R°°" from all reports.
Because the predictions for reports in R°™ are deterministic, the EnsReas keeps
using the same predictions as ZS-CoT-SC.

For the reports in R, we design a prompt for EnsReas to simulate a panel
discussion, triggering the LLM to resolve the inconsistent reasonings and pre-
dictions of a given report. Specifically, for each report with various answers, we
aggregate the reasonings by each answer, yielding a set of grouped reasonings:
gp = {c|c is reasoning for answer p,c € C,p € P}, where g, can be considered as
a set of reasonings (opinions) from experts who choose p as the answer. Take a
report with four different predicted stages (i.e., T1, T2, T3, and T4) as example,
the following prompt demonstrates how we integrate g, in defining the prompt:

prompt — nmnn
Report: {report}

Panel Responses:

T1: {gr1: reasonings that support T1 as the answer}
T2: {gro: reasonings that support T2 as the answer}
T3: {grs: reasonings that support T3 as the answer}
T4: {gr4: reasonings that support T4 as the answer}

You are provided with the pathology report and the chosen answers from
the panel of experts with the corresponding reasonings. The reasonings
provided by the experts are aggregated by chosen answer.

Please review each report. Analyze the reasonings provided by the panel
for the chosen answers. Keep in mind that the majority vote may not be
the correct one, therefore you should review report carefully in addition
to considering the panel reasonings.

The correct answer is
nmnn

4 We set temperature as 0.7 and top p as 0.95 in our study.
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With this prompt template, we instruct the LLM to review every report in
R™¢ and its grouped reasonings. To fairly compare with ZS-CoT-SC, EnsReas
also adopts temperature sampling to have a set of 10 updated predictions for a
report, denoted P"P?t¢ The most frequent answer in P"P%t¢ will be used for
performance evaluation. Moreover, to understand how EnsReas improves those
inconsistent predictions made by ZS-CoT-SC, we will compare every report’s P
and PvPdate generated by ZS-CoT-SC and EnsReas, respectively.

Evaluation Metrics. To measure the predictive performance of each prompt-
ing strategy, we report macro precision, macro recall, and macro F1 score, where
macro average is taken for considering the performances of all possible stages
K in each category. We use entropy to measure the consistency of predictions
generated by ZS-CoT-SC and EnsReas. Specifically, given a report r, we have 10
predictions (P) generated by ZS-CoT-SC and 10 predictions (PuPdeted) gener-
ated by EnsReas. We then determine the consistency by averaging the entropy of

all reports: ZTERentrOEY(p““’pw), where p! € P, PvP9at¢ and j € [1,10]. A higher
average entropy suggests a method has higher inconsistency in the predictions.

3 Result and Discussion

Table 1 presents the performance comparison of our proposed EnsReas and the
other baselines. In terms of predictive performance, ZS has the worst per-
formance among all strategies. ZS-CoT has a significantly increased F1 in T
category while its F1 is comparable with ZS. When comparing between ZS-CoT
and ZS-CoT-SC, ZS-CoT-SC only has slightly higher and comparable macro
F1 with ZS-CoT in T category and N category, respectively. EnsReas approach
performs the best with highest F1 in both T and N categories. These results sug-
gest that the large language model (i.e., Med42-70B in this study) is capable of
refining its generations for delivering more accurate answers in the cancer staging
task. In terms of prediction consistency, EnsReas generates more consistent
predictions than ZS-CoT-SC?, supported by EnsReas’s significant lower average
entropy value.

Table 1. Performance of each prompting strategy. All precision, recall, fl-score are
macro average across different classes.

T Category N Category

Precision (T) | Recall (1) | F1 (1) | Consistency (]) | Support | Precision (1) | Recall (T) | F1 (1) | Consistency (1) | Support
Al 0.725 0.725 0.688 1031 0.848 0.810 0.823 800
7S-CoT 0.855 0.740 0.790 1031 0.873 0.788 0.825 800
7S-CoT-SC | 0.865 0.738 0.793 |0.162 1031 0.868 0.795 0.825 | 0.093 800
EnsReas 0.860 0.755 0.800 | 0.036 1031 0.875 0.808 0.838 | 0.023 800

5 Since EnsReas depends on ZS-CoT-SC to generate a set of reasonings as input, we
consider the predictive outcomes of ZS-CoT-SC as the reference to demonstrate the
changes of consistency achieved by EnsReas.
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4 Conclusion and Future Work

In this work, we proposed and investigated the use of EnsReas to improve the
consistency and performance of LLMs applied to a clinical task: determining
cancer stage from pathology reports. Our experimental results indicate that
EnsReas not only generates more accurate predictions for cancer staging but
also reduces inconsistencies in LLM outputs, addressing a significant concern
regarding the reliability of LLM-based predictions in clinical settings. Future
research is needed to explore the application of EnsReas to a broader range of
clinical tasks, perform qualitative analysis on EnsReas generated reasonings, and
investigate mechanisms to incorporate clinician feedback into EnsReas.
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Abstract. Bayesian networks are well-suited for clinical reasoning on
tabular data, but are less compatible with natural language data, for
which neural networks provide a successful framework. This paper com-
pares and discusses strategies to augment Bayesian networks with neural
text representations, both in a generative and discriminative manner.
This is illustrated with simulation results for a primary care use case
(diagnosis of pneumonia) and discussed in a broader clinical context.

Keywords: Clinical reasoning - Bayesian networks + Neural networks -
Text representations

1 Introduction

The process of clinical reasoning lies at the heart of many interactions between
a clinician and their patient [22]. Clinical reasoning is the process by which a
clinician integrates their own knowledge with patient information (like symp-
toms, objective medical evidence, background, medical history...), to arrive at a
diagnosis and subsequent therapeutic options [6]. Cognitive biases and knowl-
edge deficits can cause errors in clinical reasoning, causing the clinician to arrive
at an incorrect diagnosis [13]. To help clinicians avoid these pitfalls, it can help
to (partially) automate the process of clinical reasoning [2,21]. Bayesian net-
works (BNs) are ideally suited for this task, given (i) their ability to model
complex problems involving uncertainty, (ii) their ability to combine data and
expert knowledge, and (iii) their interpretable graphical structure [8]. However,
a key factor limiting the adoption of BNs in clinical practice is their inadequacy
to deal with realistic medical data [7], often a mix between structured tabular
variables (disease codes, timestamps, demographic features, lab results...) and
unstructured text (consultation notes, discharge summaries...) [5]. Encoding the
information contained in the unstructured text into structured variables not only
requires (considerable) effort, but also inevitably results in loss of information.

In this work, we explore how to integrate unstructured text data in Bayesian
networks, to facilitate joint clinical reasoning over structured tabular data and
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unstructured text. To this end, we investigate a relevant use case in primary care:
diagnosis of pneumonia. We create an artificial yet realistic dataset, allowing
us to control several aspects of the data generation process. This allows us to
investigate the impact of different modeling approaches to integrate text in the
clinical reasoning process, and discuss their advantages and pitfalls. By keeping
the use case highly tangible for a clinical audience, we aim to lower the bar
toward real-world medical applications of the presented technology.

Our main contribution is the study of different approaches to integrate the
neural representation of a textual variable in the BN. In particular, we compare
the properties of adding the text with a generative model (in the space of neural
text representations, fitted alongside the BN) vs. a discriminative model (a text
classifier jointly trained with the BN). We evaluate the performance of both
approaches on the prediction of pneumonia in a toy setting, and compare with
baselines which are either missing the text component or the BN structure. Based
on the presented results, we discuss (i) the advantages of including unstructured
text, (ii) the properties of different approaches to achieve this, and (iii) the
overall idea of performing Bayesian inference for automated clinical reasoning
involving textual data.

2 Related Work

Since the topic of this paper touches on multiple different research domains, we
position our work in regards to the most relevant domains, without providing
an exhaustive overview of all related research.

Clinical Reasoning: This work follows the interpretation of clinical reasoning
as an analytical process, where a clinician weighs up every piece of evidence
to reject or confirm a certain diagnostic hypothesis [20,23]. Starting from a set
of differential diagnoses, each with their own prior probability reflecting their
prevalence in the population, clinical reasoning comes down to updating the
likelihood of each diagnosis with every new piece of evidence that comes in,
using Bayes’ rule. This results in a posterior likelihood for each diagnosis, which
the clinician takes into account for planning further steps.

Bayesian Networks: BNs form the perfect tool to formalize the process out-
lined above [8]. Their interpretable graph structure can help keep track of inde-
pendencies between certain types of evidence and particular diagnoses, and infer-
ence in BNs follows Bayes’ rule. BNs have been used to model a wide range of
medical conditions in research settings [11], including respiratory diseases such
as pneumonia and Covid-19 [4]. However, their deployment for clinical decision
making in practice remains limited, partly due to real-world data challenges [7].

Clinical Unstructured Text: The last few decades have seen an abundance of
electronic medical records being collected in clinical practice, which form a useful
source of data to build clinical decision support systems (CDSS). These records
are usually made up of structured data (disease codes, dates, treatment codes...),
as well as free text [5]. Studies have shown that ignoring the information present
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in free text records can results in data loss and bias in CDSS [16]. Nevertheless,
a large majority of CDSS either completely disregards this unstructured text
[15] or applies information extraction techniques to turn the text into tabular
format, which then serves as input to the CDSS [5]. Turning unstructured text
into structured variables using information extraction methods (see, e.g., [19])
and then building a predictive model on top of the structured features has been
applied to learning clinical BNs in the past [18,24]. Our work focuses on integrat-
ing the full unstructured text, removing the need for this information extraction
step. Some CDSS are built on raw unstructured text, yet they often fail to inte-
grate it with the structured portion of the data [12,15]. Zhang et al. manage to
successfully integrate both through a multi-modal recurrent neural network that
combines embeddings of clinical text with static and time-varying features in
the electronic medical record, outputting a full patient representation that can
be used for further downstream prediction [25]. We also represent clinical text
through neural representations, though we use a BN in combination with feed-
forward neural components to integrate these text embeddings with the static
tabular features in the reasoning process.

Neuro-Symbolic AI: The integration of reasoning and learning has seen con-
siderable progress in recent years, in the field of Neuro-Symbolic (NeSy) Al
[10]. One strongly related contribution is the DeepProbLog (DPL) framework
[9]. The authors show how a probabilistic logic program can be extended with
neural predicates, whereby a neural network converts an unstructured data item
(like an image) into class probabilities, that are then treated as regular predicates
in the logic program. Importantly, the parameters of the logic program and of
the neural networks encoding unstructured data can be jointly trained. The dis-
criminative model for integrating text nodes into BNs in this paper corresponds
to the neural predicates approach, since a BN can be seen as a special case of a
probabilistic program. In contrast, we also compare this approach with a gener-
ative model in text representation space, and provide a targeted discussion from
the perspective of clinical reasoning.

3 Use Case and Data Description

Our use case focuses on diagnostic clinical reasoning performed by a general
practitioner (GP) [23]. One non-trivial task in primary care is distinguishing
pneumonia from an upper respiratory tract infection (also known as the common
cold), where the former is more serious and calls for treatment with antibiotics.
When a patient presents with respiratory symptoms, a GP will apply clinical
reasoning based on these symptoms and a short clinical examination, ordering
the necessary additional testing or starting a treatment only if the probability
for pneumonia exceeds a certain threshold.

We create an artificial dataset that allows us to study automation of the clini-
cal reasoning process for the pneumonia use case, in the presence of unstructured
text resembling consultation notes taken by the GP during a patient encounter.
Figure 1 shows the data generation process. Its caption describes the four key
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Fig. 1. Key steps in generating the artificial dataset, where each sample consists of
both tabular variables and corresponding clinical text descriptions. With help of an
expert, we define a Bayesian network (BN) simulating the pneumonia use case (step
1). We sample the tabular variables (background, diagnoses and symptoms) from the
distribution defined by this BN (step 2), prompting a large language model (GPT3.5
[14]) to generate realistic but fictitious consultation notes based on the sampled symp-
toms (step 3). We repeat steps 1 to 3 to generate 4000 training samples and 1000
test samples. Finally, to induce property (ii) of realistic medical data (see Sect. 3), we
remove two symptoms, fever and pain, from the tabular portion of the data, ensuring
they are never encoded and only observed through the text (step 4a). From now on,
when we talk about symptoms, we take this to mean the symptoms dysp, cough, nasal,
unless explicitly stated otherwise. For the training set only, we partially mask out the
remaining symptoms (step 4b) and the text (step 4c¢) in a complementary subset of
the training samples. Each sample now represents a fictional patient encounter, consist-
ing of one background feature (season), two diagnoses (pneu and inf), three symptoms
(dysp, cough and nasal, partially unobserved) and a textual description (text, partially
unobserved). The text contains additional context on the three encoded symptoms, as
well as describing two additional unencoded symptoms fever and pain.
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steps, and a more detailed explanation is given in Appendices A and B. We aim
to mirror the following properties of realistic medical data: (i) the data con-
tains structured tabular variables and/or unstructured text, (ii) information in
the text is only partially encoded in the structured variables, and (iii) the text
contains additional context on the patient’s background and symptoms, com-
plementing the information encoded in the tabular variables. The final train
and test datasets are available in our Github repository: https://github.com/
prabaey /bn-text.

4 Augmenting BNs with Text Representations

We propose two model architectures that are able to integrate text in a Bayesian
network: BN-gen-text (Sect.4.1) and BN-discr-text (Sect.4.2). Both models
incorporate text through a single-vector text embedding, either modeling its dis-
tribution directly or learning classifiers with these representations as an input. As
shown in Fig. 2, we compare them with three baseline models. Our first baseline BN
is a standard Bayesian network without text variables, trained only on the partially
observed tabular features. Its extension BN*™* is trained on a version of the training
set where the symptoms fever and pain are exceptionally not masked out, forming
an upper bound to the performance of all other models, which never get to directly
observe these two symptoms. The last baseline FF-discr-text is a discriminative
feed-forward neural network which takes both tabular features (one-hot encoded)
and text (as a BioLORD embedding) as an input, and outputs a prediction for
pneu or inf. Details on the baseline models BN, BN** and FF-discr-text can be
found in Appendix C.1 and C.2.

All models are trained on the final dataset shown in Fig.1 (with only the
symptoms dysp, cough and nasal, partially observed) except for BN** (where
fever and pain are added, as described above). During inference, each model
computes a posterior distribution for each diagnosis given some set of evidence.
For readability, we represent the diagnoses by D; (i € {0,1}) with Dg (pneu)
and Dy (inf), symptoms as Sy (dysp), S1 (cough) and Ss (nasal), background
as B (season) and text as T'. We discuss how each model is able to calculate the
following posterior diagnostic probabilities:

- P(D; | B, Sy, S1,52): take only background and symptoms as evidence.
- P(D; | B, Sy, 51,52, T): take background, symptoms and text as evidence.
- P(D; | B,T): take background and text as evidence.

4.1 Bayesian Network with Text Generator (BN-gen-text)

Training: In the BN-gen-text model, a text node is added to the BN baseline,
conditioned on all diagnoses and symptoms. The conditional distributions for all
tabular variables are trained using Maximum Likelihood Estimation, as a stan-
dard Bayesian network (see Appendix C.1). To obtain a vector representation


https://github.com/prabaey/bn-text
https://github.com/prabaey/bn-text

234 P. Rabaey et al.

for the text, we use BioLORD, which is a pre-trained language model that pro-
duces semantic single-vector representations for clinical sentences and biomedical
concepts [17]. 32 separate multivariate Gaussians, one for each possible combi-
nation of the values for the two diagnoses and three symptoms, are fitted to
the text embeddings to obtain the distribution P(T" | Dy, D1, So, S1,52). This
basic model allows us to get the probability density of unseen text embeddings
and even sample new ones, although those cannot be directly decoded into text.
To learn each Gaussian, we select all samples in the training set that match a
particular condition and fit the mean p and covariance matrix X' to the corre-
sponding text embeddings. The estimated covariance matrix Y is regularized as
follows

P(T | Dy, Dy, S(),Sl, 52) = NDO,DhSo,ShSz(,u’v (1 - 05)2 + aI) (1)

where the hyperparameter « allows tuning the contribution of the individual
variances of the text representation dimensions.

Inference: After training, we can calculate the posterior for either diagnosis D;
given a set of evidence by applying Bayes’ rule and marginalizing over the learned
joint distribution. For P(D; | B, Sp, S1,S2) the calculation is the same as in a
standard BN, since the conditional text distribution P(T | Dy, D1, So, S1, S2) is
integrated out. P(D; | B, So, S1,S52,T) and P(D; | B,T) on the other hand do
evaluate the conditional text distribution. The detailed equations for all poste-
riors can be found in Appendix C.3.
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Fig. 2. Schematic depiction of all models. The top row presents our baselines BN, BN**
and FF-discr-text. The bottom row shows BN-gen-text and BN-discr-text, two
variants of a Bayesian network augmented with text representations.
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4.2 Bayesian Network with Text Discriminator (BN-discr-text)

Training: In the BN-discr-text model, we augment the BN baseline by con-
ditioning all diagnoses and symptoms on the text embedding. This contrasts
with the BN-gen-text approach, where we augment the BN baseline with distri-
butions of text embeddings conditioned on the diagnoses and symptoms. While
this arc reversal renders the two BNs semantically non-equivalent, all indepen-
dence relations between the non-text nodes remain intact. Each of the condi-
tional distributions is modeled as a set of discriminative neural text classifiers,
one for each configuration of the tabular parent variables, meaning there are 12
in total. For example, we model P(Dg | B = warm,T') and P(Dq | B = cold, T)
as two separate feed-forward neural networks that take the BioLORD text
embedding as an input, and learn to predict the diagnosis probability for Dy at
the output. All parameters are optimized jointly by maximizing the likelihood
P(B, Dy, D1, 50,51,52 | T) (see Appendix C.4) based on the training data. By
making this likelihood conditional on text, we refrain from having to learn a
prior distribution P(T') of the text embeddings.

Inference: P(D; | B, Sy, S1,52,T) is again obtained by applying Bayes’ rule
and marginalizing over the joint distribution (conditional on text). The trained
classifiers are used to evaluate the probabilities needed during inference. Strictly
speaking, conditioning on the text node means that P(D; | B, Sy, S1,S2) cannot
be computed. We circumvent this issue by conditioning on the embedding of
the empty text “” in case no text is observed. The classifiers learn to take this
into account, since an empty text occurs in 1/3 of the training data. Finally,
P(D; | B,T) is simply the output of one of the two diagnosis classifiers. As
before, the detailed equations for all posteriors can be found in Appendix C.4.

5 Empirical Results and Analysis

Evaluation: There are various ways to measure the models’ ability of estimating
diagnostic probabilities, given the observed background, symptoms and/or tex-
tual inputs. This section assumes the real-world scenario with a known (binary)
diagnosis on the test set, but no knowledge of ground truth conditional proba-
bilities. We therefore rank all patients in the test set according to the estimated
probability of the considered diagnosis, and measure the area under the precision-
recall curve for that ranking by comparing with the binary ground truth, i.e., we
report the average precision. Results are averaged over 5 training runs with dif-
ferent model initializations. The full code is available in our Github repository:
https://github.com/prabaey/bn-text.

Results: Table1 presents average precision results for the diagnosis of pneu-
monia (Dg). Corresponding results for the prediction of upper respiratory tract
infection (D;) are shown in Table2 in Appendix D. Ablation results in terms of
connectivity in the network are provided and discussed in Appendix D.2, and
details on training and hyperparameter optimization are given in Appendix D.1.
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Analysis: Comparing P(Do | B, Sy, S1,52,T) and P(Dy | B,So,S1,S52) in
Table 1, we note that both BN-gen-text and BN-discr-text improve over
the baseline BN. This improvement is thanks to the incorporation of text, which
contains information on the symptoms fever and pain that is otherwise never
explicitly encoded in the tabular features, yet very useful for diagnosing pneu.
Indeed, when BN-discr-text takes both symptoms and text into account, in
P(Dy | B, Sy, 51,52,T), its average precision comes close to the upper bound
set by the baseline BN**, with direct access to all 5 encoded symptoms. Fur-
thermore, the ablation study in AppendixD.2 shows a dramatic performance
drop for both BN-discr-text and BN-gen-text when omitting the direct rela-
tion between diagnoses and text in the network, rendering the model unable to
incorporate any complementary text-only information (i.e., on fever and pain)
during inference.

Though the BN-gen-text model performs better than the baseline BN, we see
two reasons for why it is not on par with BN-discr-text. First, the distribution
P(T | Dy, D1,S0,51,52) is made up of 32 conditional Gaussians, each trained
on a different subset of text embeddings that occur with a particular (possibly
rare) combination of symptom and diagnosis values. The BN-discr-text model
has a more modular architecture and does not suffer as much from limited rele-
vant training samples to fit each of its classifiers. Second, a multivariate normal
distribution is not the best fit for the text embeddings. This is probably also
why we see a bigger performance gap between the prediction that incorporates
only text (P(Dy | B,T)) and the one that incorporates both text and symptoms
(P(Dy | B, Sy, S1,852,T)) for the BN-gen-text model.

Table 1. Average precision over test set of three posterior probabilities for the diagnosis
Dy (pneu), each taking a different set of evidence into account (various combinations
of background, symptoms and text). We show mean (=4 std) over 5 initialization seeds.

Model Average precision for pneu

P(Do | B, So, S1,52,T) P(Do | B, So,51,52) P(Do| B,T)
BN - 0.0914 (£ 0.0000) -
BN - 0.8326 (£ 0.0000) -
FF-discr-text 0.6574 (& 0.0118) 0.1090 (£ 0.0020) 0.6220 (£ 0.0121)
BN-gen-text 0.5870 (£ 0.0000) 0.0892 (+ 0.0007) 0.4434 (£ 0.0000)
BN-discr-text 0.7538 (£ 0.0323) 0.1079 (£ 0.0011) 0.6922 (+ 0.0273)

Interestingly, the FF-discr-text baseline performs worse than
BN-discr-text. While the two pneu classifiers in BN-discr-text can focus
on modeling the text given one particular value of the background variable,
the FF-discr-text classifier needs to deal with various configurations of
the background and symptoms, missing or present, as well as their interac-
tions with the text, in a single model. This is why BN-discr-text already
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improves over FF-discr-text, even when it only incorporates text during infer-
ence. When BN-discr-text incorporates symptoms on top of text (P(Dg |
B, Sy, S1,S52,T)), it improves over FF-discr-text with almost 10% points in
average precision, proving the merit of learning separate symptom classifiers,
as well as diagnosis classifiers, and incorporating all their predictions through a
Bayesian inference procedure.

Table 2 in Appendix D shows higher average precision measures for the pre-
diction of inf, which is much more common in our dataset than pneu. Note
that including the text in the prediction does not improve performance. Indeed,
the small gap between BN and BN™ shows that knowledge on the symptoms
fever and pain does not improve the prediction of inf much. Their textual
representation is therefore expected to have little impact as well.

6 Discussion and Conclusion

We conclude with a discussion of how the results from the previous section can
be seen in a broader context, by answering three key questions on the integration
of text in Bayesian networks (BNs) for clinical reasoning.

What are different ways to integrate text into a BN, to allow for joint
reasoning over unstructured text and structured tabular features?

We compared two architectures belonging to complementary model families:
a BN with text generator (BN-gen-text) and a BN with text discriminator
(BN-discr-text). An advantage of the BN-gen-text model is that it follows
the causal structure of the text generation process, making it more intuitive to
understand. However, to fit a generative model for the text embeddings, we need
to make assumptions on the distribution which do not hold in practice. Condi-
tional fitting of the Gaussians for every combination of diagnoses and symptoms
also leads to a bad fit for rarer combinations. Both of these downsides trans-
late to inferior performance of the generative model on our use case. However,
alternative generative architectures are worth exploring in future research. The
BN-discr-text model can benefit from the flexibility of the neural classifiers
without requiring any assumptions on the distribution of the text embeddings.
Its modular approach (with separate classifiers for the diagnoses and symptoms)
allows for an intuitive integration of the observed symptoms into the Bayesian
inference procedure.

What are the advantages of using unstructured text for clinical rea-
soning, compared to only using structured tabular features?
Reducing clinical text to a set of structured variables can be challenging, and
inherently causes loss of information. By retaining the raw text and training the
model to deal with this, the information extraction step is no longer required.
This avoids the need to determine up front which variables are (1) relevant for
any set of diagnoses, (2) mentioned frequently enough, and (3) can be extracted
with sufficient accuracy. We simulated the presence of complementary informa-
tion in the text with the symptoms fever and pain. The models that included
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the text, were able to leverage information on those symptoms without explicitly
including them as variables in the BN, which turned out especially beneficial
for the rarer disease (pneumonia). This aligns with the intuition that specific
symptoms related to rare diseases may not be encoded due to their infrequent
presence, while at the same time being indispensable for accurate diagnosis.

What are the advantages of Bayesian inference for clinical reasoning,
compared to approaches that don’t contain a BN component?

BNs model each conditional distribution separately. This is not the case for
the FF-discr-text baseline, which directly outputs a prediction for the diag-
nosis instead. This modular approach has multiple advantages. First of all, it
helps the model deal with missing data during the training process: conditional
distributions for variables that are not observed in a particular sample are sim-
ply not updated. The FF-discr-text baseline deals with unobserved symptoms
by incorporating a special category in its one-hot encoding, which is much less
natural. Second, and even more important, this modularity improves the inter-
pretability of the prediction, which is essential in medical applications. An end
user of the BN-discr-text model can inspect the outputs of the symptom
classifiers as well as the diagnosis classifier, and see how all these probabilities
contribute to the predicted posterior through the Bayesian inference process.
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Appendix
A Data Generation Process

Figurel in the main text shows the steps we take to generate our dataset.

Step 1. Expert-Defined Bayesian Network. With help of an expert general
practitioner, we define a Bayesian network (BN) that can be used for diagnosis of
two diseases: pneumonia (pneu) and upper respiratory tract infection (inf). We
model the effect of one background factor, season of the year, on both diagnoses.
Additionally, five symptoms are added as nodes to the network: dysp (dyspnea,
also known as shortness of breath), cough, fever, pain (chest pain and/or pain
attributed to airways) and nasal (nasal congestion and/or sneezing). All vari-
ables are binary (warm/cold for season and no/yes for all others), except for
fever, which can take on three levels (none/low/high). According to the expert,
these five symptoms are the most informative to diagnose the two respiratory
diseases in a primary care setting. Figure3 shows the conditional probability
tables (CPTs, defining the distribution of any child conditioned on its possible
parent values), which were filled in according to the expert’s own knowledge and
experience. The product of all conditional distributions forms the joint ground
truth distribution Pgr modeled by the BN, as shown in Eq. 2.
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Par(season, pneu,inf, dysp, cough, fever, pain, nasal) = Par(season)
Par(pneu | season)Par(inf | season)Par(dysp | pnew)Par(cough | pneu,inf)
Por(fever | pneu,inf)Par(pain | pneu,inf)Par(nasal | inf) (2)

Step 2. Sample Tabular Variables. We can easily sample from the joint
distribution Pgr in a top-down fashion, starting from the root node season,
generating the 2 diagnoses conditioned on season, and finally generating the 5
symptoms conditioned on the diagnoses. This way, we obtain 4000 train samples
and 1000 test samples, each with 8 tabular features. We use the pgmpy library
for implementing our BN and sampling from it [1].

Step 3. Generate Clinical Consultation Notes. We then prompt a large
language model (LLM, in our case the GPT-3.5-turbo model from OpenAT [14])
to generate textual descriptions for each sample, given the presence or absence of
the tabular symptoms. We want these textual descriptions to resemble clinical
consultation notes made by a general practitioner for each fictitious patient
encounter, which means the LLM only gets to observe the symptoms, not the
diagnoses. Appendix B outlines the full prompting strategy.

pneu inf
Eeason season season season season
cold 0.400 =cold =warm =cold =warm
yes 0.015 0.005 yes 0.500 0.050
warm 0.600
no 0.985 0.995 no 0.500 0.995
dysp cough nasal
pneu=yes | pneu=no pneu=yes pneu=no inf=yes inf=no
inf=yes inf=no inf=yes inf=no
yes 0.300 0.150 yes 0.700 0.200
yes 0.900 0.900 0.800 0.050
no 0.700 0.850 no 0.300 0.800
no 0.100 0.100 0.200 0.950
fever
pain pneu=yes pneu=no
pneu=yes pneu=no inf=yes inf=no inf=yes inf=no
inf=yes inf=no inf=yes inf=no
high 0.800 0.800 0.010 0.050
yes 0.300 0.300 0.100 0.050
low 0.150 0.100 0.140 0.150
no 0.700 0.700 0.900 0.950
none 0.005 0.100 0.850 0.800

Fig. 3. Conditional probability tables (CPTs) for all parent-child relations in the
ground truth Bayesian network, as defined by an expert general practitioner.

Step 4. Make Data Partially Observed. While our dataset now fulfills
desired properties (i) and (iii) as outlined in Sect.3 in the main text, we still
need to enforce property (ii), which we split up into 3 parts.
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— Step 4a: Some symptoms are never encoded in the tabular portion of the
data at all. To mimic this, we completely remove features fever and pain
from the dataset. This way, none of our models (except for baseline model
BN**, see later) ever observe these variables directly in tabular format, instead
only seeing indirect mentions of them in the text. Both the symptoms fever
and pain are highly informative for the prediction of pneumonia, and any
model that can extract information from the text should reap the benefits.

— Step 4b: Other symptoms are only encoded in a subset of the data. We
simulate this situation by masking out the remaining symptoms in a subset
of the training data. For 1/3 of the training data (1333 samples), we leave out
the values for variables dysp, cough and nasal, rendering them unobserved.
Note that we either observe all 3 symptoms or none at all, thereby avoiding
the need to model missingness and simplifying reality.

— Step 4c: Furthermore, real data might not contain textual descriptions for
all samples. For this reason, we mask out the textual description for another
1/3 of the training data (1333 samples). This leaves the remaining 1/3 of the
training data (1334 samples), with fully observed symptoms and text.

We assume that the background variable is always observed — in a real setting,
it could be extracted from the timestamp of the electronic record — and therefore
never mask it out. The diagnoses variables are never masked out either, mostly
to simplify the setup. We don’t mask out anything in the test set, to leave full
flexibility during the evaluation process in deciding what to include as input to
the predictive models.

B Prompting Strategies

There are 5 symptoms in our tabular dataset, forming a total of 48 possible com-
binations. To mimic a realistic setting, we want each sample to have a unique
textual description, meaning we need to generate a wide variety of different texts
for each of these combinations of symptoms. We asked an expert general prac-
titioner to provide us with some example patient encounter notes that could
be used to prompt the LLM and encourage some variety in its responses. The
expert received a symptom configuration and was asked to describe the patient
encounter like they normally would in practice. We manually translated these
notes from Dutch to English. We ensured that the top 10 most occurring symp-
tom combinations in the training set (for which we will need to generate the
highest number of unique textual descriptions) have at least one clinical exam-
ple note. We had 20 annotated example notes in total. Since some of these notes
are based on real encounters the general practitioner remembered from their own
clinical practice, we do not make these public.

We now describe our LLM prompting strategy. We structure all prompts
according to the OpenAl Chat Completions interface with the GPT-3.5-turbo
model, using a temperature of 1 and a frequency penalty of 0.5. The full code to
reproduce our prompting strategy is available in our Github repository: https://
github.com /prabaey /bn-text.
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Suppose we need to generate a text description for a symptom combi-
nation {dysp = d, cough = ¢, fever = f, pain = p, nasal = n} that
needs m unique textual descriptions. First, we check whether this combina-
tion is present in the set of examples. If one or more examples are found,
we start our prompt with the requested symptom combination, followed
by the example responses, see https://platform.openai.com/playground/p/
poSdvoy9dipYIwVPXepRrUyL?model=gpt-3.5-turbo&mode=chat. If no exam-
ple is found, we randomly pick two unrelated examples and prompt the lan-
guage model by listing one after the other, preceded by their correspond-
ing symptom combinations, see https://platform.openai.com/playground/p/
6KOm6pP6DXmMwDxUJWdAGGHP17model=gpt-3.5-turbo&
mode=chat. In both scenarios, after showing the examples, we ask the LLM
to generate 5 clinical notes. We repeat the prompt as many times as needed to
build up a set of m notes. To further encourage diversity in the responses, we
only mention symptoms with positive values in the prompt in 50% of the cases,
while in the other 50% we mention all symptoms and their values. We execute
the entire pipeline separately for the train and test set. A random sample of the
resulting notes were checked for coherence and correctness by the authors, which
were deemed sufficient for this proof-of-concept setting.

We use a separate prompting strategy for the combination where all symp-
toms are absent. This combination occurs most often out of all, though we still
only have 4 example notes for it. If we were to exclusively use the prompting
strategy from scenario 1, the notes would have little variety. For this reason, we
use 5 different strategies that each account for a different number of generated
notes. While some strategies encourage the model to mention the absence of
respiratory symptoms, others encourage the model to invent a completely unre-
lated patient encounter. We once again conduct the entire process for the train
and test set separately, with the train set needing 1032 descriptions and the test
set needing 388. We describe the 5 strategies we used, together with the pro-
portion of textual descriptions we generated using each strategy and how many
samples this comes down to in both the train and test set. These proportions
were decided arbitrarily based on how useful we deemed each strategy to be.

1. Provide two in-context examples for symptom combination {dysp = no,
cough = no, fever = none, pain = no, nasal = no}: https://platform.
openai.com/playground /p/Zw9y4EZ8RRIGaZTgBCPu5DPT "model=gpt-3.
5-turbo&mode=chat. (40%, Train: #400, Test: #151)

2. Provide two random out-of-context examples for other
symptom combinations: https://platform.openai.com/playground/p/
iYJeF{fzXVZ5akndHGkB6cmPk?model=gpt-3.5-turbo&mode=chat (5%,
Train: #50, #19

3. Similar to strategy 1, but do not mention the absent symptoms
explicitly, thereby encouraging the model to describe cases outside
of the respiratory domain: https://platform.openai.com/playground/p/
Tkszv18Zbqrl162kFOiSErbCT?model=gpt-3.5-turbo&mode=chat. We manu-
ally go over the generated cases and filter those out where dysp, cough, fever,
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pain and nasal are described as present in the patient. (10%, Train: #107,
Test: #39)

4. Same as strategy 3, but don’t show any examples: https://platform.openai.
com/playground/p/8KaVpr7chx LMHyeKz6Y2mMVE?model=gpt-3.
5-turbo&mode=chat. We manually go over the generated cases and filter
those out where dysp, cough, fever, pain and nasal are described as present
in the patient. (10%, Train: #111, Test: #43)

5. Same as stragegy 4, still without showing any examples, but this time
telling the model that the patient is not experiencing the symptoms dysp,
cough, fever, pain and nasal: https://platform.openai.com/playground/p/
eXDgpwMkqevUA8wWiW 1H06et 7model=gpt-3.5-turbo&mode=chat. (35%,
Tra-
in: #364, Test: #136)

C Augmenting BNs with Text Representations

C.1 Baseline: Bayesian Network (BN and BN*™)

Training We train a simple Bayesian network (BN) where the Directed Acyclic
Graph (DAG), which defines the structure between all the tabular variables,
is the same as the one used to generate the data (see Fig.1, excluding the
unobserved symptoms). This Bayesian network defines the joint distribution
as a product of six conditional distributions, one for each variable, as shown
in Eq. 3. These distributions are learned from the training data using maximum
likelihood estimation. This method studies the co-occurrence of particular values
of each variable and its parents in the training set, filling up the CPTs as such.
We use a K2 prior as a smoothing strategy, to counteract the extremely skewed
probability distributions that might be learned when particular combinations
of variables are never observed in the training set. We use the pgmpy Python
library to learn the Bayesian network [1].

P(B, Dy, D1, So, S1,52) = P(B)P(Dy | BYP(D1 | B)P(So | Do)
P(S1 | Do, D1)P(S2 | D1) (3)

Inference. The baseline Bayesian network can only include background and
symptoms as evidence (no text). We can calculate the posterior for either diagno-
sis D; by applying Bayes’ rule and performing marginalization over the variables
which are not included in the evidence, as shown in Eq.4. We use the Variable
Elimination method from pgmpy to perform exact inference.

>.p, , P(B, Do, D1, So, S1,52)
P(D; | B, So, S1,52) = ZDO7D1 P(B, Do, Dv, So, v, S2) (4)

Inclusion of Unobserved Symptoms. We also build a second variant of this
baseline (BN**) where we additionally include the unobserved symptoms fever
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and pain in the DAG. As opposed to all other models, this model is trained
on a version of the training data where these two variables are not masked
out. This baseline serves as an upper bound to the performance of all other
models, which never get to directly observe these two symptoms. Equation5
shows modeled the joint distribution, where Uy and U; represent the unobserved
symptoms fever and pain respectively. Equation4 can be trivially extended to
obtain P(D; | B, Sy, S1,S2, U, U1), where evidence does not only include the
partially observed symptoms S;, but also the unobserved symptoms Us;.

P(BvDOaDhSOa51752aU07U1) = P(B)P(DO | B)P(Dl | B)P(SO | DO)
P(S1 | Do, D1)P(S2 | D1)P(Uo | Do, D1)P(Us | Do, D1)  (5)

C.2 Baseline: Feed-Forward Neural Network (FF-discr-text)

Training We train two discriminative feed-forward neural networks
(FF-discr-text) which receive a vector representation of both the tabular
features and the text at the input, and transform it into a one-dimensional
representation which is turned into a prediction for P(D; | B, Sp, S1,52,T) by
applying a sigmoid non-linearity. We build two completely separate models,
one for pneu and one for inf, and optimize the neural network weights using
maximum-likelihood estimation with a binary cross-entropy loss. As a vector rep-
resentation for the text, we use BioLORD [17], which returns a 768-dimensional
embedding of the text description. The tabular features are turned into a one-
hot encoding, with 11 dimensions in total. Note that each symptom is encoded
into a three-dimensional vector, to be able to model the case where the symptom
is unobserved, next to its two possible classes (yes/no). We also experimented
with including pairwise, three-way and four-way interactions of background and
symptom representations at the input, which adds another 180 dimensions. See
Appendix D.1 for the final hyperparameter configuration.

Inference  The model is trained to maximize the likelihood P(D; |
B, Sy, 51,52,T), so we can directly obtain this probability as an output to the
model when we input a test sample. To get a prediction for P(D; | B, So, S1,52),
we replace the text at the input by an empty string (simply “”) and use its
BioLORD embedding. Note that the model is equipped to deal with this, since
these empty texts occur in 1/3 of the training data as well. Finally, to get a
prediction for P(D; | B,T), we set all symptoms to unobserved and use their
corresponding one-hot encoding at the input of the model, instead of the original
encoding.

C.3 Bayesian Network with Text Generator (BN-gen-text)

The joint probability distribution modeled by the Bayesian network with text
generator is given in Eq.6. We parameterize each conditional distribution as
a Bernoulli distribution with one trainable parameter per conditional par-
ent configuration, except for the text 7', which fits a Gaussian distribution
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to the text embeddings as explained in Sect.4.1. We then learn all train-
able parameters using maximum likelihood estimation where the likelihood
P(B, Dy, D1, S0, 51,S2) (Eq.6 without factor P(T' | Dy, D1, So, S1,S52)) is max-
imized based on the training data. This essentially comes down to filling in the
CPTs like in a normal Bayesian network.

P(BvDOaDhSOaShS?aT) = P(B)P(DO | B)P(Dl | B)P(S() | D())
P(S1 | Do, D1)P(S2 | D1)P(T" | Do, D1, So, S1,52)  (6)

Note that the generative model can easily deal with missing data: if the
symptoms are unobserved, only the parameters for P(B), P(Dg | B) and P(D; |
B) are updated. Similarly, samples where the text is missing still contribute to
the learned CPTs, while P(T | Dy, D1, S0, S1,S52) is fitted separately to the
observed text embeddings only.

Equations 7, 8 and 9 show how we calculate the posterior likelihood for the
diagnoses through Bayesian inference, for different sets of evidence. Note that
we write sums for clarity, but strictly speaking marginalization over T is done
by integration over the normally distributed text embedding variable.

Py | B. 5051, 50) = mn-or (B Do Di S 51, 50.1)
ZDO’DLT'P(B,DO,DMSO,Sl,SQ,T)
>, P(B)P(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)
_ P(S2 | D1) 327 P(T'| Do, D1, So, S1, S2)
X po.p, P(BYP(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)
P(S2 | D1) >4 P(T'| Do, D1, So, S1,52)
>-p,., P(B)P(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)P(S2 | D1)
= 0, PBYP(Dy | BYP(Dy | BYP(So | Do)P(S: | Do, DP(S: | Dy)

>.p, , P(B, Do, D1, So, 51,52, T)

Y py.p, P(B, Do, Dy, S0, 51, 85,T)
>.p,., P(B)P(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)

_ P(S2 | D1)P(T | Do, D1, So, S1, S2) (8)
>-po.0y P(B)P(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)

P(S2 | D1)P(T' | Do, D1, So, S1, S2)

P(D; | B, So, S1,52,T)

YDy 1.50.51.5, P(B; Do, D1,50,51,52,T)

> Do.Dv.S0.51.5, P (By Do, D1, 80, 51,52, T)
201 150,505, P(B)P(Do | BYP(D1 | B)P(So | Do)P(S1 | Do, D1)

_ P(S2 | D1)P(T | Do, D1, So, S1,S2) )
Y Do.D1.50.5:.5, P(B)P(Do | B)YP(D1 | B)P(So | Do)P(S1 | Do, D1)

P(S2 | D1)P(T | Do, D1, S0, S1,52)
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C.4 Bayesian Network with Text Discriminator (BN-discr-text)

The joint probability distribution modeled by the Bayesian network with text
discriminator is given by Eq.10. Like before, P(B) is parameterized as a
Bernoulli distribution with one trainable parameter. All other conditional prob-
ability distributions are parameterized by one neural text discriminator per con-
ditional parent configuration, resulting in 2 classifiers per conditional distribu-
tion, except for P(S1 | Do, D1,T), which has 4 (due to cough having both
pneu and inf as a parent). Each text classifier is modeled as a discriminative
feed-forward neural network that takes a vector representation of the text as
an input (once again, we use 768-dimensional BioLORD embeddings), trans-
forming it into a one-dimensional representation which is then turned into a
prediction for P(X | ¥ = y,T) by applying a sigmoid non-linearity. Here, X
represents the child variable (either Dy, Dy, Sp, S or S2), while ) represents
the parent variable (either B, Dy, Dy or {Dg, D1}) taking on the configuration
y. The Bernoulli parameter and neural network weights are trained by jointly
maximizing the likelihood in Eq. 10 over the training set.

