
ar
X

iv
:2

30
7.

00
92

8v
2

 [
cs

.L
G

]
 4

 J
ul

 2
02

5

Machine Learning (2024) 113

Learning Differentiable Logic Programs for Abstract
Visual Reasoning

Hikaru Shindo · Viktor Pfanschilling ·
Devendra Singh Dhami · Kristian
Kersting

Accepted: Aug 4, 2024

Abstract Visual reasoning is essential for building intelligent agents that un-
derstand the world and perform problem-solving beyond perception. Differ-
entiable forward reasoning has been developed to integrate reasoning with
gradient-based machine learning paradigms. However, due to the memory in-
tensity, most existing approaches do not bring the best of the expressivity
of first-order logic, excluding a crucial ability to solve abstract visual reason-
ing, where agents need to perform reasoning by using analogies on abstract
concepts in different scenarios. To overcome this problem, we propose NEUro-
symbolic Message-pAssiNg reasoNer (NEUMANN), which is a graph-based
differentiable forward reasoner, passing messages in a memory-efficient man-
ner and handling structured programs with functors. Moreover, we propose
a computationally-efficient structure learning algorithm to perform explana-
tory program induction on complex visual scenes. To evaluate, in addition
to conventional visual reasoning tasks, we propose a new task, visual rea-
soning behind-the-scenes, where agents need to learn abstract programs and
then answer queries by imagining scenes that are not observed. We empiri-
cally demonstrate that NEUMANN solves visual reasoning tasks efficiently,
outperforming neural, symbolic, and neuro-symbolic baselines.

1 Introduction

Deep Neural Networks (DNNs) are attracting considerable interest due to sig-
nificant performances in crucial tasks in Artificial Intelligence [51] such as
image recognition [46], game playing [92], protein-structure prediction [39],
and language modeling [11] to name a few. DNNs are essentially data-driven,
i.e. they perform pattern recognition statistically given data and perform pre-
diction on new examples. However, a critical gap exists between human intel-

Hikaru Shindo
E-mail: hikaru.shindo@tu-darmstadt.de

https://arxiv.org/abs/2307.00928v2

2 Hikaru Shindo et al.

ligence and the current data-driven machine-learning paradigm. Humans can
explain and understand what they see, imagine things they could see but have
not yet, and perform planning to solve problems [47]. Moreover, humans can
learn from a small number of experiences [99,93], but DNNs such as transform-
ers [101,28,109,27,108] require a large dataset to achieve good performance
on a specific task [32]. These essential intelligent aspects of humans, called
model building [47], are vital for human-level intelligence.

Logic has been a fundamental element of AI for providing knowledge rep-
resentations and reasoning capabilities [22,85]. Inductive Logic Programming
(ILP) [63,71,16] is a framework to learn logic programs given examples. In
stark contrast to DNNs, ILP gains some crucial advantages, e.g. it can learn
from small data, and it can learn explicit programs, which are interpretable
by humans. Recently, Differentiable ILP (∂ILP) has been proposed [29], where
they perform gradient-based learning of logic programs. In ∂ILP, forward rea-
soning, which derives all possible consequences given logic programs, is imple-
mented using only differentiable operations by encoding logic programs into
tensors. Thus it can be easily combined with DNNs for the perception and
perform ILP on visual inputs. However, tensor-based differentiable forward
reasoning is memory-intensive. Thus it assumes that logic programs to be
handled are simple, e.g. each predicate takes at most two arguments, each
clause has at most two body atoms, and no functors are allowed. ∂ILP-ST [90]
has been developed to deal with structured logic programs with functors in
∂ILP, leading to αILP [91], which can learn classification rules on complex
visual scenes. They address the memory-consumption problem by perform-
ing a beam-search over clauses instead of generating all possible clauses by
templates. However, performing a beam search is computationally expensive
because every candidate of clauses needs to be evaluated in each step. Thus it
takes longer to complete when handling complex programs and does not scale
for more challenging tasks where agents play multiple roles, e.g. understand-
ing visual scenes, learning abstract operations and solving queries by abstract
reasoning.

To mitigate this issue, we develop a memory-efficient differentiable for-
ward reasoner and a computationally efficient learning strategy. We propose
NEUro-symbolic Message-pAssiNg reasoNer (NEUMANN), a graph-based ap-
proach for differentiable forward reasoning, sending messages in a memory-
efficient manner. We first introduce a new graph-based representation of logic
programs in first-order logic and then perform differentiable reasoning via mes-
sage passing. The graph structure efficiently encodes the reasoning process by
connecting logical atoms. Then, we propose a computationally-efficient learn-
ing algorithm for NEUMANN by combining gradient-based scoring and differ-
entiable sampling. Instead of scoring each clause exactly to perform a beam
search, NEUMANN computes gradients over candidate clauses for a classifi-
cation loss and uses them as approximated scores to generate new clauses. By
doing so, NEUMANN avoids nested scoring loops over clauses, which has been
a computational bottleneck of the beam-search approach.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 3

input scene/query non-observational

ans(X):- input_scene(Colors1),
 ︙ position(X,Colors2,2nd),
 delete(gray,Colors1,Colors2).