P(B, Do, D1, 850,851,852 | T) = P(B)P(Dyo | B,T)P(D1| B,T)P(So | Do, T)
P(S1| Do, D1, T)P(S2 | D1,T) (10)

Note that the discriminative model can easily deal with missing data: if
the symptoms are unobserved, only the parameters for P(B), P(Dy | B,T') and
P(D; | B,T) are updated. When the text is unobserved, we input the BioLORD
embedding for an empty text into each classifier. For that particular input, the
classifiers will simply learn the co-occurrence of child and parent values in the
1/3 of the training data where text is empty, their outputs essentially mimicking
the CPTs in a normal Bayesian network (like in the BN baseline model).

Equations 11 and 12 show how we calculate the posterior likelihood for the
diagnoses through Bayesian inference, taking the symptoms and text (empty or
not) as evidence. P(D; | B,T) can simply be taken directly as the output of the
relevant diagnosis classifier.

>.p,., P(B, Do, D1, 80,851,582 | T)
B >-po.0y P(B, Do, D1, S0, 51,5 | T)

S b, , P(BYP(Do | B,T)P(D1 | B,T)P(So | Do, T)
_ P(S1 | Do, D1,T)P(Sy | D1,T)
~ Ypo.p, P(BYP(Do | B,TYP(D:1 | B,T)P(So | Do, T)
P(Sy | Dy, D1, T)P(Sy | D1,T)

P(D; | B, So, 51,52, T)

(11)

P(Dz | B, 50,51752) == P(D/, | B, SO,Sl,SQ,T == “”) (12)



246 P. Rabaey et al.

D Empirical Results and Analysis

D.1 Training, Hyperparameter Tuning and Evaluation

All models, except the baselines BN and BN**, have multiple hyperparameters to
tune. We optimized these separately for each model using a train-validation split
on the train set (3200/800 sample split out of 4000 samples in total), choosing the
hyperparameters that maximize the average precision of P(D;|B, Sy, S1,52,T)
on the validation set. The full implementation can be found in our Github repos-
itory: https://github.com/prabaey /bn-text.

— FF-discr-text We optimized the number of epochs, the number of layers
(including their width), the batch size, learning rate and weight decay of the
Adam optimizer, dropout and whether to include interaction features at the
input or not. We optimized these hyperparameters separately for the pneu
and inf classifier. For the pneu classifier, the final configuration we landed
on was the following: 200 epochs, 2 layers (dimensions 768 — 256 — 1, with
a ReLU activation in the middle), batch size 256, learning rate le—2, weight
decay le—3, dropout of 70% in every layer and no interaction features. For
the inf classifier, the optimal settings were the same, except that it had 1
layer (dimensions 768 — 1). To make up for the lower complexity of the model
(and limited ability to mix features in a single layer), it proved optimal to
include the interaction features at the input of this classifier.

— BN-discr-text To make for a fair comparison, we used the same layer and
dropout configurations that were chosen after tuning the FF-discr-text
model for the P(Dy|B,T) classifier (pneu) and P(Dq|B,T) classifier (inf).
The symptom classifiers already achieved perfect performance with only 1
layer (dimensions 768 — 1) and without dropout, so we kept these settings.
We again used the Adam optimizer to learn the neural weights for all clas-
sifiers, with learning rate le—2 and weight decay le—3. We used a separate
learning rate of 0.05 (without weight decay) for learning the P(B) distribu-
tion, which is modeled with a single Bernoulli parameter. Other hyperparam-
eters were also chosen in accordance with the FF-discr-text model: 200
epochs and batch size 256.

— BN-gen-text For learning the conditional probability table parameters
in the Bayesian network, we used an Adam optimizer with a learning rate
of 0.05 and no weight decay. We trained for 15 epochs with a batch size of
256. Hyperparameter a, which regularizes the covariance matrix in Eq. 1, was
found to be optimal at 0.85. We use the same « for all 32 Gaussians.

We trained all models with their optimal hyperparameter configurations over
the train set of 4000 samples. We repeated this process 5 times, each time with
a different initialization seed (except for the BN baseline, which is deterministic).
For each trained model, we calculated the three posterior diagnosis probabilities
for all 1000 samples in the test set. We then obtained the average precision (area
under the precision-recall curve) by comparing each prediction to the known label
for the diagnosis. We report average precision rather than area under the ROC


https://github.com/prabaey/bn-text

Clinical Reasoning over Tabular Data & Text w. BNs 247

curve (another metric often used to assess classification performance), since the
former is better suited to evaluate predictive performance in extremely imbal-
anced datasets [3], which is the case for pneumonia.! Furthermore, balancing
precision and recall (catching as many cases of pneumonia as possible without
including too many false positives) describes the diagnostic task of the GP in
the practical use case well. Table1 in the main text shows the results for the
prediction of pneu, while Table 2 shows these results for the prediction of inf.

Table 2. Average precision over test set of three posterior probabilities for the diag-
nosis inf, each taking a different set of evidence into account (various combinations of
background, symptoms and text). We show mean (+ std) over 5 initialization seeds.

Model Average precision for inf

P(Dy | B, So, 51,52, T) P(Dy|B,So,S,S) P(Dy|B,T)
BN - 0.8884 (£ 0.0000) -
BN™ - 0.9009 (£ 0.0000) -
FF-discr-text 0.9042 (+ 0.0018) 0.8813 (& 0.0003)  0.8821 (& 0.0014)
BN-gen-text  0.7968 (& 0.0007) 0.8889 (+ 0.0000)  0.7624 (& 0.0011)
BN-discr-text 0.9016 (+ 0.0007) 0.8889 (£ 0.0000) 0.8738 (£ 0.0018)

D.2 Ablation Study

In designing the DAG for models BN-gen-text and BN-discr-text, we explic-
itly included an arc between each diagnosis and text. This modeling decision
makes sense when one assumes the presence of some unknown and unobserved
symptoms in the text. In this section, we investigate how the models would
perform if these relations were left out. We first introduce our generative and
discriminative ablated models, and then discuss the empirical results.

Ablated BN with Text Generator (BN-gen-text~). We remove the arcs
Dy — T and D1 — T from the BN-gen-text model shown in Fig. 2, forming the
BN-gen-text ™ model. The text node now has only three parents (symptoms Sy,
S1 and S2), meaning only 8 conditional Gaussians have to be fitted. Note that
this means there are more text embeddings available to fit each Gaussian than
there were for the BN-gen-text model. The new joint distribution modeled by
this Bayesian network is shown in Eq.13. Note that it differs from Eq.6 only
in its definition of the conditional text distribution. We train this model in the
same way as before, with the hyperparameters described in Sect. D.1.

! We have a positive pneumonia label for only 34 out of 4000 samples in the training
set and 14 out of 1000 samples in the test set.
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P(B, Do, D1, So, 81,52, T) = P(B)P(Do | BYP(D1 | B)P(So | Do)
P(S1 | Do, D1)P(S2 | D1)P(T'| So,51,52) (13)

Bayesian inference over the ablated DAG partially differs from inference over
the original DAG. The calculation of both P(D; | B, Sy, S1,S2) and P(D; | B,T)
incurs only minimal changes (just swap out P(T | Dy, D1, S, S1,S2) for P(T |
So,S1,52) in Eqs.7 and 9). However, the DAG shows that D; is independent
of T when all symptoms are known (no unblocked paths), meaning that P(D; |
B, Sy, 51,82, T) =P(D; | B, Sy, S1,52).

Ablated BN with Text Discriminator (BN-discr-text~). We remove the
arcs T — Dy and T' — D; from the BN-discr-text model shown in Fig.2,
forming the BN-discr-text™ model. This means that there are only 8 classifiers
to be learned, as P(Dg | B) and P(D; | B) can now be modeled as simple CPTs,
just like P(B). The joint distribution for the ablated model is shown in Eq. 14.
We train this model with the hyperparameters described in Sect.D.1, using a
learning rate of 0.05 to learn the parameters of the CPTs for Dy, D, and B.

P(B, Do, D1, S0, 51,52 | T) = P(B)P(Dy | BYP(D1 | B)P(So | Do, T)
P(S1| Do, D1, TYP(S2 | D1,T) (14)

Again, Bayesian inference over the ablated DAG partially differs from infer-
ence over the original DAG. P(D; | B, So, S1,52,T) is calculated analogously
to Eq. 11, but with P(D; | B) instead of P(D; | B,T). Finally, it is clear from
the ablated DAG that the diagnoses are independent of the text if no symptoms
are observed (all paths between D; and T are blocked by unobserved colliders).
Therefore P(D; | B,T) equals P(D; | B), meaning the BN-discr-text™ model
cannot extract any information from the text without any observed symptoms.

Table 3. Average precision over test set for the ablated text models, which do not
explicitly include the relation between diagnoses and text.

Model Average precision for pneu

P(Dy | B, So, 51,52, T) P(Do | B, So,S1,52) P(Do|B,T)
BN-gen-text™ 0.0892 (+ 0.0007) 0.0892 (£ 0.0007) 0.0933 (4 0.0009)
BN-discr-text~ 0.1017 (& 0.0008) 0.1041 (£ 0.0072) 0.0302 (4 0.0000)
Model Average precision for inf

P(D: | B, So, 51,52, T) P(D:1| B, So,51,52) P(D:1|B,T)
BN-gen-text™ 0.8889 (+ 0.0000) 0.8889 (£ 0.0000) 0.8914 (4 0.0002)

BN-discr-text™ 0.8065 (£ 0.0004) 0.8889 (& 0.0000)  0.4441 (& 0.0000)
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Analysis. Comparing the pneu portion of Table 3 with Table 1, we immediately
note that performance drops dramatically in the ablated versions of both the gen-
erative and discriminative model. While P(Dyg | B, Sp, S1, S2) is still very similar
to the BN baseline, including text in the prediction P(Dq | B, So, S1,S2,T) now
does not improve performance. Since we do not model the relation between diag-
noses and text, the model can only extract information from the text through the
three symptoms we explicitly include in the DAG: dysp, cough and nasal. Infor-
mation regarding other useful symptoms, pain and fever, cannot be extracted.

While the BN-gen-text~ model is able to extract the necessary information
on the symptoms Sy, S; and S from the text alone (P(Dg | B,T) ~ P(Dy |
B, Sy, 51,52)), BN-discr-text~ performs abysmally when only text is included
in the evidence. This comes as no surprise when we actually study the DAG:
the diagnoses are independent of the text if no symptoms are observed. These
independence assumptions do not match the reality we are trying to capture.

Comparing the inf portion of Table3 with Table 2 shows lower performance
of BN-discr-text~ compared to BN-discr-text when only taking text into
account (P(D; | B,T)). Conversely, BN-gen-text~ actually improves over
BN-gen-text on both P(D; | B, Sy, 51,52, T) and P(D; | B,T). Since the
text node T now only has three parents instead of five, there’s more text embed-
dings available to fit each conditional Gaussian. Combined with the fact that
there is no additional information in the text that can help to predict inf any-
way, modeling the direct relation between diagnosis and text will only result in
a less reliable fit of the text distribution by the BN-gen-text model.
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Abstract. Pre-trained language models (PLMs) have proven to be effec-
tive for document re-ranking task. However, they lack the ability to fully
interpret the semantics of biomedical and healthcare queries and often
rely on simple patterns for retrieving documents. To address this chal-
lenge, we propose an approach that integrates medical knowledge into
PLMs to guide the model toward effectively capturing information from
external sources and retrieving the correct documents. We performed
comprehensive experiments on two biomedical datasets and an open-
domain dataset. We demonstrate the capability of the proposed mutual
information-based feature fusion technique by comparing it with the
existing feature fusion techniques. Our extensive experiments on mul-
tiple datasets show that our proposed approach significantly improves
vanilla PLMs and other existing approaches for document re-ranking
task in the biomedical/clinical domain.

Keywords: Information Retrieval -+ Knowledge Graph

1 Introduction

Retrieving relevant information in response to a query involves considering both
the explicit constraints indicated in the textual contents of the query and the
implicit knowledge about the domain of interest. Large pre-trained language
models [3,15] became a foundation for most modern information retrieval (IR)
systems. While these models have acquired the ability to implicitly encode broad
world knowledge and have achieved significant performance on a variety of bench-
mark tasks, they fall short when provided with examples that are distributionally
distinct from those they were fine-tuned on. This limitation of PLMs is further
amplified in the biomedical/clinical setting, where (i) there is a high degree of
variability in the form of synonyms and abbreviated words and (ii) retrieval
of relevant information is dependent on understanding the focus/intent of the
query. In the example shown in Table 1, the query context is neither explicitly
stated in the gold-standard document, nor does it contain one salient term (‘chro-
mosome 137). It requires domain knowledge to infer that a type of omodysplasia
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is an “autosomal recessive disorder” caused by mutation in a gene on one of the
first 22 non-sex chromosomes. In such cases, which require domain knowledge
to correctly retrieve relevant documents, both BM25 and MonoT5 fail. These
findings highlight that PLMs lack semantic interpretation of queries and often-
times depend on naive patterns to retrieve information rather than using more
structured reasoning that effectively amalgamates information provided in the
context with external knowledge. In the past, there have been research efforts
[5,23] to fuse domain knowledge in LMs, yet so far, to the best of our knowledge,
there has been no exploration towards integrating external knowledge in neural
IR, both in open domain and much-needed biomedical/clinical domain.

Table 1. Top retrieved documents using BM25 and MonoT5 models for the query:
“What rare disease is associated with a mutation in the GPC6 gene on chromosome
13 2” along with the gold-standard document. Lexical and semantic matches consid-
ering context are shown in blue and pink, respectively. The highlighted texts in green
indicate domain knowledge needed to retrieve the correct document. For a comprehen-
sive view, access the online version where the tables are displayed in color.

Top Retrieved Document Top Retrieved Document
Gold Document
(BM25) (MonoT5)
.. The proband had normal molecular analysis
The human gamma-sarcoglycan gene was ’ .
. . . . of the glypican 6 gene (GPC6), which was
..We report the construction of a high-resolution 4 Mb | mapped to chromosome 13q12, and deletions .
: o . ) O  recently reported as a candidate for antosomal
sequence-ready BAC/PAC contig of the GPC5/GPC6 | that alter its reading frame were identified in | Mild rhi i
ecessive omodysplasia. Mild rhizomelic
gene cluster on chromosome region 13q32. three families and one of four sporadic cases . . .
shortening of the lower extremities has not been
of SCARMD. .
previously reported...

To address the aforementioned issues, in this work, we propose Graph-
MonoT5, an effective approach that fuses the external knowledge into the pre-
trained language model for the document retrieval task. The proposed Graph-
MonoT5 is built upon the encoder-decoder T5 model, and the T5 encoder layer
is complemented with the graph neural network (GNN). The former takes query
and document as input and later is used to reason over the underlying knowledge
graph (KG) with entities as nodes and relationships between them as edges. With
the use of mutual information-based interaction representations, we develop a
strategy to effectively fuse the language and graph representation and allow a
two-way exchange of information between the text and graph modalities.

2 Methodology

Background. Our proposed re-ranking approach GraphMonoT5 is based on the
MonoT5 model that utilizes the encoder-decoder based T5 [15] model to calculate
a relevance score that provides a quantitative indication of the degree to which
a candidate document d is pertinent to a query ¢. The input prompt to the
MonoT5 model is:

Query: [q] Document: [d] Relevant: (1)

The MonoT5 model is fine-tuned to generate the words “true” for relevant
or “false” for the documents non-relevant to the query. During inference, the
candidate documents are re-ranked based on the probability of the “true” token.
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2.1 Proposed Model

Our proposed GraphMonoT5 model is the result of the augmentation of the
PLM with the graph reasoning modules over KG for effectively re-ranking the
candidate documents against the query. We describe the KG construction and
KG-enriched ranking in the following subsections:

Knowledge Graph Construction. The knowledge graph is a multi-relational
graph G = (V, &) with entity nodes V and edges £ C V x R x V that connect
nodes in V with the set of relations R. Given a query-document pair (g, d), we
link the entities (¢f. Appendix C.1 [1]) mentioned in the query and document
to the KG G. The nodes corresponding to query g and document d are denoted
by V4 C V and V4 C V, respectively. The total nodes of the query-document
pair are denoted by V,4 = V4, U Vy. Since the KG G can include millions of
nodes and edges, only a subgraph G, 4 = (Vy,4, €4,4) of the KG G which contains
all the nodes on the 2-hop paths between nodes in V, 4 is considered for the
query-document pair.

KG-Enriched Seq2Seq Ranking. Our KG-enriched seq2seq ranking app-
roach consists of (a) R layers T5-encoder model to encode the language context,
(b) graph neural network to model the subgraph of the query-document pair, (c)
S layers language-graph interaction component to fuse the language and graph
representations, and (d) T5-decoder model to predict the query-document rel-
evance score. Following, [25], we use an interaction token ¢;,; and interaction
node n;,; to pass the information across the language and graph modalities.
In contrast to [25], we introduced a mutual information-based fusion technique
that combines new information from the PLM and knowledge graph by eliminat-
ing redundancy. The interaction token t;,; is prepended to the token sequence
{t1,ta,...,tn} of query-document pair (g,d) (cf. Eq. 1) and n;,, is connected to
all the nodes in G, 4, allowing the information flow amongst the nodes in G, 4
and being the representative node of G, 4.

Language Representation: Given the token sequence 7 = {tint,t1,t2,...,tN},
first we pass the sequence 7 into the first layer of the T5-encoder [15] to obtain
the hidden state representations H' = {hl ., hl, b}, ... AL} € RINTDXd where
d; is the dimension of the hidden state. Hidden state representation H' at [t*
layer is passed to the (14 1) layer of T5-encoder to encode and obtain the rep-
resentation H'*T!. Following this, we extract the representation from T5-encoder
forl=1,2,...,R:

RLEL R RN = T5-encoder (bl By, ..., BYy) (2)

To fuse the language and graph representations, we also extract the hidden state
representation from an additional S layers of T5-encoder; however, at layer
[ the interaction token representation h! , is fused with the interaction node
representation (to be discussed shortly) to amalgamate the knowledge feature

with the language model feature.
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Graph Representation: Given the query-document pair sub-graph G,q =
(Vq.d, Eg,a) with nodes {Nint,n1,M2,...,nar}, we first compute the node embed-
dings U = {ul ., ul,ub, ... u},} € RMFTD*ds yging the pre-trained knowledge
graph embeddings (Appendix C.2 [1]). We utilize the graph attention network
[19] to compute the node representation by propagating the information across
the nodes in the subgraph G, 4. The subgraph node representation U! at [*"
layer of GNN is passed to the (I + 1)** layer of GNN to encode and obtain the
representation U'*!. Following this, we extract the representation from GNN for
1=1,2,...,5:

uiiﬁ,ulﬁl,...,ué\}'l = GNN(ul,,, ul, ... uby) (3)
Language-Graph Interaction: On a given layer | € S, we aim to effectively fuse
the modalities by using the interaction token representation h!,, and interaction
node representatlon um, Towards this, first, we obtain the fused representa-
tion 2! = f(hl,, @ ul,,) with a two-layer feed-forward network f. The fused
representation z! may contain redundant information. To overcome this issue,
we introduce mutual information (MI)-based feature fusion that aims to mini-
mize the MI Z(x!; 2!) between the compressed encoded representation 2! and the

concatenated representation z!. Formally given two random variables z! and 2!,
their MI is defined as follows:

I(z';2') = Dxr(p(a’, 2)lIp(z")p(2"))
< aBuipaten [Drrn(p(2']2")|[a(2))] (4)
< aM(z'; 2

where, « is a constant and Dk, denotes the KL divergence (proof in Appendix
B.2 [1]). We model the p(z!|z!) using a parameterized Gaussian distribution
N(pl, ZL) with mean p! and variance X!. To compute the gradients through
random variables, we follow the reparametrization trick [9] with standard normal
dlstrlbutlon €~ N(O I) to calculate 2! = pl +Xle. Later, we split 2! into the hl,,
and i, for further computation of the token and node, respectively. With the
virtue of the Transformer network and GNN, the fused representation is mixed
with the remaining tokens and nodes of the subgraph. The graph-augmented
representations from the KG-enriched T5-encoder are passed to the T5-decoder
to predict the query-document relevance score as discussed in Eq. 1.

Network Training: The network is trained by maximizing the log-likelihood of

the document given the query and minimizing the mutual information on each
layer of the KG-enriched T5-encoder. Formally the training objective J is

pIT) - %Z (5)

where y € {‘true’, ‘false’} is the predicted token from T5 model given the input
token sequence 7.
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3 Experimental Setups

Datasets and Knowledge Sources. We evaluated our proposed GRAPHMONOTS
model on two existing biomedical datasets: BioASQ8B [12] and TREC-COVID
[20]. Additionally, we evaluated our approach on an open-domain HotPotQA [22]
that includes PubMed and Wikipedia articles, which also contain health-related
information. For biomedical domains, we train the model on the training collec-
tion of the BioASQ8B dataset, the network hyper-parameters are tuned on batch
four of BioASQT7B test collection. Performance is reported on the five different
test collections (B1, B2, B3, B4, and B5) each of 100 queries of BioASQ8B and
TREC-COVID datasets. We utilized ConceptNet!, an open-domain knowledge
graph, to extract knowledge for HotPotQA dataset and biomedical knowledge
graph from [25] that was developed by integrating the Unified Medical Language
System (UMLS)? and DrugBank knowledge sources to extract knowledge from
BioASQ datasets. The detailed statistics of the datasets and knowledge graph
are shown in Table 2.

Table 2. Statistics of the datasets used in the experiments. For TREC-COVID, the
performance is evaluated in zero-shot settings on the model built upon the BioASQ8B
training dataset.

Datasets # Query-docs | #Dev | #Test | Corpus Nodes | Edges
BioASQS8B 32,916 100 500 14,914,602 | 9,958 | 44,561
TREC-COVID | - - 50 171,332 - -
HotPotQA 170,000 5,447 | 7,405 |5,233,329 | 799,273 | 2,487,810

Evaluation. Following the existing works on BioASQS8B, we evaluated the per-
formance of the models using Mean Average Precision (MAP), Recall@100
(R@100), and normalized cumulative discount gain (nDCG@10). We used the
official BioASQ script® to compute MAP values, and Pytrec_eval to report
the nDCG@Q10 and Recall@100 score. Following [18], we report the Capped
Recall@100 score for the TREC-COVID dataset.

4 Results and Analysis

Results. Table3 demonstrates that the GraphMonoT5 model equipped with
knowledge-graph outperforms the existing approaches on BioASQ8B, TREC-
COVID, and HotPotQA test datasets. Since the TREC-COVID dataset does
not contain the training set, we evaluated the model trained on the BioASQ8B
dataset on the test set of TREC-COVID in a zero-shot setting. We have also

! https://conceptnet.io/.
2 https://www.nlm.nih.gov/research/umls/index.html.
3 https://github.com/BioASQ/Evaluation-Measures.
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provided a performance comparison of our proposed approach with the best
systems of the BioASQ8 challenge, and recent work of [11] in Table4. In the
BioASQ8B, there are five different test sets (B1, B2, B3, B4, and B5) periodically
released. We computed the performance on each of these test sets and reported
the results (c¢f. Table4) in terms of MAP.

Table 3. Performance comparison of our proposed method with the existing
approaches on respective datasets. R@Q100 refers to the Recall@100. The first block
of the results is taken from [18]

Models BioASQ8B TREC-COVID HotPotQA
R@100 | nDCG@Q10 | R@100 | nDCG@10 | R@100 | nDCGQ10

DeepCT [2] 0.699 |0.407 0.347 |0.406 0.731 | 0.503
SPARTA [26] 0.351 |0.351 0.409 |0.538 0.651 |0.492
DPR [6] 0.256 | 0.127 0.212 |0.332 0.591 1 0.391
ANCE [21] 0.463 |0.306 0.457 |0.654 0.578 |0.456
TAS-B [4] 0.579 |0.383 0.387 |0.481 0.728 10.584
GenQ [18] 0.627 |0.398 0.456 |0.619 0.673 | 0.534
ColBERT [8] 0.645 |0.474 0.464 |0.677 0.748 10.593
BM25 [17] 0.745 ]0.488 0.508 |0.688 0.763 |0.602
MonoT5 [13] 0.745 |0.489 0.508 | 0.685 0.763 | 0.648
Proposed (GraphMonoT5) | 0.745 |0.520 0.508 |0.701 0.763 |0.667
w/o MI Fusion 0.745 |0.499 0.508 |0.683 0.763 |0.637

Quantitative Analysis: To analyze the role of mutual information based objec-
tive function, we trained the model with only cross-entropy loss and observed the
decrements of 2.1, 1.8, and 3.0 nDCG@10 points over the cross-entropy with MI
objective on BioASQ8B, TREC-COVID, and HotPotQA dataset respectively.
We have also provided (c¢f. Fig. 1) the comparison of the approaches in terms
of MAP, which shows that the GraphMonoT5 method with mutual information
fusion outperforms the MonoT5 and concatenation-based fusion on BioASQ8B
and HotPotQA datasets. Compared to one of the best-performing systems [7]
of BioASQ8B, our proposed approach shows an absolute improvement of 4.23
points in MAP score on BioASQS8B test sets. We also see an absolute improve-
ment of 3.24 points in MAP score on BioASQ8B test sets compared to the [14]
work. Our approach outperformed the recent work of [11] by 6.82 points MAP
score on the BioASQS8B test sets.

Influence of the KG: We performed an ablation study to assess the role of
KG in our proposed approach. With GraphMonoT5, we observed a significant
(p < 0.05, using bootstrap test) improvement of 3.1, 1.6, and 1.9 nDCG@Q10
points over the vanilla MonoT5 model on BioASQ8B, TREC-COVID, and Hot-
PotQA datasets, respectively. Furthermore, compared to BM25, we observed an
improvement of 3.2, 1.3, and 6.5 nDCG@10 points on respective datasets. The
results allow for two important claims (1) knowledge-enriched PLMs help to
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Table 4. Comparison of the proposed method with the state-of-the-art approaches on
BioASQS8B test batches in terms of MAP score.

Methods B1 B2 B3 B4 B5 Mean

PA [7] 0.3346 |0.3304 |0.4351 |0.3600 | 0.4825 |0.3885
AUEB [14] 0.3359 |0.3181 |0.4510 |0.4163 |0.4657 |0.3974
P-DPR [11] 0.3002 |0.3131 |0.3979 |0.4218 |0.3799 |0.3626
Proposed (GraphMonoT5) | 0.3906 | 0.3943 | 0.4697 | 0.5190 | 0.4168 | 0.4308

Table 5. Performance Comparison (in terms of nDCG@10) of our proposed fusion
strategy with the existing fusion approaches on benchmark datasets.

Approach BioASQ8B | TREC-COVID | HotPotQA
GraphMonoT5 w/ MAG [16] 0.454 0.599 0.521
GraphMonoT5 w/ LMF [10] 0.479 0.656 0.509
GraphMonoT5 w/ TEN [24] 0.492 0.642 0.484
GraphMonoT5 w/ MI Fusion (Ours) | 0.52 0.701 0.667

re-rank the documents more accurately compared to the vanilla PLMs and (2)
mutual information-based knowledge-fusion is an appropriate strategy to fuse
the language and graph information.

Comparisons with Existing Fusion Techniques: We performed extensive experi-
ments to compare the performance of our proposed MI-based knowledge fusion
strategy with the existing works on multimodal fusion. Towards this, we replaced
the proposed MI-based knowledge fusion with the MAG fusion introduced in [16].
Similarly, we also performed the experiments with LMF [10] and TFN [24] fusion
techniques. Table 5 reports the results on BioASQ8B, TREC-COVID, and Hot-
PotQA datasets, comparing our proposed fusion technique with MAG, LMF,
and TFN fusion techniques in terms of nDCG@10. Compared to MAG, our
proposed fusion technique shows an improvement of 6.6, 10.2, and 14.6 points
nDCG@10 on BioASQ8B, TREC-COVID, and HotPotQA datasets respectively.
For the BioASQ8B, we obtained the best results of 0.492 nDCG@10, which is
2.8 points above the best pre-existing fusion technique TFN. Similarly, for the
HotPOTQA dataset, our nDCG@10 score outperforms the second-best MAG
fusion technique by 0.521. These comparisons confirm that the proposed knowl-
edge fusion technique outperforms the existing fusion techniques on open-domain
and biomedical-domain datasets.

Open vs. Biomedical Domain Performance: We also present a comparative anal-
ysis of the open and biomedical domain performance. Towards this, we evaluated
the performance of the MonoT5, proposed GraphMonoT5, and GraphMonoT5
without MI-based technique (language-knowledge concatenation-based fusion)
on BioASQ8B (biomedical) and HotPotQA (open) datasets in terms of MAP@k
(k=5, 10 and 20). It is observed from Fig.1 that performance of the system
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(a) BioASQ8B (b) HotPotQA

0.59

0.46 MonoT5
GraphMonoT5 w/o M| 0.58 1

0.44 1 GraphMonoT5

0.57 1
0.42 -

0.56 1
0.40 1

0.55 1
0.38 -

0.54 1
0.36 -

0.53 -
0.34 - 0.52 1
0.32 1 0.511
0.30 0.5

MaP@s MAP@10  MAP@20 MAP@S MAP@10  MAP@20
Fig. 1. Performance comparison of models in terms of MAP@k for BioASQ8B and
HotPotQA test datasets.

without mutual information fusion drops on the HotpotQA dataset, which shows
that effective language-graph fusion is required in an open-domain setup where
the sub-graph of the question-document pair becomes sparse and comparatively
larger (cf. Table2) compared to the biomedical domain.

Qualitative Analysis: We have also performed qualitative analysis on the
retrieved documents from MonoT5 and GraphMonoT5 models and observed
that (a) MonoT5 model benefited from the world knowledge learned during
pre-training stages and was able to retrieve the document where the query was
syntactically and semantically aligned to the document, (b) however, MonoT5
model lacks the external biomedical knowledge and is not able to infer the under-
lying relations among the biomedical entities, leading to the incorrect docu-
ment retrieval. In contrast, the proposed GraphMonoT5, which has learned the
biomedical relations amongst the entities via UMLS and DrugBank, was able to
retrieve the correct document. We have provided the query-documents examples
comparing MonoT5 and GraphMonoT5 in Appendix D [1].

5 Conclusion

This work proposed an effective approach to re-rank the documents by utilizing
the knowledge graphs and integrating them into the PLMs. To effectively fuse
the language and graph information in the knowledge-enriched framework, we
introduced a mutual information-based objective function, which ensures the
fused representations are non-redundant and informative in nature. Extensive
experiments on biomedical and open-domain datasets show the effectiveness of
the approach.
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Abstract. Evidence-based medicine (EBM) represents a cornerstone
in medical research, guiding policy and decision-making. However, the
robust steps involved in EBM, particularly in the abstract screening
stage, present significant challenges to researchers. Numerous attempts to
automate this stage with pre-trained language models (PLMs) are often
hindered by domain-specificity, particularly in EBMs involving animals
and humans. Thus, this research introduces a state-of-the-art (SOTA)
transfer learning approach to enhance abstract screening by incorporat-
ing domain knowledge into PLMs without altering their base weights.
This is achieved by integrating small neural networks, referred to as
knowledge layers, within the PLM architecture. These knowledge layers
are trained on key domain knowledge pertinent to EBM, PICO entities,
PubmedQA, and the BioASQ 7B biomedical Q&A benchmark datasets.
Furthermore, the study explores a fusion method to combine these
trained knowledge layers, thereby leveraging multiple domain knowledge
sources. Evaluation of the proposed method on four highly imbalanced
EBM abstract screening datasets demonstrates its effectiveness in accel-
erating the screening process and surpassing the performance of strong
baseline PLMs.

Keywords: Pre-trained Language Models - Domain Integration -
Transfer Learning - Evidence-Based Medicine - Abstract Text
Classification

1 Introduction

Evidence-Based Medicine (EBM) presents the highest form of reliable evidence
in shaping healthcare policies and decision-making [1]. Generally, the process
involves (i) formulating a protocol, (ii) defining the research question using entity
frameworks such as PICO! to encapsulate the inclusion and exclusion criteria,

! where PICO denotes Population, Intervention, Comparison, Outcome.
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(iii) searching, (iv) screening abstracts, (v) extracting and analysing data from
pertinent articles, and (vi) interpreting and publishing the findings. This process
although structured is labour-intensive, further exacerbated by the daily increase
in published articles. It is reported that the typical time frame for completing
an EBM is approximately 15 months [1]. Thus, most EBMs become outdated
before completion, needing major revisions.

Among all the stages in EBM, abstract screening has been reported to be the
most challenging stage [2]. For example, research indicates that an experienced
researcher typically spends 30-90 sec screening a single abstract, and estimated
that 5,000 publications usually require 8-125 hrs [2]. Numerous methodolo-
gies for automating this stage have been proposed [2] ranging from traditional
machine learning (ML) models to advanced PLMs, where they are fully fine-
tuned (FFT) on EBM abstract datasets. However, most of these approaches are
hindered by domain specificity, especially in highly imbalanced studies involving
humans and animals [3]. Furthermore, PLMs comprise an extensive number of
parameters; thus, in FFT, the parameters of the PLMs are updated whenever a
new EBM dataset is introduced, resulting in increased computational costs and
memory requirements. To tackle these issues, this paper investigates a SOTA
method to integrate domain knowledge into PLMs for abstract screening tasks.?

2 Related Work

Many methods have been proposed for abstract screening, from traditional ML
algorithms like Support Vector Machine (SVM) and Naive Bayes (NB) to SOTA
PLMs. Timsina et al. [4] proposed using ULMS as a feature extraction technique
and a softMax SVM classifier for abstract classification. Almeida et al. [5] also
suggested the addition of MeSH and keywords to the abstracts for training a
decision tree classifier. Similarly, Kontonatsios et al. [6] presented using MesH
heading to train a neural network, and [7] proposed using Latent Dirichlet Allo-
cation (LDA). With the rise of PLMs, medical domain knowledge PLMs such
as SciBERT, PubMedBERT (PMBERT), BioBERT and CBERT (CBERT) have
been proposed. For example, for this task, Hasny et al. [8] proposed using variants
of BERT base models such as BERT-Meduim, SciBERT, BioBERT and CBERT.
Ofori-Boateng et al. [2] also presented attention mechanisms with LSTM and Bi-
LSTM. Moreno et al. [9] presented a zero-shot classification method for abstract
screening. Similarly, [10] also proposed using GPT. Despite their advancements,
these PLMs were originally trained on unstructured corpora, lacking the struc-
tured domain knowledge essential for biomedical tasks. As such, these PLMs
treat biomedical concepts as conventional tokens, limiting their effectiveness [3].

2.1 Research Questions

We explore integrating essential domain knowledge into the models to address
these issues. Specifically, we focus on incorporating PICO entities along with two

2 For reproducibility, the source code and datasets are available on Github. https: //
github.com/reginaofori/EBM-Domain-Integration- PLMs.
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biomedical Q&A datasets, PubMedQA? and BioASQ 7B*. PICO entities are
fundamental in EBM, while PubMedQA and BioASQ 7B offer formats similar
to the EMB abstract datasets (context/abstracts, question, and decision) as in
Tables 3 and 4 in the Appendix. To this end, we ask the following RQs:

1. How can the diverse domain knowledge crucial for abstract screening tasks be
integrated into a base PLM without adjusting model parameters? We insert
small neural networks (knowledge layers) into the layers of a base PLM, SciB-
ERT, using the principle of adapters [11] and train on the domain knowledge.
Our choice of SciBERT is from a practical viewpoint as it was trained to
cover a broad biomedical domain, thus advantageous for this task.

2. What is the effect of different configurations of the knowledge layers (where
they are inserted) on the downstream task? We investigate and compare three
configurations of inserted networks to analyse their influence on the down-
stream task.

3. Can adapter-based tuning perform better than SOTA FFT PLMs proposed
for EBM abstracts? We empirically compare the performance of the trained
knowledge layers with FFT SciBERT. Additionally, we examine the transfer-
ability and modularity of the method by inserting the already-trained net-
works into variants; CBERT, PMBERT, and BioBERT, adapter-tuning them,
and comparing them against their FFT versions.

3 Methodology

3.1 Class Imbalance: Back Translation

EBM abstract classification struggles with class imbalance, where the number
of excluded abstracts outweighs the included. Traditional methods have been
proposed, such as cost-sensitive classifiers and data resampling [4]. However, this
study proposes a SOTA data augmentation technique to address this issue called
Back-translation. It involves translating the original text into another language
and then back into the original language, generating a paraphrased version.
Despite potential inaccuracies that may be introduced during re-translation,
this method has demonstrated effectiveness in NLP tasks [8]. For this study, the
Google Translate API® was utilised to translate English abstracts in the training
dataset into seven different source languages (Spanish, French, German, Italian,
Chinese (simplified), Chinese (traditional), and Irish), followed by re-translation
back to English. Notably, back translation was applied only to the minority class
(include). Further details on partitioning the downstream dataset for translation
are provided in Sect. 4.

3 https://pubmedgqa.github.io/.
* http://participants-area.bioasq.org/datasets.
5 https://translate.google.com/.
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Fig. 1. Methodology for training the individual knowledge layers (PICO, BioASQ, and
PubMedQA). The training involves 1) where the knowledge layer is inserted within the
SciBERT PLM with frozen parameters and 2) where we investigate training with three
configurations, in (a) the Houlsby (H), (b) the Pfeiffer, and in (c) the Compacter (C),
a similar architecture of (a) but with a modification.

3.2 Overview of Adapters/Knowledge Layers

Adapters, originally proposed by Rebuffi et al. [13], are small trainable neu-
ral networks integrated within the layers of PLMs. An adapter consists of four
main components: a FeedForward Linear Down Projection (FFD), FeedForward
Linear Up Projection (FFU), a non-linear activation function (LeakyReLU),
and a skip residual. The FFD and FFU reduce dimensionality, converting input
from the PLM’s high-dimensional space to a lower-dimensional one. For exam-
ple, the FFD of the adapter maps the input data from the original high-
dimensional space, dprm, to a much lower-dimensional space, haqapter, Where
typically hadapter < dpry. Readers are referred to [11] for the detailed math-
ematical explanation. The LeakyReLU enables the adapter to handle negative
inputs, ensuring a more dynamic range for the activations. Lastly, the skip resid-
ual ensures the model doesn’t lose essential information during transformation.
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3.3 Approach—Training the Knowledge Layers

To address RQ1 and RQ2, Fig.1 illustrate the training of the three domain
knowledge layers/adapters (PICO, PubMedQA, and BioASQ). We employ a
comprehensive method in two phases: In Phase 1, the knowledge layers are inte-
grated within every layer of the base SciBERT PLM to ensure a granular capture
of information. In Phase 2, to examine the effect of different adapter configura-
tions, we experiment with three distinct existing configurations in training the
knowledge layers: (a) the Houlsby Configuration (H) [11], where the adapters
modules are placed before the multi-head attention mechanism and the FeedFor-
ward layer of the SciBERT model as seen in Fig. 1, (b) The Pfeiffer Configuration
(Pf) [15], where the adapter modules are placed exclusively after the FeedFor-
ward layer and (c) The Compacter Configuration (C) similar to the Houlsby
configuration, but replaces the standard linear FFD and FFU with a more intri-
cate Parameterised Hypercomplex Multiplication (PHM) layer [14]. The PHM
layer uniquely determines its weights by computing the Global Multiplier of the
Kronecker Product (GMKP) between two concise matrices. Readers are referred
to the work done by [14] for a detailed explanation of how the GMKP and
PHM work in the compacter. During the training of the knowledge layers, the
integrated layers introduce trainable parameters, denoted by ®,, which are only
updated, while the core weights of the base SciBERT, ©, remains static. This
strategy accelerates the training process.

Training the Q& A Knowledge Layers—PubMedQA and BioASQ. The
main goal of training a Q&A knowledge layer is to facilitate efficient trans-
fer learning for our downstream abstract classification task, capitalising on the
capabilities of SCiIBERT. PubMedQA and BioASQ, the two Q&A datasets used
for training, are described in Table4 in the appendix. In refining the training
quality for PubMedQA (made up of three labels; yes/no/maybe), the“maybe”
labels are excluded from both training and validation sets, ensuring a focus on
clear-cut include (“yes”) or exclude (“no”) decisions to avoid potential ambi-
guities during training and in real life cases. Thus given the classification task
(predicting “yes” or “no”), SciBERT is initialised with a binary sequence classi-
fication head, while the adapter module explained in Sect.3.3 is introduced for
training, keeping the main parameters of the SciBERT model frozen. The raw
text Q&A data is tokenized using SciBERT’s tokenizer, combining questions
with their corresponding contexts e.g., “[CLS] question [SEP] context [SEP] and
the label “yes” is mapped to the label 1, while “no” is 0. Given our binary classi-
fication task, the cross-entropy loss function for optimisation is mathematically
given as:

N
Lowa = — Y yilog(ii) + (1 — i) log(1 — §i) (1)
i=1
where Lqga is the loss for the Q&A datasets, IV is the total number of samples
in each datasets, y; denotes the actual label of the i-th sample, and ¢; represents
the predicted probability for the i-th sample being labelled as “yes”.
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Table 1. Summary of results on the LN_19 (1) and AH_19(2) datasets.

DB Methods Precision Recall F1 WSSs@95 AUC_PR |ROC
1 | Know. Int. |KRISSBERT |0.9957 0.9957 0.9949 0.9465 0.82 0.97
Baselines
CODER-BERT | 0.9948 0.9948 0.9935 0.9474 0.72 0.97
FFT SciBERT 0.9953 0.9957 0.9853 0.9448 0.79 0.95
Modif. FPBPA(H) 0.9957 0.9957 0.9949 0.9465 0.87 1 0.05|0.99
SciBERT
FPBPA(Pf) 0.9931 0.9931 0.9903 0.9491 0.85 0.87
FPBPA (C) 0.9845 0.9922 0.9884 0.9500 0.86 0.99
FFT PMBERT 0.9940 0.9942 0.9920 0.9483 0.47 0.92
Modif. FPBPA(H) 0.9948 0.9958 0.9935 0.9474 0.81 0.99
PMBERT
FPBPA(P) 0.9966 1 0.09 1 0.9970 1 0.13|0.9963 1 0.14 | 0.9591 1 1.26 | 0.79 0.97
FPBPA(C) 0.9942 0.9938 0.9935 0.9474 0.77 0.99
FFT BioBERT 0.9932 0.9934 0.9923 0.9483 0.57 0.98
Modif. FPBPA(H) 0.9943 0.9940 0.9920 0.9483 0.66 0.99
BioBERT
FPBPA(Pf) 0.9952 0.9957 0.9949 0.9481 0.75 0.99
FPBPA(C) 0.9934 0.9931 0.9903 0.9442 0.67 0.98
FFT CBERT 0.9945 0.9948 0.9935 0.9474 0.62 0.98
Modif. FPBPA(H) 0.9953 0.9957 0.9961 0.9448 0.68 0.99
CBERT
FPBPA(Pf) 0.9939 0.9936 0.9934 0.9405 0.77 0.99
FPBPA(C) 0.9931 0.9930 0.9903 0.9491 0.67 0.98
2 |Know. Int. |KRISSBERT |0.9745 0.9777 0.9728 0.9388 0.46 0.82
Baselines
CODER-BERT | 0.9428 0.9710 0.9567 0.9500 0.61 0.88
FFT SciBERT 0.9539 0.9725 0.9600 0.9555 1 0.55 | 0.69 0.93
Modif. FPBPA(H) 0.9821 0.9821 0.9754 0.9299 0.70 7 0.24|0.95 1 0.13
SciBERT
FPBPA(Pf) 0.9832 1 0.87/0.9829 1 0.52|0.9794 1 0.66 | 0.9433 0.52 0.92
FPBPA(C) 0.9715 0.9762 0.9713 0.9388 0.57 0.85
FFT PMBERT 0.9682 0.9657 0.9675 0.9433 0.50 0.96
Modif. FPBPA(H) 0.9775 0.9769 0.9694 0.9433 0.58 0.91
PMBERT
FPBPA(Pf) 0.9650 0.9739 0.9633 0.9500 0.41 0.82
FPBPA(C) 0.9719 0.9754 0.9691 0.9388 0.47 0.87
FFT BioBERT 0.9662 0.9721 0.9680 0.9188 0.60 0.88
Modif. FPBPA(H) 0.9728 0.9756 0.9695 0.9433 0.69 0.93
BioBERT
FPBPA(Pf) 0.9650 0.9739 0.9633 0.9500 0.41 0.82
FPBPA(C) 0.9663 0.9747 0.9659 0.9433 0.57 0.86
FFT Clincal BERT | 0.9439 0.9699 0.9519 0.9478 0.33 0.76
Modif. FPBPA(H) 0.9532 0.9717 0.9584 0.9478 0.52 0.94
CBERT
FPBPA(Pf) 0.9427 0.9688 0.9556 0.9478 0.34 0.95
FPBPA(C) 0.9458 0.9677 0.9567 0.9411 0.20 0.82

Training EBM-PICO Knowledge Layer. The PICO framework is a fun-
damental structure for formulating clinical questions in EBM. In training the
PICO adapter, the objective was to capture the inherent relationships embed-
ded in PICO tags shown in Table4 in the appendix. Thus, we implemented a
token classification methodology, on the EBM PICO data tags. To mitigate train-
ing bias, the zero entity class was strategically excluded from the EBM-PICO
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dataset, creating an effective learning environment for the remaining relevant
classes. Each relevant token is encoded with SciBERT into which the adapter
module is integrated for training the EBM-PICO. After this encoding process,
the token is directed to a classification layer to be classified into one of the
three distinct PICO tags. The training objective for this is optimised using the
cross-entropy loss function:

N

Leico = — Y [y log(97*%) + yiN log (9NT) + 4P g (977)]  (2)
i=1
where yPAR ¢ INT o OUT  gPAR GINT gOUT represent the ground-truth labels and
the corresponding predicted probability distributions for the i i-th token, respec-
tively, within the categories of Participants, Intervention/Comparison, and Out-
come, and N encapsulates the cumulative count of tokens within the dataset.

3.4 Fusing the Trained Knowledge Layers/Adapters

To address RQ3, we integrate and tune the trained adapters in SciBERT,
PMBERT, BioBERT and CBERT to show transferability. The individually
trained adapters for PICO, PubMedQA, and BioASQ encapsulate different facets
of information, each with its relevance to the downstream abstract task. Thus,
to leverage the variability in the information stored by each trained adapter, we
employ AdapterFusion [15]. AdapterFusion functions analogously to the atten-
tion layer in a standard transformer model, where the primary output from the
PLM operates as the query. In contrast, the outputs from the various adapters
act as keys and values. Readers are referred to the work done by [15] for further
details. For clarity in this work, the combination of the trained PICO, Pub-
MedQA and BioASQ is referred to as FPBPA.

4 Experimental Setup

Downstream SR Datasets for Evaluation. The proposed model was eval-
uated on four complex highly imbalanced EBM abstract datasets. One of these
datasets, the Aceves-Martins 2022 dataset (AM_22) [16], is private focusing
on oral health in children and nutritional disparities among prisoners. The
remaining datasets; Appenzeller-Herzog_2019 (AH_19), Van-Dis_2019 (VD_20)
and Leenars 2019 (LN_19) are publicly available on Github®. Each study’s
research question and inclusion/exclusion criteria were combined to form the
“question” and the abstract was the “context”. A summary of the datasets is
provided in Table 5.

5 https://github.com/asreview /synergy-dataset.
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Table 2. Summary of results on the VD_20 (1) and AM_22 (2) datasets. Similar
to, here 1 denotes the % increment of the best results compared to the strongest
baseline (CODER-BERT). The Bold values represent scenarios where the FPBPA
method outperforms the FF'T PLMs baselines within its category (SciBERT, BioBERT,
PMBERT, CBERT) for the dataset. Bold also denotes the overall best value for each
metric e.g. precision, recall, and F1 in each dataset (LN_19, AH_19). The | denotes the
% increment of the best results compared to the strongest baseline (KRISSBERT).)

DB Methods Precision Recall F1 WSS@95 AUCPR |ROC
1 |Know. Int. |KRISSBERT |0.9717 0.9785 0.9741 0.9417 0.29 0.91
Baselines
CODER-BERT | 0.9792 0.9829 0.9743 0.9428 0.36 0.87
FFT SciBERT 0.9718 0.9735 0.9783 0.9456 0.26 0.62
Modif. FPBPA(H) 0.9760 0.9813 0.9750 0.9464 0.31 0.8
SciBERT
FPBPA(Pf) 0.9787 0.9818 0.9786 0.9302 0.31 0.85
FPBPA(C) 0.9725 0.9702 0.9714 0.9467 0.31 0.89
FFT PMBERT 0.9670 0.9685 0.9677 0.9329 0.35 0.9510.08
Modif. FPBPA(H) 0.9735 0.9779 0.9753 0.9379 0.30 0.87
PMBERT
FPBPA(Pf) 0.9716 0.9791 0.9739 0.9434 0.27 0.89
FPBPA(C) 0.9695 0.9768 0.9725 0.9412 0.18 0.75
FFT BioBERT 0.9675 0.9618 0.9657 0.9461 0.35 0.76
Modif. FPBPA(H) 0.9741 0.9807 0.9743 0.9461 0.24 0.76
BioBERT
FPBPA(Pf) 0.9809 1 0.170.9873 1 0.44|0.9772 1 0.29 | 0.9472 1 0.44 | 0.25 0.77
FPBPA(C) 0.9742 0.9807 0.9735 0.9461 0.38 1 0.02|0.89
FFT CBERT 0.9663 0.9624 0.9774 0.9445 0.29 0.71
Modif. FPBPA(H) 0.9771 0.9796 0.9782 0.9417 0.29 0.87
CBERT
FPBPA (Pf) 0.9774 0.9818 0.9781 0.9447 0.30 0.79
FPBPA(C) 0.9707 0.9791 0.9732 0.9351 0.25 0.83
2 |Know. Int. |KRISSBERT |0.9935 0.9939 0.9936 0.9393 0.75 0.98
Baselines
CODER-BERT | 0.9953 0.9954 0.9953 0.9377 0.73 0.94
FFT SciBERT 0.9925 0.9931 0.9925 0.9210 0.64 0.89
Modif. FPBPA(H) 0.9944 0.9946 0.9945 0.9370 0.77 0.97
SciBERT
FPBPA(Pf) 0.9956 1 0.03 1 0.9959 1 0.05|0.9959 1 0.06 | 0.9485 1 1.08 | 0.87 1 1.14 | 0.99 1 0.01
FPBPA(C) 0.9906 0.9916 0.9903 0.9385 0.73 0.92
FFT PMBERT 0.9905 0.9904 0.9877 0.9466 0.86 0.99
Modif. FPBPA(H) 0.9938 0.9935 0.9936 0.9358 0.85 0.99
PMBERT
FPBPA(Pf) 0.9928 0.9927 0.9928 0.9366 0.73 0.98
FPBPA(C) 0.9920 0.9923 0.9910 0.9439 0.73 0.98
FFT BioBERT 0.9920 0.9927 0.9919 0.9420 0.80 0.99
Modif. FPBPA(H) 0.9930 0.9935 0.9931 0.9397 0.64 0.92
BioBERT
FPBPA(P) 0.9944 0.9946 0.9945 0.9431 0.72 0.96
FPBPA (C) 0.9933 0.9931 0.9932 0.9362 0.84 0.99
FFT ClincalBERT | 0.9941 0.9927 0.9932 0.9328 0.83 0.99
Modif. FPBPA(H) 0.9921 0.9925 0.9923 0.9397 0.82 0.99
CBERT
FPBPA(Pf) 0.9948 0.9950 0.9948 0.9404 0.84 0.98
FPBPA (C) 0.9939 0.9943 0.9938 0.9389 0.78 0.93
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Implementation and Hyperparameters. The AdapterHub’, HuggingFace
library®, and the PyTorch framework were employed for training the knowl-
edge adapters evaluation. Our experimental setup was done with Nvidia 2080Ti
GPUs. To ensure uniform input dimensions during the training of the knowledge
layers, we truncated /pad sequences to a consistent length of 512 tokens. We split
each of the datasets in Table4 into 90% train and 10% validation split, to find
the optimal hyperparameters. In training the PICO adapter, we deployed the
following hyper-parameters; warmup step: [0,500,1000], epochs: [3,5, 10, 20],
batch size: [8,16, 64, 256], weight decay: [0.0,0.1,0.01,0.001] and learning rate:
[le~%,3e° 175 with the AdamW as the optimizer. Similarly, the same hyper-
parameters were in training in PubMedQA and BioASQ adapters. However,
the best-performing batch size and epochs for the PubMedQA were 64 and 3,
whereas the best-performing learning rate for the BioASQ was 3e~°. We modu-
lated three random seeds (42, 10 and 50) and reported on the aggregated results
over the iterations to ensure robustness.

Evaluation Metrics and Baselines. We report on the weighted average:
precision and recall, AUC Precision-recall, AUC ROC and Work saved oversam-
pling (WSS@95%) [5] which measures how much human burden the model can
reduce. During the evaluation, we split the downstream dataset into a 60/40 train
test set. We applied the back translation augmentation technique described in
Sect. 3.1 only to the minority (include) in the train set. Further, we partitioned
the final augmented and initial train sent into a 10% dev set whilst we reported
the average runs on the unaugmented test set. To compare the performance of our
method, we explore existing FFT proposed for abstract screening tasks. As such,
FFT-PMBERT, FFT-SciBERT, FFT-BioBERT and FFT-CBERT. To
further validate the performance of our model, we compare with two SOTA
knowledge integrated PLMs CODER-BERT?, a UMLS triples embedding inte-
gration via contrastive learning and KRISSBERT'?, a PMBERT that utilises
self-supervised learning for entity linking.

5 Results and Discussion

Tables1 and 2 show the results obtained from evaluating the adapter-based
tuning against the FFT biomedical variants PLMs and existing strong knowledge
PLM integrated baselines (CODER-BERT and KRISSBERT). Generally, the
tables demonstrate a consistent trend across various PLMs: tuning FPBPA (H,
Pf, or C) within the PLMs leads to notable metric improvements compared to
the baseline. This finding addresses RQ3 indicating the effectiveness of FPBPA
for the EBM abstract screening task. Further discussion is as follows:

" https://adapterhub.ml/.
8 https://huggingface.co/docs/transformers/index.
9 https://huggingface.co/GanjinZero/UMLSBert_ENG.
19 https: //huggingface.co/microsoft /BiomedNLP-KRISSBERT-PubMed-UMLS-EL.
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Can Adapter-Based Tuning Perform Better than SOTA FFT PLMs?
Discussing Table 1 for the highly imbalanced ratio (IR) dataset LN_19 (IR 1:341),
FPBPA(Pf) consistently achieves high precision, recall, WSS@95, and F1 score
compared to the baselines, particularly in PMBERT. Additionally, FPBPA(H)
and FPBPA(C) also show competitive performance, especially in terms of pre-
cision and AUC_PR. Similarly, for AH_19 (IR 1:98), SciBERT-FPBPA(Pf) con-
sistently outperforms the strongest baseline and FFT PLMs.

In Table 2, for the VD_20 (1: 126) dataset, BioBERT FPBPA (Pf) achieves higher
precision, recall, WSS@95 and F1 score compared to the strongest baseline and
FFT PLMs. Similarly, for AM_22 (1:188), SciBERT-FPBPA (Pf) outperforms
the FFT and the strongest knowledge-integrated baseline across all metrics.

What is the Effect of the Different Configurations of Knowledge Lay-
ers? The different FPBPA configurations (H, Pf, C) exhibit variable impacts
on different datasets seen in Tables1 and 2. To summarise the analysis, the
FPBPA(Pf) shows strength in the extremely imbalanced datasets compared to
the H and C. Thus, in practicality, the use of FPBPA(Pf) may be useful in
situations where the EBM to be done is broad and may lead to broad search
strings, hence encompassing lots of irrelevant literature compared to the number
of relevant as in the case of LIN_19 and AM_22 dataset.

6 Conclusion and Future Works

This research explores a SOTA transfer learning method that infuses domain-
specific insights into PLMs using adapters. Utilizing the PICO framework along-
side resources like PubMedQA and BioASQ Q&A, our technique improves PLM
capabilities for EBM abstract screening, which is critical for enhancing clinical
decisions and policies. Through detailed experiments, we demonstrate that our
method delivers promising outcomes across various metrics, including precision,
recall, F1 score, and WSS@95. Looking ahead, we plan to incorporate addi-
tional domain-specific resources such as UMLS, DisGeNET, and the UNIPROT
knowledge database to broaden our approach’s relevance. Currently, our research
centres on the BERT model, but future investigations will include other SOTA
PLMs like GPT and LLaMA. Furthermore, a future work will be to conduct
a comparative analysis of our method against baseline models such as SVM
and NB +/- UMLS, employing keyword search techniques like cTAKES or a
MetaMap-based model using TF-IDF or n-gram analysis.
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Abstract (Abs)

Research Question (RQ)

Decision

1. Glycosylated haemoglobins and
weights were recorded for 200

consecutive diabetic. ..

2. Childhood dental caries and
obesity are prevalent health
problems. Results from previous
studies of the caries-obesity

What is the prevalence of
overweight and obesity among
imprisoned populations
worldwide?

Is there an association between
obesity or overweight and poor
oral health among Mexican
children and adolescents?

Exclude

Include

Table 4. Statistics of datasets used to train the knowledge layers/adapters

Dataset Adapter | Format Size
EBM-PICO* | PICO (-INT, I-OUT, I-PAR)" 5000
PubMedQA | P-QA (Context/Question/labels(yes/no/maybe)) | 211.3K
BioASQ B-ASQ | (Context/Question/labels(yes/no)) 6676

# https://github.com/bepnye/EBM-NLP
b where Participants is (I-PAR), Outcome (I-OUT), and a combination of Interven-

tion/Comparison as (I-INT)

Table 5. Summary of the datasets ranging from human to animal study, where IR =
Imbalance Ratio, the variables used for each EBM dataset are in Table 3.

Name_of_dataset

Subject Total_papers | Relevant | Irrelevant | IR | Abs Len (Avg)
Aceves-Martins_2022(AM_22) Nutritional status of prisoners | 13022 69 12953 1:188 | 1765.37
Appenzeller-Herzog_2019(AH_19) | Therapy for Wilson Disease 2873 29 2844 1:98 | 1282.35
Leenars_2019(LS_19) Animal to human translation | 5812 17 5795 1:341 | 1458.40
Van_Dis_2020(VD_20) Cognitive Behavioral Therapy | 9128 72 9056 1:126 | 1473.08
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Abstract. The Unified Medical Language System (UMLS) Metathesaurus inte-
grates and aligns terms from hundreds of biomedical vocabularies. In this paper,
we investigate the efficacy of Pre-trained Language Models (PLMs) for vocabu-
lary alignment in the UMLS Metathesaurus. We frame the problem as two Natural
Language Processing tasks: Text Classification and Text Generation. We fine-tune
four opensource cutting-edge PLMs including BERT and RoBERTa, GPT-2, and
BLOOM. Experiments show that the best model is RoOBERTa achieving a pre-
cision, recall, and F1 score of 0.965, 0.940, and 0.952 respectively. In addition,
incorporation of contextual information in the inputs improves the model perfor-
mance in the Text Classification task, albeit with a limited impact on the Text
Generation task. Domain expert evaluation of 100 randomly selected instances
generated by the best model revealed that 78 of them as valid synonymous terms,
indicating the promise of PLMs in enhancing the mapping quality of the UMLS
Metathesaurus.

Keywords: UMLS Metathesaurus - Pre-trained Language Models - Vocabulary
Alignment

1 Introduction

The Unified Medical Language System (UMLS) Metathesaurus is a biomedical vocabu-
lary integration system created by the US National Library of Medicine [2]. It integrates
terms from hundreds of biomedical vocabularies including SNOMED CT, National Can-
cer Institute (NCI) Thesaurus, and Current Procedural Terminology (CPT). The basic
building block of the UMLS Metathesaurus is the atom, a term from a specific source
vocabulary that is allocated a distinct Atom Unique Identifier (AUI) [2]. A concept
denotes a particular meaning aggregating all the atoms from any vocabulary that convey
this particular meaning in any form and is designated with a Concept Unique Identi-
fier (CUI). For instance, five atoms are grouped under the UMLS concept “Diabetic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Finkelstein et al. (Eds.): AIME 2024, LNAI 14844, pp. 273-278, 2024.
https://doi.org/10.1007/978-3-031-66538-7_27
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Nephropathy” with a CUI of C0011881, which are “Diabetic Nephropathy” from NCI
Thesaurus (AUI A17683370), “Nephropathy, Diabetic” from MeSH (AUI A0438822),
“Disorder of kidney due to diabetes mellitus” from SNOMED CT (US Edition) (AUI
A31540124), “Diabetic Kidney Disease” from LOINC (AUI A28306370), and “Diabetes
with renal manifestations” from ICD-9-CM (AUI A8340913).

Given that the UMLS Metathesaurus incorporates millions of terms from more
than 180 source vocabularies, integrating and aligning these terms is challenging. Con-
structing and maintaining the UMLS Metathesaurus entails lexical and semantic tech-
niques to identify potential synonyms that are further reviewed and finalized by human
reviewers which is time-consuming and labor intensive [4]. To address these issues,
researchers have studied automated techniques such as rule-based methods [6], Siamese
Networks using Long Short-Term Memory (LSTM) [1], knowledge graph embedding-
based approaches [5], Bidirectional Encoder Representations from Transformers (BERT)
models [7], and Graph Convolutional Neural Networks (GCN) [3] for aligning terms
within the UMLS Metathesaurus.

In this work, we explore the potential of four open-source Pre-trained Language
Models (PLMs) for facilitating vocabulary alignment within the UMLS Metathesaurus
by framing the research question into Natural Language Processing (NLP) tasks: Text
Classification and Text Generation. We fine-tune BERT and RoBERTa for the Text
Classification task, and GPT-2 and BLOOM for the Text Generation task. Our research
is structured around the following research questions: (RQ1) How do PLMs perform on
synonymy identification in a Text Classification setting; (RQ2) How do PLMs perform on
synonymy identification in a Text Generation setting; and (RQ3) How effective are PLMs
in identifying potentially missing synonymous terms in the UMLS Metathesaurus?

2 Methods

2.1 Dataset Construction

Two atoms A and B grouped under the same UMLS concept but originating from two
different source vocabularies will form a synonymous atom pair (A, B). For example,
“Diabetic Nephropathy” in NCI Thesaurus and “Nephropathy, Diabetic” in MeSH will
serve as a synonymous atom pair. For each synonymous atom pair (A, B), we replace B
with A’s most lexically similar atom X (according to cosine similarity score) that does
not originate from the same vocabulary as A to form a non-synonymous atom pair (A,
X). For instance, “Diabetic Nephropathy” in NCI Thesaurus and its lexically similar
atom “Diabetic nephropathy screening” in SNOMED CT form a non-synonymous atom
pair. We group synonymous atom pairs and their corresponding non-synonymous atom
pairs according to the UMLS concepts from which the synonymous atom pairs were
generated and split these groups into training, validation, and testing sets with a ratio
of 8:1:1, ensuring that two synonymous atom pairs generated from one concept do not
spread across training/validation/testing sets.
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2.2 Experiment Setup

InRQ1, we explore the efficacy of PLMs in synonymy identification, framing it as a Text
Classification task with two classes: (1) positive class, consisting of pairs of terms that are
synonymous; and (2) negative class, comprising pairs of terms that are not synonymous.
We fine-tune BERT and RoBERTa pre-trained models for this task.

In RQ2, we approach synonymy identification as a Text Generation task. In this
context, we provide the GPT-2 and BLOOM models with instructions and information
about the atoms, requesting the models to generate a response regarding whether the two
atoms are synonymous.

In RQ3, we delve into the proficiency of PLMs in detecting missing synonymous
atoms within the UMLS Metathesaurus. Specifically, our objective is to uncover syn-
onymous terms that have not been categorized under the same concept in the UMLS
Metathesaurus. Within our testing set, when a pair of atoms is originally non-synonymous
(a negative instance), but our model predicts it as synonymous, we consider these terms
as likely candidates for missing synonymous terms.

2.3 Input and Prompt Design

Table 1 shows the design of our inputs and prompts tailored for various tasks. For the
Text Classification task, we have devised two distinct input configurations: /1 and /.
Input 1 is structured to include merely the names of the two atoms, which are delineated
by a “ |” symbol. Input 7, is more comprehensive additionally including information
about the source vocabularies and parent terms. For the Text Generation task, we have
developed two distinct prompt configurations: P and P,. Each prompt for this task is
structured into three segments: a task instruction, an input, and a response. The task
instruction explicitly outlines the task to be performed. Prompt P{ comprises solely the
names of the two atoms while prompt P, provides additional information about their
source vocabularies and parent terms.

Table 1. Input/Prompt design for different tasks.

Task Input/Prompt Configuration | Design

Text Input 71 {atom 1} | {atom 2}

Classification

Text Input I {atom 1}. This term is from {atom 1’s source

Classification terminology }. It is a subtype of {atom 1’s
parents}. | {atom 2}. This term is from {atom 2’s
source terminology }
It is a subtype of {atom 2’s parents}

(continued)
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Table 1. (continued)

Task Input/Prompt Configuration | Design

Text Prompt P ### Instruction:

Generation Classity if the two following terms are
synonymous or not
### Input:

Term 1: {atom 1}
Term 2: {atom 2}

### Response:

Text Prompt P ### Instruction:

Generation Classify if the two following terms are
synonymous or not
### Input:

Term 1: {atom 1}

This term is from {atom 1’s source terminology}.
It is a subtype of {atom 1’s parents}

Term 2: {atom 2}

This term is from {atom 2’s source terminology}.
It is a subtype of {atom 2’s parents}

### Response:

2.4 Evaluation

We present the performance metrics including precision, recall, and F1 score of the
PLMs on the validation set. From the suggestions by the model exhibiting the highest
F1 score on the testing set, we extract a randomly chosen subset of suggested potentially
missing synonymous atoms for further evaluation by a domain expert with experience
in clinical terminology assessment.

3 Results

In this study, we utilized the 2022 AA full version of the UMLS Metathesaurus with
16 million atoms grouped under 4 million UMLS concepts. Our constructed dataset
comprised 17,710,981 synonymous atom pairs and 17,162,449 non-synonymous atom
pairs. Further splitting resulted in 27,962,212; 3,414,455; and 3,496,793 in the training,
validation, and testing sets respectively.

The models were trained on four NVIDIA A100-SXM4 graphics cards, each with
80GB of RAM. The hyperparameters employed during model training include a learning
rate of 5e-5, a batch size of 256, a training epoch of 5, and AdamW optimizer.

The performance of the models in different settings is shown in Table 2. As can be
seen, ROBERTa with input /5 achieved the best performance with an F-1 score of 0.952
closely followed by BERT with the same input.

Utilizing the best model on the testing set, the model identified 67,150 atom pairs
as potentially missing synonymous atom pairs. Manual evaluation of randomly selected
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Table 2. Model performance in the Text Classification and Text Generation Settings.

Model Task Config Precision Recall F1 score
BERT Text Classification I 0.949 0.923 0.936
BERT Text Classification I 0.970 0.933 0.951
RoBERTa Text Classification 1 0.952 0.932 0.942
RoBERTa Text Classification I 0.965 0.940 0.952
GPT-2 Text Generation P 0.882 0.884 0.883
GPT-2 Text Generation Py 0.874 0.906 0.890
BLOOM Text Generation Pq 0.929 0.925 0.927
BLOOM Text Generation Py 0.918 0.889 0.903

100 atom pairs verified 78 as valid synonymous pairs. Table 3 lists five instances of these
valid missing synonymous atom pairs.

Table 3. Five missing synonymous atoms validated by the domain expert.

Atom 1 (source vocabulary)

Atom 2 (source vocabulary)

Vinorelbine (as vinorelbine tartrate)
10 mg/mL solution for infusion
(US Edition of SNOMED CT)

vinorelbine (as vinorelbine tartrate) 10 MG per 1
ML Injection
(RxNorm)

Technetium Tc-99m albumin colloid
(DrugBank)

technetium Tc 99m human serum albumin colloid
(Physician Data Query)

hemolytic disease of the newborn
(Consumer Health Vocabulary)

ABO; hemolytic disease
(ICPC2 - ICD10 Thesaurus)

Enteropathy associated T-cell lymphoma
(US Edition of SNOMED CT)

Lymphoma, T-Cell, Enteropathy-Associated
(MeSH)

Acute renal failure with tubular necrosis
(International Classification of Diseases)

acute renal failure due to tubular necrosis
(diagnosis)
(MEDCIN)

4 Discussion

Recent studies have applied deep learning techniques to vocabulary alignment in the
UMLS. For instance, Nguyen et al. used a Siamese LSTM architecture for supervised
learning [5]. Wijesiriwardene et al. adapted BERT-based models like BioBERT and
SapBERT [7]. Our model surpasses these approaches with an F1 score of 0.952 compared
to their 0.937 and 0.942 respectively, underscoring the effectiveness of PLMs in UMLS
vocabulary alignment. In the future, we expect to further expand the comparisons to
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zero-shot and few-shot learning strategies using generative models. In addition, larger
models like LLaMA?2 70B and newer GPT models like GPT-3.5 and GPT-4 could also
be investigated.

5 Conclusion

In this study, we evaluated the efficacy of PLMs including BERT, RoBERTa, GPT-2,
and BLOOM for UMLS vocabulary alignment. Results showed that PLMs have strong
potential in this domain, with the best model RoBERTa achieving a precision, recall,
and F1 score of 0.965, 0.940, and 0.952 respectively. A manual evaluation revealed 78
out of 100 random predictions were valid missing synonyms indicating the promise of
PLMs to facilitate vocabulary alignment in the UMLS.
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Abstract. We introduce RatchetEHR, a novel transformer-based framework
designed for the predictive analysis of electronic health records (EHR) data in
intensive care unit (ICU) settings, with a specific focus on bloodstream infec-
tion (BSI) prediction. Leveraging the MIMIC-IV dataset, RatchetEHR demon-
strates superior predictive performance compared to other methods, including
RNN, LSTM, and XGBoost, particularly due to its advanced handling of sequen-
tial and temporal EHR data. A key innovation in RatchetEHR is the integration
of the Graph Convolutional Transformer (GCT) component, which significantly
enhances the ability to identify hidden structural relationships within EHR data,
resulting in more accurate clinical predictions. Through SHAP value analysis,
we provide insights into influential features for BSI prediction. RatchetEHR inte-
grates multiple advancements in deep learning which together provide accurate
predictions even with a relatively small sample size and highly imbalanced dataset.
This study contributes to medical informatics by showcasing the application of
advanced Al techniques in healthcare and sets a foundation for further research to
optimize these capabilities in EHR data analysis.
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1 Introduction

The advent of Electronic Health Records (EHRs) has revolutionized the landscape of
healthcare data management, offering unprecedented opportunities for enhancing patient
care and clinical decision-making. Particularly in Intensive Care Units (ICUs), where
patients are at high risk and require close monitoring, the effective analysis of EHRs can
be a lifesaver. One of the most critical applications of EHR analysis in ICU settings is
the early detection of bloodstream infections (BSIs), a condition associated with high
morbidity and mortality rates [1]. Traditional approaches to predicting BSIs have relied
on a variety of statistical and machine-learning approaches, yet these have often fallen
short due to the complex, temporal, and high-dimensional nature of EHR data.
Existing models for BSI prediction [2-5] have faced significant challenges in captur-
ing the nuanced temporal dynamics and intricate feature inter-dependencies present in
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EHR data. These limitations stem primarily from the challenges in processing sequential
data effectively, leading to a loss of critical information. Furthermore, the high dimen-
sionality and sparsity of EHR data, coupled with issues like class imbalance and the
need for extensive data preprocessing, have further complicated the predictive analysis.

In response to these challenges, we introduce RatchetEHR, leveraging the power
of transformer-based architecture [6], to analyze ICU EHRs for BSI prediction. This
approach allows to effectively capture the sequential nature and hidden structures within
the data. We show that this approach not only enhances prediction accuracy but also
offers a deeper understanding of the underlying patterns and relationships in EHR data.

2 Related Work

The transformer architecture [6] emerges as a particularly fitting model for modeling
EHR data due to several intrinsic properties of EHR and the strengths of transform-
ers. EHR data is inherently complex, comprising long sequences of patient visits, each
containing various medical elements like diagnoses, treatments, and observations. This
complexity and sequential nature of EHR data align well with the capabilities of trans-
formers. Transformers excel in handling sequential data, a property leveraged extensively
in natural language processing (NLP). They are adept at capturing long-term dependen-
cies and intricate relationships within sequences, which is crucial for interpreting EHR
data where past medical events can significantly influence future health outcomes. The
transformer’s self-attention mechanism allows it to weigh the importance of different
parts of the sequence differently. This aspect is particularly beneficial in EHR data,
where not all medical events have equal relevance to a patient’s current health status or
future medical predictions. By focusing on more significant events in a patient’s medical
history, transformers can provide more accurate and personalized health predictions. Our
project was mainly inspired by the following studies that used the Transformer model
with electronic health record data:

GCT model. Prior research in EHR data representation primarily utilized the Bag
of Words (BOW) approach, treating each medical feature as an isolated entity. This
methodology, however, led to significant information loss about the physician’s decision-
making process. The Graph Convolutional Transformer (GCT) model, presented by Choi
etal.[7], offers a robust solution to this issue by employing the Transformer architecture’s
self-attention mechanism. This mechanism effectively learns a hidden graphical struc-
ture, delineating the relationship between different EHR features, thereby overcoming
the limitations of the BOW approach.

GCT represents EHR data as a two-dimensional matrix, where each cell indicates a
connection between two features in the graph. This model’s primary objective is to learn
this hidden structure and utilize it for various predictive tasks, especially when explicit
structural information is not available. The article highlighted that the learned hidden
structure through GCT creates new embeddings, significantly enhancing the model’s
performance across various tasks.

However, GCT has certain limitations. Its analysis is confined to single-time inter-
vals—specifically, individual hospital visits—potentially overlooking the continuum of
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patient care. Furthermore, by dividing features into three categories—diagnosis, treat-
ment, and lab tests—GCT’s generality across diverse medical scenarios is somewhat
constrained. Despite these drawbacks, GCT’s approach in learning and utilizing hid-
den EHR structures demonstrates significant improvements in model performance for
tasks like readmission and mortality prediction, marking a notable advancement in the
application of Transformer models in the realm of EHR data.

SARD model. Kodialam et al. [8] introduced a Transformer-based architecture known as
SARD, innovatively combining embeddings for hospital visits, temporal embeddings,
and a self-attention mechanism. This design deviates from the traditional positional
embeddings, accommodating the non-uniform timing of hospital visits. In their study,
they utilized a large dataset of administrative claims to predict end-of-life and surgeries
in the next six months. We recently developed an extension of the SARD architecture,
which we named STRAFE [9], with the goal of predicting time-to-event instead of
fixed-time prediction and applied it to predict deterioration in chronic kidney disease.

One notable limitation of using claims data, and by extension the SARD model, is its
exclusion of granular data from individual hospital visits, such as real-time monitoring
signals (e.g., respiratory rate values). This gap highlights a potential area for model
improvement in capturing finer details of patient care.

A unique aspect of the SARD model is its ability to discern connections between
individual hospital visits, revealing a hidden structure’ in the healthcare journey of a
patient. However, it faces challenges in accurately representing scenarios with rapidly
changing features, such as during an ICU stay. In such cases, the model may not fully
capture the dynamic nature of a patient’s condition, where variables like respiratory rate
can fluctuate significantly over short periods.

3 Framework Overview

This RatchetEHR framework is primarily inspired by the SARD framework, which is
used for claims data analysis. However, EHR data presents unique challenges compared
to claims data, necessitating several key modifications in our approach.

First, unlike claims data which primarily consist of categorical features such as diag-
nosis and procedure codes, EHR data encompasses a wide array of numerical features.
These include vital statistics like blood counts or respiratory rates, which are more akin
to continuous signals than discrete categories.

Second, the temporal scope of the data differs markedly between these two domains.
Claims data often span multiple visits over extended timeframes, offering a longitudinal
view of a patient’s health history. In contrast, EHR data, particularly in the context of ICU
stays, tends to be more focused, typically concentrating on a single hospital admission.

In light of these differences, we made several adjustments to the original SARD
framework to better suit the specific requirements of [CU EHR data analysis. Ratch-
etEHR introduces a transformer-based architecture that is specifically designed for
the task of analyzing ICU EHR data. Central to our framework is the ability to pro-
cess ICU stay information, represented as a 3-dimensional tensor, transformed into a
contextualized format that can be used for downstream prediction, including BSI.
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4 Data Representation

In SARD, concept embedding plays a crucial role due to the categorical nature of the
information related to hospital visits. Each piece of information is encoded as a ‘word’
and then transformed into a word embedding using techniques like Word2Vec. These
word embeddings are aggregated to form a comprehensive visitembedding, summarizing
the data from a single hospital visit. However, here we are modeling EHR data which
predominantly consists of numerical information derived from charts and monitoring
devices. This data can be best characterized as a series of signals, reflecting real-time
physiological changes in patients. Directly applying concept embedding, as done in the
SARD model, would lead to a substantial loss of critical information.

To effectively represent this dynamic and complex nature of EHR data, RatchetEHR
adopts a distinct approach, inspired by the method outlined by Wang et al. [10]. Here, we
represent the data in a structured form. We segment each patient’s ICU visit into discrete
time intervals, termed as timeframes. Each timeframe encompasses the data relevant to
its respective time interval. In constructing these time-frames, we categorize our data into
two distinct types: numerical and categorical. Numerical data primarily includes readings
from monitors and results from examinations — for example, respiratory rate and blood
pressure. On the other hand, categorical data includes aspects such as diagnoses, which
we represent using one-hot encoding vectors.

For each timeframe, we then use the numerical and categorical vectors to form a
singular, comprehensive input embedding that represents that specific timeframe. This
process is repeated for each interval, building a sequential representation of a patient’s
ICU stay. The result of this process is a two-dimensional matrix for each patient’s
ICU visit, constructed by concatenating these time-frames in chronological order. This
methodology allows RatchetEHR to maintain the integrity of both the numerical and cat-
egorical data, capturing the dynamic and complex nature of EHR data for each patient’s
ICU stay.

Formally, the framework splits each ICU stay into time frames (notated as TF) of &
hours. Each time frame j of ICU stay i can be viewed as the following vectors:

wj = (W s ) Wy = (Wi, Wi W)
where v}k is the median of all values of feature k at time frame j for ICU-stay i, and w}m
is an indicator for whether the code number m occurred for ICU-stay i at time frame j.
Therefore, (w]’f1 s w]’:z, R W,]l:m) is a BOW (bag of words).
We will denote / = k + m and use |l as the concatenation operation.
Therefore,

vjii = wij||wji € Ry

Each sample i can be viewed as a 2-dimensional Tensor Wi € RP*!, where p is the
number of time frames for the i sample. The rows of the tensor are the time frames of
the ICU-stay i, which can be denoted more formally:

Wi =V

These samples are the input to the framework model.
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4.1 Model Architecture

Two primary distinctions set RatchetEHR apart from the SARD model. First, while
SARD aggregates visit data into a singular sum of concept codes, obscuring potential
hidden structures within a visit, RatchetEHR reincorporates the Graph Convolutional
Transformer (GCT) component, as suggested by Choi et al. [7]. This integration allows
for a more nuanced understanding of the data.

The architecture of RatchetEHR, detailed in Fig. 1, includes the following compo-
nents:

Time Frame Embedding. As introduced in Sect. 3, it is a 3-dimensional tensor input
representation for the ICU data. It is composed of timeframes of & hours of the EHR
data, a signal-like format suitable for time-series analysis.

Temporal Embedding. Utilizing fixed positional encoding, maintains the chronological
order of the timeframes within the ICU stay, crucial for preserving the sequential nature
of the data. Contrary to Kodialam et al. [8], where the visits do not occur regularly, the
time frames are regular. Therefore, we used the fixed positional encoding introduced in
the original Transformer article [6]:

pos oS

PE (pos,2i) = sin( 57)  PEposit1) = COS(p—z,-)
100007 100007

Where pos is the position and i is the dimension.

Transformer Encoder. To effectively handle the sequential and time-variant nature of
EHR data, we utilize the Transformer model. It is adept at creating contextualized embed-
dings that correlate with other time-frames. This is critical as most features at a certain
time are dependent on their previous values. We include K transformer encoder layers,
as delineated in Vaswani et al. [6], to output contextualized time frame embeddings.

Learned Time-frame Embedding. To mitigate the risk of overfitting in tasks with limited
EHR data, we incorporated a learned time-frame embedding for each input. This con-
cept, inspired by the BERT [CLS] token [11], aids in reducing the parameter count for
downstream task predictions by encapsulating essential information within a trainable
parameter.

MLP. A feed-forward neural network that transforms the learned timeframe embedding
into a probability that indicates the class of the sample.

4.2 Model Refinements

Torefine the RatchetEHR architecture, we integrated several advanced methods, address-
ing key challenges encountered during the experimentation with our SARD-inspired base
model. A primary concern was the tendency of Transformer models, due to their large
parameter count, to overfit, especially when dealing with limited sample sizes typical of
EHR prediction tasks. Despite this, their strength in processing the sequential nature of
EHR data is undeniable.
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Transfer Learning. We adopted a dual-stage approach, akin to the BERT model’s
methodology [11], consisting of pre-training and fine-tuning stages. The pre-training
phase employs a masking task on the extensive EHR data samples to initialize the
model’s weights, which is crucial for enhancing performance in downstream tasks. The
architecture is augmented with a linear layer, projecting the contextualized time frame
embeddings back into the input initial representation.

GCT Component. We integrated a Graph Convolutional Transformer (GCT) component
into RatchetEHR to address another baseline model limitation: the lack of consideration
for inter-feature relationships. By modeling these relationships as a hidden graphical
structure, the GCT component enhances the robustness of time-frame embeddings in
[7]. Trained across numerous time-frame embeddings, this method not only boosts the
model’s ability to discern hidden structures but also helps in circumventing overfitting.

Sampler and Focal Loss. To address class imbalance and its resultant prediction bias
and overfitting, we implemented a weighted sampler for oversampling, creating more
balanced mini-batches for training. The class weight, w;, is inversely proportional to the
class frequency, n;. Additionally, focal loss is employed, focusing the model’s learning
on more challenging examples, a technique widely used in object recognition tasks with
high class imbalance.

Child Tuning. To further enhance the model’s efficiency and reduce overfitting, Child
Tuning, as described in [12], is employed. This method limits the training to only the most
relevant parameters identified through Fisher information, which assesses the sensitivity
of the model to changes in each parameter. This selective training approach streamlines
the model, focusing on parameters most critical to the task at hand.

Learned time-frame
for down-stream task
prediction Using the
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embedding
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M component ] ] ]
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Fig. 1. RatchetEHR architecture. The architecture has three key components: Time Frame
Embedding, Temporal Embedding, and Transformer Encoder. The integration of the Graph Con-
volutional Transformer (GCT) component is also depicted, highlighting its role in enhancing the
ability of the model to identify hidden structural relationships within the data. Advanced method-
ologies such as Transfer Learning, Learned Time-frame Embedding, Focal Loss, and Child Tuning
are incorporated to optimize the performance of the model, particularly in addressing challenges
like limited sample sizes, class imbalance, and overfitting.
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S Experiments

5.1 Datasets

We utilized the publicly available dataset MIMIC-IV which contains deidentified EHR
data from 50,934 patients and 73,141 ICU stays at Beth Israel Deaconess Medical Center
between 2008-2019. MIMIC-IV provides a rich source of EHR information, including
vital signs, medication records, laboratory results, and patient demographics, acquired
by routine clinical care, monitors and more. We utilized the ICU module of the MIMIC-
IV dataset. This module provides detailed information about individual patient visits to
the ICU, including subject ID, start and end times of the ICU stay, and various medical
measurements and events recorded during the stay. The data was stored in a PostgreSQL
database.

To facilitate data extraction and manipulation, RatchetEHR employs SQLAlchemy,
a Python-based SQL toolkit, to generate patient cohorts and retrieve relevant feature
information from the PostgreSQL database. This extraction process focuses on criti-
cal ICU metrics such as vital signs, medication records, laboratory results, and patient
demographics, ensuring a comprehensive dataset for analysis.

Data preparation involved cleaning processes to handle missing values and outliers in
the dataset. We employed linear interpolation provided by pandas framework to address
gaps in the data and utilized established medical thresholds to identify and rectify out-
of-range values [13].

To reduce the space of ICD-10 codes we utilized a mapping of ICD-10 codes to
diseases as provided by [14], which helped streamline the dataset, making it more
manageable and conducive for our analysis.