NEUMANN

Transfer Learned Programs

0.98:delete(X,[X|Y],Y):-.
0.95:delete(X,[Y|Z],[Y|V]):-
 delete(X,Z,V).︙

0.87:ans(red)

scenepositive/negative examples

NEUMANN

(), ,

),,(
︙

Task1: Program Induction Task2: Visual Reasoning

query(delete,gray,2nd).

Fig. 1 Reasoning behind the scenes: The goal of this task is to compute the answer to
a query, e.g. “What is the color of the second left-most object after deleting a gray object?”
given a visual scene. To answer this query, the agent needs to reason behind the scenes and
understand abstract operations on objects. (Task 1, left) In the first task, the agent needs
to induce an explicit program given visual examples, where each example consists of several
visual scenes that describe the input and the output of the operation to be learned. The
abstract operations can be described by first-order logic with functors. (Task 2, right) In
the second task, the agent needs to apply the learned programs to new situations to solve
queries about non-observational scenes. (Best viewed in color)

The memory-efficient reasoning and computationally-efficient learning en-
able NEUMANN to solve abstract visual reasoning, where the agent needs to
perform reasoning by using analogies on abstract concepts in different scenar-
ios. To evaluate this, we propose a new task, Visual Reasoning Behind the
Scenes, where the agent needs to perform complex visual reasoning imagining
scenes that are not observed. Fig. 1 illustrates a Behind-the-Scenes task whose
goal is to compute the answer of a query, e.g. “What is the color of the second
left-most object after deleting a gray object?” given a visual scene. In turn, it
consists of two sub-tasks. The first is to induce abstract programs from visual
scenes, e.g. deletion of objects, as shown in the left of Fig. 1. The second is
to solve the queries where the answers are derived by reasoning about non-
observational scenes. To solve, the agent needs to learn abstract operations
from visual input and perform efficient reasoning. The task assesses the fol-
lowing four essential model-building capacities: (1) learning from a small num-
ber of examples, (2) understanding complex visual scenes deeply, (3) learning
explanatory programs to transfer to new tasks, and (4) imagining situations
that have not been observed directly. Behind-the-Scenes is the first benchmark
to cover all of these four aspects. We highlight on Tab. 1 the difference from
previous visual reasoning tasks in these aspects. Behind-the-Scenes serves as a
legitimate task and dataset for the model-building abilities, which is beneficial
to foster the machine-learning paradigm to perform problem-solving beyond
pattern recognition.

To summarize, we make the following important contributions:

4 Hikaru Shindo et al.

Table 1 Comparison between Behind-the-Scenes and other visual reasoning
benchmarks. The Behind-the-scenes task assesses the four essential model-building fea-
tures: (small data) the task requires the model to learn from a small number of training
data, (visual scenes) the task requires to handle complex visual scenes where several ob-
jects appear, (explanatory) the task requires to learn explanatory programs, and (imag-
ination) the task requires answers obtained by reasoning about non-observational scenes.

small data visual scenes explanatory “imagination”
VQA [2] ✗ ✓ ✗ ✗
VQAR [36] ✗ ✓ ✓ ✗
CLEVR [38] ✗ ✓ ✗ ✗
CLEVRER [106] ✗ ✓ ✗ ✓
CLEVR-Hans [97] ✗ ✓ ✓ ✗
MNIST-Addition [58] ✗ ✗ ✓ ✗
RAVEN [77] ✓ ✓ ✗ ✗
KandinskyPattern [66] ✓ ✓ ✓ ✗
Behind-the-Scenes ✓ ✓ ✓ ✓

1. We propose NEUMANN1, a memory-efficient differentiable forward rea-
soner using message-passing. We theoretically and empirically show that
NEUMANN requires less memory than conventional tensor-based differen-
tiable forward reasoners [29,90,91]. Given G ground atoms and C∗ ground
clauses, conventional differentiable forward reasoners consume memory quadrat-
ically O(G× C∗), but NEUMANN consumes linearly O(G+ C∗).

2. We propose a computationally-efficient learning algorithm for NEUMANN
to learn complex programs from visual scenes. NEUMANN performs gradient-
based scoring and differentiable sampling, avoiding nested loops for scoring
candidate clauses.