5.2 Prediction Task

Bloodstream Infection (BSI) is a critical condition that significantly impacts ICU
patients, resulting in prolonged hospital stays, life-threatening complications, and
notably high morbidity and mortality rates exceeding 30%, [1]. The standard diagnostic
procedure for BSI involves a blood culture test, which typically requires one to two days
to yield results. This delay is critical, considering the rapid progression of BSI and its
severe consequences. Prompt detection and immediate antibiotic treatment are crucial
for reducing the associated high morbidity and mortality rates, yet early-stage detection
remains a challenge for physicians.

Our objective was to train RatchetEHR and other machine-learning models to predict
BSI in patients who underwent a blood culture test and remained in the hospital for a
minimum of two days post-test. This approach aligns with several existing studies aimed
at forecasting BSI risk. Our architecture was specifically tested for its effectiveness in
predicting BSI.

For cohort building, we replicated the method used by Roimi et al. [2], adhering
to the guidelines set by the Center for Disease Control and Prevention (CDC)/National
Health Safety Network (NHSN). We identified patients with BSI by detecting common
commensal bacteria related to BSI, as listed in the NHSN organism tab. Patients showing
growth of these bacteria in blood culture tests were labeled as positive for BSI. The
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detection was based on blood collection entries in the measurement table where the
measurement attribute was blood culture.

Our selection criteria for ICU stays focused on cases where blood collection occurred
more than 48 hours after admission. This criterion aimed to exclude patients who were
admitted to the ICU primarily for surgical reasons, as they are generally not at risk
for BSI. The study design, illustrated in Fig. 2, presents the timeline for each patient’s
hospital stay relative to the blood culture collection.

issi Blood culture T. BSI
Admission T, —ICU 1stay > 48h Collection f oy
, | )
i v
=T Heart rate: 70 Heart rate: 68 Heart rate: 69 0 T,
ALT: 20 ALT: 201 ALT: 20
Age: 58 Age: 58 Age: 59
Chloride: 97 Chloride: 100 Chloride: 110

Time Frame  Time Frame Time Frame

Fig. 2. Prediction task. The study design for each patient in the hospital. O is the index date
which is the time of the blood culture collection. 71 is the number of hours of the admission to
the hospital before the blood culture test. During this interval, we collected the features. In the
interval [0, T2], we refrained from collecting data to prevent data leakage, as this is the period
between the test and the results (the interval time is higher than 24 hours).

The inclusion criteria included undergoing blood culture test, duration of at least
48 hours at the ICU before blood culture test, and admission to the MICU (Medical
ICU), SICU (Surgical ICU) and TSICU (Trauma ICU). In total, our cohort comprised
12,139 ICU stays, of which 538 were identified with BSI, representing a prevalence of
4.4%, highlighting the highly imbalanced nature of the dataset. It is important to note
that BSI is sometimes treated without conclusive laboratory results and may not always
be consistently coded in EHR data. This could potentially lead to an under-prediction of
true BSI cases, which is a major limitation of using EHR data for this type of analysis.

Each sample consisted of at most 30 timeframes, with each timeframe encompassing
four hours of data. This setup effectively captures a comprehensive timeline of five days
leading up to each blood culture test. To ensure robustness in our model evaluation and
to prevent data leakage associated with the year of ICU stay, we strategically split the
dataset into training-validation and test sets based on the year of the ICU admission.
Specifically, ICU stays from the years 2008 to 2017 were allocated to the training-
validation set, while those from 2017 to 2019 were designated for the testing set. This
split was chosen to ensure a sufficient sample size for training while maintaining a
temporal separation between the training and testing data, which can help assess the
model’s performance on future, unseen data.

Given the highly imbalanced nature of the task, with a significantly lower prevalence
of BSI cases, we opted to evaluate our model using the AUC-ROC score, a metric less
sensitive to class imbalance. Additionally, considering the relatively small size of the
sample dataset, we anticipated a high variance in performance metrics due to the initial
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split the data into training, validation, and test sets. To account for this variability and
to ensure a comprehensive evaluation, we conducted 10 different experimental runs
for each model. In each iteration, the training, validation, and test sets were randomly
selected, providing a thorough and varied assessment of the model’s performance across
multiple splits of the dataset.

5.3 Benchmark Models

RNN. We employed an RNN model inspired by the architecture and hyperparameters
detailed in [15]. The model uses Tanh activation and consists of two RNN layers with
batch normalization. The final hidden state of the RNN feeds into a linear layer, projecting
it to the probability of BSI occurrence in patients.

LSTM. Adapting the RNN model architecture, the LSTM variant replaces RNN layers
with LSTM layers while maintaining the same hyperparameters. LSTM models are par-
ticularly adept at processing longer sequences, offering an improvement over traditional
RNNs. However, it is important to note that LSTM models process inputs sequentially.

LSTM / RNN + Focal Loss. We also evaluated LSTM and RNN models trained with
focal loss.

Focal loss is instrumental in directing the model’s attention towards more challeng-
ing, incorrectly classified examples, thereby enhancing model performance on complex
cases.

XGBoost. For the XGBoost classifier, as provided by the dmlc XGBoost package, we
adapted our input data to fit the classifier’s requirements. Given that XGBoost pro-
cesses two-dimensional data, and our input is a three-dimensional matrix, we reduced
the dimensionality by computing the median of the last eight timeframe embeddings
(covering four hours) before the blood culture collection. Hyperparameter tuning was
conducted using a randomized cross-validation search over 10,000 iterations, utilizing
the scikit-learn framework.

Random Forest. In the case of the RandomForest classifier, hyperparameter optimiza-
tion was achieved through a randomized cross-validation search with 10,000 iterations.
We employed balanced class weights to address the class imbalance inherent in BSI
prediction data.

RatchetEHR Variations. Several variations of the RatchetEHR model were tested by
modifying or removing specific components. For the transfer learning (TL) approach
in the pretraining stage, the AdamW optimization algorithm was utilized, along with
parameters such as a batch size of 32, dropout rate of 0.1, learning rate of 1074, and
weight decay of 0.2. The fine-tuning stage hyperparameters were based on the BERT
article [11], including the warmup method for learning rate adjustment. The learning
rate gradually increases during the initial m steps of the optimization algorithm and then
decreases linearly. A smaller batch size of 17 was used, along with a dropout of 0.5, an
initial learning rate of & - 1073, and a weight decay of j - 0.3.



288 O. Hirszowicz and D. Aran

5.4 Prediction Performance

We first assessed the contribution of the different components used in the RatchetEHR
architecture. The analysis revealed that the incorporation of the GCT component sub-
stantially enhanced the performance of the prediction (Fig. 3. [A]). This improvement
can be attributed to the ability of the GCT component to train on a vast number of
timeframe embeddings, each representing a single timeframe. This extensive training
leads to more robust and contextually enriched input embeddings that effectively capture
the hidden graphical structure of EHR data features. Consequently, this contributes to
mitigating the challenges posed by the class imbalance and the limited size of the dataset.

In the model variations lacking the GCT component, the transfer learning approach
boosts performance and reduces the variance in the test set. This suggests that transfer
learning is particularly effective in refining the model’s accuracy in the absence of the
GCT component. Despite small differences, the top-performing architecture was the one
that included all components, including GCT, focal loss, sampler, and transfer learning,
but without child tuning (average AUC-ROC = 0.8 % 0.002). We suggest that this might
be due to the substantial drop in the number of parameters that the child tuning masked
and therefore were not updated.

Comparative analysis with other models highlights that while traditional models like
RNN and LSTM show varying degrees of effectiveness, they are somewhat limited, espe-
cially in small datasets (Fig. 3. [B]). The application of focal loss function, commonly
used in object detection tasks, shows improvements in these models, but not drastically.
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Fig. 3. Evaluation of RatchetEHR performance. A. Boxplots show AUC-ROC on the test sets
in the 10 iterations. We compared different variations of our architecture to showcase the relative
contribution to the performance of each component. Values were compared using t-Test. The GCT
component provided a significant boost to the performance. TL: transfer learning approach. B.
Boxplots show AUC-ROC on the test sets in the 10 iterations. We compared different algorithms
to the full version of RatchetEHR. Values were compared using t-Test. RF: Random Forest.
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XGBoost, known for its proficiency with tabular data, shows higher performance, yet it
is outperformed by RatchetEHR. This superior performance of RatchetEHR is largely
due to its ability to process raw data through the transformer model, which efficiently
discovers hidden structures and relationships within the time-frame embedding features
and among the time-frames themselves.

6 Explainability

Machine learning models are prone to bias, confounders and other issues. This leads
to mistrust among the users, especially in the healthcare domain, where the models’
output affects the patients’ quality of life. Many studies were conducted to provide
insight to the model’s decision making, to enhance the users’ assurance on it. To provide
a deeper understanding of how our RatchetEHR model arrives at its predictions, we
utilized SHAP values. SHAP values offer an insightful way to interpret complex machine
learning models, as explained in [16]. Here, we generated SHAP summary plots for 100
randomly selected ICU stays. Given the extensive number of features involved in each
ICU stay, we focused on optimizing performance without compromising the depth of
our analysis. We utilized the GradientExplainer, a component of the SHAP framework.
This tool efficiently approximates SHAP values using expected gradients, as detailed in
[17]. This approach enabled us to maintain computational efficiency while still providing
rich, interpretable insights into the features driving the model’s predictions (Fig. 4).
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Fig. 4. Explainability of the model. A. SHAP summary bar plot, displaying the importance of
each feature. B. SHAP summary violin plot, illustrating how feature values affect the model’s
predictions.
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This analysis revealed that the most important feature in our prediction of BSI was
Mean Corpuscular Hemoglobin Concentration (MCHC) (Fig. 3). Typically, MCHC is
a measure of the average concentration of hemoglobin in a person’s red blood cells,
used primarily to diagnose and monitor conditions related to red blood cell health, such
as anemia. This finding aligns with previous research where MCHC was identified as
a relevant factor in BSI, as noted in studies by Roimi et al. [2] and Zoabi et al. [3],
suggesting a potential, yet not fully explored, link between MCHC levels and BSI.
Other features that our analysis underscored include the Glasgow Coma Scale (GCS)
scores for verbal and motor responses, which echo the findings in Roimi et al. [2] and
Mahmoud et al. [18]. Additionally, variables such as Albumin levels, respiratory rates,
creatinine, and heart rate were also identified as significant, consistent with observations
in the studies by Mahmoud et al. [ 18] and Zoabi et al. [3]. It is important to note that these
correlations, while statistically significant in the context of the model, may not directly
imply a causal relationship. Rather, it could reflect complex interplays in the patient’s
health status, where alterations in blood measurement levels coincide with factors that
contribute to the susceptibility or onset of BSI.

7 Discussion and Conclusions

We presented here a complete framework for modeling EHR data of hospitalizations
using a transformer-based architecture. We show that this framework provides superior
performance over other state-of-the-art machine-learning approaches. This architecture
is adept at effectively processing sequential EHR data, a crucial aspect given the tem-
poral nature of medical records and their importance in clinical decision-making. This
capability is particularly vital in predicting conditions like BSI, where the timing and
evolution of patient data points are key indicators of the patient’s health trajectory.

A pivotal aspect of RatchetEHR is the integration of the GCT component. By leverag-
ing this component, RatchetEHR can uncover the hidden structural relationships within
the data, crucial for understanding complex clinical scenarios. The GCT component
notably enhances the ability to process and interpret each timeframe of EHR data. This
capability is instrumental in the superior performance of our framework. Other compo-
nents added to the architecture, including the focal loss, Sampler, and ChildTuning did
not result in significant performance improvements, however, they were incorporated to
address specific challenges such as class imbalance and overfitting. Future work could
explore simplifying the model architecture to strike a balance between complexity and
performance.

While complex, we show here that is it possible to extract feature importance from
the model and provide the much-needed explainability. This aspect is highly valuable in
clinical settings, where understanding the ‘why’ behind a model’s prediction is as crucial
as the prediction itself. This transparency allows clinicians to trust and effectively utilize
Al-driven insights in their decision-making process.

It is important to consider potential limitations and biases inherent in EHR data.
Inconsistencies in data collection, documentation, and coding practices across different
healthcare systems may impact the model generalizability. For example, we are probably
under-predicting cases of BSI due to inconsistent administrative coding and treatment
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without conclusive laboratory results. Future work could involve validating the model’s
performance on independent EHR datasets to assess its robustness and transferability,
in addition to a prospective study in real-world scenarios.

In conclusion, this study contributes to the field of medical informatics by introducing
an innovative approach to EHR data analysis and opens up new possibilities for future
research to further enhance Al capabilities in healthcare.
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Abstract. We consider the problem of modeling adverse pregnancy out-
comes (APOs) from diverse data sets and aim to understand what is com-
mon between them and what is unique for each of these data sets. To
this effect, we consider three different data sets (a clinical study from the
US, EHRs from a US hospital, and a clinical study in India) and model
three specific APOs - preterm birth, new hypertension, and preeclamp-
sia. Since LLMs can efficiently summarize the scientific literature, we
use them to generate initial hypotheses and use the different data sets
to refine the hypotheses to create joint probabilistic models (as Bayesian
networks). Our analyses show that there are eight relationships between
risk factors common to all three populations and some unique relation-
ships for specific populations.

Keywords: Bayesian Networks - Theory Refinement - LLMs

1 Introduction

Adverse Pregnancy Outcomes (APOs) such as preterm birth (PTB) pose a sig-
nificant challenge in maternal-child health, with approximately one in ten births
occurring prematurely on a global scale. The implications of PTB extend beyond
immediate neonatal mortality, influencing both short-term and long-term health
outcomes [17]. However, the relationship between APOs and their risk factors
can vary across geographical regions [9]. This makes integration and analysis of
multiple data sets vital to understanding APOs and mitigating their risk.

We aim to model the differences and commonalities between data sets of
APOs from different countries. Specifically, we aim to perform this analysis by
inducing interpretable probabilistic models from three data sets from 2 countries,
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namely India (Garbh-Ini [1]) and the United States (nuMoM2b [13] and EHR
data from Regenstrief Institute). This would help advance our understanding of
the multifaceted nature of APOs and potentially inform targeted interventions
tailored to specific geographical regions.

Probabilistic graphical models such as Bayesian networks [14,19] have long
been used in Al for modeling interactions of multiple factors by learning joint
distributions. In contrast to discriminative learning methods where the goal is
to best predict an outcome, these generative models learn a joint distribution
that can allow us to query comprehensively and understand the data in a more
holistic manner. The biggest barrier to learning these models is the amount of
data required which can be offset by using domain knowledge to construct an
initial model and refining this model using the data.

Consequently, we employ the use of LLMs to generate an initial model (since
LLMs can efficiently summarize the literature), refine the model with domain
experts, and then use each of the data separately to refine the models for the
respective populations. Once these different models are obtained, we perform
meta-analyses of these models and summarize the findings. The common influ-
ence relationships that exist in all the data sets are between the risk factors
BMI and HiBP and the three APOs new hypertension (NewHTN), preeclamp-
sia (PreEc), and preterm birth (PTB). We also present the edges that are unique
to each of these subpopulations (for instance, age is important in nuMoM2b but
is not as influential in Garbh-Ini). Our hypothesis is that given such a unified yet
diverse view, it is now possible to develop population-specific treatment plans
for mitigating the APOs.

1.1 Data Description

nuMoM2b: The nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitor-
ing Mothers-to-Be [13]) study focuses on identifying risk factors for APOs in the
United States. It enrolled a diverse cohort of 10,038 nulliparous subjects across
8 US sites. Data collection occurred at the start of pregnancy and at subsequent
visits throughout the pregnancy.

Electronic Health Records: Apart from the data from the nuMoM2b study,
we also acquired Electronic Health Records (EHR) from the Regenstrief Insti-
tute. This data set includes non-nulliparous subjects but does not include infor-
mation about family history of chronic conditions.

Garbh-Ini: The Garbh-Ini study [1] conducted in a single site within Haryana,
India, aims to characterize PTB and identify associated risk factors. It enrolled
8,050 subjects both nulliparous and non-nulliparous, and collected data at the
start of pregnancy and at subsequent visits throughout the pregnancy.

2 Background

Bayesian Networks (BNs [19]) are a class of Probabilistic Graphical Models
(PGMs [14]) that factorize the joint distribution over a set of variables using a
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Directed Acyclic Graph (DAG) and local conditional probability distributions
(CPDs). The DAG has a node corresponding to each variable and a directed edge
between nodes represents influence. For example, an edge Age — PTB would
imply that the age of the subject at pregnancy influences our belief about the
likelihood of preterm birth. The local CPDs quantify the influence in terms of
probability values. Formally, a BN M over a set of n variables V = {X7,..., X, }
is defined as the tuple (G, ) where G is the DAG representing the structure of
the BN and 6 is the set of parameters for the local CPDs. The joint probability
distribution over V defined by the BN is

P(Xy,...,X,) = [] Po(X | Pax) (1)
XeV

where Pay is the set of parents of the BN node corresponding to variable X.
BNs can reason under uncertainty and answer probabilistic queries about the
variables. Additionally, since BNs consist of directed influences between variables
and local conditional probabilities, they are easy to interpret.

The structure of the BN encodes conditional independence relations (CIs)
between variables; each variable X is independent of its nondescendents given
its parents Pax. These two properties — reasoning under uncertainty and inter-
pretability make BNs a good fit for high-stakes domains such as healthcare that
require models that can reason about complex relationships between variables
while being able to develop trust with domain experts.

In this work, we induce BNs from each of the 3 data sets and compare the
influence relations between APOs and their risk factors. However, inducing the
structure of a BN directly from data is a data-hungry and computationally hard
problem [7]. One approach to mitigate this problem is Theory Refinement [16].
This approach involves constructing an initial BN structure from domain knowl-
edge and then refining this BN using data. Specifically, the BN is refined by per-
forming local operations such as adding an edge, deleting an edge, and reversing
an edge to maximize a given heuristic score. Commonly used scores include the
Minimal Description Length (MDL [15]) and Bayesian-Dirichlet Scores(BD [6]).
The MDL score can be adapted to exploit local structure [12] in the form of
context-specific independence relations (CSIs [3]) if the local conditional distri-
butions of the BN are represented as decision trees. While prior works obtain
the initial BN from a domain expert, we aim to construct the initial BN by
extracting approximate domain knowledge from a deep generative model.

Large Language Models as Approximate Knowledge Sources: LLMs [26]
are a class of deep generative models for text data. They consist of two Artificial
Neural Networks (ANNs) called an encoder and a decoder. These encoder and
decoder ANNSs are used to encode input prompt text from a user and to generate
response text from the encoded prompt respectively. Examples of such LLMs
include General Purpose Transformer (GPT [5]) and Gemini [23]. These models
are fit using large amounts of textual data and have been shown to generate
realistic text. However, they cannot reason about the information embedded in
them [25]. As a result, prior work has tried to extract knowledge from existing
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LLMs and inject the knowledge into models that can perform reasoning [10,18,
20]. Inspired by these directions, we extract knowledge in the form of influence
relations from an LLM, use this knowledge to instantiate a BN, and then refine
the BN using clinical data.

3 Methodology

We aim to find the relationships between variables common across the three
data sets, and the ones unique to each data set. We formalize this task as the
following problem

Given: Data sets D1, D2, D3 over a set of variables X, and an LLM O
To Do: Find a set of pairwise influences that are supported in all 3 data
sets and the sets of influences supported only in particular data sets.

We address the problem of identifying consistent and dataset-specific rela-
tionships by learning three BN structures and then comparing them. We identify
two types of edges, common edges, present in all refined BNs, which represent
pairwise influences consistently supported by all data sets; and dataset-specific
edges, unique to a specific BN, which represent pairwise influences supported
only in the corresponding data set.

However, learning a BN structure from data is a difficult problem. Firstly,
BNs are highly expressive models, and finding the structure that maximizes the
data likelihood would result in an overly complex BN that overfits that training
data. To address this, BN structures are learned by minimizing a cost function
that includes implicit [6] or explicit [15] regularization. Secondly, even with a
cost function (say Cost(M,D)), learning the structure of a BN requires us to
solve the following combinatorial optimization problem:

arg min Cost(M, D) (2)
M

This problem requires a search over a superexponential number of BN graph
structures. Not only is searching over such a large space computationally
intractable (NP-Hard to be specific), but it also requires a large amount of data
to be able to determine the optimal structure [7].

One way to make this problem tractable is to exploit domain knowledge. We
encode domain knowledge in three ways. Firstly, we encode domain knowledge
through the choice of scoring function. Specifically, we use the MDL scoring
function that prefers concise structures over more complex structures through
an explicit penalty term. Secondly, we use domain knowledge about relations
between the variables to construct an initial BN structure. While such BN struc-
tures are generally elicited from domain experts, we obtain the initial structure
by querying an LLM. We further restrict the search space by using domain
knowledge to identify and exclude temporally impossible edges. For instance,
the edge PTB — BMI is invalid as preterm birth cannot influence Body Mass
Index (BMI) measured at the pregnancy’s start. By incorporating domain knowl-
edge, we restrict the search from an exhaustive exploration of all BN structures
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to a local search over the structures in the neighborhood of an initial structure
obtained from an LLM.

3.1 BN Refinement Using the MDL Score

We refine the initial BN structure for each data set by minimizing the MDL
score. The MDL score for a BN (denoted by M) with respect to a data set
(denoted by D) is the sum of the description length of the data encoded using
the BN model (DL(D | M)) and the description length of the BN model itself
(DL(M)). Concretely, the MDL score is given as

MDL(M; D) = DL(D | M) + DL(M) (3)

The first term is the description length of the encoded data and captures the
number of bits required to encode the data points using the probabilities esti-
mated by the BN model. The second term is the description length of the model
and captures the complexity of the BN itself. Since Huffman coding allows data
points to be encoded using their probabilities, DL(D | M) is approximated by
the negative log-likelihood of the data set under the BN. The description length
(DL) of a BN, denoted by DL(M), captures the complexity of the model. It con-
sists of two components, the description length of the graphical structure of the
BN G and that of the parameters of the local conditional distributions 6.

3.2 Encoding the BN Model

Description Length of the Graphical Structure. This term represents the
space required to encode the BN’s structure GG. Each node’s description includes
the number of parents and their names. Since each node can be encoded in logn
units of space, the description length of the structure is )y (1 +[Pax])logn.

Description Length of the Parameters. This term represents the space
required to encode the parameters, #. These parameters define the local CPDs
over each node given its parents. There are two ways to encode these distribu-
tions, as tables and as trees. Conditional Probability Tables (CPTs) explicitly
enumerate the conditional probability values corresponding to each parent con-
figuration. Each entry in a CPT can be encoded as an ordered list of fixed-width
floating-point values, each of which can be encoded in space %log N, where N
is the size of the data set. The resulting description length for all the CPTs of
the BN is 3 vy (| X| — 1)|Pax|(5 log N).

Local conditional distributions can be represented as trees to exploit local
structure [12] in the form of CSIs [3]. The description length of such a tree-
structured local conditional distribution over a variable X given its parents is
B(|X|-1)(5logN) +E§i:1 log(|Pax|— A4;). Here, B is the number of leaf nodes,
d is the depth of the tree and A; is the number of internal nodes at level [.
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3.3 Computing the CSI-Aware MDL Score

To account for CSIs in the MDL score we use the Classification and Regression
Trees (CART [4]) algorithm. At each node, we fit a decision tree to predict the
node’s value from its parents. This decision tree serves as the tree-structured
CPD for computing the MDL score. The overall MDL score is given by the
following equation:

MDL(M;D) = — > log Pp(x) + Y _ (1+ [Pax|)logn
xz€D XeV
1 d (4)
+ D Bx(IX] = 1)(5log N) + ) log([Pax| — Ax,)
XeVv =1

where Bx and Ax, are the number of leaf nodes and the number of internal
nodes at level [ for the decision tree fit for node X respectively.

4 Experimental Evaluation

We consider 3 APOs, namely, New Hypertension (NewHTN), Preeclampsia
(PreEc), and Pre-term birth (PTB), and study their relationship with 5 risk
factors from prior work [8]. Specifically, the risk factors include Family History
of diabetes (Hist), Age at the start of pregnancy (Age), Body Mass Index at the
start of pregnancy (BMI), presence of Hypertension at the start of pregnancy
(HiBP), and Parity. Of these variables, Parity does not apply to nuMoM2b as
the study selected nulliparous subjects (Parity = 0) and Hist was not available
in the EHR data. We removed data points that had missing values for any of
the considered variables. Table 1 summarizes the variables, their discrete values,
and the corresponding proportions in each of the three data sets.

We obtained a set of edges from Gemini to construct an initial BN structure
and then refined this structure for each of the three data sets. Figure 1l shows
the initial BN obtained from Gemini, the edges common to all the refined BNs,
and the edges unique to each of the three data sets'. Apart from these, the edges
{Age — Parity, Parity — PTB, Parity — PreEc} were present in both the data
sets that had the Parity variables available (Garbh-Ini and EHR).

The edges common to all three refined BNs reflect existing domain knowledge.
High BMI is known to increase the risk of Hypertensive disorders of pregnancy
such as preeclampsia and new hypertension [2,21]. Hypertensive disorders of
pregnancy are known to increase the risk of preterm birth [24]. Finally, hyper-
tension at the start of pregnancy (HiBP) and new hypertension are known risk
factors for preeclampsia [11].

! The code for the experiments, the LLM prompt, and the list of temporally impossible
edges is available at https://github.com/saurabhmathur96/BN-Refinement.
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(a) Initial BN obtained from an LLM (b) Edges common to
all the refined BNs

(c) Edges unique to nuMoM2b (d) Edges unique to
EHR

)

(e) Edges unique to
Garbh-Ini

Fig. 1. The initial BN structure obtained from an LLM (a), edges common to the BNs
refined on all 3 data sets (b), edges unique to nuMoM2b (c¢), EHR (d) and (e)

The edge from BMI to Parity in the BN learned from the EHR data might
reflect the fact that high obesity negatively influences fertility [22]. This edge
is supported by the EHR data which has the largest proportion of high BMI
subjects. While BMI is expected to rise with an increase in Age, the influence
relation is unique to the BN learned from the Garbh-Ini data set.
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Table 1. Variable-value proportions for each of the three data sets

Variable | Value |nuMoM2b | Garbh-Ini EHR
Age <21 |21.03% 31.54% 9.87%
21-35 |72.36% 67.78% 75.27%
>35 6.61% 0.67% 14.86%
BMI <18 [3.39% 19.64% 1.12%
18-25 | 51.29% 67.13% 31.53%
>25 45.31% 13.22% 67.35%

Parity |=0  100% 48.50% | 6.3%
0-2 | N/A 47.12% | 67.36%
>2  |N/A 4.38% 26.34%

Hist TRUE | 20.55% | 8.10% N/A

HiBP TRUE | 2.84% 2.10% 9.37%
PReEc TRUE | 5.85% 3.80% 7.54%
NewHTN | TRUE | 16.12% 3.40% 11.09%
PTB TRUE | 8.11% 12.80% 9.41%
Total 9,368 4,159 16,487

5 Discussion

A few important differences between the populations need to be pointed out.
First, while the nuMoM2b study studied nulliparous subjects (first-time moth-
ers), there were no such restrictions in the other two datasets. Second, the com-
mon risk factors and APOs were chosen across the different data for the purposes
of this study. Consequently, APOs such as gestational diabetes were not consid-
ered as they were computed differently in the Garbh-Ini study. Thus, some of the
relationships such as the influence of family history might include some hidden
confounders (such as gestational diabetes). Exploring these issues remains an
open problem. Finally, a variable such as race, a social construct, which plays
an important role in a diverse dataset such as the EHR is not considered due to
its absence in the single-state study in India.

Nonetheless, several common themes emerged. The influence of HiBP and
BMI is quite significant across populations and data sets. It is clear that in
nuMoM2b participants, age has a direct influence on PTB while in Garbh-Ini
participants, age directly influences BMI (potentially through multiple pregnan-
cies). It is important to understand the key differences in the data itself and
these models provide a way of doing that. Future research could explore several
avenues, including incorporating more data sets, identifying hidden confounders,
understanding the similarities and differences in population, and extending these
analyses to more global data sets. Finally, integrating multi-omic data, such as
gene expression and proteomics data, alongside clinical data from diverse sources
could offer deeper insights into the molecular pathways underlying APOs.
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Abstract. Medical event extraction (MEE) aims to identify and extract medical
events mentioned in clinical notes, serving as a fundamental task for many clini-
cal applications. Traditional solutions demand significant labor and sophisticated
model design. The emerging large language models (LLMs) are considered to be
potential on MEE. However, such methods have been shown to encounter issues
related to accuracy, interpretability, and generalizability. In this paper, we pro-
pose OptimalMEE to optimize LLMs for MEE through fine-tuning and post-hoc
verification. We leverage the LLM paired with a parameter-efficient fine-tuning
mechanism and develop a four-step post-hoc verification process aimed at refining
and interpreting the extracted events. Experimental results on multi-center datasets
illustrate the strength of the proposed OptimalMEE on accuracy, interpretability,
and generalizability, with 0.902 and 0.809 in MicroF1.

Keywords: Medical Event Extraction - Large Language Models - Information
Extraction - Text Mining

1 Introduction

Clinical notes are the narrative part of electronic health records (EHRs), documenting the
interactions between patients and doctors. With the rapid growth of EHRs, the traditional
manual review method has proved to be time-consuming and burdensome. Consequently,
the field of medical event extraction (MEE) receives significant attention [1, 2]. MEE is a
pivotal task in clinical text mining, which is fundamental for many clinical applications,
such as clinical decision support, and trial recruitment [3].

Current studies on automatic MEE are carried out either based on rules or deep
learning algorithms. The former requires great effort to define the rules and is challeng-
ing to expand or generalize [4]. Deep learning algorithms could alleviate the burdens
above with representation learning. However, they still cost adequate labeled data to
fit the model and entail significant effort in model design with massive parameters [5].
More recently, with the prevalence of ChatGPT [6], generative large language models
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(LLMs) have been widely utilized in various NLP tasks including text mining. How-
ever, current studies suggest they encounter challenges in accuracy, interpretability, and
generalizability [7, 8]. Further explorations of optimization are still lacking.

In this work, we endeavor to address the challenges by optimizing large language
models for medical event extraction through fine-tuning and post-hoc verification (Opti-
malMEE). Experiment results on multi-center datasets indicate the improvement of the
proposed OptimalMEE, proving it could be a possible solution for the efficient extraction
of medical events in the resource-constrained clinical scenario using LLMs.

2 Materials and Methods

2.1 Data

A total of 505 clinical notes on medical history belonging to 158 patients with lung
cancer were collected as MAIN-dataset, from a hospital in Shanxi, China. To intimate
the low-source scenario of labeled data, 100 clinical notes are used for the training set,
15 for the development set, and 390 for the test set. The datasets are divided randomly.
A GENERALIZATION-Dataset is also collected with 16 clinical notes on discharge
summaries belonging to 16 patients with lung cancer from a hospital in Beijing, China.
They are all used for the method generalization evaluation. All clinical notes were first
deidentified before any further process. The study is conducted in compliance with
pertinent guidelines and regulations (see Appendix A.1).

Under the clinicians’ instructions, we select Medication, Operation, Imaging, and
Gene Test as four types of medical events to extract and uniformly define the event
elements of each type as event_time, event_project, and event_conclusion. The statistical
details of the two datasets are shown in Table 1.

Table 1. Statistical details of two datasets.

Statistics MAIN-Dataset | GENERALIZATION-Dataset
Total number of clinical notes 505 16

The average number of events per note 4.21 7.25

Maximum number of events in one note |9 27

Total number of @Imaging 759 63

Total number of @Operation 340 9

Total number of @Gene Test 77 10

Total number of @Medication 952 34

Two engineers with medical informatics background were recruited to label the data.
To guarantee the inter-annotator reliability, another experienced engineer with clinical
knowledge reviewed the annotated data to determine final results as the gold standard.
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2.2 Methods

Figure 1 shows an overview of OptimalMEE. The pipeline receives a clinical note with
prompt as input and produces the extracted medical event list as output.

To clarify the objective of the MEE task, we formulate the task instruction prompt
and concatenate it with the input clinical note (see Appendix A.2). During the fine-
tuning stage, we leverage QLoRA [9] to fine-tune the base LLM. It is a widely used
PEFT method, which significantly reduces memory usage and enhances efficiency.

Post-hoc Verification

BaselLLM event duplication .

Flawed E> E> Multiple

Result temporal discrepancies Medical
. Events

A
Input
Note. event bype, P E>
elements,

format logic ambiguity

the omission of events

=

OptimalMEE

Fig. 1. Overview of OptimalMEE, where the QLoRA module is trained during fine-tuning.

While the fine-tuning aligned the model with the MEE task, the following issues
remain in the raw events: event duplication, temporal discrepancies, logic ambiguity,
and the omission of events. Thus, a four-step post-hoc verification process is devised to
refine the results.

The deduplication self-checking is carried out by comparing elements of two events
and merging them if the same. The issues of temporal discrepancies and logic ambiguity
are addressed through cross-checking with the input. The temporal discrepancies could
be detected and rectified by tracing back the event_time in the input. Logic ambiguity
mainly arises from confusion regarding causes and conclusions. Since the conclusion
should occur after the description of the event, it could be resolved by locating and
comparing the positions of event_project and event_conclusion in the input.

The extracted event_conclusion may overlap with another event, which leads to
the omission of events. To address this, we resort to recalling the fine-tuned LLM for
detecting and re-extracting the missing events from the extracted event_conclusion. The
detailed prompt is provided in Appendix A.2.

2.3 Experimental Setup

We instantiate OptimalMEE with ChatGLM3-6B [10] as the base model. It is worth
noticing that our method also supports to adapt with other open-source LLMs.

We compare OptimalMEE against both traditional methods and LLM-based base-
lines. The formers include a manually defined rule-based extraction system and ReDEE
[11], the state-of-the-art deep learning method for the document event extraction task. We
also employ ChatGLM3-6B in three patterns: zero-shot learning (Only-LLM), few-shot
learning (5-shot-LLM), and QLoRA fine-tuned (QLoRA-LLM).

Precision, recall, and F1 score at the event level and the micro average F1 score
(MicroF1) across all types of events are selected as evaluation metrics.
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3 Results and Discussion

Table 2 shows the experiment results. All experiments were conducted on the MAIN-
Dataset, except for the generalization study was on the GENERALIZATION-Dataset.

Results of comparison experiments prove that the native LLM could lead to a con-
siderable improvement over traditional methods, indicating the great potential of LLM-
based methods. Also, the fine-tuned LLM surpasses ReDEE and Only-LLM, stressing the
remarkable efficiency of the PEFT algorithm. It is also worth noting that the 5-shot-LLM
performs worse than only-LLM, which might be caused by verbosity [8].

The ablation study is conducted by removing one procedure at a time. According
to Table 2, the steps of event re-extraction and time verification contribute most to
the improvement, indicating it is still challenging for LLMs to distinguish overlapping
medical events and the hallucination phenomenon of LLMs remains significant, empha-
sizing the essentiality of post-processing. The results also show that the duplication issue
mainly occurs in Imaging events. This might be associated with the extensive nature of
imaging conclusions, leading the model to interpret it as two distinct events.

Generalization results indicate the universal applicability of our proposed method
with LLM and non-expression-based post-hoc verification when handling clinical notes
with diverse writing styles and varying distributions of medical events (see Table 1).

From the perspective of interpretability, Fig. 2 shows that post-hoc verification pro-
vides a double-check for the extracted result by tracing back to the input text and locating
the extracted elements, which also serves as evidence for the extracted result.

Table 2. Experiment results, where ‘w/o’ stands for ‘without’; ‘Generalization’ denotes Opti-
malMEE tests on the GENERALIZATION-Dataset.

Models MicroF1 | Operation Imaging Gene Test Medication
Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1
score score score score
Rule 0.513 0.625 0.714 | 0.667 | 0.447 0.514 | 0.478 | 0.727 1.000 | 0.842 | 0.717 0.223 | 0.340
ReDEE 0.415 0.250 0.312 | 0.278 | 0.727 0.121 | 0.208 | 0.188 0.328 | 0.239 | 0.400 0.563 | 0.468

Only-LLM 0.764 0.833 0917 | 0.873 | 0.898 0.567 | 0.695 | 0.333 0.474 | 0.391 | 0.838 0.754 | 0.794
5-shot-LLM 0.592 0.944 0.756 | 0.840 | 0.739 0.472 | 0.576 | 1.000 0.438 | 0.609 | 0.902 0.354 | 0.508

QLoRA-LLM | 0.804 0.803 0.770 | 0.786 | 0.740 0.767 | 0.753 | 0.360 0.450 | 0.400 | 0.892 0.851 | 0.871
OptimalMEE | 0.902 1.000 0.960 | 0.979 | 0.835 0.880 | 0.857 | 0.769 1.000 | 0.870 | 0.912 0.908 | 0.910

wlo 0.890 1.000 0.960 | 0.979 | 0.817 0.880 | 0.847 | 0.704 0.950 | 0.809 | 0.916 0.874 | 0.895
Duplication

w/o Omission | 0.859 1.000 0.960 | 0.979 | 0.759 0.773 | 0.766 | 0.682 0.750 | 0.714 | 0.916 0.874 | 0.895
w/o Time 0.844 0.916 0.878 | 0.897 | 0.757 0.767 | 0.762 | 0.615 0.800 | 0.696 | 0.909 0.874 | 0.891
wl/o Logic 0.888 0.930 0.892 | 0.910 | 0.818 0.862 | 0.840 | 0.769 1.000 | 0.870 | 0.919 0.905 | 0.912

Generalization | 0.809 1.000 0.778 | 0.875 | 0.902 0.873 | 0.887 | 1.000 0.700 | 0.824 | 0.846 0.647 | 0.733

3.1 Limitations

In this study, though we evaluate our methods on multi-center datasets, the total sample
size of testing is still limited. To provide more solid evidence of the improvement of
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Extracted Event 1 Extracted Event 2

{

"event_type"": ""maging"",

ft upper lobe wedge resection ™",
""conclusion"": ""squamous cell carcinoma, Grade I, in the
} left upper lobe of the lung"" }

Elements re-location highlighting

ion in April 2014, a chest CT scan revealed a nodule in the anterior segment of the left upper lobe of the lung. On May 19, m
ion was performed. The postoperative pathology indicate

Fig. 2. Example output and the corresponding locations in the input clinical note.

OptimalMEE, larger datasets should be considered. Besides, we only instantiate Opti-
malMEE with ChatGLM3-6B. Though the proposed method supports other open-source
LLMs, the incremental gain and baseline LLM performance may differentiate across
different base LLMs.

4 Conclusion

In this study, we proposed OptimalMEE which optimizes LLM for medical event extrac-
tion through fine-tuning and post-hoc verification. Concretely, we leverage QLoRA to
fine-tune the base LLM with minimal annotation effort and develop a four-step post-
hoc verification to improve the accuracy and interpretability of the extracted events and
guarantee the generalizability of the method. Experiment results on multi-center datasets
indicate the establishment of OptimalMEE provides a practical solution to MEE task
and lays the groundwork for further applications in clinical information extraction.

Acknowledgments. This study was funded by the National Key Research and Development
Program of China (grant number 2022YFF1203001).
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A Appendix

A.1 The Relevant Legislation Statement

This study was a secondary analysis of existing, anonymized data and not considered
to be human subjects’ research. The need for ethics approval and informed consent
is deemed unnecessary according to Article 32 of the “Approach to the Ethical Review
of Life Science and Medical Research Involving Humans” issued by National Health
Commission of Peoples’ Republic China, Ministry of Education of Peoples’ Republic
China, Ministry of Science and Technology of Peoples’ Republic China, and National
Administration of Traditional Chinese Medicine of Peoples’ Republic China in February
2023.
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The specific content of the Article is translated as follows:

Approach to the Ethical Review of Life Science and

Medical Research Involving Humans

Chapter 3 Article 32 : Using human information data or biological samples to carry
out life science and medical research involving humans in the following circum-
stances, which doesn’t do harm to humans and involve sensitive personal infor-
mation or commercial interests, can exemp t ethical review to reduce the unneces-
sary burden on researchers and promote the development of life science and medi-
cal research involving humans.

(1) A research using overt data obtained legally, or the data that is generated
by observation and does not interfere with public behavior;

(2) A research using anonymous information data;

Source document URL: https://www.gov.cn/zhengce/zhengceku/2023-02/28/con

tent_5743658.htm.

A.2 Prompt Details
See Table A3.

Table A3. Prompt templates of different methods.

Method

Prompt Template

Zero-shot Learning

Please complete the task of extracting medical event
information from the provided clinical note: The
given clinical note includes clinical events belonging
to the following four types: #lmaging, Gene Testing,
Operation, Medication#. Please return the extracted
event time, event type, event project name, and
conclusion for the medical event belonging to
#Imaging, Gene Testing, Operation, Medication# in

"o

JSON format: {"time": "","event_type": "","project":
"" "conclusion": ""}; if any information item is
empty, please fill it with NONE. Do not create events
or times on your own

The clinical note to extract is as follows:

"""{text}"""

(continued)
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Table A3. (continued)

Method Prompt Template
Few-shot Learning Please complete the task of extracting medical event
(5-shot) information from the provided clinical note following

examples provided: The given clinical note includes
clinical events belonging to the following four types:
#Imaging, Gene Testing, Operation, Medication#.
Please return the extracted event time, event type,
event project name, and conclusion for the medical
event belonging to #Ilmaging, Gene Testing,
Operation, Medication# in JSON format: {"time":

" "event_type": "","project": "","conclusion": ""}; if
any information item is empty, please fill it with
NONE. Do not create events or times on your own
Task examples are as follows:

***Example 1: {example}

Example 2: {example}

Example 3: {example}

Example 4: {example}

Example 5: {example}***

The clinical note to extract is as follows:

" text)" "

OptimalMEE (input) Please complete the task of extracting medical event
information from the provided clinical note: The
given clinical note includes clinical events belonging
to the following four types: #Imaging, Gene Testing,
Operation, Medication#. Please return the extracted
event time, event type, event project name, and
conclusion for the medical event belonging to
#Imaging, Gene Testing, Operation, Medication# in

n,onnon

JSON format: {"time": "","event_type": "","project":
"" "conclusion": ""}; if any information item is
empty, please fill it with NONE. Do not create events
or times on your own

The clinical note to extract is as follows:

" rext )

(continued)
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Table A3. (continued)

Method

Prompt Template

OptimalMEE
(recalling during post-hoc verification)

Please analysis whether the given text contains
complete medical events of the types #lmaging, Gene
Testing, Operation, Medication#. If yes, please
directly return the extracted event time, event type,
event project name, and conclusion for the medical
events belonging to #Ilmaging, Gene Testing,
Operation, Medication # in JSON format: {"time":
"""event_type": "","project”: "","conclusion": ""};
otherwise, please return "No"

The text to analysis is as follows:

" {text)"""

A.3 Error Analysis on QLoRA-LLM Results

See Figure A3.

16.67%

13.89%

17.59%

Error Analysis

Temporal Discrepancies
m Logic Ambiguity
m The Omission of Events

m Event Duplication

24.07% m Others

Fig. A3. The error analysis result on initial extracted results by QLoRA-LLM method. The total
number of extracted medical events is 108 from 50 clinical notes.
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Abstract. Learning high-quality text embedding is vital for biomedical topic clas-
sification and many other NLP tasks. Contrastive learning has shown remarkable
performance in generating high-quality text embeddings. However, existing meth-
ods typically generate anchor-positive pairs through discrete augmentations, sim-
plifying the task of distinguishing positive from negative examples and limiting the
learning of meaningful representations. In this paper, we present a self-supervised
segment contrastive learning (SCL) approach designed for contrastively fine-
tuning pre-trained language models. Our method randomly divides documents
into anchor and positive segments, facilitating the learning of document embed-
dings by maximizing agreement between these segments. The proposed model
contrastively fine-tune pre-trained ClinicalBioBERT language model to generate
document embedding for medical documents. We evaluate our method on two
publicly available medical datasets, MIMIC and Bioasq. Extensive experiments
show that our proposed SCL approach outperforms baseline models, achieving
superior performance in medical classification tasks.

Keywords: Document representation - Medical text - Contrastive learning -
Language models

1 Introduction

Medical data processing plays a vital role in developing intelligent healthcare services.
It involves various techniques for acquiring, managing, and analyzing health-related
data. The biomedical literature is characterized by the continuous generation of textual
data such as daily research articles, clinical notes, and healthcare summaries. Medical
documents have quite different linguistic characteristics from normal documents, which
can be a problem when classifying medical topics. It is important to develop a quality
document embedding to encode these special medical entities. Document embedding
is the process of encoding the documents into dense vector representation such that
similar documents appear closer in the vector space. Document embedding plays an
important role in classifying biomedical documents [9] and several other NLP tasks like
information retrieval [2, 15], multiple-choice QA [12], etc.

Traditional document embedding approaches are based on fixed-length features such
as bag-of-word and TF-IDF [19]. However, these methods fail to capture word order
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and ignore semantic word distance, which limits their power on complex tasks. Recent
advancements in transformer-based language models have led to a paradigm shift in
document embedding, establishing them as the primary method for learning document
representations from unlabelled corpora [4, 5, 13]. These models utilize vast amounts
of unlabeled text data with a masked language modelling (MLM) objective to learn
rich contextual sentence representations, which are then utilized by specific downstream
tasks.

Despite their success, sentence representations generated by pre-trained language
models suffer from anisotropy problems, where sentence representations occupy a nar-
row cone in the embedding space [6]. To alleviate this problem, contrastive learning [7,
28] has been proposed to bring similar sentences, i.e., anchor-positive pairs closer in the
vector space, and dissimilar sentences, i.e., anchor-negative pairs far away in the vector
space to uniform whole vector space.

The state-of-the-art models generate anchor-positive pairs by randomly augment-
ing the same sentence (e.g., Synonym replacement, delete one word, word repetition,
dropout-noise), and anchor-negative pairs are chosen from the same mini-batch known as
in batch-negative. Despite achieving success, employing discrete augmentations on sen-
tences to generate positive pairs simplifies the task of distinguishing positive examples
from negative ones; therefore, it does not lead to learning meaningful representations.

To address the above issues, we propose a self-supervised contrastive learning app-
roach based on document-level objectives that can be used to contrastively fine-tune
the pre-trained language model. Our proposed model randomly splits the document into
two portions: a smaller text segment and a larger portion serving as an anchor text. The
model learns document embeddings by training an encoder to maximize the agreement
between anchor text and a positive text segment taken from the same document. As we
are working with biomedical documents, we employed pre-trained ClinicalBioBERT
[3] for contrastively finetuning.

Our primary contributions are:

— We propose an unsupervised self-supervised learning objective to contrastively
fine-tune pre-trained ClinicalBioBERT model to induce high-quality document
embeddings for medical documents.

— We conducted extensive experiments to highlight the advantages of learning docu-
ment representation using proposed contrastive learning loss against state-of-the-art
SimCSE and ESimCSE methods.

— We evaluated the quality of document embedding by training and evaluating multi-
layer perceptron (MLP) classifier on top of document embedding on three biomedical
classification datasets.

2 Related Works

2.1 Medical Document Processing

Recently, transformer-based models are widely used for processing biomedical docu-
ments. To this end, [10] and [27] introduce sentence-aligned multilingual text simpli-
fication dataset for the medical domain, covering English, Spanish, French, Farsi, and
Chinese. [11] and [1] introduce and investigate systems for generating medical reports
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from chest X-ray images. This includes integrating disease classification, transformer-
based report generation, and an interpretation module to ensure consistency and clinical
accuracy or evaluation metrics in text summarization and generation. [14] and [26] eval-
uated the capacity of LLM in medical domains, for clinical relation extraction or for
medical systematic reviews, by adding medical knowledge into pre-trained models. [20]
and [25] propose methods for medical prediction and automated medical report genera-
tion. [21] introduces MedCLIP, a framework for medical image-text contrastive learning
that addresses challenges in pre-training on medical domain data. [17] survey discusses
the application of pre-trained language models (PLMs) in the biomedical domain, high-
lighting their potential to improve performance on various natural language processing
(NLP) tasks through pre-training on vast text corpora for universal language representa-
tion learning. In contrast, we propose to contrastive train these PLMs on the biomedical
domain to generate high-quality document representation for medical documents.

2.2 Document Representation

Document representation learning employing self-supervised contrastive learning meth-
ods is a highly active research field [7, 18, 23, 24, 28]. In this direction, ConSERT [24]
proposed to solve an anisotropy issue of BERT-derived sentence representation by con-
trastive training with adversarial attack, token shuffling, cutoff, and dropout augmenta-
tion methods. Similarly, SimCSE [7] uses a dropout version of the same sentence as a
positive pair. In a similar context, ESimCSE [23] proposed word repetition as an augmen-
tation method to generate positive pairs. On the other hand, SNCSE [18] applied negation
to produce a negative pair. Similarly, DCLR [28] used noise-based negatives. Unlike the
mentioned works, our work maximizes the agreement between the anchor and positive
text segments taken from the same document to generate document representation.

3 Methodology

3.1 Self-supervised Contrastive Learning

We propose a Segment Contrastive Learning (SCL) framework to train a pretrained lan-
guage model, i.e., ClinicalBioBERT and BERT-Base, using self-supervised contrastive
learning. Our method maximizes the agreement between anchor text and a positive text
segment taken from the same document. The model uses siamese network architecture
to learn embeddings of text documents. We form a positive pair (a,s%) by splitting the
document into two portions: a smaller text segment (s*) and a larger portion serving as
an anchor text (a). Achor text and positive segment text are passed through the same
encoder based on a pre-trained language model such as ClinicalBioBERT. The proposed
method utilizes the [CLS] token representations to produce the anchor text (z,) embed-
ding and text segment (z,*) embedding; then the classifier is trained to maximize the
agreement between the segment and anchor text, both sampled from the same docu-
ment and minimize the agreement between anchor text and segment taken from another
document.
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Fig. 1. Architecture of our proposed self-supervised learning objective. For each document in
mini-batch, we construct a positive pair by partitioning it into two segments: a smaller text segment
and a larger portion serving as an anchor text. Achor text and positive segment text are passed
through the same encoder to generate embeddings z, and z, respectively. The encoder is trained
to minimize the distance between embeddings of text vector z, and segment vector z5 of the same
document and maximize the distance with segments of other documents that serve as negative
samples (not shown here due to simplicity)
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Suppose we have a mini-batch of N documents, denoted as D = {(d;)}" ;. For each
document d;, we randomly select a text segment s and the remaining text as anchor
text a to form a positive pair. We then select a negative segment s~ from the remaining
N — 1 documents of the batch to serve as the negative pair,. One concern that could
be seen here is the text segments could be similar and fit on the anchor text of several
documents. However, this is not an issue as in the training objective, we have multiple
negatives, so our model is forced to optimize most dissimilar documents than most
similar ones. It is important to note that the segment predictive contrastive learning
process can be viewed as an unsupervised natural language inference task, where a
positive segment sample represents an entailment of a document, and negative samples
from other documents represent a contradiction of the document. The multiple negatives
ranking loss [8] function is used to optimize the model.

1 i e(Sim(Za,sz,-))
L=—-) —/—— —— ey
ni= Yok plsimGap s )

where z,, and z;ir are the vector representations of the anchor text segment and positive
segment taken from the same document. The k negative sample of segments, vector
representation is denoted by zy , and sim is the cosine similarity. Multiple negative
ranking loss compares the positive pair representation with the negative pair samples in
mini-batch. The generalized architecture is shown in Fig. 1.
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3.2 Document Classification

After producing robust document representation, we feed this representation as input to
the classifier. The MLP classifier consists of three hidden layers and an output layer. We
utilize the TANH activation function in the hidden layers and the sigmoid function in
the output layer.

Y=0(Wxd+Db) 2)

where o denotes the sigmoid activation function, d is the document representation,
and W and b are the weights and biases of the hidden and output layers, respectively.
Furthermore, the model minimizes the binary cross-entropy loss between true document
labels and predicted document labels.

4 Experimental Setup

4.1 Datasets

We used two publicly available medical datasets namely, Medical Information Mart for
Intensive Care (MIMIC-III) and Bioasq.

(MIMIC-III) [9] The MIMIC-III dataset comprises SOK discharge summaries from
US hospitals, with each summary mapped to one or more (International Classification
of Diseases, Ninth Revision) ICD-9 taxonomy labels. We utilized labels from the first
level of the ICD-9 hierarchy. The dataset is partitioned into two categories: train and test.
The training set encompasses 40000 summaries, while the test set consists of 10000,
respectively. MIMIC-III is a multi-label classification dataset featuring 19 labels.

(BIOASQ) [16] The BIOASQ dataset comprises biomedical articles sourced from
PubMed. Each article is annotated with concepts from the Medical Subject Headings
(MeSH) taxonomy. We employed the 1st levels of the MeSH taxonomy. The dataset is
divided into train and test categories. The training set contains 80000 summaries, and
the test set consists of 20000, respectively. The BIOASQ is a multi-label classification
dataset featuring 15 labels. Table 1 provides statistics of the datasets.

Table 1. Task type, number of classes, train and test examples statistics for each dataset

Dataset Task Type No. Classes Train Test
MIMIC Muti-label Classification 19 40000 10000
Bioasq Muti-label Classification 15 80000 20000

4.2 Training Setup

We employ the ClinicalBioBERT! and Bert-Base model® pretrained-models. The pro-
posed self-supervised SCL model is trained for 2 epochs with a batch size of 16 training

1 https://huggingface.co/Dinithi/ClinicalBioBERT.
2 https:/huggingface.co/google-bert/bert-base-uncased.
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samples. The length of the positive segments is set to 64 tokens. Adam optimizer with
learning rates of 2¢ — 5 and weight decay of 0.001 is used to optimize the training loss.
We used the transformers [22] library to train our model. The MLP models are trained
for 16 epochs and finetuning models are trained for 4 epochs. We truncate and pad the
document text to align with a maximum sequence input length of 512 tokens.

4.3 Baseline Models

To assess the quality of the representation of the document learned through the
self-supervised method, we compare model performance against the pre-trained lan-
guage model document Embedding, state-of-the-art contrastive learning of unsupervised
sentence embedding models in feature-based and end-to-end finetuning settings:

— Embedding + MLP Classification: In this setting, we have frozen the parameters of
the language model (ClinicalBioBERT and BERT) and applied an MLP classification
layer for predicting the medical taxonomy labels.

— SimCSE [7] and ESimCSE Embedding [23] + MLP Classification: In this setting, we
trained ClinicalBioBERT and BERT in a contrastive manner using the SimCSE and
ESimCSE objectives. After training, we frieze the parameters and applied an MLP
classification layer for predicting the medical taxonomy labels.

— BERT Classifier (Fine-tune): In the pre-trained BERT model [5], we employ a linear
layer atop the final encoder layer’s [CLS] token to classify medical taxonomy labels.
The model is fine-tuned for 4 epochs with a batch size of 16.

— ClinicalBioBERT Classifier (Fine-tune): In the pre-trained ClinicalBioBERT model
[3], we incorporate a linear layer on top of the last encoder layer [CLS] token for
classifying medical taxonomy labels. The model is fine-tuned for 4 epochs with a
batch size of 16.

4.4 Feature-Based Document Classification

Table 2 presents medical taxonomy classification results in the feature-based embedding
setting where the ClinicalBioBERT and BERT encoder features are not updated during
training. The table illustrates the results of various models across two distinct datasets,
namely MIMIC and Bioasq, in terms of micro and macro F1 scores. The top rows display
the performance of models utilizing ClinicalBioBERT Feature-based embedding. The
ClinicalBioBERT Embeddinggcy, + MLP model produces the highest macro and micro
F1 scores, achieving 54.65 and 71.28 macro F1-score on MIMIC and Bioasq datasets,
respectively. This indicates that self-supervised SCL learning produces high-quality
embeddings. Conversely, the state-of-the-art ClinicalBioBERT Embeddinggi,cse +
MLP and ClinicalBioBERT Embeddinggsicse + MLP models does not enhance the
performance of the baseline model Embedding + MLP. This observation suggests that
relying solely on dropout augmentation or simple repetition of words to construct pos-
itive pairs and generate text embeddings may not yield significant improvements at the
document or paragraph level embeddings. This stands in contrast to their demonstration
of strong performance for sentence embeddings. Results demonstrate that the proposed
SCL method improves embedding derived from ClinicalBioBERT and ClinicalBioBERT
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Embeddinggsincse by around 4% and 3% macro-F1 score on the MIMIC and Bioasq
dataset, respectively.

Furthermore, shifting the focus to model’s performance utilizing BERT-base Feature-
based embeddings, we observe similar trends in performance. The BERT Embeddinggcy,
+ MLP model maintains its superiority with the highest macro F1 scores of 50.73 and
70.51 on MIMIC and Bioasq datasets, respectively. The proposed model outperforms
all methods by producing approximately 8% and 3% better results in terms of macro-F1
on MIMIC and Bioasq datasets, respectively. Furthermore, results show that models
trained on BERT Embedding models produce inferior results than models trained on
ClinicalBioBert models. This indicates that training on domain-specific embeddings
designed for biomedical text yields superior performance in medical classification tasks.
Overall, the proposed SCL method generates high-quality embeddings which leads to
model superior performance across different datasets and settings.

4.5 End-to-End Document Classification

To assess the quality of the embeddings learned by the proposed SCL model, we addi-
tionally perform end-to-end fine-tuning on the MIMIC and Bioasq datasets. The results
are presented in Table 3. It is clear from the results that the SCL model outperforms other
methods, achieving an improvement of approximately 1.2% and 1.6% in macro F1 score
compared to the ClinicalBioBERT classifier and ClinicalBioBERT SimCSE classifier,
respectively, on the MIMIC dataset. Additionally, there is an increase in performance of
approximately 1% on the Bioasq dataset. It is apparent from the results that the BERT
ESimCSE produces second-best results as it utilizes word repetition to de-bias the length
for positive pairs.

Table 2. The proposed model performance against baseline methods using featurebased Clini-
calBioBERT and BERT-base models on MIMIC and Bioasq datasets in terms of macro and micro
Fl1-score.

MIMIC Bioasq

macro-F1 | u-F1 | macro-F1 | u-F1
ClinicalBioBERT Embedding + MLP [3] 50.36 65.43 | 68.05 83.6
ClinicalBioBERT Embeddings;;,csg + MLP [7] 48.01 62.61 |69.13 83.31
ClinicalBioBERT Embeddinggs;ncse + MLP [23] | 50.85 64.42 | 68.77 83.17
ClinicalBioBERT Embeddingscy;, + MLP 54.65 66.41 |71.28 84.43
BERT Embedding + MLP [5] 40.23 58.04 | 68.64 83.3
BERT Embeddingg;,,csg + MLP [7] 40.76 57.64 | 68.05 82.7
BERT Embeddinggs;ncse + MLP [23] 42.02 58.09 | 68.04 82.66
BERT Embeddinggc;, + MLP 50.73 65.23 | 70.51 84.08

Furthermore, the final rows of Table 3 present the results of fine-tuning the pre-
trained BERT-base model. It is evident from the results that fine-tuning the contrastively



Self-supervised Segment Contrastive Learning 319

Table 3. End-to-end classification performance of the proposed model against baseline methods
using ClinicalBioBERT and BERT-base models on MIMIC and Bioasq datasets in terms of macro
and micro F1-score.

MIMIC Bioasq

macro-F1 u-F1 macro-F1 u-F1
ClinicalBioBERT Classifier [3] 65.7 72.52 76.6 86.12
ClinicalBioBERT g, csg Classifier [7] 65.38 70.89 76.62 85.99
ClinicalBioBERT E£g;,,,csg Classifier [23] 66.35 72.64 76.97 86.32
ClinicalBioBERT gy, Classifier 66.92 72.68 77.35 86.64
BERT Classifier [5] 62.88 70.82 77 86.16
BERTg;;,,cse Classifier[7] 62.45 70.38 76.67 85.94
BERT Eggsimcsk Classifier [23] 64.04 70.96 76.84 85.91
BERT gy Classifier 64.77 71.24 77.49 86.26

pre-trained BERT model based on the SCL objective yields superior outcomes compared
to the BERT classifier and BERT SimCSE Classifier on both the MIMIC and Bioasq
datasets. This demonstrates that the contrastive learning task accelerates the fine-tuning
process by learning high-quality document representations and facilitates the learning
of a superior model.

5 Conclusion

We introduced a self-supervised segment contrastive learning (SCL) approach to learn
document representation for medical documents. The proposed method randomly divides
documents into anchor and positive segments, then contrastively fine-tune the pre-trained
language models to maximize agreement between these segments. Through evaluations,
we assessed the performance of the document embeddings against state-of-the-art base-
lines on different medical classification datasets, including MIMIC and Bioasq. Overall,
our findings highlight the potential of SCL for refining pre-trained language models and
addressing challenges in document representation learning. In future work, we plan to
evaluate our method for complex information retrieval from biomedical documents.

Acknowledgments. This work was supported by ANR-22-CE23-0002 ERIANA and ANR Chaire
IA Responsable.
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The inability of patients to fully understand available information about their
health has a significant impact on outcomes [6]. While many consumer-facing
knowledge bases exist, these are cumbersome and labor-intensive to update and
thus typically do not include the latest medical knowledge from the literature.
When deeper questions are not answered by these resources, consumers may
read beyond their expertise, potentially leading to misunderstanding [3,22].
Neural biomedical text simplification efforts to date have largely either
framed the task as document-level plain language summarization [8,9,15] or
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Source (PMID 30067546)

Background: Our primary objective was to determine the
rate of persistent Trichomonas infection among pregnant
women

Llama-2-7B-chat fine-tuned
w/ teach forcing and SCER (y=0.5)

We aimed to find out the rate of long-lasting Trichomonas
infection among pregnant women e

The secondary objective was to determine if oral
multidose metronidazole was associated with fewer cases
of persistent Trichomonas compared with single-dose
treatment.

Metheds:=This is a retrosp cohort-study of women
diagnosed with genital Trichomonas vaginalis from 2008
to 2017.

The second goal was to find out if treatment with
metronidazole, an antibiotic, in multiple doses was linked
with fewer cases of long-lasting Trichomonas infection
compared to single-dose treatment.

This study examines women who were diagnosed with
genital Trichomonas vaginalis, a sexually transmitted
infection, from 2008 to 2017.

Fig. 1. Excerpt of a PLABA abstract and output from our best-performing model.
Notable changes are colored. Note that abstracts must be adapted sentence-wise, but
as a whole, e.g. only explaining terms once.

simplification at the level of discrete sentences [12,19,20]. In contrast, the Plain
Language Adaptation of Biomedical Abstracts (PLABA) [2] benchmark task
requires sentence-aligned simplification of whole documents. This has the added
challenge that each simplified sentence is affected by the context of the entire sim-
plified abstract (Fig.1). For example, added background or parenthetical expla-
nations of terms will only occur the first time a term or concept is introduced,
and whether an expert concept is explained or omitted depends on its centrality
to the abstract. Further, anaphora may need to be resolved, and replacements for
names of diseases, drugs, or study groups must remain consistent throughout the
abstract for readers to follow them. As opposed to plain language summariza-
tion, which seeks to distill several takeaways, the sentence-aligned adaptation
approach ensures more complete preservation of information that consumers
might want, which may prevent them from circumventing the summary and
going to the source. It also provides clear provenance for each statement, which
is crucial for building trust, especially given the tendency of neural language
models to confabulate.

In this work, we explore the use of foundation language models for the
PLABA task, both in zero-shot and supervised fine-tuned settings. We eval-
uate models using automatic metrics on the PLABA test set and with man-
ual judgments of simplicity, completeness, accuracy, and fluency. We find that
both zero-shot GPT-3.5 and fine-tuned Llama 2 can generate simplifications
with human-level factual accuracy even as they provide near-human levels of
simplification. To our knowledge, our work is the first to include document con-
text while performing sentence-wise simplification of biomedical documents. Our
contributions are: (1) detailing methods for prompting and fine-tuning founda-
tion language models to create sentence-aligned plain language adaptations of
biomedical abstracts, (2) providing trained models for further research and use,
and (3) extensive manual evaluations showing how models can simplify better
and identifying where they are factually inaccurate. Code, model weights, out-
puts, and evaluations are available at https://github.com/ondovb/plaba-ft.
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2 Methods

We explore several foundation language models: instruction fine-tuned GPT-3.5,
Falcon [1], and Llama 2 [21]. In order to train models on a single GPU, we focus
on model sizes with 13B parameters or fewer.

2.1 Sentence-Wise Autoregressive Prompting

The core of our method lies in progressively building prompts using system out-
puts as prior examples (Fig. 2). This takes advantage of the fact that foundation
language models have typically been trained to be good in-context learners,
following patterns in prompts and incorporating prior information [7]. In this
approach, in an initial prompt, a general instruction is given (e.g. “Simplify:”)
followed by the first source sentence prefixed with a label (e.g. “Original:”), and
ending with a hanging label for completion (e.g. “Simple:”). The response is used
to grow the prompt by filling in the first ‘simple’ sentence and providing the sec-
ond sentence with the same labeling scheme. This continues until a response is
obtained for each source sentence. Note that the responses can contain multiple
sentences (essentially a split operation), but these can still be directly attributed
to one source sentence.

Source (abstract)

Source sentence 1

Source sentence 2

sentence 3’

|

Prompt 1 Prompt 2 Prompt 3
Simplify: Simplify: Simplify:
Original: Original: Source sentence 1 Original: Source sentence 1
T
Simple: 1 : Simple: Completion 1 Simple: Completion 1
Original: Original: Source sentence 2
Completion 1 T
Model Simple: 1 : Simple: Completion 2
____________
Completion 2 I
Model Simple: 1 :
____________

L Completion’3

Model

Fig. 2. Sentence-wise autoregressive prompting strategy. An initial prompt is pro-
vided with a general instruction (e.g. “Simplify:”), the first source sentence, labeled
“Original:”, and the label “Simple:”. Subsequent prompts include all prior sen-
tence/completion pairs, providing context while ensuring sentence alignment.
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2.2 Supervised Fine-Tuning with Teaching Forcing

Though GPT-3.5 performs the task well with our prompting strategy, smaller,
open-source models are desirable for many reasons, including, privacy, audit-
ing, cost, and efficiency. Existing open-source foundation language models, how-
ever, lag far behind GPT-3.5 in zero-shot performance on this task. We thus
sought to fine-tune such models. Since these models are purely causal, rather
than sequence-to-sequence, supervised fine-tuning with gold outputs requires
(1) comstructing single inputs from training pairs, (2) inserting tags to mark
the prompt and completion, and (3) masking tokens such that causal prediction
and loss propagation is only performed for the section after the completion tag.
Further, for efficient training, we use teacher forcing, as is common practice for
autoregressive models. This means gold targets are used in training prompts
where prior outputs would be inserted during inference (Fig. 6).

2.3 Source-Copying Exposure Regularization

A drawback of teacher forcing is exposure bias; i.e. a mismatch between prior
generated outputs and the gold labels that were trained on, which may com-
pound during autoregressive inference [5]. Further, pretrained language models
are more likely to copy the source in machine translation settings [14]. In our
case, even the gold training data contains targets that are similar or identical
to the source, as annotators were instructed to leave simple language as-is. If
a model leaves early sentences untouched during inference, in-context learning
may be counterproductive, discouraging further sentences from being simplified.
We thus introduce Source-Copying Exposure Regularization (SCER). For this
method, rather than always using the gold label for teacher forcing, with some
chance 7 the source is copied instead (Fig.3). We theorize this will gradually
modify the model’s in-context learning behavior so that it can still produce a
simple output when appropriate, even when prior outputs seen in the prompt
are similar or identical to sources.

2.4 Baselines

Other than the baselines presented with the PLABA dataset, we know of no
published systems specifically designed for the PLABA task. We thus use recent
state-of-the-art biomedical and open-domain sentence simplification models as
additional baselines.

— T5-PLABA (Attal et al.) [2]: The best-performing baseline reported with the
PLABA dataset.
— MUSS (Martin et al.) [16]: To our knowledge, the state of the art for open

domain sentence simplification.

— BART-UL-ME (Flores et al.) [9]: Recent biomedical simplification method
with strong results on several datasets. Since we require sentence-level out-
puts, we use the reported BART-XSum model fine-tuned on the Med-EASi
corpus [4] (which is mostly single sentences) using Unlikelihood Loss, which
was the best performing model for that dataset.
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Fig. 3. Source-Copying Exposure Regularization (SCER). Rather than always using
the gold standard for prior context, there is a chance that the source sentence is copied.

2.5 Implementation

All experiments were implemented in Python. For GPT-3.5, we use the OpenAl
API. For fine-tuning open-source models, we use the HuggingFace transformers
library [23] using Low-Rank Adapters (LoRA) [11], with » = 16 and o = 32. A
single NVidia A100 GPU was used for training and inference. All models had a
batch size of 1 and maximum sequence length of 4,096. Llama-2-13B were 8-bit
quantized. General instructions in prompts were “Rewrite for a lay audience:”
for GPT-3.5 and “Simplify:” for open-source models. For SCER, we experiment
with v € {0.25,0.5,0.75}.

3 Results

We evaluate GPT-3.5 zero-shot outputs in the following sections. Open-source
models produce repetitive output with little simplification in the zero-shot set-
ting but learn the task quickly with fine-tuning, with most needing only 100
examples for an initial large jump in validation BERTscore vs. zero-shot perfor-
mance (Fig. 7). Continued training provides further improvement, with Llama 2
models performing better than Falcon, no benefit from larger Llama 2 models,
and quicker training with SCER (Fig. 4). Note that 13B-parameter models have
fewer steps because of longer computation time per step and equalized wall-clock
training time. For SCER, all three values of v have similar training trajectories;
we choose v = 0.5 for manual evaluation because it reaches the highest score.

3.1 Automatic Metrics

For automatic evaluation, we compare outputs on the PLABA test set to the
gold standard adaptations using various relevant metrics, including BLEU [18],
SARI [24], BERTscore [25], and Rouge [13]. Results are shown in Table 1.
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Fig. 4. BERTscores of checkpoints against the PLABA validation set.

Table 1. Performance of systems via automatic metrics on the PLABA test set.

Model Rougel | Rouge2 | Rougel. | BLEU | BERTscore | SARI
T5-PLABA* 0.56 0.30 0.42 0.28 10.90 0.33
BART-UL-ME' 0.51 0.33 0.48 0.29 10.92 0.36
MUSS' 0.52 0.30 0.46 0.25 10.92 0.36
GPT-3.5* 0.45 0.20 0.37 0.17 10.92 0.34
Falcon-7B 0.65 0.48 0.62 0.45 10.94 0.49
Falcon-7B-instruct 0.65 0.49 0.63 0.45 0.94 0.47
Llama-2-7B 0.71 0.56 0.68 0.53 ]0.95 0.58
Llama-2-7B-chat 0.71 0.56 0.68 0.53 10.95 0.58
Llama-2-13B 0.66 0.50 0.64 0.46 |0.94 0.48
Llama-2-13B-chat 0.67 0.50 0.64 0.47 10.94 0.48
Llama-2-7B-chat+SCER | 0.76 0.64 0.74 0.62 |0.96 0.65

*Zero-shot. TCross-corpus. ¥Previously reported results.
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3.2 Manual Judgments

For manual evaluation, we chose an additional 40 abstracts using the same work-
flow as Attal et al. [2]. A pilot set of 3 abstracts was done by two annotators
to compute inter-annotator agreement, which was generally high (Table 2); the
rest were done by one annotator only. Following the four typical types of sim-
plification judgments [17], each sentence was judged for completeness, fluency,
simplicity, and accuracy, with simplicity and accuracy each judged at both sen-
tence and term levels. Due to their more in-depth nature, sentence accuracy and
completeness were performed for the three sentences of each abstract judged by
both annotators to be most relevant to the consumer question. Judgments were
performed on a 3-point likert scale and averages were linearly interpolated to a
0-100 scale. The two sub-axes (sentence and term) for both simplicity and accu-
racy were then averaged to create the final four axes. We manually evaluate (1)
adaptations manually written by biomedical experts, as a human baseline, (2)
GPT-3.5 zero-shot, for which automatic metrics are not a good measure, (3) the
best-performing open-source model after fine-tuning (LLama-2-7B-chat), and (4)
the latter with SCER, as an ablation experiment. Manual evaluations generally
found simplifications to be of high quality (Fig.5). The simplicity of Llama-2-
7B-chat (78.80) increased to 83.53 with SCER, supporting the hypothesis that
training specifically to recover from source copying prevents propagation of com-
plex outputs through the autoregressive prompting process. All system outputs
with the lowest judgment for factual accuracy (—1) can be seen in Table 3.

Simplicity Fluency Completeness Accuracy

Manual score
N w S [$)] [22] ~ e} ©
S & & & 3 © & o

=)

Manual ®GPT-3.5 (zero shot) mLlama-2-7B-chat Llama-2-7B-chat-SCER-0.5

Fig. 5. Manual evaluation results for chosen systems on 40 additional abstracts.

3.3 Performance

During inference on the test set, Falcon-based models, on average, 26s per
abstract to create sentence-wise simplifications. Models based on Llama 2 took
31s for 7B-parameter models and 68s for 13B-parameter models.
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4 Discussion

The models presented here show promise for making biomedical literature acces-
sible to the general public. Yet, this work has several limitations. First, operating
at the sentence level means that abstracts must be segmented first, which takes
some time and is generally error-prone. Additionally, inference must be run n
times for an abstract with n sentences. However, a benefit is that the entire orig-
inal abstract is not needed as context to start generating output. It is thus not
clear whether the strategy is costlier than a document-level approach, and more
performance experiments are warranted. A further limitation is the relatively
narrow scope of evaluation. The PLABA test set only contains 110 abstracts
with 1,009 sentences, and manual evaluations only looked at 40 abstracts with
430 sentences due to the labor involved. As a proof-of-concept, and to test many
variants, we fine-tuned open-source models for a relatively short amount of time
(24 h) and did not yet see signs of overfit. Future studies are needed to explore
the limits of training epochs and minimal dataset sizes. We also did not rigor-
ously explore the effect of v, the SCER source-copying probability. This value
could be scheduled, perhaps reaching 1, similar to Bengio et al. [5], which would
obviate autoregression and allow prompts with only the source sentences. Future
work could also involve Reinforcement Learning from Human Feedback (RLHF),
potentially using scores from our manual evaluations to train reward models.

5 Conclusion

In this work, we have shown that recent foundation language models are capable
of simplifying biomedical abstracts sentence-by-sentence with factual accuracy
similar to that of expert-written simplifications. Using a straightforward autore-
gressive prompting strategy, the proprietary GPT-3.5 model can perform this
task zero-shot. While open source models, which may be desirable for both
privacy and efficiency, lag far behind in the zero-shot setting, we show that
they can be efficiently fine-tuned on a relatively small amount of data. This is
enabled both by supervised fine-tuning with teacher forcing and a novel stochas-
tic regularization regime that prevents degeneration into source-copying during
inference. Both proprietary and fine-tuned models, however, fail to reach human
levels of simplicity, according to manual evaluation. In closing this gap, we should
continue to take care that accuracy is not compromised. Such a “progressive cau-
tion” approach [10] will allow incremental progress in simplicity while providing
the benefits of current gains to consumers with minimal potential harm.

Acknowledgements. This work was supported by the NLM Intramural Research
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.
Appendix
Source (abstract) PLABA target
Source sentence 1 Gold sentence 1
Source sentence 2 Gold sentence 2
Prompt 1 Prompt 2 Prompt 3
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Fig. 6. Using teacher forcing to fine-tune for sentence-level autoregressive prompting.
A 3-sentence abstract will be used to generate 3 different training prompts with gold
standard completions used for both prior system outputs and as supervised labels. Loss
is only propagated for the completion. Note that, during training, these prompts would
be pooled with those from other abstracts and shuffied.
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Fig. 7. BERTscores of checkpoints against the PLABA validation set for the first 1000
training steps.
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Table 2. Inter-annotator agreement for the pilot manual evaluation, via Krippendorf’s
a, and at different levels of aggregation (sentence level being the original annotations).
Agreement is generally high. Low agreement for fluency is due to over 98% of judgments
being 1 (perfect), which breaks distributive assumptions of a.. Sentence simplicity seems
to be genuine disagreement, with one annotator judging mostly ones and the other with
a more even mix.

Aggregation | Comp. | Flue. Simp-term | Simp-sent | Acc-term | Acc-sent
Sentence 0.8833 | —0.0255 | 0.5279 0.1748 0.5845 0.8148
Abstract 0.9684 | 0.3241 |0.854 —0.1311 | 0.6757 0.8823
System 0.9853 | 0.0225 | 0.8077 0.0769 0.6026 0.7543

Table 3. System outputs manually judged to have poor accuracy (score of —1) at
either the sentence or term level. Inaccurate sections of outputs are italicized.

GPT-3.5, PMID 25864273, sentence 9

Source: The disturbance of daily life due to NSP in postpartum women with past history of
PMS and Hiesho were significant higher than that for women without those.

Output: Postpartum women who had a history of premenstrual syndrome (PMS) and
anemia during pregnancy experienced more disruption in their daily lives due to neck and
shoulder pain compared to women without these conditions.

GPT-3.5, PMID 7920896, sentence 3

Source: Laboratory evaluation revealed panhypopituitarism and pituitary cell antibodies
were positive.

Output: The lab tests showed that she had a condition called panhypopituitarism, and
antibodies were found in her pituitary cells.

Llama-2-7B-chat, PMID 7920896, sentence 4
Source: Both CT scans and MR images showed empty sella.

Output: Both brain scans showed the pituitary gland was located in the bottom of the skull
instead of in the middle of the brain.

Llama-2-7B-chat, PMID 27935031, sentence 1

Source: Objectives: Interictal epileptiform discharges (IEDs) have been linked to memory
impairment, but the spatial and temporal dynamics of this relationship remain elusive.

Output: Interictal epileptiform discharges (IEDs) are events that can lead to seizures. IEDs
have been linked to memory impairment, but the spatial and temporal dynamics of this
relationship remain elusive.

Llama-2-7B-chat+SCER, PMID 7920896, sentence 4

Source: Both CT scans and MR images showed empty sella.

Output: T tests showed she had empty pituitary gland.
Llama-2-7B-chat+SCER, PMID 32202633, sentence 6

Source: Exclusion criteria were qualitative studies; child age older than 12 years; and
language assessment preverbal.

Output: Studies that were not quantitative (e.g. did not involve numerical data) were
excluded. Additionally, studies on children older than 12 years and language assessment
(measurement) of preverbal (non-syllabic) speech were excluded.

continued
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Table 3. continued

Llama-2-7B-chat+SCER, PMID 33479851, sentence 9

Source: Other treatments in clinical development include fenfluramine in late phase III,
perampanel, soticlestat-OV953/TAK-953, carisbamate and ganaxolone.

Output: Other treatments in clinical development include fenfluramine
(anti-depressant), perampanel, soticlestat-OV953/TAK-953 (AED), carisbamate and
ganaxolone (AEDs).

Llama-2-7B-chat4+SCER, PMID 15359197, sentence 10

Source: At the three-cross cutoff point for ketonuria and at the 5 mmol/1 cutoff point
for ketonemia, the two tests had the same negative likelihood ratio (0.1), but the positive
likelihood ratio of 3-beta-hydroxybutyrate (infinite) was higher than that of ketonuria.

Output: At a higher cutoff point for ketonuria and at the highest cutoff point for
3-beta-hydroxybutyrate, the two tests had the same lack of accuracy (0.1). However, the
accuracy of 3-beta-hydroxybutyrate was higher than that of ketonuria (infinite).
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Abstract. Clinical narratives are a rich resource of patient-based infor-
mation, where the automatic extraction of specific types of entities is
still challenging due to various idiosyncrasies of non-standardized rou-
tine documentation. Much of the literature in clinical natural language
processing (NLP) has been focused on English language. In this work,
we focus on de-identified German-language clinical narratives. Predomi-
nant supervised approaches in the area of NLP, specifically named entity
recognition (NER), need an expressive set of annotations for robust
sequence modeling via a machine learning approach. This work investi-
gates to what extent three main model types, conditional random fields
(CRFs), bidirectional long short-term memory (BiLSTM) and Trans-
former models (BERT), perform on a limited set of annotations for med-
ication information extraction in a specific clinical domain. The top per-
forming feature, an optimized CRF model exploiting embedding repre-
sentations out of a natively pre-trained language model using fastText,
performed best with an overall F1 score 0.91. A multilingual BERT model
incorporating German language resources reached an overall F1 score of
0.88, followed by the BiLSTM approach with an F1 score of 0.81. BERT
based end-to-end systems nearly reach the performance of an optimized
CRF approach. The results highlight the importance of pre-trained clin-
ical language models available in languages other than English for fast,
high performing, problem domain adaption.

1 Introduction

Electronic health records (EHRs), a main carrier of patient based information,
can be seen as a multi-modal data source with different levels of structure and
standardization. In that respect, semi-structured clinical documents are still a
main carrier of information, where mentions and prescriptions of medications
usually are documented in a narrative way [37]. Automatic recognition and
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standardization of medication expressions is an essential task to support differ-
ent research and hospital-based application scenarios, e.g., retrospective cohort
building, adverse drug event detection or user-friendly EHR navigation and sum-
marization [16], taking into account the idiosyncratic nature of clinical narrative
data [19]. To support the generation of enhanced standardized and structured
patient profiles, methodological enablers in the area of named entity recognition
(NER) have evolved rapidly in the last years, yielding state-of-the art perfor-
mance with transformer-based model architectures for natural language process-
ing (NLP) tasks. The methodological shift to neural network based end-to-end
systems [10] demands access to annotated data sources, which is often challeng-
ing in the clinical domain. Open clinical language resources in English are avail-
able in the Anglo-American region, for example with the MIMIC IV corpus [13],
or via different scientific competitions (i2b2/n2¢2 [11,35], ShARe/CLEF [§],
SemEval [22]). For languages other than English, the current situation is less
than ideal [21,32], with limited availability of clinical language resources such as
German for the NLP community.

Specifically, the extraction of content of medical prescriptions into a struc-
tured template is still a challenging task and needs annotated language resources,
so that model-based approaches can be supported. In this paper, we introduce
our working hypothesis derived from a comprehensive review of state-of-the-art
medication extraction systems, focusing particularly on sequence-model-based
approaches.

1.1 Related Work

Methods and Tools. Alfattni et al. [2] investigated to what degree differ-
ent embedding representation schemes influence the performance of medication
information and relation extraction using the n2c2 annotated data set from
2018 [11]. The BiLSTM-CRF performed best in combination with pre-trained
word and character embeddings, resulting in a lenient micro F1-measure of 0.92
for the NER task. The rule-based relation extraction approach, with a reported
micro F1 score of 0.86, performed better than context-aware long short-term
memories (LSTM). Kim and Meystre [15] used a stacked ensemble of CRF's, a
search based prediction structure and recurrent neural network (RNNs), a BiL-
STM network, for medication and related information extraction on the n2c2
data set with 505 annotated documents (303 training documents and 202 test
documents). For relation classification, a Support Vector Machine (SVM) was
trained. For medication information extraction, as well as for relation classifica-
tion, an F1 score of 0.93 was reported. Tao et al. [33] applied CRFs, SVMs, Naive
Bayes and Decision Trees for medication extraction using annotated data (medi-
cation name, dosage, mode, frequency, duration and reason) from the third i2b2
challenge on NLP for clinical records. For relation extraction, CRFs were used.
The use of Glove embeddings [24] had a positive impact on the representation
scheme for the extraction task, achieving an overall phrase level F1-measure of
0.86. Doan et al. [6] used the 2009 i2b2 data set to build and adapt a medication
extraction pipeline by the use of existing tools (sentence boundary detection,
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SecTag [4], MedEx [38], Aspell, i2b2 output formatter) from the Vanderbilt Uni-
versity Medical Center. They reported an overall F1-measure of 0.82 for inexact
matching. Meystre et al. [20] implemented the UIMA Textractor System for
medication information detection. They tested their system using the 2009 i2b2
data set with an advanced pre-processing pipeline and leveraging MMTx [25]
as a core medication extraction engine. The detection of medication routes per-
formed best with an F1l-measure of 0.86, prescription reason was extracted with
an Fl-measure of 0.29. MedEx [38], CLAMP [31], MedXN [30], and medEx-
tractR [36] have to be mentioned in the context of medication extraction tool
sets working on clinical narrative in English.

Scientific Competitions. In 2009, the third i2b2 workshop [35] focused on
medications and medication-related information extraction. 20 teams partici-
pated in the challenge, with most of the top 10 teams tackling this challenge with
rule-based approaches. The best performing [23] system, however, combined a
rule and model-based (CRFs and SVMs) approach for the extraction task with a
strict micro-average F1-measure of 0.86 and a F1l-measure greater than 0.95 for
the relationship classification task. The n2¢2 series [11] of scientific competitions
in the clinical NLP domain started in 2018. One outlined competition was the
shared task on adverse drug events and medication extraction from EHRs. The
top-performing team [39] used an ensemble of a CRF, a BiLSTM-CRF, and a
BiLSTM-CRF topic-relation method. The top systems reached F1 scores 0.94 for
concept extraction, 0.96 for relation classification, and 0.89 for end-to-end sys-
tems. The released data set consisted of 505 discharge summaries, 303 were used
for training and 202 for testing the systems. In 2022, the n2c¢2 shared task [17]
focused on medical event extractions and classification of the context of medica-
tion event descriptions. The aim was to extract medication descriptions, perform
event classifications based on disposition, as well as process given change events
to extract five contextual variables. The dataset consisted of 400 clinical notes
for training and 100 for testing. For medication extraction with NER only, the
top performing team reached an Fl-measure of 0.97. Across all top performing
teams, the most often applied methodology for medication information extrac-
tion was a NER approach that consisted of language model fine-tuning with
sequence labeling.