3. We propose a new challenging task and a dataset, Visual Reasoning Behind
the Scenes, where the agents need to perform abstract visual learning and
reasoning on complex visual scenes. The task requires the agents to learn
abstract operations from small data on visual scenes and reason about
non-observational scenes to answer queries. The task evaluates machine-
learning models on the different essential model-building properties of in-
telligence beyond perception, which are not covered by the previously ad-
dressed visual reasoning benchmarks.

4. We empirically show that NEUMANN solves visual reasoning tasks such
as Kandinsky patterns [66] and CLEVR-Hans [97] using less memory than
conventional differentiable forward reasoners, outperforming neural base-
lines. More importantly, we show that NEUMANN efficiently solves the
proposed Behind-the-Scenes task, outperforming conventional differentiable
forward reasoners. To this end, we show that NEUMANN gains the ad-
vantages of scalable and explainable visual reasoning and learning against
symbolic and neuro-symbolic baselines.

1 Code is available: https://github.com/ml-research/neumann

Learning Differentiable Logic Programs for Abstract Visual Reasoning 5

2 First-Order Logic, Differentiable Reasoning, and Graph Neural
Networks

Before introducing NEUMANN, we revisit the basic concepts of first-order
logic and graph neural networks.

First-Order Logic (FOL). A Language L is a tuple (P,A,F ,V), where
P is a set of predicates, A is a set of constants, F is a set of function symbols
(functors), and V is a set of variables. A term is a constant, a variable, or a
term that consists of a functor. A ground term is a term with no variables. We
denote n-ary predicate p by p/n. An atom is a formula p(t1, . . . , tn), where
p is an n-ary predicate symbol and t1, . . . , tn are terms. A ground atom or
simply a fact is an atom with no variables. A literal is an atom or its negation.
A positive literal is just an atom. A negative literal is the negation of an atom.
A clause is a finite disjunction (∨) of literals. A ground clause is a clause with
no variables. A definite clause is a clause with exactly one positive literal. If
A,B1, . . . , Bn are atoms, then A∨¬B1∨. . .∨¬Bn is a definite clause. We write
definite clauses in the form of A :- B1, . . . , Bn. Atom A is called the head, and
set of negative atoms {B1, . . . , Bn} is called the body. We call definite clauses
by clauses for simplicity in this paper. We denote true as ⊤ and false as ⊥.
Substitution θ = {X1 = t1, ..., Xn = tn} is an assignment of term ti to variable
Xi. An application of substitution θ to atom A is written as Aθ. An atom is
an atomic formula. For formula F and G, ¬F , F ∧ G, and F ∨ G are also
formulas. Interpretation of language L is a tuple (D, IA, IF , IP), where D is
the domain, IA is the assignments of an element in D for each constant a ∈ A,
IF is the assignments of a function from Dn to D for each n-ary function
symbol f ∈ F , and IP is the assignments of a function from Dn to {⊤,⊥} for
each n-ary predicate p ∈ P. For language L and formala X, an interpretation
I is a model if the truth value of X w.r.t I is true. Formula X is a logical
consequence or logical entailment of a set of formulas H, denoted H |= X, if,
I is a model for H implies that I is a model for X for every interpretation I
of L.

(Differentiable) Forward Reasoning is a data-driven approach of rea-
soning in FOL [85]. Forward reasoning is performed by applying a function
called the TC operator, deducing new ground atoms using given clauses and
ground atoms. For a set of clauses C, TC operator [54] is a function that applies
clauses in C using given ground atoms G, i.e.

TC(G) = G ∪

{
A

∣∣∣∣∣ A :- B1, . . . , Bn ∈ C∗

({B1 . . . , Bn} ⊆ G)

}
, (1)

where C∗ is a set of all ground clauses that can be produced from C. Note
that the union with G is computed to hold the ground atoms in the previous
steps. The forward reasoning function can then be defined as a function that
repeatedly applies the TC operator to given ground atoms.

Differentiable forward reasoning [29,90,91] uses only simple tensor oper-
ations to compute forward reasoning. Given G ground atoms and C clauses,

6 Hikaru Shindo et al.

the reasoner computes the grounding of clauses, i.e. removing variables, pro-
ducing C∗ ground clauses, then it builds index tensor I ∈ NG×C∗

, which holds
the indices of ground atoms for each ground clause. The differentiable forward
reasoner computes logical entailment referring to the index tensor repeatedly.