Clinical Narratives in German. Caliskan et al. [3] utilized 10 annotated
discharge letters for a first proof-of-concept for medication extraction evalua-
tion (medication, dosage, mode, frequency, duration and reason), and applying
the commercial NLP tool Averbis Health Discovery!. Medication-related phrases
were detected with an F1l-measure of 0.85, and for medication name detection an
Fl-measure of 0.94 was reported. Roller et al. [26] used Flair [1] to optimize vari-
ous information extraction models and a convolutional neural network (CNN) on
a relation extraction task leveraging an annotated nephrology corpus [27]. They

! https://averbis.com /health-discovery/.
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reported an F1 score of 0.91 on 3,547 medication concepts. Frei and Kramer [7]
machine-translated a corpus of 505 documents of the 2018 n2c2 challenge Track
2: Adverse Drug Events and Medication Extraction in EHRs [11] into German
with the corresponding aligned annotation spans. The Spacy NER module was
used with residual CNNs and Bloom embeddings [34]. Their NER model regard-
ing medication information of the entities drug, strength, route, form, dosage,
frequency and duration achieved an average F1 score of 0.82.

Based on this research overview, we want to explore whether classical model-
based approaches for sequence labeling, e.g., CRFs, can compete with strong
contextual models, e.g., LSTMs and transformer-based approaches in the clinical
domain [40], by utilizing a small number of annotated data (factor 8 to 16 fewer
annotations than the i2b2 and n2c¢2 data sets respectively). We hypothesize
that CRFs, exploiting syntactical feature engineering, knowledge resources and
embedding representation via pre-calculated language-specific models on a small
set of labeled data, perform better than end-to-end LSTM and transformer-based
approaches. Furthermore, we want to evaluate the impact of data augmentation
for the CRF approach, as well as the impact of the use of a pre-trained language
model on open domain web corpora versus a very language specific model trained
on a small number of documents from the clinical language domain.

2 Materials and Methods

2.1 Data

Clinical Narratives. For the competitive method comparison, we used an
excerpt of 1,696 dermatology discharge letters written in German extracted
via Talend Open Studio from the clinical information system of KAGes, an
Austrian network of public hospitals. The narratives on skin cancer were de-
identified via the mandated medical data management team, and put onto a
secure data lake, accessible for project members involved in the scientific inves-
tigation on-premises. The discharge letters exhibited numerous idiosyncrasies
typical for non-standardized clinical routine documentation, such as abbrevia-
tions, acronyms, misspelling, domain-specific expert jargon, numeric expressions
and German-specific, non-lexicalized single-word compounds.

Gold Standard. 500 randomly selected discharge letters were manually anno-
tated by a trained fourth-year medical student, regarding medication-related
information categorized by drug, strength, route and regimen, following aca-
demic competitions in the field of clinical NLP [11,35]. 400 documents (122,029
tokens) were used as a training set, 100 documents (32,477 tokens) as a test set.
The brat rapid annotation tool was employed as a web-based annotation front
end.
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Lovenox 80 mg s.c. 1 x taglich
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Fig. 1. Medication information entity types.

Drug. The entity type describes any brand name or drug substance mentioned
in the narrative. “Lovenox” the brand name, see Fig. 1, with its active ingre-
dient or drug substance name “Enoxaparin”.

Strength. It is related to the prescribed drug dosage, as illustrated in Fig. 1.
Even though strength values are often part of the brand name, in the
annotation scheme the entity type strength is decoupled from the drug
name proper, e.g., a full drug name description listed in the terminology
resource (“LOVENOX 4.000 IE (40 mg)/0,4 ml Injektionslosung in einer Fer-
tigspritze”).

Route. Indicating the route of the drug administration, for example, from
Fig. 1, “s.c.” the abbreviation for “subcutaneous”. Another typical example
is “p.o.” from Latin “per os” where the substance is administered through
the mouth.

Regimen. In the competitions related to i2b2 and n2c2 also named ‘Frequency’,
this entity type refers to how often a drug has to be taken over a certain period
of time. Referring to Fig.1 “1 x téaglich” (once per day) is the corresponding
entity.

Terminology Resources. As a standardized knowledge resource, we used the
Austrian Register of Pharmaceutical Specialities - “Arzneispezialitdtenregister”
(ASP). It contains information about branded drug name, registration num-
ber, date of authorization, active ingredients and ATC (Anatomical Therapeutic
Chemical) codes. The list was filtered for medications for humans, resulting in
16,571 entries. They were used for gazetteers and data augmentation for drug
names with respect to their context.

Data Augmentation. The main goal of the augmentation step was to obtain
various different examples of drug names and their local contexts. Therefore,
all drug name entries in the ASP were put in the context line fetched out of
the training set per document. Even though a drug name would not appear
in a specific artificially generated context, we expected an overall more robust
representation of the entity in the sequence modeling approach.
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2.2 Methodological Approaches

Conditional Random Fields (CRF). We extended the Java-based CRF
implementation of Mallet? [18] in order to handle embedding representations via
fastText® [14] in combination with task specific feature engineering exploiting
Gazetteers and syntactical features. We trained four different models resulting
out of combinations of the following experimental parameters: a pre-trained Ger-
man language model [9] based on open domain web-corpora (Lm,,), a German
clinical domain-adapted language model built from scratch (Lm,,), data aug-
mentation exploiting a drug name dictionary generating all possible drug name
occurrences in context (Aug,) and no augmentation (Aug, ). We refer to this
setting as CRF ¢ ;.

Bidirectional Long Short-Term Memory (BiLSTM). Keras as a library
encapsulates the implementation of a Long Short-Term Memory (LSTM) [12],
featuring a bidirectional layer serving as a wrapper. This wrapper enhanced the
model’s ability to capture dependencies in both directions of the input sequence,
making it more effective in tasks that require understanding the context for
NER. The bidirectional layer that received input sequences with a length of 30,
processed the input in both forward and backward directions, and produced an
output with a feature dimension of 200. We used Adam for gradient optimization
and trained the network for 20 epochs with a recurrent dropout rate of 0.1.

Bidirectional Encoder Representations from Transformers (BERT).
The Simple Transformers library built upon the Hugging Face framework was
chosen for the application of the BERT [5] method. It streamlined the process of
training and evaluating downstream NER tasks. The base version of the BERT
model was utilized, which had been pre-trained on multilingual data and retained
case information. It was fine-tuned for the NER task with the German-language
clinical narratives from our dataset. Our multilingual BERT model was trained
with a maximum sequence length of 512 and with a training batch size of 8.
We used Adam for gradient optimization and trained the network for 20 epochs
with a learning rate of 2e-5.

Sequence Labeling. We attached to all three different core model types the
well established BIO schema [28] at token level for the defined NER task.

3 Results and Discussion

Table1 details strong performance of all models except for the entity type
‘Route’. Given the limited availability of openly available medical NLP systems,

2 https://mimno.github.io/Mallet /fst.html.
3 https:/ /fasttext.cc/.
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especially for the German language, our approach highlights the potential to
construct robust medical NER models. The tokenization of natural languages
with complex structures can be challenging, and sequence models like BiLSTM
and BERT might not always capture their linguistic characteristics in an opti-
mal way. Additionally, these models are trained on large corpora containing
text in many languages, resulting in a shared representation space. However,
this means that these models have limited context for specific languages, e.g.,
German, therefore not yet reaching the performance of a feature-optimized and
embedding representation enhanced CRF model, as shown in this investigation.

Table 1. Evaluation measurements by weighted macro-averaging per entity type using
precision, recall and F1-measure [29] on the test set.

CRF.ut BiLSTM BERT

Aug,, | Aug,, | Aug, | Aug,

Lmop | Lmy¢ | Lmep | Lmpy
Entity F1 F1 F1 F1 Precision | Recall | F1 | Precision | Recall | F1
Drug 0.95 1095 [0.93 0.92 |0.90 0.85 ]0.88/0.88 0.92 0.90
Strength 0.95 1095 |0.95 0.95 |0.87 0.88 ]0.87/0.92 0.95 0.94
Route 0.55 |0.54 |0.54 |0.54 |0.38 0.45 ]0.41/0.48 0.67 | 0.56
Regimen 0.89 10.89 |0.89 |0.89 |0.72 0.75 10.73/0.87 0.84 |0.85
weighted avg | 0.91 [0.91 [0.90 |0.90 |0.82 0.81 ]0.81/0.87 0.89 0.88

Error Analysis. The analysis contains the most noteworthy errors of the NER
approaches, therefore gaining insights into possible systematic faults of mis-
interpreted contextual patterns. Interestingly the anatomical entity “Magen”
(stomach) was frequently misclassified as a drug entity, furthermore, acronyms
like “FDG” (F-18 Desoxyglucose) were often not recognized. For the entity type
strength, “mg” was regularly classified at the beginning of a strength pattern,
rather than defining the unit of an administrative drug subscription strength at
the end. For the regimen entity type, patterns like “3 x 17 were often misclassi-
fied at the beginning of expressions like “bis zu 3 x 1 téglich” (up to three times
per day). In contrast, the correct beginning of this regimen pattern was repeat-
edly missed, as well as occurrences of prescriptions, e.g., “4 x 1”7 (four times per
day) have been a dominant source of error, e.g., “Ursofalk 4 x 1”. Abbreviations
in the form of “s¢” (subcutaneous), “i.v.” (intravenous), “p.os” (per os) were
frequently not recognized for the administering route of a medication, therefore
responsible for the moderate F1 score along all model types.

System Limitations. Compared to the most prominent competitions and data
sets in the field, i2b2 and n2c2, the gold standard presented in this study has
less defined entity types. This is caused by the fact that the most prominent
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entities under investigations were identified via a bottom up approach, neglecting
those with very low occurrences. Having annotated about the same amount
of documents as in the n2c2 challenge for medication extraction, the number
of identified entities is less, therefore supporting our investigation on a small
amount of annotated data. The de-identified documents were extracted out of
one specialty, annotated by one expert and for the moment an investigation on
the performance of relation classification has not been carried out yet.

4 Conclusion and Outlook

In this paper, we developed a system to extract medication information from
German clinical narratives, focusing on the entity types drug, strength, route,
and regimen. For this purpose, a gold standard of 500 de-identified narratives
were annotated. Among the three sequence-model-based models under exami-
nation, the feature-enhanced CRF model, leveraging embedding representations
from a natively pre-trained language model using fastText, demonstrated the
highest performance, achieving an overall F1 score of 0.91 for the multi-class
classification task. Following closely was a multilingual BERT model incorporat-
ing German language resources, which achieved an overall end-to-end F1 score
of 0.88. In comparison, the BILSTM approach trailed behind with an F1 score of
0.81. Notably, BERT-based end-to-end systems nearly matched the performance
of the language optimized CRF approach. Utilizing a BERT-based medical lan-
guage model in German like medBERT.de will be evaluated in the future but
was not investigated at the moment due to scale-out possibilities of multilingual
models on languages other than English.

We believe that the investigation presented here for extracting medication
information holds potential to uncover trends and patterns associated with drug
efficacy, adverse reactions, and real-world usage. This valuable data has the
potential to guide research and development initiatives, facilitating the identifi-
cation of opportunities for new drug development or enhancements to existing
medications, and foster significant advancements in the future of German clin-
ical NLP research. Global and local decision support systems, which take into
account clinical narrative data, are in need for tailored NLP systems, where
medication information is just one resource of interest for a fully structured and
standardized patient profile. These NLP systems should leverage international
standards like SNOMED CT and take into account other entities of interest,
e.g., diagnostics, reasons for hospitalization, follow-up care instructions, aller-
gies and vital signs. The need for openly available pre-trained domain-specific
clinical language models in languages other than English are an indispensable
part for the implementation of scalable and robust solutions in the future and
are of interest for the global clinical NLP community.
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Abstract. Breast cancer is a significant public health concern and is the lead-
ing cause of cancer-related deaths among women. Despite advances in breast
cancer treatments, medication non-adherence remains a major problem. As elec-
tronic health records do not typically capture patient-reported outcomes that may
reveal information about medication-related experiences, social media presents
an attractive resource for enhancing our understanding of the patients’ treatment
experiences. In this paper, we developed natural language processing (NLP) based
methodologies to study information posted by an automatically curated breast
cancer cohort from social media. We employed a transformer-based classifier
to identify breast cancer patients/survivors on X (Twitter) based on their self-
reported information, and we collected longitudinal data from their profiles. We
then designed a multi-layer rule-based model to develop a breast cancer therapy-
associated side effect lexicon and detect patterns of medication usage and asso-
ciated side effects among breast cancer patients. 1,454,637 posts were available
from 583,962 unique users, of which 62,042 (10.6%) were detected as breast can-
cer members using our transformer-based model. 198 cohort members mentioned
breast cancer medications, with tamoxifen as the most common. Our side effect
lexicon identified well-known side effects of hormone and chemotherapy. Further-
more, it discovered a subjective feeling towards cancer and medications, which
may suggest a pre-clinical phase of side effects or emotional distress. This analysis
highlighted not only the utility of NLP techniques in unstructured social media
data to identify self-reported breast cancer posts, medication usage patterns, and
treatment side effects but also the richness of social data to answer such clinical
questions.

Keyword: Breast cancer - natural language processing - social media

1 Introduction

Breast cancer, the most prevalent cancer among women, represents a significant public
health concern. Accounting for about 30% of all new female cancer cases annually, it
stands as the second leading cause of cancer death in women, following lung cancer [3, 8].
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Despite the grim statistics, there has been a consistent decrease in breast cancer mortality
rates since 1989, with an overall decline of 43% through 2020 [4]. This notable progress
is attributed to earlier diagnosis, increased awareness, and advancements in treatments
[2, 9, 14]. However, the pace of this decline has shown signs of slowing in recent years
[4], emphasizing the need for continued research and innovation in breast cancer care.

Despite the advances in breast cancer treatments, including endocrine therapy, which
have led to declining death rates, as many as half to two-thirds of these breast cancer
patients discontinue endocrine treatment within the first three years, increasing the risk
of recurrence, hospitalization, and even death [7, 17]. Treatment non-adherence and
discontinuation are often due to medication-related physical and mental side effects.
Treatment-related side effects, or other subtle factors leading to non-adherence, are
not detectable by laboratory diagnostic tests, but can be learned through patient com-
munications. Information gleaned from patient communications (i.e., patient-reported
outcomes (PROs)) are sometimes captured as free text in clinical narratives or through
patient surveys. Both mechanisms of documenting information are labor-intensive and
subject to biases. Furthermore, electronic health records (EHRs) have been found to
under-document PROs (e.g., only 8% of a sample were found to contain PROs in a
study) [7]. Thus, studies based solely on EHRSs or other traditional instruments can only
capture limited clinical information.

PROs or patient experiences are crucial in understanding the overall impact of breast
cancer therapies and guiding future treatment strategies. One potential source of such
information is social media, where patients are known to discuss their experiences with
their peers. The potential of social media, specifically X (formerly known as Twitter),
in this context is particularly compelling, because of its vast and diverse user base, and
its ability to serve as a real-time global sensor for public sentiment and personal experi-
ences. By tapping into the rich, unstructured data of social media, the trends and patient
experiences that might remain hidden in clinical settings can be uncovered, tailoring
for more patient-centered healthcare practices. However, obtaining information from
real breast cancer survivors requires the establishment of a social media-based cohort,
and then analyzing data posted by this cohort. Natural language processing (NLP) and
machine learning methods provide potential solutions. Applying NLP techniques to data
from X may offer insights into self-reported breast cancer-related information, medica-
tion use, and medication-related side effects across patients with various demographics,
potentially surpassing the depth and breadth of traditional cohort studies. As such, the
current study has been designed to:

— Identify self-disclosures of breast cancer from social media, build a cohort, and collect
longitudinal data.

— Conduct NLP-driven analyses to detect and uncover patterns of medication usage
among breast cancer patients and medication-associated side effects.

— Generate detailed statistics associated with the distribution of side effects observed
across breast cancer-approved medications and identify potentially unknown medi-
cation and side effect associations.
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2 Materials and Methods

2.1 Dataset

We collected a substantial dataset of 1,454,637 posts from 583,962 unique X users from
March 22, 2021 to April 16, 2021. This dataset was compiled using four specific key-
words: ‘cancer ’, ‘breastcancer’ (as a single term), ‘tamoxifen’, and ‘survivor ’, along
with their hashtag equivalents (e.g., ‘#breastcancer ’). An analysis of data collected
using specific keywords revealed that although there were numerous health-related posts
from genuine breast cancer patients, they were accompanied and often obscured by a
significant amount of content posted by people who presented no evidence of being
breast cancer patients/survivors (e.g., people sharing awareness about breast cancer).
Four annotators in a study conducted by Al-Garadi et al. [1] processed and labeled a
subset of 5,019 unique posts of this dataset into two classes: a) self, a family mem-
ber, or friend-report of breast cancer (S), and b) not relevant posts (NR). The intuition
behind this annotation was that if subscribers on X self-disclosed breast cancer sta-
tuses, those disclosures could be leveraged to create a social media-based breast cancer
cohort. We have used this annotated data with the same train-test split for the supervised
model development to extract the relevant posts from the full dataset for breast cancer
medication and associated side effects analysis.

2.2 Self-reported Breast Cancer Post, Medication, and Side Effect Discovery

We adopt three distinct approaches to tackling the supervised classification of social
media posts. Firstly, we extracted various feature sets from the text and constructed
eight different classical machine learning classifiers. For this aim, we explored the com-
bination of a broad spectrum of features, including n-grams (ranging from 1 to 3), word
clusters [11], word-to-vector representations, text length, term frequency-inverse doc-
ument frequency (TF-IDF), latent Dirichlet allocation (LDA) (i.e., extracted features
based on latent topics of a post), sentiment score, and bidirectional encoder representa-
tions from transformers (BERT) embeddings, as the input features for training machine
learning models. These models were then optimized through a grid search method,
involving an extensive range of parameters and 5-fold cross-validation on the training
dataset. Additionally, we developed a two-layer BLSTM model (parameters: unit = 100,
dropout = 0.2, recurrent dropout = 0.2), followed by a dense layer (parameters: unit =
100, dropout = 0.2). We also fine-tuned the pre-trained transformer-based architectures
and weights of the BERT and BERT large models on the available training dataset.

We created two lexicons manually from the annotated text to represent medication
expressions and their associated side effects. The medication lexicons were built upon
both drug and commercial names approved by the Food and Drug Administration (FDA)
in the available National Cancer Institute (NCI) medication library!. Similarly, side
effect lexicons were built upon the side effects listed by the NCI? as well as COVID-19
symptoms [12] lexicons.

1 https://www.cancer.gov/about-cancer/treatment/drugs/breast. [Accessed 02-19-2024].
2 https://www.cancer.gov/about-cancer/treatment/side-effects. [Accessed02-19-2024].
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The posts were collapsed by unique usernames as we observed that the time span of
the available posts was one month, by which we assumed that breast cancer medication
prescription patterns and side effects are constant in this particular time span. Then, mul-
tiple independent annotators manually annotated these collapsed posts, and the newly
found medications and side effects were added to the lexicons. To assess and monitor
the performance of the rule-based models over the enrichment of the lexicons, we con-
sidered random annotated usernames as the gold standard set. Figure 1 illustrates the
designed workflow for the multi-layer rule-based model development to extract breast
cancer medications and their associated side effects. The multi-layer rule-based model
is composed of two distinct models, each tasked with identifying medications and side
effects separately, employing the concept of inexact matching. Notably, Levenshtein
string similarity was used for recognition, accommodating near-misspellings and para-
phrased expressions. The models utilized a rolling sliding window, ranging from 1 to
9, with a stride of one, to capture both single-word and multi-word entities. Of note,
the model was engineered to prevent the redundant detection of the same words using
different window sizes. They also incorporated a feature for negation detection using a
list of negation triggers. If a negation is detected, it is flagged accordingly in the final
result. Our approach was particularly focused on precision (at the expense of recall)
based on the fact that there is no shortage of data from a social media-based cohort, and,
consequently, avoiding false positives is more important than avoiding false negatives.

2.3 Descriptive Analysis of Medications and Side Effects

We first defined a breast cancer cohort using the best-performing classifier and applied
our rule-based models to identify mentions of breast cancer medications and side effects.
To describe the distribution of side effects, we classified breast cancer-approved medica-
tions using biological mechanism-based functional classification, specifically hormone
therapy, chemotherapy, immune checkpoint inhibitors, and kinase inhibitors. Recog-
nizing that a single medication could be mentioned multiple times in aggregated posts
based on unique members in the cohort, we considered only unique occurrences of
medications or side effects per sample. As a cancer treatment regimen, in general, may
consist of several medications, several functional classifications of medication appeared
for each cohort member. Therefore, we first identified the patterns of medications and
then tested the association between these medication patterns and side effects using
the Kruskal-Wallis test. Multiple tests across side effects were adjusted using Benjamini
Hochberg correction. Pair-wise comparisons across medication patterns were performed
using Dunn’s test.

The scripts used in this study were implemented using Python (version: 3.8.8) and R
(version: 4.3.2) and are available on GitHub?. The level of significance was set to 0.05.

3 https://github.com/seibikobara/NLPBreastCancerSideEffectDiscovery.
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Fig. 1. Flow diagram of the methods for medication and their associated side effects discovery
from the social media cohort data. “n” represents the number of users, and “RBM” stands for
rule-based model.

3 Results

3.1 Self-reported Breast Cancer Post, Medication, and Side Effect Discovery

Among the developed supervised classifiers, the transformer-based BERT-large language
model achieved the highest performance with an accuracy of 0.93 and an F; score of
0.89 on the test data. As such, we used this model as the supervised classifier in the
proposed workflow. The model was trained with a maximum sequence length of 100
and batch size of 16 during 40 epochs. During the rule-based model development, the
manual annotation was done by three independent annotators, and the pair-wise inter-
annotator agreements were calculated using the Cohen’s Kappa measure [15]. In the
initial annotation round, the average agreement was 0.78. The annotators discussed
the disagreements until full agreement was reached. The multi-layer rule-base model
successfully identified breast cancer-approved medications and associated side effects
with an F1 score of 0.64, precision of 0.64, and recall of 0.64.

3.2 Descriptive Analysis of Medications and Side Effects

We detected multiple medication mentions in the discovered breast cancer posts col-
lapsed by unique usernames, remaining 62,042 users with 10.6% prevalence in the
available users in X. In this cohort, 198 members expressed a minimum of one breast
cancer-approved medication. Many cohort members mentioned taking medications with-
out specifying their names, and we excluded all such cases. 109 (55.1%) mentioned
tamoxifen, and hormone therapy was the most expressed medication category in the
posts. Figure 2 presents the full distribution of medication mentions. 31 side effects
were identified, and the most commonly expressed side effect was body ache & pain
(34 [17.2%]) (Fig. 3). In the discovered breast cancer cohort, seven patterns of med-
ication patterns were identified including hormone therapy, chemotherapy, a combi-
nation of hormone therapy and chemotherapy, a combination of hormone therapy and
kinase inhibitor, immune checkpoint inhibitor, a combination of hormone therapy, kinase
inhibitor, and immune checkpoint inhibitor, and a combination of hormone therapy and
immune checkpoint inhibitor. A Kruskal-Wallis test showed that 17 out of 31 side effects
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Fig. 2. Top 10 most expressed breast cancer approved medications in our social media cohort. The
label on top of the bar charts represents the number of cohort members who expressed medications.

were significantly associated with the medication patterns (adjusted p-value <0.05), of
which known side effects of hormone or chemotherapy include pyrexia, body ache, anx-
iety, nerve problems, and hair loss. In addition, our novel breast cancer-associated side
effect lexicon discovered a generalized side effect or negative emotion, not elsewhere
classified (NEC), which represents a subjective feeling towards cancer and medications,
such as ‘worst feeling’ or ‘feeling of dreadful side effect’ (Fig. 4). The prevalence of
the generalized side effect or negative emotion, NEC in a combination of hormone ther-
apy and chemotherapy was significantly higher than the prevalence in hormone therapy
(adjusted p-value <0.05).

4 Discussion

We trained a transformer-based model to identify self-reported breast cancer posts on
social media and create a cohort. The developed supervised transformer-based classifier
demonstrates superior performance compared to the classical machine learning methods
that worked with the extracted features, thanks to its innovative architecture and pre-
training scheme. This finding highlights the feasibility of constructing a large breast
cancer cohort from social using an automated NLP pipeline and detecting breast cancer
therapy-associated side effects using lexicon development. The methods may also be
replicated to create other similar cohorts.

Using a multi-layer rule-based model architecture that was optimized for preci-
sion, we detected medication name expressions and side effects in each unique cohort
member profile. In our analysis of accounts discussing breast cancer, hormone therapy
was the most expressed medication category, with tamoxifen being the most commonly
mentioned keyword. By developing a novel breast cancer therapy-associated side effect
lexicon, we identified patterns of side effects that were related to medication patterns.
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Fig. 3. Expressed side effects in our social medial cohort. The y-axis represents the proportions
and the text labels on top of bar charts are the number of users who expressed side effects. “NEC”
stands for not elsewhere classified.

We discovered that breast cancer therapy is associated with a broad range of side
effects, as expressed by the cohort members. Chemotherapy is associated with a number
of neurological side effects, including nausea, pain, and hair loss [10]. Kinase inhibitors
for breast cancer are associated with adverse and side effects in the cardiovascular
system, such as hypertension, atrial fibrillation, and heart failure, gastrointestinal, and
skin reactions [5, 6, 13]. Clinical trials of immune checkpoint inhibitors indicated that
colitis and pneumonitis are the most frequent fatal adverse effects of immune checkpoint
inhibitors [16]. Notably, we were able to identify well-known side effects of hormone
therapy and chemotherapy, such as pyrexia, body ache, anxiety, and nerve problems.
Furthermore, our novel breast cancer therapy-associated side effect lexicon discovered
the generalized side effect or emotion, NEC. Although this lacks a detailed description
of side effects, our cohort users may suffer from an indescribable feeling, which may be
a pre-clinical side effect of emotional distress or common side effects of breast cancer
therapy.

Our work demonstrates the utility of a social media-based cohort that is created
automatically via NLP and machine learning methods for identifying patterns of medi-
cations and side effects. Such cohorts, once the methods are established and deployed,
can grow automatically over time, leading to the collection of seemingly unlimited data.
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Fig. 4. The heat map of prevalence of significantly associated side effects with medication patterns
(adjusted p-value < 0.05). NEC, not elsewhere classified.

Potentially novel insights may then be mined using the strategies we described in this
paper. The discovered side effects using our novel breast cancer-associated side effect
lexicon represent potential hypotheses that can be studied and validated through more
traditional studies. Such methods of cohort data analyses may be particularly useful for
new medications entering the market for which post-marketing surveillance data is lim-
ited or absent. Such strategies may also enable the early detection of potential unknown
side effects. Also, while the side effects discussed on social media may not be severe
(e.g., nausea), they may be the reasons for non-adherence among patients, an association
that needs to be investigated in future research.

Several aspects of the analysis should be carefully considered for future improve-
ment. First, although X is a widely used text-based social media compared with other
platforms, posts in X often lacked enough context for accurate classification. This limita-
tion leads to potential misidentification of breast cancer-related posts, posing challenges
in estimating cancer prevalence or detecting specific cancer types. Second, we collapsed
the posts based on accounts, assuming the homogeneity of the medications’ prescription
regimens and associated side effects. Multiple medication expressions appearing in one
of the cohort members’ profiles can lead to false positive indications of the associa-
tion between medication and its side effects. Lastly, a limited sample size of members
who mentioned medications may induce selection bias and underpower our lexicon to
discover a side effect occurrence.
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S5 Conclusion

A supervised classifier was able to identify a self-reported breast cancer cohort. Mul-
tiple rounds of lexicon development of medications and side effects were conducted,
and rule-based models were designed to describe the medication usage prevalence and
their links to side effects. We demonstrate, for the first time, the feasibility of an NLP
model discovering the patterns of side effects associated with breast cancer-approved
medications. Notably, our breast cancer therapy-associated side effect lexicon identified
a potential pre-clinical side effect in breast cancer therapy. The next steps include inves-
tigating the proposed workflow in a larger sample size and other social media platforms.
This can involve the consideration of the usage of non-breast cancer medications and
assessing the magnitude of side effects alleviation due to supportive medications.

References

1. Al-Garadi, M.A., et al.: Automatic breast cancer cohort detection from social media for
studying factors affecting patient-centered outcomes. In: Michalowski, M., Moskovitch, R.
(eds.) AIME 2020. LNCS, vol. 12299, pp. 100-110. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59137-3_10

2. Berry, D.A,, et al.: Effect of screening and adjuvant therapy on mortality from breast cancer.
N. Engl. J. Med. 353(17), 1784-1792 (2005)

3. Giaquinto, A.N., Miller, K.D., Tossas, K.Y., Winn, R.A., Jemal, A., Siegel, R.L.: Cancer
statistics for African American/black people 2022. CA Cancer J. Clin. 72(3), 202-229 (2022)

4. Giaquinto, A.N., et al.: Breast cancer statistics, 2022. CA Cancer J. Clin. 72(6), 524-541
(2022)

5. lancu, G, et al.: Tyrosine kinase inhibitors in breast cancer. Exp. Ther. Med. 23(2), 1-10
(2022)

6. Le Du, F, Diéras, V., Curigliano, G.: The role of tyrosine kinase inhibitors in the treatment
of HER2+ metastatic breast cancer. Eur. J. Cancer 154, 175-189 (2021)

7. McCowan, C., et al.: Cohort study examining tamoxifen adherence and its relationship to
mortality in women with breast cancer. Br. J. Cancer 99(11), 1763-1768 (2008)

8. Miller, K.D., et al.: Cancer statistics for the US Hispanic/Latino population, 2021. CA Cancer
J. Clin. 71(6), 466—487 (2021)

9. Munoz, D., et al.: Effects of screening and systemic adjuvant therapy on ER-specific US
breast cancer mortality. J. Natl. Cancer Inst. 106(11) (2014)

10. Pearce, A., et al.: Incidence and severity of self-reported chemotherapy side effects in routine
care: a prospective cohort study. PLoS ONE 12(10), 0184360 (2017)

11. Sarker, A., Gonzalez, G.: A corpus for mining drug-related knowledge from twitter chatter:
language models and their utilities. Data Brief 10, 122-131 (2017)

12. Sarker, A., Lakamana, S., Hogg-Bremer, W., Xie, A., Al-Garadi, M.A., Yang, Y.C.: Self-
reported covid-19 symptoms on Twitter: an analysis and a research resource. J. Am. Med.
Inform. Assoc. 27(8), 1310-1315 (2020)

13. Shyam Sunder, S., Sharma, U.C., Pokharel, S.: Adverse effects of tyrosine kinase inhibitors
in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct.
Target. Ther. 8(1), 262 (2023)

14. Tong, C.W.S., Wu, M., Cho, W.C.S., To, K.K.W.: Recent advances in the treatment of breast
cancer. Front. Oncol. 8, 227 (2018)


https://doi.org/10.1007/978-3-030-59137-3_10

354 S. Kobara et al.

15. Viera, A.J., Garrett, .M., et al.: Understanding interobserver agreement: the kappa statistic.
Fam. Med. 37(5), 360-363 (2005)

16. Wang, D.Y., et al.: Fatal toxic effects associated with immune checkpoint inhibitors: a
systematic review and meta-analysis. JAMA Oncol. 4(12), 1721-1728 (2018)

17. Waterhouse, D.M., Calzone, K.A., Mele, C., Brenner, D.E.: Adherence to oral tamoxifen:
a comparison of patient self-report, pill counts, and microelectronic monitoring. J. Clin.
Oncol.Oncol. 11(6), 1189-1197 (1993)



Bioinformatics and Omics



q

Check for
updates

Breast Cancer Subtype Prediction Model
Integrating Domain Adaptation
with Semi-supervised Learning on DNA
Methylation Profiles

Joung Min Choi® and Liging Zhang®

Virginia Tech, Blacksburg, VA 24061, USA
lgzhang@cs.vt.edu

Abstract. Breast cancer is a highly heterogeneous disease, leading to the varied
drug resistance and clinical outcomes. Accurate identification of breast cancer sub-
types is crucial for precise diagnosis, treatment decision-making, and prognosis
prediction. Recent research has highlighted the significant role of epigenetic alter-
ations in breast cancer development, particularly the potential of aberrant DNA
methylation patterns as subtype-specific markers. However, challenges exist in
developing a breast cancer subtype prediction model based on DNA methylation
profiles, primarily due to the limited number of available samples with subtype
information.

In this study, we propose BCtypeFinder, a breast cancer subtype prediction
framework utilizing a domain adaptation network with semi-supervised learning.
Our model leverages both labeled and unlabeled DNA methylation datasets to learn
domain-invariant features, aligning the distributions of the same breast cancer
subtypes across different datasets. BCtypeFinder outperforms existing methods,
demonstrating superior classification performance in several scenarios. We also
investigated the effectiveness of batch correction in BCtypeFinder, revealing its
capability to eliminate batch distinctions among patients with the same subtype
across different batches, thus enhancing the classifier’s robustness. BCtypeFinder
is publicly accessible at https://github.com/joungmin-choi/BCtypeFinder.

Keywords: Breast cancer subtype prediction - DNA methylation - Domain
adaptation - Semi-supervised learning

1 Introduction

Breast cancer is the second most prevalent cancer and the leading cause of cancer-
related deaths among women globally [1]. The heterogeneity of breast cancer arises from
dynamic variations in molecular components throughout tumor progression, manifest-
ing differences at transcriptomic, epigenetic, and genomic levels [2]. This heterogeneity,
both inter-tumor and intra-tumor, contributes to diverse drug resistance patterns and clin-
ical outcomes, presenting a challenge in predicting prognosis and therapy responses for
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breast cancer patients [3]. To enhance diagnostic precision and effectiveness of targeted
medicine, efforts have been made to classify breast cancer into five molecular intrin-
sic subtypes using signature genes associated with hormone receptors, proliferation,
myoepithelial, and basal features (PAMS50) [4]. This standardized breast cancer subtyp-
ing system plays pivotal roles in cancer prognostication and therapeutic decision-making
[5].

Inrecent years, extensive research has delved into epigenetic alterations contributing
to breast tumorigenesis, recognizing them as pivotal drivers in cancer development and
the transition from normal tissue to neoplasia and metastasis [6]. The hypermethylation
of CpG promoters in breast cancer cells leads to the silencing of numerous well-known
tumor suppressor genes [7]. Conversely, hypomethylation is identified as an early event
in tumorigenesis, serving as an indicator of tumor progression and prognosis [8]. In the
current landscape of therapeutic approaches, there is a shift towards targeting epige-
netic alterations rather than genetic mutations, driven by the potential reversibility of
epigenetic changes [9].

Epigenetic analyses have revealed that aberrant DNA methylation patterns are asso-
ciated with the molecular subtypes of breast cancer, suggesting their potential as subtype-
specific markers [10]. However, a major challenge in developing a cancer subtype classi-
fier using DNA methylation profiles stems from the scarcity of methylome datasets with
subtype label annotations, leading to overfitting during model training. To address this
issue, a cancer subtype classification framework called meth-SemiCancer has been intro-
duced, leveraging semi-supervised learning (SSL) [11]. Through SSL, meth-SemiCancer
utilizes unlabeled methylation datasets by assigning pseudo-labels based on the model’s
predictions, which are then fed back into the model for retraining, ultimately enhanc-
ing generalization. Meth-SemiCancer has demonstrated improved subtype classification
performance across various cancers, including breast cancer, highlighting the potential of
SSL in mitigating overfitting issues during model training. However, meth-SemiCancer
does not consider possible batch effect due to the diverse unlabeled datasets generated
by different labs.

In the realm of aligning different datasets and jointly training classifiers, domain
adaptation has been introduced in the computer vision field [12]. This approach lever-
ages information learned from a source domain with an adequately labeled dataset to
enhance model performance on a different yet related target domain containing unla-
beled datasets. Recently, domain adaptation has found widespread application in cell
type inference and classification using single-cell and spatial transcriptomic data [13,
14]. Treating each batch as a domain, single-cell transcriptomics datasets are integrated
to alleviate variations caused by batch effects and distribution discrepancies, enhancing
model generalization and robustness against local perturbations or noise. However, these
methodologies have primarily been assessed in settings where the target domain pos-
sesses a single set of unlabeled data and the source domain encompasses a substantial
number of samples, frequently surpassing 30,000 samples. This presents a challenge
when attempting to adapt them to DNA methylation profiles, which typically contain
fewer than 1,000 samples per dataset.

The present work proposes BCtypeFinder, a breast cancer subtype prediction model
that leverages domain adaptation networks through semi-supervised learning of DNA
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methylation profiles. The feature extractor and cancer subtype classifier modules are ini-
tially trained using a source dataset with cancer subtype labels. Subsequently, adversarial
training is employed to extract domain-invariant features, which are then fine-tuned in
a semi-supervised learning phase with subtype alignment for batch correction. BCtype-
Finder shows superior performance over the start-of-the-art model meth-SemiCancer
and other machine learning-based classifiers. Further ablation studies and visualization
of features extracted from BCtypeFinder affirm its efficacy in smoothing batch effects
in diverse methylation datasets and enhancing classifier robustness.

2 Methods

Let ng and n; denote the number of samples in the source and target data, respectively,
m the number of CpGs common to all the data, X; = (x{, el x,is) € R">*™ the source
DNA methylation data matrix with cancer subtype labels, and X; = (x’l R x;t) €
R">™ the target methylation data matrix representing multiple unlabeled datasets. In
the context of domain adaptation, X and X; are assumed to be different yet related.
BCtypeFinder comprises feature extractor, domain discriminator, and subtype classifier
modules, undergoing three training phases: (1) Pre-training, (2) Adversarial training,

and (3) Fine-tuning based on semi-supervised learning and subtype alignment (Fig. 1).
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Fig. 1. Tllustration of the proposed breast cancer subtype classification model, BCtypeFinder.

BCtypeFinder initiates its training by pre-training on the source dataset X;, which
includes annotated subtype labels. The objective is to initialize the weights in the feature
extractor and the subtype classifier. Both modules consist of two fully connected layers,
with the hidden layer in the classifier followed by a softmax function to estimate the
posterior probability of each breast cancer subtype. The training minimizes the subtype
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classification error using cross-entropy loss:

1 ng K
Lpr = _n_szi:l Z/zlyi’-/l()g(pi’j)’ .

where K is the number of subtypes, y; ; the binary indicator for whether subtype label
J s correct for sample 7, and p; ; the predicted probability of sample i belonging to the
subtype j.

Following pre-training, adversarial training is employed for both the feature extractor
and the domain discriminator composed of two hidden layers and a softmax function.
These modules engage in a competitive learning process to acquire domain-invariant
features. The adversarial domain adaptation loss is minimized, with the domain dis-
criminator D trained to distinguish the origin dataset of the extracted features, while
the feature extractor F strives to transfer the target dataset’s distribution to the source,
confusing the domain discriminator by maximizing the loss:

1 ng+n;

minmax Lar = —
D F

M
i 2 Yislog DE D)), &)
where M is the number of domains (i.e., datasets with different batch effects), and y;
and D(F (x;)) are the actual and the model predicted domain probability of the sample
i, respectively.

To enhance the generalization of the subtype classification model and refine pre-
dictions, fine-tuning is executed through semi-supervised learning (SSL) with subtype
alignment. Pseudo-labels for the unlabeled target dataset are obtained by assigning the
breast cancer subtype with the highest posterior probability, continually updated during
each iteration. The optimization of the feature extractor and subtype classifier modules
relies on the weighted cross-entropy loss for both the source and target datasets:

1 ng K 1 ny K
Lssr = —n—szizlzj:lyi,jlog(l?i,j) - Ot(t)n—{zizlzizlyf,jlog(mj), 3)

where K is the number of subtypes, y; ; and yl’.) j the true and pseudo-subtype probability
distribution for the labeled and unlabeled datasets, respectively, and p;; the model-
predicted probability of sample i belonging to the j-th subtype. The coefficient o()
is introduced to balance the classification training loss between the source and target
datasets, gradually increasing to prevent poor local minima in the optimization process,

0, t<T
a(t) = T’;TT'I ar, 1 <t <T, “4)
af, T, <t

where ¢ is current epoch, 77 = 100, and 7T, = 200.

After a few epochs of SSL training to assign stable pseudo-labels to each sample in
target datasets, subtype alignment is performed iteratively with SSL training. As a batch
correction approach, the extracted features belonging to the same subtype should be well-
clustered, and those from different domains should be mapped nearby. To achieve this,
samples from each dataset in different domains are grouped based on the subtype, and
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the centroid for each subtype is calculated and explicitly aligned. The centroid is defined
as the mean embedding of each subtype, with pseudo-labels obtained each iteration
for centroid calculation in the target dataset. During training, the distance between the
center of all centroids for each subtype and each domain’s corresponding centroid is
minimized:

11 K M X «
Lsa = —fﬁzkzlzm:y —Cka, (5)

where C* represents the centroid of subtype k in the source data and C,’fl is the centroid
of subtype k in the domain m data.

3 Experimental Design

3.1 Data Collection and Preprocessing

The DNA methylome breast cancer dataset obtained from TCGA [15] (referred to as
TCGA-BRCA) was used as the source. It comprises 1,060 solid primary breast tumor
tissue samples with methylome measured by Illumina Human Infinium 450K and 27K
assays and subtype information obtained from [4]. Subtypes include LumA, LumB, Her2,
Basal, and Normal-like. Three publicly available breast cancer datasets (GSE69914 [16],
GSE75067 [17], and GSE72245 [18]) containing 611 samples obtained from the Gene
Expression Omnibus (GEO), were used as the unlabeled target data. Detailed information
on the datasets used is shown in Table 1.

Table 1. Datasets used for BCtypeFinder evaluation.

Dataset #0of CpGs | # of samples | with subtype label | Use label for
training
Source | TCGA-BRCA |27K 267 v v
450K 793 v v
Target | GSE69914 450K 305 X X
GSE75067 450K 188 X X
GSE72245 450K 118 v X

Data preprocessing followed a similar approach to meth-SemiCancer [11]. Initially,
genes shared between the source and target datasets were extracted. CpG sites with more
than 20% missing values were eliminated to mitigate bias during model training. Median
imputation was performed for the remaining missing values, and the top 2,000 highly
varying CpGs for the source dataset were selected.

3.2 Hyperparameter Setting

In BCtypeFinder, all modules comprise two fully connected layers, with the feature
extractor having 1024 and 512 hidden nodes, and both the domain discriminator and
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subtype classifier having 256 and 64 hidden nodes, followed by a softmax layer. The
adaptive optimization algorithm Adam [19] was employed for training BCtypeFinder,
with learning rates set at 10_4, 1073 ,and 107 for the feature extractor, subtype classifier,
and domain discriminator, respectively. The training process consisted of 500 epochs
for both pre-training and adversarial training phases. During fine-tuning, BCtypeFinder
underwent an initial training of 500 epochs based on the SSL loss to establish stable
pseudo-labels for the target dataset. Subsequently, it was iteratively optimized for 800
epochs based on the SSL and class alignment loss. In the SSL loss, oy was set to 0.01,
and pseudo-labels were updated in each iteration. BCtypeFinder was implemented using
the PyTorch library (Version 1.6.0).

4 Results

4.1 Performance Evaluation of BCtypeFinder

BCtypeFinder was compared with meth-SemiCancer, a recently proposed DNA
methylation-based cancer subtype prediction model, and widely-used machine learning-
based classifiers: Support Vector Machine (SVM), Random Forest (RF), and Logistic
Regression (LR). The comparison methods were optimized on the TCGA-BRCA dataset,
with training and testing datasets randomly split in an 8:2 ratio. Each experiment was
repeated five times, and hyperparameters yielding the highest average accuracy for the
testing dataset were selected (Supplementary Table S1'). Optimized hyperparameter set-
tings for each classifier are as follows: meth-SemiCancer (Two layers of hidden nodes =
1000-500, learning rate = le—3, alpha = 0.05, training epochs = 3000), SVM (kernel =
linear, C =273 ), RF (criterion = gini, estimators = 100, min_samples_leaf = 3), and LR
(C = 27!, max_iter = 100). Evaluation metrics included accuracy, weighted F1-score,
Matthews Correlation Coefficient (MCC), and Area under the ROC Curve (AUC).

The first evaluation utilized the TCGA-BRCA dataset as the source data and the three
GEO datasets as the unlabeled target data. Testing was performed on the 87 samples in the
target dataset with subtype labels (GSE72245). The experiment was repeated five times,
and BCtypeFinder consistently outperformed the other methods, achieving an average
accuracy of 0.816 (Fig. 2a, Supplementary Table S2). Meth-SemiCancer exhibited the
second-best performance with an average accuracy of 0.736, while SVM, RF, and LR had
average accuracies of 0.655, 0.545, and 0.667, respectively. BCtypeFinder also yielded
the best average F1-score, MCC, and AUC, reaching 0.822, 0.752, and 0.883, respec-
tively, outperforming meth-SemiCancer with the second-highest average performance
of 0.748, 0.664, and 0.848. Runtime comparison showed that BCtypeFinder has lower
average running time of 580 s, as compared to the averaged 877 s of meth-SemiCancer,
underscoring the enhanced computational efficiency of our proposed method.

Next, 10-fold cross-validation was performed on the TCGA-BRCA dataset, with the
three GEO datasets (GSE69914, GSE75067, and GSE72245) as the target data (Fig. 2b,
Supplementary Table S3). BCtypeFinder demonstrated improved breast cancer sub-
type classification, achieving the highest average accuracy and F1-score of 0.849 and

1 Supplementary data are available at https://github.com/joungmin-choi/BCtypeFinder.
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Fig. 2. Performance comparison of BCtypeFinder with other methods in Breast cancer subtype

prediction. (a) Average classification performance results for 87 samples of the GSE72245 dataset.
(b) 10-fold cross validation results on the TCGA-BRCA dataset.

0.843, respectively, compared to the second-best values of 0.821 and 0.814. BCtype-
Finder exhibited stable classification with less variation in performance across 10-fold
cross-validation compared to SSL-based meth-SemiCancer. These results underscore the
robustness of BCtypeFinder for breast cancer subtype prediction in DNA methylation
datasets, achieved through subtype alignment and discrimination across batches.

4.2 Exploring Batch Effect Correction in BCtypeFinder

BCtypeFinder employs adversarial training and subtype alignment to mitigate batch
effects in various methylation datasets, facilitating the discrimination of subtypes. To
visually evaluate the impact of these training methods, we applied the uniform manifold
approximation and projection (UMAP) technique. The features extracted by BCtype-
Finder were compressed into two-dimensional spaces and annotated for each respective
dataset. Additionally, UMAP visualization was performed on the TCGA-BRCA and
GSE72245 datasets that have subtype labels. Figure 3 illustrates the UMAP visualiza-
tion of BCtypeFinder-extracted features alongside the uncorrected dataset, representing
the preprocessed original dataset.

Visualization of the uncorrected data reveals significant divergence among breast
cancer patients across samples, forming distinct groups based on batch, while patients
with different subtypes appear mixed and scattered. After batch effect smoothing by
BCtypeFinder, distinctions based on batches were eliminated, revealing a clear separa-
tion of patients with the same subtype across different batches. Patients within the same
breast cancer subtype were distinctly organized into individual clusters. These results
underscore BCtypeFinder’s efficacy in effectively mitigating batch effects and aligning
the distributions of identical breast cancer subtypes across various datasets.
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Fig. 3. UMAP visualization for the source and target datasets comparing the uncorrected dataset
and the features extracted from BCtypeFinder. (a) UMAP plots colored by batch for the TCGA-
BRCA source dataset and three GEO datasets used as target. (b) UMAP plots colored by batch
and the breast cancer subtypes for the source dataset and 87 samples of GSE72245 target dataset
having subtype labels.

4.3 Effectiveness of Each Module in BCtypeFinder

To assess the performance improvements achieved by each training phase and understand
how predictions evolve throughout the training process, we measured the testing classi-
fication performance after each phase. For this experiment, BCtypeFinder was trained
using TCGA-BRCA as the source dataset and three GEO datasets as the target datasets.
Testing was performed on the GSE72245 dataset that contains 87 labeled samples. The
results, summarized in Supplementary Table S4, indicate that optimizing the proposed
model through pre-training and the SSL loss led to a slight improvement in classification
performance (Average accuracy of 0.720 for pre-training to 0.730 for SSL). However,
this improvement was not significant, even when the target dataset was utilized during
SSL. Notably, when the model underwent iterative fine-tuning with SSL and subtype
alignment, a substantial performance increase was observed across all metrics. Specif-
ically, accuracy improved from 0.730 to 0.816, and the F1-score increased from 0.723
to 0.822. These findings highlight the effectiveness of subtype alignment training in
harmonizing identical breast cancer subtypes across batches. By generating more accu-
rate pseudo labels, this approach enhances the classifier’s discriminative power, thereby
playing a crucial role in the accurate prediction of breast cancer subtypes.

5 Discussion and Conclusions

In this study, we introduced BCtypeFinder, a breast cancer subtype prediction model
leveraging domain adaptation with semi-supervised learning and DNA methylation pro-
files. The model underwent a multi-phase training process: pre-training on the source
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dataset for weight initialization, adversarial training to extract domain-invariant features,
and fine-tuning involving SSL for pseudo-label generation and subtype distribution align-
ment across datasets. BCtypeFinder was evaluated against meth-SemiCancer, a state-
of-the-art DNA methylome-based cancer subtype classifier, as well as commonly used
ML-based classifiers. Our model exhibited superior performance with the highest aver-
age accuracy and AUC, demonstrating robust classification capabilities. Furthermore,
we explored the impact of adversarial training and subtype alignment on batch correction
in different DNA methylation datasets. BCtypeFinder successfully eliminated batch dis-
tinctions among patients with the same subtype across batches, enhancing the classifier’s
discriminative ability for breast cancer subtypes. Overall, these findings demonstrate
that BCtypeFinder can serve as the initial assessment of breast cancer subtypes, thus
facilitating downstream clinical diagnosis and personalized treatment.

While BCtypeFinder demonstrated performance improvements, there remain certain
limitations that warrant further enhancement. Computational resource constraints led to
feature selection to reduce the training feature set. Future experiments should explore
alternative feature selection approaches. Additionally, we aim to extend BCtypeFinder’s
applicability to other cancers through extensive testing and optimization experiments in
the future.
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Abstract. Understanding cellular disease processes like cancer is key for improv-
ing diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) enables
modeling transitions between normal and diseased cellular states in complex
tissues. However, interpolating between healthy and diseased states in high-
dimensional scRNA-seq data poses computational challenges. We use the Class-
Informed Variational Autoencoder (CI-VAE), a generative Al model, to learn
low-dimensional cell-type-specific representations from scRNA-seq data. Dur-
ing inference, CI-VAE interpolates between normal and diseased cells, robustly
predicting cell-type-specific gene expression trajectories from healthy to disease
states. Applied to colon cancer data, CI-VAE closely predicted observed transi-
tions by generating synthetic gene expression changes associated with cancer pro-
gression for each cell type, potentially offering insights into underlying molecular
mechanisms for disease understanding, biomarker discovery, and targeted therapy
design.

Keywords: Generative Al - Single Cell RNAseq - VAE - CI-VAE - Deep
Learning - Disease Understanding

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for unveiling
the cellular diversity within complex tissues, including cancer [9, 10]. By capturing
the transcriptional profiles of individual cells, scRNA-seq offers unprecedented insights
into the molecular mechanisms underlying disease progression. However, the inherent
high-dimensionality and sparsity of scRNA-seq data pose significant challenges for
computational analysis, particularly in modeling the subtle transitions between healthy
and diseased cellular states [2, 3, 11].

Variational Autoencoders (VAEs) [1, 4, 5, 12] have shown promise in efficiently
encoding high-dimensional data into a lower-dimensional latent space which allows for
generating new data within the same distribution as the original data.

In this work, we used the Class-Informed Variational Autoencoder (CI-VAE) [7, 8], a
variant of VAEs that incorporate class information of data (, cell-types in single-cell data)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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into constructing the generative latent space. Unlike traditional VAEs, CI-VAE employs
a linear discriminator that operates on the latent representations, enhancing the model’s
ability to generate cell-type-specific synthetic cells during interpolation, particularly in
the context of studying cellular transitions from normal to diseased conditions.

2 Methodology

2.1 Autoencoders and Variational Autoencoders (VAEs)

Autoencoders are a class of unsupervised neural networks consisting of an encoder and
a decoder. The encoder maps input data x into a lower-dimensional latent space z, while
the decoder attempts to reconstruct the input data from this latent space, producing
X. Variational Autoencoders (VAEs) enhance this architecture by mapping inputs to a
posterior distribution p(zlx), instead of a direct encoding to z. The total cost function
for VAEs includes a reconstruction error and a regularization term that encourages the
latent space distribution to approximate a standard Gaussian.

2.2 Class-Informed Variational Autoencoders (CI-VAE)

The CI-VAE model [7, 8] introduces a supervised dimension to the VAE framework by
incorporating a linear discriminator within its architecture. This discriminator ensures
observations from different classes remain separable within the latent space. The CI-
VAE’s cost function includes the cross-entropy loss from the discriminator, in addition
to the reconstruction error and the KL divergence term.

2.3 Application to Single-Cell RNA Sequencing (ScCRNA-Seq) Data

In the context of CI-VAE, each cell is treated as an observation, with the cell type serving
as the class of the data. During training, CI-VAE learns the underlying low-dimensional
latent space of all cells with the additional objective of forming the latent space to be
linearly separable across different cell types. During inference, the objective shifts to
interpolating between two cells within the same cell type, one healthy and the other
diseased, to elucidate the mechanisms underlying disease development.

3 Results and Discussion

3.1 CI-VAE for Understanding Colon Cancer

We demonstrate the application of CI-VAE to single-cell RNA-seq data of colon cancer
[6]. This dataset consists of 20K genes for 25K individual cells from colon cancer tissue,
with 22 identified cell types. For each cell type, normal, borderline tumor, and core tumor
cells are present.
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We used CI-VAE to interpolate from normal cells to cancer cells across differ-
ent cell types, generating synthetic data that captures the gene expression trajectories
from healthy to diseased states. To validate the model’s predictions, we compared the
generated trajectories to the ground truth data, specifically the borderline tumor cells

(Fig. 1).
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Fig. 1. 2D TSNE plot of high dimensional RNAseq data of cells in colon cancer tissue. Each
dot represents one cell. Cells are grouped by cell types and blue color represent normal cells and
orange color represent core tumor cells. The figure is extracted from [6].

As shown in Figures 2, 3 and 4, the gene expression trajectories generated by CI-
VAE closely match the observed transitions from normal to borderline tumor to core
tumor cells, across multiple cell types and genes. This correspondence indicates that CI-
VAE can potentially model the molecular mechanisms underlying cancer development,
potentially informing the identification of early biomarkers and the design of targeted
therapies.

4 Discussion

The results of this study demonstrate the utility of the Class-Informed Variational
Autoencoder (CI-VAE) model in analyzing single-cell RNA sequencing (scRNA-seq)
data to elucidate the molecular trajectories underlying the transition from normal to
cancerous cell states. By incorporating class information into the VAE framework, CI-
VAE was able to effectively capture the subtle variations between cell types and states,
enabling the generation of synthetic data that closely approximates the observed gene
expression changes.

The application of CI-VAE to colon cancer scRNA-seq data provided valuable
insights into the progression of the disease at the cellular level. By interpolating between
normal and cancerous cells within specific cell types, CI-VAE generated trajectories that
aligned well with the observed gene expression patterns, in particular, the intermediate
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“borderline” tumor cell states. This ability to model the gradual transition from healthy

to diseased conditions offers an opportunity to gain a more nuanced understanding of
the molecular mechanisms driving cancer development.
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Prediction using CI-VAE Ground Truth Data

Fig. 2. Left, predicted RNA expression from normal cell to core tumor cancer cell using CI-VAE,
Right, Ground Truth trajectory with Normal, Borderline tumor and Core Cancer tumor. Results
are projected for endothelial cell type and for CD74 Gene. These results are the median of 100
random traversals from normal cells to tumor cells. Our predictions shows that CD74 is over
expressed in the onset of cancer development and then under-expressed over the development of
core cancer cells.
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Fig. 3. Left, predicted RNA expression from normal cell to tumor cell using CI-VAE, Right,
Ground Truth. Each plot pair is for a specific cell type and a specific gene.
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Fig. 4. Left, predicted RNA expression from normal cell to tumor cell using CI-VAE, Right,
Ground Truth. Each plot pair is for a specific cell type and a specific gene.

The correspondence between the CI-VAE-generated trajectories and the ground truth
data underscores the potential of this approach to enhance our knowledge of disease
progression. By capturing the dynamic changes in gene expression across the spectrum
from normal to cancerous states, CI-VAE may potentially inform the identification of
early biomarkers and therapeutic targets, as well as enable the design of more effective
interventions tailored to specific cell types and stages of the disease.

5 Conclusion

This work demonstrates the potential of using generative Al and in particular, the CI-
VAE model to advance our understanding of the molecular underpinnings of cancer
development through the analysis of single-cell RNA sequencing data. By providing a
computational framework that can effectively capture the dynamics of cellular states,
CI-VAE potentially provides a valuable tool for uncovering novel insights into complex
biological processes in disease development and informing the development of targeted
therapeutic strategies.
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Abstract. Large language models (LLMs) have garnered considerable attention
for their proficiency in tackling intricate tasks, particularly leveraging their capaci-
ties for zero-shot and in-context learning. However, their utility has been predomi-
nantly restricted to general tasks due to an absence of domain-specific knowledge.
This constraint becomes particularly pertinent in the realm of protein engineering,
where specialized expertise is required for tasks such as protein function predic-
tion, protein evolution analysis, and protein design, with a level of specialization
that existing LLMs cannot furnish. In response to this challenge, we introduce
ProteinEngine, a human-centered platform aimed at amplifying the capabilities
of LLMs in protein engineering by seamlessly integrating a comprehensive range
of relevant tools, packages, and software via API calls. Uniquely, ProteinEngine
assigns three distinct roles to LLMs, facilitating efficient task delegation, special-
ized task resolution, and effective communication of results. This design fosters
high extensibility and promotes the smooth incorporation of new algorithms, mod-
els, and features for future development. Extensive user studies, involving partic-
ipants from both the Al and protein engineering communities across academia
and industry, consistently validate the superiority of ProteinEngine in augment-
ing the reliability and precision of deep learning in protein engineering tasks.
Consequently, our findings highlight the potential of ProteinEngine to bride the
disconnected tools for future research in the protein engineering domain.

Keyword: Deep Learning - Large Language Model - Protein Design - Al for
Protein Design

1 Introduction

Large language models (LLMs) have achieved remarkable successes in solving complex
tasks, showcasing their zero-shot learning capabilities [18]. However, the effectiveness
of these models tends to plateau when faced with more specialized tasks due to their
inability to access domain-specific knowledge or utilize specialized tools tailored for
certain applications. This limitation becomes glaringly apparent in the context of protein
engineering tasks. Although LLMs have been explored for specific tasks within the
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protein engineering domain such as protein structure prediction [11], protein evolution
analysis, or de novo protein design [6, 13], their application often demands significant
alterations to the model architecture. These modifications, coupled with the need for
learning from scratch using domain-specific datasets, present two-fold challenges. First,
this approach underutilizes the capabilities of well-trained foundation models, given
their robust pre-existing knowledge base. Second, the process of specialization often
leads to the loss of the model’s conversational abilities, a key feature that makes LLMs
versatile and user-friendly.

The introduction of in-context learning capabilities in LLMs [4] has ushered poten-
tial solutions to the enduring challenge of domain knowledge scarcity [4]. In this new
paradigm, the LLM acts as a centralized, cognitive-like system, which is capable of
addressing domain-specific tasks by invoking relevant Application Programming Inter-
faces (APIs) or systems to bride the knowledge gap within the specific domain. However,
despite these advancements, most existing solutions tend to restrict the tools they incor-
porate to commonly used APIs such as calculators, calendars, and web searches, or
relatively simple Al models like text-to-image generation models. In the context of pro-
tein engineering, both the task formulation and the APIs involved, as well as the Al
models, manifest greater complexity. They are characterized by a diverse modality of
input and a larger set of arguments, accentuating the need for more sophisticated and
flexible systems. Consequently, further research and development are required to fully
leverage the potential of LLMs in complex domains such as protein engineering. To
narrow the gap, we present ProteinEngine, a novel LLM system for protein engineering.
The major contributions are three-fold:

(1) We introduce ProteinEngine, a human-centered platform to augment the capabilities
of LLMs in tackling protein engineering tasks. This is achieved by seamlessly inte-
grating a comprehensive array of tools, packages, and software relevant to protein
engineering, all accessible through APIs.

(2) We propose a role-playing framework, comprising Al Project Manager (AI-PM), Al
Domain Expert (AI-DE), and Al Presenter (AI-Pr) modules, which facilitates eficient
task delegation, promotes interdisciplinary integration, ensures dynamic adaptabil-
ity, and enables effective communication of results respectively. This design principle
provides substantial flexibility, allowing for easy integration and extensibility with
emerging Al protein-design models.

(3) Through comprehensive user studies, we demonstrate the superior performance of
ProteinEngine in not only enhancing the usability of currently disconnected protein
engineering tools but also reducing the workload and learning difficulty across users
with different backgrounds.

2 ProteinEngine: LLM for Protein Engineering

Method Overview Our proposed ProteinEngine is a human-centered system designed
to augment the capabilities of existing LLMs to address a broader spectrum of intricate
protein engineering tasks. Specifically, we assign three critical roles to the LLMs: the
Al Project Manager (AI-PM), the Al Domain Expert (AI-DE), and the Al Presenter
(AI-Pr). The overall pipeline illustrating these roles and their interactions is depicted in
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Fig. 1. The AI-PM functions as the primary coordinator, interpreting user input expressed
in natural language and ensuring all necessary inputs, configurations, arguments, and
conditions are correctly provided. Subsequently, it breaks down a given complex task
into smaller, more manageable sub-tasks, delegating them to the appropriate AI-DEs.
Then, we employ multiple AI-DEs within the platform to address the wide variety of
challenges inherent in protein engineering and to facilitate future expansion. Each Al-
DE specializes in a particular domain or category of tasks, ensuring a comprehensive
coverage of the diverse aspects of protein engineering. During the inference stage, the
AI-PM selects and assigns a subset of all AI-DEs to execute relevant APIs based on the
nature of the task at hand. Lastly, the AI-Pr is tasked with presenting the results, either
unimodal or multimodal, generated by the AI-DE:s to the user.
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Fig. 1. The overall framework of the proposed ProteinEngine, which incorporates three distinct
roles, each assigned to a separate LLM.

Al Project Manager. The LLM performing as the AI-PM acts as the primary interface,
bridging the gap between the user and the underlying protein engineering tools within
the ProteinEngine platform. In its core role, the AI-PM is tasked with interpreting user
input presented in natural language, discerning the context, and identifying the necessary
tasks to be performed. Beyond this, the AI-PM ensures that all required inputs, argu-
ments, configurations, and conditions are correctly provided. To accurately parse and
deconstruct the user’s query, the AI-PM uses in-context learning, a more efficient alter-
native to the computationally demanding process of LLM fine-tuning. By systematically
decomposing complex tasks into smaller, manageable sub-tasks, the AI-PM ensures a
thorough understanding of the user’s requirements. Once the sub-tasks are defined, the
AI-PM delegates them to the appropriate AI-DEs, taking into account their respective
areas of specialization.

Al Domain Expert. The AI-DE in the ProteinEngine is specifically designed to man-
age a distinct category of tasks pertaining to protein engineering. A team of multiple
AI-DEs is assembled, with each expert equipped with the necessary domain-specific
knowledge and tools to execute its designated tasks. To ensure the AI-DEs perform effi-
ciently and adaptively, we have implemented a novel self-feedback communication loop
mechanism between the AI-DE and the AI-PM. This autonomous mechanism, which
operates without the need for human intervention, enables AI-DEs to progressively refine
their understanding of new challenges that may arise during the execution process, and
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Table 1. Theinvolved Al models and APIs for protein engineering in the proposed ProteinEngine.

API Functionality | Description Input Output
AlphaFold 2 [9] protein single-chain protein sequence | atom-level 3D
folding structure coordinates;
prediction with residue-level
MSA pLDDT
AlphaFold-Multimer | protein multi-chain protein sequence | atom-level 3D
[5] folding structure coordinates;
prediction with residue-level
MSA pLDDT
ESMFold [11] protein MLM-based protein sequence | atom-level 3D
folding structure coordinates;
prediction without residue-level
MSA pLDDT
MSA Transformer protein single-chain multiple sequence | atom-level 3D
[14] folding structure alignment coordinates;
prediction with in .pdb format
MSA
ESM-IF1 [11] inverse single-site protein sequence | de novo
folding mutation protein
Transformer-based sequence
LGN [19] variant effect | deep mutation protein graph de novo
prediction GNN based protein
denoising sequence
Equidock [7] protein-target | rigid-body docking | two protein binding

interaction

structures
in .pdb format

affinity score

EquiBind [15]

protein-target

rigid-body docking

protein-ligand

protein-ligand

interaction structure interaction
in .pdb format sites
binding
affinity score
DiffDock [3] protein-target | rigid-body docking | antibody-antigen | bound
interaction structures structure of
in .pdb format complex
Diffab [12] protein target | antibody-antigen | antibody-antibody | bound
interaction interaction structures structure of
in .pdb format complex
binding
affinity,
epitope
mapping

(continued)
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API Functionality | Description Input Output
ProtENN [1] sequence language-based protein sequence | de novo
generation model and structure protein
sequence with
function
Progen [13] sequence language-based protein sequence | de novo
generation model protein
sequence with
function
Grade-IF [16] sequence graph-based model | protein sequence | de novo
generation protein
sequence
GearNet [17] property latent protein graph function or
prediction representation structure label
of protein structure
DeepSol [10] property solubility protein sequence | solubility
prediction prediction
PyMOL protein visualize 3D .pdb document 3D
visualization | conformation for a visualization
given protein of the protein
molecule
VMD protein visualize 3D .pdb document 3D
visualization | conformation for a visualization
given protein of the protein
molecule
BioMedLM biomedical trained on natural language | answer
domain Q&A | biomedical on questions as a
literature biomedicine or specialist in
and clinical notes | healthcare the field

to seek assistance from their fellow AI-DEs, if required. As a result, AI-DEs can dynam-
ically adjust and respond to the evolving demands of the tasks, thereby maintaining a
high degree of accuracy and effectiveness.

Al Presenter. AI-Pr aggregates and presents the results generated by the AI-DEs in a
clear, concise, and user-friendly manner, ensuring the user can easily interpret and utilize
the generated insights, fostering a deeper understanding. To effectively communicate the
results to the user, the AI-Pr is capable of visualizing multimodal data, which includes,
but is not limited to, images and textual data. This presentation is tailored to cater to
different user preferences, and it enhances the comprehensibility of the data, enabling
users to quickly grasp the key insights and outcomes delivered by the AI-DEs.

APIs for Protein Engineering. The APIs integrated within our system, along with
their corresponding task category taxonomy, are delineated in Table 1, which covers



378 Y. Shen et al.

Case 1. ESM-IF for Inverse Folding TEXT Highlighted Output TEXTEditable Parameters

[Use the esmif model to sample some sequence. ? D ProteinEngine D Human User D Comments
You have specified the <esmif> madel for the inverse || Involved i N -
folding task, which is appropriate for this project. | roles: Casei2. ESM-1v for Effect
However, you haven't provided the necessary [pdb file || Al-PM Use esm1v to score protein mutations of sequence:
path] or [sample number] for the <esmif> model to || Al-Pr MANVEKMSVAVTPQQAAVMREAVEAGEYATASEIVREAVR
function correctly. To ensure accurate execution of the DWLAKRELRHDDIRRLRQLWDEGKASGRPEPYVDFDALRKE
inverse folding task, please submit these required ARQKLTEVPPNGL.

inputs. If you require further information, please do

i ified < >
T () I | believed that you specified <esm1v> as the model for

the zero short task. | can confirm that <esmiv> is
Use pdb file at ‘Examplefile/protein.pdb’. Sample only indeed suitable for this project. Furthermore, | also
once. acknowledge that you have provided an amino acid
sequence. However, you are also required to provide a
CSV file path as an input.

Thank you for submitting the required information. || Involved
After reviewing the remaining requirements, | can|| roles:
confirm that you have provided all necessary inputs, || AI-PM Ok, here is the desired file 'FW7YB/F7YBWS8.csv." F
including a PDB file path of [Examplefile/protein.pdb] || Al-Pr
and a sample number of [1]. | acknowledge your
acceptance of the provided details, and | will
immediately begin implementing the required steps.
Please allow me some time to complete the task.

The mutant results for your task are: [-1.2114, -1.3217,
-1.2019, -1.2271, -1.3107... -1.3018]. The correlation
coefficient between the predicted and actual values is
0.1519. Due to space limitations, I am unable to display
all the results here. However, I have saved the detailed

| have successfully completed the assigned task, and || Involved results in the 'result.csv' ﬁleA for your convenience.

I'm pleased to share the results with you. The sample || roles: Please refer to the file to review the complete set of

sequence is AI-PM results.

HTLETWYKTPLISQEAPGTAEEDNLFMSEEQLQLLPLLRPHA || AI-DE T o o o b G o oD
APHHLQFWTGIKKRFLYARDSPTVVALHRSLRERTVTNVHQK | (esmif) alternatively use the sequence:
GEGKSLVLQFTFDDHGSAFFKPFVAQTDDETPTEWRVEORL |t KGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKITLK
HTSRAVVSAYKLDELMNLFLCPPAAGREIDLNSQIRKVTSDSE FICTTGKLPVPWPTLVTTLSYGYQCFSRYPDHMKQHDFFKSA
LSQTFFVTPDKDLCFHGKGTMRDSEEFALCGKPNIVLGALVS MPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGID
KLPHDVIATRSVHKSPWRNVKQGKVTSYFDRNPSYCEDVSKL FKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNI
PPFQTGIHVLELMNEYIFYFLMGNDDHHTFMTFERYGDNSN EDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
FLFLDNGDGFGRADLMNEKILTPLRQCCKMSEELWKRMML e ey
LSADEFNLAQLMEAVLGQDEAYPVLSLPFLKQLDRRLSIVVKE "The mutant results for your fask arc: [-1.3178, -13170,

D ekt it -1.2927,-1.2304, -1.3222... -1.2997]. The correlation

The sequence recovery rate is 35.949%. If you need

coefficient between the predicted and actual values is
any further assistance or have any additional requests, 0.5423. 1 have saved the detailed results in the
please don't hesitate to let me know.

"result 2.csv' file for your convenience.

Case 3. LGN for Inverse Folding [ Apply LGN to GFP protein datasct and give mutant score. Here are the pdb file, msa file and mutant tsv file: r
and Visualization "Dataset/GFP.pdb', Dataset/GFP.a3m','Dataset/GFP.tsv’. Visualize the two mutant positions with highest score.

<{Here are the results: correlation is
0.6455. Mutantl:-3.026, Mutant2:-
3.010, Mutant3:-2.942, Mutant 4:-
3.542, and the entire results are in
‘result.csv’. Visualization are shown on
the right.

Involved roles:

Al-PM

Two Al-DE (one for inverse folding and the other for visualization)
Al-Pr (multimodal visualization)

Fig. 2. Three representative use case examples of the ProteinEngine in user mode, where only
the absence of mandatory parameters will be requested to the user.

most of the task scenarios in protein design. Each category is mapped to a specific Al-
DE. To provide a tangible understanding of the ProteinEngine in action, we illustrate
its use through distinct case examples in Fig. 2, where different AI-DEs are involved in
each case. We illustrate typical examples of SOTA Al models in protein design which
have been used in our ProteinEngine platform.

3 User Study

Hypothesis Formulation and Testing. To evaluate the effectiveness of ProteinEngine, we
conducted a user study focused on gauging its proficiency as an intuitive, human-centered
system for protein engineering tasks. We employed hypothesis testing to quantitatively
compare the performance of ProteinEngine against a baseline condition, focusing on
task completion time, number of attempts, system usability, and the perceived work-
load. In the baseline condition, participants employed traditional tools and methods,
independent of ProteinEngine, such as executing Python scripts directly. Therefore, our
null hypotheses were formulated as follows:
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(H1) ProteinEngine does not reduce the time required for successful identification and
execution of protein engineering models against the baseline.

(H2) ProteinEngine does not improve the accuracy in identifying and executing models
for protein engineering tasks against ProteinEngine does improve the accuracy against
the baseline.

(H3) ProteinEngine does not enhance the overall system usability for model identification
and execution within protein engineering tasks against the baseline.

(H4) ProteinEngine does not decrease the workload required for the completion of
protein engineering model identification and execution against the baseline.
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Fig. 3. The overall flowchart of the user study. This includes preparation (participant recruitment
and briefing), user participation operation (familiarization with the technology and random assign-
ment to conditions), data collection (sequential tasks under different conditions with intermittent
feedback). Each stage of the process is color-coded for ease of understanding. (Color figure online)

Based on the hypotheses, we used a single-sided t-test to assess statistical signifi-
cance.

Dependent Variables. Statistical tests on these hypotheses involve collecting data
on the dependent variables from the user study, specifically the task completion time,
number of attempts, usability score, and workload index, which are defined as follows.

— Task Completion Time: This objective, continuous variable measures the total time
each participant takes to successfully complete a task under each condition.

— Number of Attempts: Another objective, continuous variable records the total
attempts a participant takes to successfully complete each task under each condition.
This variable is indicative of the accuracy of user actions.

— Usability Score: This subjective, continuous variable is derived from the System
Usability Scale (SUS) questionnaire [2]. The score reflects the perceived usability of
the system.

— Workload Index: This subjective, continuous variable, sourced from the NASA Task
Load Index (NASA TLX) questionnaire [8], assesses the perceived mental workload
across six dimensions: mental demand, physical demand, temporal demand, effort,
performance, and frustration level.
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Independent Variables. The primary independent variable is the Condition under
which participants perform the protein engineering tasks, either the baseline or the Pro-
teinEngine. Additionally, we consider potential confounding independent variables that
could influence our study outcomes, including:

— Participant Background: These categorical variables encapsulate information about
each participant’s professional role and affiliations (academia or industry). This infor-
mation could offer insights into a user’s likely background knowledge and potential
biases or preferences when using the interface.

— Familiarity with Technology: These numerical variables represent the degree of each
participant’s familiarity with protein engineering tasks, Python programming lan-
guage, Al models, and the intersection of these areas. The level of familiarity could
potentially influence the ease with which participants adapt to the ProteinEngine, and
thus might impact the measurements of variables like task completion time, number
of attempts, and perceived usability and workload.

User Study Design. The user study workflow, shown in Fig. 3, consisted of sev-
eral steps. First, participants received an introductory tutorial that provided information
about the study’s background, motivation, and procedures. Next, participants completed
a preliminary questionnaire that assessed their background knowledge and familiarity
with Al protein engineering, and their interdisciplinary overlap. The study followed a
between-subjects design, comparing participants exposed to two conditions: a baseline
condition and the ProteinEngine condition. To mitigate learning effects, the order in
which participants encountered these conditions was randomized. To control for poten-
tial effects stemming from participants’ background and familiarity with technology, all
participants completed the same set of activities under both conditions (baseline and Pro-
teinEngine). This approach provided paired data for analysis. Participants were assigned
aseries of six distinct protein engineering tasks under each experimental condition. These
tasks included protein folding, inverse protein folding, and protein mutation prediction.
During the task completion process, we carefully recorded the total time taken for each
task and the number of attempts required for successful execution. After completing the
tasks in either the baseline or ProteinEngine condition, participants were asked to fill
out a questionnaire. This questionnaire aimed to assess their subjective impressions of
the system’s usability and their perceived workload during task completion. To ensure a
valid comparison of user experiences, identical questionnaires were administered. Data
was collected using Google Sheets, with all questions being mandatory to prevent miss-
ing data. Incomplete data from participants who withdrew or failed to complete tasks
were excluded from the analysis.

Participants Recruitment. We strategically planned the recruitment of volunteer par-
ticipants to encompass a wide range of potential users. This design aimed to test the
versatility and broad applicability of our proposed method across various user groups.
Our participant cohort consisted of volunteers from both the AI and biological com-
munities, spanning both academic and industrial fields. This diverse group, including
students, Al researchers, lab technicians, and biologists, allows for a comprehensive
evaluation of ProteinEngine’s functionality across multiple user profiles.
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Implementations. For the LLM in ProteinEngine, we chose the gpt-3.5-turbo. As the
most advanced model in the GPT-3.5 series, this version provides robust capabilities and
superior performance suitable for our application.

Collected Data. The boxplots illustrating the distribution of our four key variables,
namely Task Completion Time, Number of Attempts, Usability Score, and Workload
Index, can be found in Fig. 4. Each box plot provides a visual summary of the minimum,
first quartile (Q1), median (Q2), third quartile (Q3), and maximum values for these
variables. The box represents the interquartile range (IQR) from Q1 to Q3, the line
inside the box denotes the median, and the whiskers extend to show the range of the data
within 1.5 times the IQR. Observations beyond this range are considered outliers and
are represented as individual points. On average it take 36.40 min to complete the user
study for each participant.
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Fig. 4. Boxplots for the four variables.

Table 2. Null hypothesis testing results.

Hypothesis Observed test statistics P-value Reject null hypothesis
H1 7.7012 2.335 x 1078 Yes
H2 3.1944 1.884 x 1073 Yes
H3 ~2.4162 1.166 x 1072 Yes
H4 0.74029 2.330 x 107! No

Hypothesis Testing. We applied the hypothesis testing to ascertain whether the perfor-
mance differences observed between the two conditions i.e., baseline and ProteinEngine
were statistically significant. The differences under consideration, represented as dj,
were computed by subtracting the ProteinEngine measurements from the baseline mea-
surements. Under the null hypothesis, where both platforms have an equivalent effect,
these differences should follow a distribution centered around zero, i.e., g = 0. Our
final dataset for hypothesis testing comprised n = 26 samples. We formulated our null
and alternative hypotheses as follows: Hy: j,g = 0 against Hy: g > 0. This holds for
testing hypotheses H1, H2, and H4. For testing H3, the alternative hypothesis is g < 0.
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Let d and sd represent the sample mean and sample standard deviation of the observed
differences, respectively. Given these parameters, the sampling distribution for the test
statistic follows a t distribution with degrees of freedom n — 1. This means that, under

d
sa/v/n
Of note, no significant difference was found for the workload measure between the two
conditions.

Results. Our study encompassed a total of 45 participants. For hypothesis testing,
we employed the paired two-sample t-test (effectively a one-sample, one-sided t-test on
the difference) at a 5% significance level for the four variables under two conditions,
baseline and ProteinEngine. The results allowed us to reject three of the null hypotheses,
thereby highlighting the superior performance of ProteinEngine in facilitating protein
engineering tasks.

null hypothesis Hy, T = ~ tn—1. Table 2 compiles our hypothesis testing results.

4 Conclusion

In this work, we presented ProteinEngine, a groundbreaking platform that amplifies the
capabilities of LLMs in the realm of protein engineering. This platform’s human-centered
design greatly eases the learning curve traditionally associated with specialized tools,
thereby making protein engineering tasks more accessible. By integrating advanced
LLMs with domain-specific expertise, ProteinEngine marks a significant leap forward
in the application of Al to protein engineering, showing great potential to accelerate
scientific discoveries and spur innovation. As we continue to develop and refine Pro-
teinEngine, it is critical to emphasize the importance of responsible use and rigorous
validation. Therefore, the development of comprehensive ethical guidelines and robust
validation protocols is a key direction for future work.
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Abstract. The pursuit of non-invasive glucose monitoring has lever-
aged multispectral imaging technology. Our study focuses on improving
GlucoCheck, a non-invasive Al-powered glucose monitor. Through pro-
cessing a dataset of 3600 images, we derived four subsets for unique
wavelengths and trained regression models. Performance evaluations,
employing Mean Absolute Error (MAE), Clarke Error Grids (CEG),
and Bland-Altman Plots (BAP), revealed promising outcomes, with a
median MAE of 2.06 mg/dl, CEG Zone A% of 99.17%, and percentage
of BAP outliers as 3.66%. While no clear correlation was found between
wavelength and statistical accuracy, a significant relationship emerged
between wavelength and clinical accuracy through agreement with BAP
outliers. These nuanced findings highlight the potential of multispectral
imaging and machine learning in advancing accurate glucose estimation.

Keywords: Glucose Monitoring - Multispectral Imaging -
Wavelength - Machine Learning - Biosensor

1 Introduction

Diabetes, a chronic metabolic disorder impacting over 500 million adults glob-
ally [1], has been characterized as the epidemic of the century [2]. The surge
in this metabolic ailment, alongside others, has spurred interest in continuous
glucose monitoring (CGM), which has shown potential in diabetes remission,
dosage reduction, and improving patient well-being [3]. Existing glucose moni-
toring techniques encompass both invasive and non-invasive modalities [4].
Typical invasive techniques encompass blood sample analysis, finger-prick
glucometers, and CGMs employing subcutaneous needles [5]. Non-invasive glu-
cose monitoring methods circumvent tissue interference through approaches like
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optical spectroscopy, photoacoustic spectroscopy, electromagnetic sensing, and
nanomaterial-based sensing [5,6]. Optical spectroscopy, among the foremost non-
invasive methods, utilizes diverse light sources to gauge absorption, reflection,
and transmission [7].

Near-Infrared (NIR) spectroscopy, a derivative of this method, employs light
absorption within the near-infrared spectrum. By measuring and analyzing the
penetration and absorption patterns of NIR light in human tissue, it enables
the estimation of blood glucose concentration. This technique presents a safe,
painless, and convenient means for continuous glucose monitoring.

Related works using this technology have already shown promising results.
The device in [8] used NIR spectroscopy with PPG processing and regression
to estimate glucose values for 75 subjects and achieved 82% clinical accuracy.
Another model [9] used Mid-Infrared Spectroscopy with 3 distinct wavelengths
and Multiple Linear Regression to achieve 86.3% clinical accuracy. A similar
method in [10] used analog NIR spectroscopy, boosted by fuzzy logic to create a
model with 97.5% clinical accuracy. For other optical-spectroscopy-based work,
refer to [4,7,11,12].

Although these works present nuanced implications, they are yet to explore
hardware factors such as light wavelength. To tackle this issue, we are evaluating
the effect of various wavelengths on the performance of our non-invasive blood
glucose monitoring system, GlucoCheck [13,14]. Through this investigation, we
hope to determine the most effective approach for NIR spectroscopy-based blood
glucose monitoring. This paper will present an experimental evaluation of differ-
ent wavelengths, a comparative analysis, and a novel non-invasive CGM device
for glucose estimation.

2 Previous Implementation

In our initial design (Fig. 1), an NIR laser coupled with a finger-clip was employed
to capture images via a camera. These images were then utilized to extract fea-
tures, subsequently employed in training a machine-learning model for glucose
estimation. Specifically, our prototype utilized an Arducam 5MP camera diode
alongside a K'Y-008 650 nm laser diode for operation [13]. Through model train-
ing, we found that the KNeighbors regressor, boosted with AdaBoost, yielded the
most favorable outcomes: an MAE of 9.4 mg/dl and 90.78% CEG Zone A% [14].
These findings serve as a cornerstone for our ongoing research endeavors.

3 Methodology

3.1 Research Objective

The objective is to understand the effect of various wavelengths on the Glu-
coCheck device’s performance in estimating blood glucose levels. The research
involves building a new device to simulate diverse wavelengths and evaluate their
effects on accuracy, efficiency, and functionality.
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Fig. 1. Previous GlucoCheck Prototype

3.2 Wavelength Selection

The wavelength selection process considered hardware compatibility, affordabil-
ity, and physiological impact on human subjects. In this study, we carefully
selected four wavelengths (650 nm, 808 nm, 830 nm, 850 nm) as they were afford-
able and compatible with the Raspberry Pi GPIO board. Importantly, prior
studies leveraging similar wavelengths have successfully estimated glucose lev-
els [15]. Figure 2 shows the four laser diodes selected.

(a) (b) (c)
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~

Fig. 2. (a) Laser 650 nm, (b) Laser 808 nm, (c) Laser 830 nm, and (d) Laser 850 nm.

In evaluating safety, we considered Maximum Permissble Exposure (MPE),
measuring the total radiant light exposure produced by the lasers [16]. The
MPE limit for human skin is 1.0 W /em? [17] and all diodes fell below this value
(650 nm: 0.231 W /cm®, 808nm: 0.375 W /cm®, 830nm: 0.425 W /cm®, 850 nm:
0.426 VV/c1112)7 confirming their safety for use on the skin.

3.3 Camera Selection and Enclosure Creation

The proposed device uses the same PiCamera 2 camera-diode and Raspberry
Pi4 Model B from the previous implementation due to their extensibility and
compatibility with new hardware. Although prior studies [18] favored lower-
definition (640p) images for faster processing, a reassessment explored high-
definition (1080p) image capture. While the previous implementation used a
fingerclip to house the laser and camera, we are implementing a new box-shaped
enclosure for this experiment. The larger, more open box shape was chosen
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to account for laser and camera diodes of varying sizes and specifications. In
addition to housing other components, the enclosure must also block out light
that could interfere with data collection.

To design this enclosure, we utilized a computer-aided design (CAD) pro-
gram, Onshape, to create a 3D part model and then manufactured it using black
PLA filament on the Creality Ender 3 printer. Within our design, the laser is
positioned within the chimney atop the box and the camera is slotted through
the back crevice. Figure3 shows the initial CAD design and the final printed
model.

&
\
(a) (b)

Fig. 3. New Enclosure. (a) Onshape Design. (b) Final Printed Model.

3.4 Data Collection

Upon receiving IRB approval, data collection started with 25 participants,
encompassing various skin tones and ages. The clinical characteristics of the
participants are gender (14 females and 11 males), ethnicity (8 Caucasians, 6
Latinos, 5 African American, 6 Asian), and all were non-diabetic patients. Across
the 25 participants, a total of 30 sets of data were gathered, each set including
images for each wavelength and a reference glucose value. The reference values
were obtained with a glucometer, which ranged from 78 mg/dl to 165mg/dl.
Our procedure involved placing the patient’s finger inside the front entry of the

Fig. 4. Data collection of a participant of the study. (a) Using GlucoCheck. (b) Using
Fora 6 glucometer.
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enclosure, directly over the PiCamera. Then the laser is placed into the enclo-
sure’s chimney and the data collection script was run on the Raspberry Pi. A
live video feed displayed the images being captured for the model’s evaluation.
After the script is finished, the laser is replaced with another until all four lasers
have been used. Figure4 illustrates the data collection process.

4 Experiments and Results

4.1 Data Cleaning and Feature Extraction

The initial dataset comprised images stored in folders, with information on the
wavelength, participant ID, and reference glucose value. Post-analysis and the
removal of poorly captured images, the finalized collection comprised 3600 high-
quality images, with 900 images per wavelength.

Employing the same approach from our previous study [14], this dataset
underwent extensive processing, extracting RGB intensity values and statistical
measurements from images. Subsequently, a refined dataset emerged, comprising
3600 samples, each linked to 290 features: 256 features for red intensity values,
31 measurement features, 1 reference glucose value, 1 wavelength number (650,
808, 830, or 850), and 1 subject ID. The intensity features map the frequency of
specific RGB values for the red color channel in the image while the measurement
features map statistical measures, such as mean, median, and mode, of all RGB
values in the image. Further explanation can be found in our previous work [14].

4.2 Model Training

The processed dataset was split into four smaller subsets, each dedicated to a
specific wavelength. Subsequently, each wavelength dataset was used to create a
training/testing split. With a randomized shuffle of the samples, the data splits
were arranged with 60% training data and 40% testing data. The training and
testing splits contained the all 290 features except for the wavelength and subject
ID. These splits were used to train four KNeighbours regressors with AdaBoost
ensemble learning following the same procedure and hyperparameters as our last
study [14].

4.3 Performance Metrics

While the task of estimating blood glucose levels is primarily a regression analysis
problem, a crucial secondary task is validating a novel medical instrument. This
nuance led us to choose performance metrics that consider machine-learning and
medical perspectives. Three metrics were selected: MAE, CEG, and BAP. These
metrics, respectively, assess the models’ statistical accuracy, clinical accuracy
through correlation, and clinical accuracy through agreement. MAE is a standard
measure of accuracy in regression analysis. This metric is calculated by averaging
the difference of all predicted and reference blood glucose values. This metric
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is recorded in mg/dl and accounts for raw statistical accuracy. To account for
clinical accuracy, however, two approaches must be considered: correlation and
agreement.

Correlation examines the proportionality of the model’s predictions to the
reference values, represented by CEG in this study. These grids categorize the
relationship between predicted and reference blood glucose values into five dis-
tinct zones, each delineating various levels of accuracy and clinical implications
from incorrect measurement [19]. Our assessment recorded the grid for each
model and the percentage of predictions falling within Zone A, denoted as A in
Fig. 5.

Correlation is robust but assumes comparison between two distinct variables,
which may not always hold true. To address this, agreement should be consid-
ered, examining relationships between variables measuring the same attributes
using different methods. Bland-Altman Plots, a standard measure for agreement
in medical/chemical instruments, display observed and predicted values’ mean
on the x-axis and their difference on the y-axis [20]. They provide insights into
error distribution and density, establishing thresholds for insignificant model
inaccuracies. We utilized the 95% range of the normal distribution to set upper
and lower error limits, identifying outliers as predictions outside these bounds.
Although all three metrics are valuable, discussion will focus more heavily on
CEG and BAP as they evaluate the device’s medical efficacy, which is more
important than statistical accuracy.

4.4 Experimental Results

After conducting tests on the models using their respective testing splits, key
metrics such as MAE in mg/dl, Zone A%, and the percentage of BAP outliers
were recorded and tabulated in Table 1. The CEG and the BAP were plotted for
each wavelength to visualize the performance, however, we will only show the
first for reference as it was the best-performing model. Figure 5 shows the CEG
and BAP for the 650 nm wavelength model.

For further analysis, we plotted each metric against wavelength, as illustrated
in Fig. 6, to delineate a relationship between wavelength and the given metric.
The values present on the plots are gathered from Table 1. Furthermore, linear
regression equations were fitted onto each scatterplot using the least-squares
method, as it provides the best estimation.
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Table 1. Performance Metrics for All Wavelength Models

Wavelength | MAE Zone A % | BAP Outliers
650 nm 2.10mg/dl | 99.72% 6.11%
808 nm 3.47mg/dl | 98.89% 3.05%
830 nm 1.92mg/dl | 99.17% 4.44%
850 nm 2.01mg/dl | 99.17% 1.11%

Glucose Estimation Clarke Error Grid

Bland-Altman Plot for 650nm Model

Prediction Concentration (mg/dl)
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Fig. 5. Results with laser 650 nm. (a) CGE. (b) BAP.

Wavelength vs. MAE Scatterplot

MAE (mg/dl)

Wavelength vs. Zone A % Scatterplot

° AN

ZoneA %
g
8

24 s
/ 99.1

.
. %9 -

0 660 680 700 720 740 760 780 800 820 840 860 640 660 680 700 720 740 760 780 800 820 840 860

Wavelength (nm) Wavelength (nm)

(a)

BAP Outliers (%)

55

45

35

25

15

(b)

Wavelength vs. BAP Outliers Scatterplot

0 660 650 700 720 740 760 780 80 620 80 830
Wavelength (nm)

()

393

Fig. 6. Scatterplot of wavelength against assessment metrics. (a) wavelength vs. Zone
A % (b) wavelength vs. MAE. (c) wavelength vs. BAP outliers.
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To analyze the impact of wavelength on model performance, the three perfor-
mance areas from experimentation were considered: statistical accuracy, clinical
accuracy via correlation, and clinical accuracy through agreement. These areas
not only represent the chosen metrics, but also encompass the validity of the
GlucoCheck device in machine learning, glucose estimation, and clinical efficacy.
Subsequent sections will present an in-depth analysis of each facet.

4.5 Statistical Accuracy

Statistical accuracy, gauged by MAE, reveals pertinent distinctions between the
wavelengths. The 808 nm model showcases the highest MAE, significantly sur-
passing the other wavelengths, which all had similar values. This difference
points to the 808 nm model’s MAE being a statistical outlier. The interquar-
tile range for MAE is 1.92mg/dl and a straightforward outlier test highlights
the 808 nm model’s MAE (3.47mg/dl) as surpassing the standard threshold
(Median + (1.5 * IQR)), categorizing it as an outlier. These findings suggest
no clear correlation between wavelength and statistical accuracy, with consis-
tent accuracy across wavelengths but skewed variance from an outlier, further
supported by the small correlation coefficient between MAE and wavelength
(r =0.09).

4.6 Clinical Accuracy Through Correlation

Clinical accuracy, shown by CEGs, aligns closely with statistical accuracy. Zone
A % exhibits minimal variance across the four wavelengths, hovering around
the median value of 99.17% with a standard deviation of 0.37%. Despite a high
negative correlation between Zone A% and wavelength (r = —0.84), the negli-
gible variance renders this correlation less impactful. However, a notable outlier
emerges in the 808 nm model again, with its higher error and larger MAE com-
pared to other wavelengths. This alignment underscores a similarity between
statistical accuracy and clinical accuracy through correlation.

4.7 Clinical Accuracy Through Agreement

Finally, we assess clinical accuracy through agreement, employing BAPs and
outlier percentages. Here, a pertinent difference between the lowest and high-
est wavelengths emerges with the 650 nm model’s 6.11% outlier rate and the
850 nm model’s 1.11% outlier. Despite a median outlier percentage of 3.66%, the
noticeable standard deviation of 2.12% implies variance by surpassing half of the
median’s value. Furthermore, a strong negative correlation between outlier per-
centage and wavelength (r=—0.81) suggests a potential relationship between
wavelength and clinical accuracy through agreement. This could suggest that
higher wavelengths induce more agreement, which is reinforced by the BAP,
demonstrating fewer outliers in the healthy blood glucose range (70 mg/dl to
100 mg/dl) for higher wavelengths.
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5 Discussion

Through our analysis, we find no association between wavelength, statistical
accuracy, and clinical accuracy through correlation. Although a relationship
between wavelength and clinical accuracy through agreement is evident, it only
encompasses one area of evaluation. A definitive conclusion remains elusive.
While our findings echo fundamental attributes of blood glucose and spectrom-
etry, such as glucose absorption peaking in much higher wavelengths [21]; sub-
stantial improvements in model accuracy are contingent upon a considerable
increase in wavelength. To surmount this limitation, a subsequent study intends
to delve into a much wider range of wavelengths and revisit the association
between wavelength and performance.

6 Conclusion

In conclusion, this study marks a significant stride toward refining non-invasive
glucose monitoring methodologies by leveraging multispectral imaging and
machine learning. The exploration across four distinct wavelengths has show-
cased promising outcomes in glucose estimation. Notably, the models exhib-
ited substantial accuracy, with minimal MAE values ranging from 1.92mg/dl
to 3.47mg/dl across the wavelengths. The CEG analysis revealed high percent-
ages of predictions within Zone A, with percentages exceeding 98.89% across
all wavelengths. Additionally, the BAP analysis identified a lower percentage of
outliers, particularly in the healthy glucose range (70 mg/dl to 100mg/dl) for
higher wavelengths. While no association emerged between wavelength, statisti-
cal accuracy, and clinical accuracy through correlation, a potential association
with clinical accuracy through agreement warrants further exploration. These
findings underscore the promise of multispectral imaging and machine learning
in advancing glucose estimation, urging further research in broader wavelength
ranges for improved biosensing applications.
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Abstract. Stress acts as a triggering and aggravating factor for many
diseases and health conditions. This has prompted the development of
wearable devices capable of continuously and unobtrusively tracking
physiological signals associated with stress levels. Moreover, data min-
ing methods have been devised to extract valuable information from
these signals, to detect and monitor stress more effectively. We argue
that it is possible to accurately detect and differentiate physiological
changes occurring at the early onset of stress, i.e., the anticipation stage,
from those occurring in no-stress, stress, and post-stress conditions. To
investigate it, we analyze biomarker data (blood volume pulse, skin
conductance, skin temperature, and acceleration) collected from wrist
sensors in two publicly available datasets, where psychosocial stress is
induced under controlled laboratory conditions. We train and evalu-
ate person-specific classification algorithms by using established learning
approaches. We have discovered that the random forest classifier yields
promising results in both detecting stress anticipation and distinguish-
ing between the four considered classes. The results of this study suggest
that wearable systems, incorporating sensors and stress monitoring algo-
rithms like the ones introduced here, can become integral components of
intervention systems aimed at addressing stress-related issues.

1 Introduction

Stress is a widely discussed topic and plays a central role in human life. Its
increased coverage in media has led to a rise in research and public awareness
about its effects. It is now well-established that stress can affect health directly
through autonomic and neuroendocrine responses [17], as well as indirectly by
influencing health behaviours [25]. Stressors provoke a range of physiological
responses that are initially protective and adaptive, yet when the balance is
disrupted, and the response persists over time, it can become detrimental to
an individual’s health and well-being [16]. Stress may indirectly contribute to
conditions such as obesity, cardiovascular disease, and cancer risk, as it can lead
to negative changes in diet and perpetuate unhealthy eating behaviors [27].

In response to increased global mental health concerns in 2020, the World
Health Organization (WHO) released a guide aimed at providing individuals

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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with practical stress coping strategies [18]. These include ensuring sufficient
sleep, monitoring emotions, prioritizing tasks, identifying stressors, practicing
daily muscle relaxation, and cultivating inner contentment and peace. Research
has assessed stress management strategies, especially their impact on univer-
sity students [5]. Findings show targeted interventions effectively reduce stress
within this group [4]. Additionally, a clinical trial found a mobile app mindfulness
program to significantly reduced perceived stress levels among students [22].

Stressors trigger a range of biological responses involving the autonomic ner-
vous system, immune system, and hypothalamic-pituitary-adrenal axis, which
can be quantified using biomarkers including cortisol response magnitude, heart
rate, electrodermal activity, and heart rate variability [7]. The stress response
is not only evoked by experiencing a stressful event but also by anticipating its
onset [24]. This anticipation prompts individuals to assess the perceived threat
to their well-being through cognitive evaluation. In this assessment, psychologi-
cal factors such as novelty, unpredictability, social evaluation, and a sense of low
control have been identified as contributors to the stress response [9].

Recent advances in wearable technology have facilitated the development
of unobtrusive, user-friendly devices that are capable of continuously recording
multiple robust indicators of elevated levels of stress [19]. With the growing
demand for stress management solutions, consumer wearables, such as wrist-
worn and head-worn variants, have emerged as popular choices in recent years.
Leading wrist-worn devices like those from Garmin and Fitbit leverage signals,
such as heart rate variability and electrodermal activity, to compute real-time
and daily stress scores [2,10].

In this study, we investigate the potential for detecting different types of
physiological changes linked to stress, focusing on stress anticipation, i.e., the
state preceding actual stress, using biomarkers that can be monitored comfort-
ably by a wrist-worn device.

1.1 Motivation and Contribution

The existing research literature on stress monitoring using wearable devices
has predominantly approached stress prediction as a binary condition. Typi-
cally, datasets containing stress biomarkers are labeled with binary stressed or
non-stressed time periods, and models trained on these datasets yielded classi-
fiers capable of classifying previously recorded data as either stressed or non-
stressed [28]. Intending to forecast future stress episodes, Umematsu et al. [26]
focused on predicting tomorrow’s stress score from physiological data from wrist-
worn devices collected the previous day. Similarly, the work of Jaimes et al. [14]
explored the use of physiological time series data collected by a body sensor
network to predict future stress episodes.

We test the hypothesis that stress anticipation associated with social eval-
uation can be accurately predicted using biomarker data collected from a
wrist-worn device. Furthermore, we propose that physiological changes occurring
during stress anticipation can be differentiated among no stress, stress, and post-
stress conditions, framing this as a four-class classification problem. To investi-
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gate this hypothesis, we analyze two publicly available datasets: WESAD [20]
and Stress-Predict [12]. These datasets feature the Trier Social Stress Test
(TSST), a psychosocial test conducted in controlled laboratory settings. Based
on their study designs, we define stress anticipation as approximately seven min-
utes before the stress condition, and post-stress as around four minutes follow-
ing the stress condition. Recognizing the diverse individual responses to stress
in identical situations [21], we develop person-specific prediction models, i.e.,
models trained only with data pertaining to the considered subject.

2 Methodology

ms?

Relax and meditation
< 85 minutes >

Time

Fig. 1. Data from a single subject with ID 5 from the WESAD dataset, excluding
baseline monitoring at the beginning.

Both the WESAD and Stress-Predict datasets were derived from biomarker
data collected using the Empatica E4 device [1], capturing measurements of
blood volume pulse (BVP), which tracks changes in blood volume within blood
vessels over time, electrodermal activity (EDA), skin temperature (TEMP), and
three-axial acceleration (ACC). The E4 records BVP at 64 Hz, EDA at 4 Hz,
TEMP at 4Hz, and ACC at 32 Hz.

Both experimental setups incorporate the Trier Social Stress Test, a well-
established protocol known to elicit responses from the hypothalamic-pituitary-
adrenal axis [3]. The TSST induces psychosocial stress by requiring participants
to deliver an interview-style presentation, followed by a challenging mental arith-
metic task conducted in front of an audience that provides no feedback or
encouragement. In addition to the TSST, the Stress-Predict dataset includes
measurements obtained during two additional stress stimuli: the Stroop test
and the Hyperventilation Provocation Test (HPT). Conversely, the WESAD
dataset includes both the stress condition (TSST) and an amusement condi-
tion, which were alternated among different subjects to mitigate potential order
effects. Consequently, in WESAD, there is one stress-anticipating interval for
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Table 1. Comparison of WESAD and Stress-Predict Datasets

Dataset Subjects | Duration Labels (Duration)

WESAD (2018) 15 96 min (+ 9 min) | Baseline (20 min), Amusement (6 min),
Meditation (2x7min), Stress (TSST: 10 min),
Relax (total 47 min (£ 9 min))

Stress-Predict (2022) | 35 55min (+ 2min) | Baseline (2x10min), Relax (3x5min),
Stress (Stroop: 5min, T'SST: 10 min, HPT: 2min)

each subject, whereas, in Stress-Predict, we consider all three stress-anticipating
intervals stemming from the three stress stimuli.

The data from a single subject in the WESAD dataset is depicted in Fig. 1.
Following each condition, subjects participated in a guided meditation to pro-
mote relaxation. During intervening periods, subjects were further provided
opportunities to relax.

A comparison between the two datasets is provided in Table 1. In both study
protocols, it was ensured that each stress condition was preceded and followed
by a rest or meditation period lasting a minimum of five minutes. Baseline condi-
tions aimed at inducing a neutral affective state were recorded at the beginning
of each study, and at the end in the case of the Stress-Predict dataset. The
datasets were labeled periodically, with specific time frames during the experi-
ment categorized according to the perceived condition the subjects were placed
under, as indicated in the Labels column of Table 1.

2.1 Predictive Modeling

As previously mentioned, we frame stress prediction as a four-class classification
problem. Our methodology involves utilizing a time window of multiple physi-
ological signals as input. These physiological signals encompass various param-
eters, including some derived from the recorded signals, as further detailed in
this section. From each input window, a set of features is extracted to capture
patterns in the data. These features are then utilized as input for a machine-
learning classification algorithm, which assigns a class label. Similarly to other
data stream handling methods, we utilize the sliding window technique to seg-
ment physiological signals into fixed-length intervals. We established the length
of input windows to be 240s. To mitigate potential information loss at window
edges, consecutive windows are overlapping: the subsequent window is shifted
by 30s from the precedent.

Before feature extraction, input windows from each subject are separated
into four classes: no stress (NS), anticipating stress (AS), experiencing stress
(ES), and post stress (PS). These labels are assigned based on the stress sample
proportions in the input window as well as its subsequent window. Taking into
account the specific protocols for data collection in the analyzed datasets, which
featured relatively short time spans between tasks, during which we hypothesize
the subjects experienced stress anticipation, we chose for the subsequent window
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length to be equal to that of the input window. The labeling scheme is summa-
rized in Table 2. Here, ¢ represents a threshold that determines the proportion of
stress samples in the subsequent window below which the proportion is consid-
ered insignificant. We selected a § value of 0.25 to balance the number of samples
in the anticipating stress and post stress classes. Due to the selected input win-
dow and subsequent window lengths, along with parameters § and shift, stress
anticipation is observed within the seven-minute interval immediately preceding
the stress condition. Figure2 illustrates the application of the sliding window
technique.

Table 2. Labeling approach: Input windows are labeled based on the proportion of
stress samples within them and their subsequent windows.

Input window | Subsequent window | Label

0 <9d No stress

0 >0 Anticipating stress
>0 >1-6 Experiencing stress
>0 <1-46 Post stress

<+——— Relax (7mins)TStress (11mins) Relax (7mins)
v | ) NI -
i [ L W

Input ! Subsequent .
window window Time

Fig. 2. Illustration of two sliding windows applied to a portion of Fig. 1-data: Each
sliding window consists of an input window (gray area) and its subsequent window
(yellow area). The consecutive sliding windows have a 30-second shift between them
(Colour figure online).

Feature Extraction. The goal of feature extraction is to derive time-domain
and frequency-domain features relevant to the classification task. We employ an
approach aimed at capturing changes in feature values throughout the input win-
dow by segmenting it into overlapping windows. Specifically, we utilize a method
that divides the input window into segments of 60s each, with a 30-second over-
lap between consecutive segments, resulting in a total of seven subwindows per
input window. Before feature extraction, we apply preprocessing techniques to
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the raw signals based on our review of relevant literature. Table 4 in the appendix
presents the features extracted from different modalities. For the raw ACC sig-
nal, we compute various characteristics including mean, standard deviation, and
peak frequency. These computations are performed separately for each axis as
well as for the norm of the signal. We apply a pulse onset detection algorithm to
process the raw BVP signal. After identifying pulse onsets, we compute the time
intervals between consecutive pulses to construct a series representing the HRV
signal. HR is derived by converting these intervals to beats per minute (bpm).
Subsequently, features are derived from the windowed signals. Our approach to
feature extraction from HR and HRV is aligned with that outlined in [20]. For
the raw EDA signal, we initially applied a 5 Hz lowpass filter. We decompose the
EDA signal into two components known as the skin conductance level (SCL) and
skin conductance response (SCR) [11]. Regarding the raw TEMP signal, we com-
pute common statistical features, including slope and dynamic range. In total,
each one-minute subwindow produced 56 features, resulting in a representation
of 392 features for one input window.

Classifiers. The previously extracted features are standardized to the same
scale and form the entries of the input vector for the subsequent classifica-
tion phase. We compare four machine learning algorithms: multinomial Logis-
tic Regression (LR), Random Forest (RF), k-Nearest Neighbors (kNN), and
AdaBoost (AB). These models were chosen for their popularity, compatibility
with small datasets, and ability to balance accuracy with simplicity. Further-
more, they are suitable for practical deployment in devices with limited battery
life, as demonstrated in previous studies [6,13,15]. To evaluate these algorithms,
we employ repeated random sub-sampling validation, conducting ten repetitions
for each subject’s data. In our approach, a subject’s dataset is randomly par-
titioned into three subsets of comparable size, maintaining the original class
distribution. One subset is used for testing, while the other two are reserved
for training. Before training the model, we address the class imbalance in the
training set by employing random undersampling and the synthetic minority
oversampling technique (SMOTE) [8] to ensure a consistent representation of 30
samples per class. The best hyperparameter combination is found through cross-
validation. We fine-tuned parameters like k-nearest neighbors count, estimator
numbers for Random forest and AdaBoost (capped at 150), and regularization
for Logistic regression. After completing training and validation for each sub-
ject’s dataset, we evaluate the model by testing it and by aggregating predictions
across all subjects, and computing the performance metrics. Following training
and testing for each subject’s dataset, we aggregate predictions across all subjects
and compute the performance metrics. We then assess each model’s generaliza-
tion and performance consistency across diverse subjects by aggregating results
across the ten repetitions.

3 Experimental Results and Discussion

The classifiers’ outcomes on the four-class classification task are shown in Table 3.
Each machine learning method’s performance is evaluated using precision and
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recall metrics for each class, in addition to average accuracy and Fl-score. To
assess these metrics for each class, we treat each class as a distinct binary clas-
sification task using the One-vs-Rest (OVR) strategy. The average Fl-score is
calculated as the unweighted mean of Fl-scores across all classes, a technique
known as macro-averaging [23].

Overall, the RF classifier achieves the highest prediction accuracy for both
datasets, WESAD and Stress-Predict, with scores of 0.96 and 0.85, respectively.
Similarly high accuracy values are attained by the LR model, scoring 0.94
and 0.79, respectively. Conversely, kNN and AdaBoost classifiers demonstrate
notably inferior performance. Given the extensive feature set, it is likely that
the data contains noise. This discrepancy in performance could be attributed to
the generally lower robustness of kNN and AdaBoost classifiers to noise com-
pared to RF and LR classifiers.

The RF classifier outperforms other classifiers in each class. However, the
detection performance on the anticipating stress class is lower compared to
classes no stress, experiencing stress, and post-stress. On the WESAD dataset,
the RF classifier achieved a precision of 0.82 and a recall of 0.79, while on the
Stress-Predict dataset, it attained a precision of 0.67 and a recall of 0.62. More-
over, RF achieves a much better performance in detecting anticipating stress,
compared to the other models. This may be related to the specific capability of
this model to prevent overfitting, which is a concrete risk in these small data
sets. Moreover, it is worth noting a higher standard deviation across the ten
iterations compared to other classes. A possible reason for this could be the
increased variability among subjects in the data linked with the anticipating
stress class, indicating that the model may need larger sample sizes to better
capture underlying patterns.

To better illustrate the performance differences on the considered classes,
Table5 in the appendix presents the average confusion matrix generated by
applying the RF classifier to the feature dataset related to a single subject. The
corresponding visualization of recorded signals for this subject can be found in
Fig. 1. The dataset for this subject comprises 195 data points, each characterized
by 392 features, as detailed in Sect.2.1. The test dataset is constructed with
a stratified sampling approach, comprising two test samples for the AS class,
and five each for the ES and PS classes while including 53 samples for the NS
class. To ensure result stability and account for randomness, we conducted 100
repetitions of the experiment. Analysis revealed instances where AS observations
were misclassified as NS or ES observations, which are adjacent classes to AS
in terms of time. Similarly, PS observations were also misclassified as NS or ES
observations. This suggests that the model may require larger sample sizes to
better capture underlying patterns. Moreover, refining class boundaries through
adjusting the parameter value §, could improve the model’s accuracy in capturing
these patterns.

It is also worth noting that the WESAD dataset exhibits higher performance
levels compared to the Stress-Predict dataset. This difference might stem from
additional stress-inducing tasks in the Stress-Predict dataset, apart from the
TSST. These additional tasks lack adequate evidence in the literature regarding
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their ability to reliably induce stress, unlike the TSST. Additionally, unlike the
WESAD dataset, where substantial intervals between different tasks are present,
the intervals between the three stress-inducing tasks are only five minutes in the
Stress-Predict dataset, thereby constraining our analysis.

Table 3. Evaluation of classifiers on a four-class classification task using the WESAD
and Stress-Predict datasets. Abbreviations: NS = no stress, AS = anticipating stress,
ES = experiencing stress, PS = post-stress, LR = Logistic Regression, RF = Ran-
dom Forest, kNN = k-Nearest Neighbors, AB = AdaBoost. Values represent mean
performance metrics with standard deviations indicated by + signs.

‘WESAD
NS AS ES Ps Accuracy F1
P R P R P R P R
LR 0.99 (+ 0.01) | 0.96(+ 0.01) | 0.61 (£ 0.06) | 0.70 (£ 0.10) | 0.84 (£ 0.04) | 0.91 (£ 0.04) | 0.81 (£ 0.04) | 0.83 (£ 0.05) | 0.94 (£ 0.01) | 0.84 (£ 0.03)

( (
RF | 0.99 (£ 0.0) |0.98 (& 0.01) | 0.82 ( 0.08) | 0.79 (£ 0.09) | 0.91 (& 0.04) [ 0.91 (+ 0.05) | 0.87 (& 0.04) | 0.93 (+ 0.03) [ 0.96 (£ 0.01) | 0.89 (+ 0.03)
ENN | 0.99 (£ 0.0) |0.90 (£ 0.01) | 0.37 (£ 0.05) | 0.79 (£ 0.08) | 0.74 (£ 0.03) | 0.89 (£ 0.04) | 0.74 (£ 0.03) | 0.89 (£ 0.04) | 0.89 (£ 0.01) | 0.76 (£ 0.02)
AB | 0.96 (& 0.01) |0.97 (£ 0.01) | 0.58 (£ 0.11) | 0.48 (& 0.08) | 0.80 (« 0.08) | 0.80 (& 0.05) | 0.82 (% 0.02) | 0.80 (£ 0.06) | 0.92 (& 0.01) | 0.77 (% 0.03)
Stress-Predict
+0.04) | 0.60 (£ 0.05) | 0.56 (£ 0.06) | 0.76 (£ 0.04) | 0.72 (£ 0.04) | 0.82 (£ 0.03) | 0.84
+0.03) | 0.67 (£ 0.05) | 0.62 (& 0.07) | 0.84 (+ 0.04) | 0.78 ( 0.04) | 0.86 (& 0.02) | 0.89
+ 0.05) | 0.51 (% 0.04) | 0.72 (% 0.05) | 0.78 (£ 0.02) | 0.77 (£ 0.05) | 0.87 (& 0.02) |0.77
+0.05) | 0.65 (£ 0.08) | 0.32 (£ 0.05) | 0.71 (+ 0.04) | 0.56 (£ 0.04) | 0.66 (& 0.02) | 0.88

)
)
)
)

LR | 0.85 (+0.04) |0.87
RF 0.90 (+ 0.03) | 0.92
kNN | 0.86 (+ 0.03) |0.86
AB | 0.88 (+ 0.04) |0.73

+0.03) [ 0.79 (£ 0.02) | 0.75 (£ 0.02)
+0.03) | 0.85 (+ 0.02) | 0.81 ( 0.02)
(
(

=+ 0.04) | 0.79 (£ 0.01) | 0.76 (% 0.01)
+0.02) | 0.71 (£ 0.02) | 0.65 (+ 0.02)

( (
( (
( (
( (

Principal Component Analysis. To gain insights into the patterns within
the four classes, we conducted principal component analysis (PCA) on individual
subjects’ data. Below, we present an example using data from the subject ana-
lyzed earlier. Figure 3 displays the first two principal components and the top six
loading vectors, while Table 6 in the appendix provides information about these
loadings. The first loading vector places nearly equal importance on EDA-related
measures but assigns less weight to HR, HRV, and TEMP-related measures. Con-
versely, the second loading vector prioritizes TEMP, HRV, and HR measures,
assigning lower weight to the remaining features. Differences between classes for
the subject can be explored through the two principal component score vectors
depicted in Fig. 3 in the appendix. Observations with notably positive scores on
the first principal component, such as those corresponding to experiencing stress
and post-stress, exhibit high levels of skin conductance. Additionally, observa-
tions from these classes show negative scores on the second principal compo-
nent, signifying lower values in skin temperature and heart rate variability. Data
points near zero, primarily from the no stress class, on both components, suggest
approximately average levels of skin conductance, heart rate variability, and skin
temperature.

4 Conclusions and Future Work

This study analyzed biomarker data, including movement and physiological sig-
nals such as acceleration, electrodermal activity, heart rate, heart rate variability,
and temperature, obtained from a wrist-worn device. Our objective was to eval-
uate the effectiveness of using these signals in detecting stress anticipation trig-
gered by social evaluation. We used standard machine learning techniques and
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two publicly available datasets collected under laboratory conditions to explore
this hypothesis, aiming to move beyond the typical binary stress vs. no stress
classification task already considered in the literature. The experiments show-
cased the Random Forest’s capability to accurately recognize the patterns of
anticipating stress and distinguish them from other patterns, including no stress,
experiencing stress, and post stress.

While this study provides valuable insights, it is important to note the limita-
tion imposed by the relatively small sample size. Future research requires larger
samples for validation, along with the development of specialized datasets tai-
lored for studying stress anticipation. This study did not explore the impact of
the combination of input window and subsequent window lengths, along with
the choice of shift and parameter §, on the system’s prediction performance; this
aspect will be investigated in future work.

This study primarily focused on prediction rather than exploring other
aspects of the issue, such as strategies for effectively using these predictions.
Questions persist regarding how to assist individuals in identifying optimal
behaviors for change and providing ongoing support, crucial for closing the feed-
back loop with users. We aim for this study to emphasize the proactive potential
of such systems.
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ECS00000043, and FAIR (Future AI Research), project code PE00000013. These
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We extend our gratitude to the anonymous reviewers for their valuable feedback.

Appendix

Table 4. List of extracted features.

Signal | Features

ACC | mean, standard deviation, absolute integral, and peak frequency for each axis
ACC,, ACCy, ACC., and the norm ACChorm

BVP | HR and HRV: mean, standard deviation; HRV: number and percentage of
intervals differing more than 50ms, energy in ultra-low (ULF), low (LF), high
(HF) and ultra-high (UHF) frequency component; sum of frequency
components in ULF-UHF range, root mean square of successive differences;
ratio of LF and HF, normalized LF and HF component, relative power of each
frequency component

EDA | EDA: mean, standard deviation, minimum and maximum values, slope,
dynamic range; SCL and SCR: mean and standard deviation; SCL: correlation
between SCL and time; SCR: number, sum, and total duration of identified
SCR segments, area under the SCRs

TEMP | mean, standard deviation, minimum and maximum values, slope, dynamic
range
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Table 5. Average confusion matrix using Random Forest classifier for Fig. 1-data (aver-
aged across 100 repetitions) with test sample counts.

Predicted Total samples
Actual | NS AS |ES |PS
NS 51.29/0.16 0.9 |0.65 |53

AS 0.07 |1.83/0.1 |0
ES 0.12 |0.17 |4.27/0.44
PS 0.03 |0 0.13 | 4.84
e No Stress °
e Anticipating Stress °
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o Post Stress (] °
o [ ]
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Fig. 3. Two principal components for the Fig. 1-data.

Table 6. Principal component loading vectors for the data in Fig. 1, scaled by a factor
of 60 and shown in Fig. 3.

Feature PCA1 |PCA2
HRV _avg —0.023| 0.085
TEMP _slope 0.029| 0.141
HR avg 0.058 | —0.078
EDA scr_std 0.088 | 0.020
EDA_scr npeaks| —0.094 | —0.026
EDA_scl_avg 0.105 | —0.045
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Abstract. Voice assistants have emerged as a promising avenue for delivering
healthcare services due to their accessibility and user-friendly nature. This paper
explores the potential for enhancing these platforms through increased customiza-
tion options for reminders. By leveraging the ambient sounds present in the home
environment, such as household appliances or environmental noises, to provide
additional context information to users. This approach aims to enrich the user expe-
rience, making reminders more informative and tailored to individual preferences
and surroundings.

Keyword: Voice assistant - Smart health - Context awareness

1 Introduction

Home voice assistants (HVA), like the Amazon Alexa, Apple Homepod, and Baidu
Xiaodu, are popular home devices that primarily relies on a voice interface for interaction.
The user will interact with the device by talking using natural language, and the device
will respond accordingly. HVAs are sometimes also called Smart Speakers, since their
physical appearance resembles that of audio speakers. We use both terms interchangeably
in this paper.

In terms of healthcare applications, smart speakers open up new possibilities
for accessibility compared to traditional computers and touchscreen mobile devices
[9].Research has demonstrated several potential benefits of using voice assistants in
healthcare [8]. These technologies can enhance patient care and improve access to health
information. At the same time, research has also indicated that current implementation
of such systems in smart speakers may not be sufficiently effective or practical to fulfill
user needs [7].

Our paper looks at the use of smart speakers to implement reminders apps. Reminder
apps prompt or aid the user in remembering events, appointments, medication, etc., and
play an important role in healthcare [2]. We present the design of reminder systems on
smart speakers that make use of the sounds generated in the home to provide additional
context information to decide whether to fire the reminder or adjust the reminder for
later.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Finkelstein et al. (Eds.): AIME 2024, LNAI 14844, pp. 409-413, 2024.
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2 A Context-Aware Smart Speaker Reminder

Our experiences in testing our smartphone reminder app for older adults with cognitive
problems [5] showed the importance of context-based reminders. HomeSmartPrompt
uses the sounds in the home as cues to determine the context and decide whether to
deliver the reminder, postpone the reminder, or prompt for context confirmation. The
user will generate their list of reminders and their associated approximate times. Before
the reminder goes off, it invokes the Context Evaluator (CE) that returns the user’s
current active context. The CE algorithm can return three possible outcomes (1) context
is interruptible indicates the user is free, (2) context is un-interruptible indicates the user
is busy and doesn’t want to be distracted, and (3) uncertain.

If the current context is interruptible, the user is able to perform the task. As a result,
the remainder will go off and waits for the response from the user. If no acknowledgment
input from the users after some period of time, a follow-up reminder will go off prompt
the users to confirm the completion of the task. The user also allows to snooze the
reminder for any interval. If the current context is un-interruptible, that means the user
cannot complete the task immediately. As a result, HomeSmartPrompt will wait for
some period of time, then re-invoke the context evaluator to recheck if the context is
changed. Otherwise, if the current context is Uncertain, that means the current context
is ambiguous. As a result, HomeSmartPrompt will prompt for confirmation and use
adaptive learning to learn from the user’s response.

Figure 1 illustrates the process of the context evaluator. Given an audio recording,
we segment an audio snippet A, and then remove the noise and filter out speech based off
[6]. The audio input is converted to WAV format, resampled to 16 kHz mono, and filtered
for frames below —16 dBfs amplitude. Mel-frequency cepstral coefficients (MFCC) are
then extracted for later classification. We then attempt to determine the current active
context within the home by comparing it against a set of pre-trained context models
(Fig. 1 B). The model is pretrained on AudioSet from [4].

A home environment can have multiple kinds of sounds. We address this problem by
splitting it into two components: (1) A group of single-sound binary classifiers (Fig. 1,
C-1). These classifiers are trained individually for each ambient sound typically found
within homes. (2) A context recognizer (Fig. 1, C-2). This component is trained on mixed
ambient sounds using the probabilities outputted by each binary classifier. Its purpose
is to determine the aggregate context by analyzing correlations between probability
distributions of individual ambient labels. This separation facilitates adaptive learning
for customization purposes. If the current context is ambiguous, it will announce the
uncertainty, and start learning from the user’s response. The adaptive model will assign
the user’s response to the current context and feed it along with the recorded audio to
the adaptive engine dataset to train the model in the new context.
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Fig. 1. Context evaluator training-flow overview

3 Evaluation

Since Amazon Alexa does not allow third-party application developers to access the
audio before the wake word “Alexa” is uttered, HomePrompt cannot be built as an
actual app. To test the feasibility of the context evaluator on a commercial platform, we
emulated the working by using the Alexa drop-in function to replicate the environmental
context sensing component. This is a feature that instantly connects a user with another
Alexa device without requiring any action on the part of the other party. When a user
drops in on an Alexa device, the device will chime once, and the light ring will pulse
green, then the call will be answered automatically. As aresult, the user will automatically
hear anything within the range of the device. To capture audio recordings during drop-in
interactions, we build a companion app to capture the audio when the trigger word is
spoken; it saves three minutes during and after the trigger word is spoken. It then pushes
a total of four minutes of audio to a secure server, we use Amazon Web Services AWS
Lambda.

HomePrompt uses a pre-trained model to recognize context. For the evaluation, we
considered the three different contexts: mealtime, having friends over, and user in the
bathroom. These contexts offer realistic scenarios of the distraction situation and were
selected based on [1] that conducted a user study to find personal contextual factors
affecting interruptibility. For each context, we choose common sound events represent-
ing the context in home environments. In particular, nine sound events that consist of
conversation, plate clattering, music, laughing, crowd, television, water running, toilet
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flushing, and tooth brushing. These sounds are chosen because they are the common
distinctive acoustic characteristics that happen frequently in these contexts. We used the
sounds from the publicly available library FreeSound [3] to create the pre-trained model.

For the evaluation environment, we conducted the experiments by placing the audio
source next to the Echo device. We split the audio dataset into the train and test set with
a ratio of 70% and 30%. We played the audio files using a laptop MacBook Pro to send
as input to Alexa. The volume levels of the audio source set to a medium of about 73
dB were averaged across two listeners and measured in decibels (dB) using the Decibel

X app!.

Audio length (minutes)

mMealtime context & Having friends context ® Bathroom context

Context Evaluator Accuracy (%)
3
CONTEXT EVALUATOR ACCURACY (%)

|
- |

Continuous Episodic

10-minutes of audio recorded continuously vs. episodic

Fig. 2. (a) Accuracy of recognition. (b) Accuracy as a function of recording length.

Comparing Continuous and Episodic Listing Strategies. First, we explore the effect
of listing strategies by comparing two sampling methods: Continuous: For an alarm
that is set at time X, we will start listing at time Y for Z period of time. Episodic:
For an alarm set at time X, we will start sampling for the K period of time before J
time. To explore the effect of listening strategy on the accuracy of context recognition,
we compare the accuracy of the CE algorithm from long continuous recording versus
aggregation of the shorter recording snippets. A five-minute clip and fifteen 10-s snippets
are extracted randomly from the audio recording. Figure 2(a) shows that the two tests
give relatively close outcome, with an average accuracy of 8§7.4% and 78.1% from the
10-minute clip and across all snippets, respectively. This represents only a 9.3% increase
in the accuracy of continuous recording over the aggregated snippets across all contexts.
This experiment reveals the fact that using short snippets of audio does not necessarily
affect recognition accuracy.

Then, we evaluate the accuracy of the Context Evaluator CE Algorithm with respect
to the recording length. Figure 2 (b) shows the average accuracy for different audio
lengths: 1, 3, 5, and 7. We found that with audio of length 2 minutes, we have the lowest
accuracy for all test sets. On the other hand, audio of length 7 has the highest accuracy.
We also find that the accuracy decreased by at most 3% with the audio of length 5, which
guarantees that a good performance is achievable even when the length of the audio is
reduced. Therefore, we believe that 5 min segments represent a good balance between
processing time and accuracy while upholding user privacy.

1 https://apps.apple.com/us/app/decibel-x-db-sound-level-meter/id448155923.


https://apps.apple.com/us/app/decibel-x-db-sound-level-meter/id448155923

Improving Reminder Apps for Home Voice Assistants 413
4 Conclusions

Smart speakers, such as Google Home or Amazon Alex, provide aid services that help
users to create a reminder of tasks that they want to accomplish that they may other-
wise forget. We designed and built a voice-activated reminder app on Amazon Alexa
incorporating home-generated sounds to provide additional context information.
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