Graph Neural Networks. Graph Neural Network (GNN) [87,53,43,33,
88] is a type of neural network that processes graphs as inputs. An input data
is represented as (G,xnode ,xedge), where G is a directed or undirected graph,
xnode represents node features, and xedge represents edge features. Given an in-
put, GNN computes the node representations by performing message-passing:

x
(t+1)
i = fupdate

(
x
(t)
i ,

⊕
j∈N (i)

cji · x(t)
j

)
, (2)

where t ∈ N is a time step, x
(t)
i is a node feature of node xi at time step t,

N (i) is a set of indices of neighbors of node xi, cji is an edge feature, and
⊕

is an aggregation function to aggregate messages from neighbors.

3 NEUMANN

NEUMANN computes logical entailment in a differentiable manner given vi-
sual input and weighted clauses. Fig. 2 illustrates the overview of NEUMANN’s
reasoning pipeline. In contrast to conventional differentiable forward reason-
ers [29,90,91], NEUMANN performs message-passing on graphs in the follow-
ing steps: (Step 1) A visual input is fed into a neural network to perceive
objects in the scene. The output of the neural network is encoded into a set of

probabilistic atoms x
(0)
atom . (Step 2) Given input probabilistic atoms x

(0)
atom ,

NEUMANN performs T bi-directional message-passing steps. The graph rep-

resents a set of weighted clauses, and the output node features x
(T)
atom represent

probabilistic values of logical entailment given x
(0)
atom and weighted clauses. We

describe each step in detail.

3.1 Forward Reasoning Graph

We represent a set of weighted clauses as a directed bipartite graph. Fig. 3
shows an example of a set of weighted clauses and a corresponding forward
reasoning graph. Intuitively, the graph has two groups of nodes representing
nodes of ground atoms and nodes of conjunctions. Edges represent how the
ground clauses connect the ground atoms and conjunctions with their weights.

Definition 1 A Forward Reasoning Graph is a bipartite directed graph (VG ,
V∧, EG→∧, E∧→G), where VG is a set of nodes representing ground atoms (atom
nodes), V∧ is set of nodes representing conjunctions (conjunction nodes), EG→∧
is set of edges from atom to conjunction nodes and E∧→G is a set of edges from
conjunction to atom nodes.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 7

input perceived objects probabilistic atoms

Message-Passing Reasoner Initial
Node

Features

Output
Node

Features
Predict

0.98:delete(X,[X|Y],Y):-.
0.95:delete(X,[Y|Z],[Y|V]):-
 delete(X,Z,V).︙

Fig. 2 The reasoning architecture in NEUMANN. Raw input images are fed into the
visual-perception model. The output is converted into a set of probabilistic ground atoms.
Differentiable forward reasoning is performed by a bi-directional message-passing algorithm.
Logical entailment is computed softly using weighted clauses and probabilistic ground atoms.
(Best viewed in color)

Algorithm 1 Building a forward reasoning graph
Input: clauses C, ground atoms G, language L
1: RG← init(G) # add ⊤ node and atom nodes for G
2: C∗ ← ground clauses(C,L) # compute all possible groundings for clauses C
3: for C∗

i = A :- B1, . . . , Bn ∈ C∗ do
4: add conjunction node C∗

i to RG
5: for Bj ∈ [B1, . . . , Bn] do
6: add edge (Bj,C

∗
i) to RG # Atom2Conj edge

7: end for
8: add edge (C∗

i ,A) to RG # Conj2Atom edge
9: end for
Output: RG

Given a set of clauses and ground atoms, Algorithm 1 shows the construction
of a corresponding forward reasoning graph. (Line 1) First, the graph is
initialized by adding the atom nodes for ground atoms G and a special node
⊤, which represents true. It is used to represent clauses that have no body
atoms, e.g. r(X):-. (Line 2) The function ground clauses takes a set of
clauses and a language as input. In general, an infinite number of ground
terms can be considered with functors in FOL. Thus we consider a subset of
the ground terms by limiting the number of nested functors. A set of ground
clauses C∗ is obtained by substituting ground terms for variables. (Line 3–8)
For each ground clause, C∗

i ∈ C∗, corresponding node and edges are added to
the reasoning graph, i.e. edges from body atoms to a conjunction, and from a
conjunction to a head atom. X denotes the corresponding node in the graph
for a logical formula X. Each ground clause corresponds to a conjunction node
in the reasoning graph.

8 Hikaru Shindo et al.

r(a)

q(a)

p(a)

atom
nodes

conjunction
nodes

s(a)

0.5 : p(X) :- q(X).
0.2 : p(X) :- r(X),s(X).
0.3 : r(X) :-.

0.5

0.2

0.3

weighted clauses

: atom2conj edge
: conj2atom edge

reasoning graph

p, q, r, s : predicate
X : variable
a : constant
 : true

Fig. 3 Example Forward Reasoning Graph. Weighted clauses (left) and a correspond-
ing reasoning graph (right). Blue nodes represent ground atoms, and red nodes represent
conjunctions. Each conjunction node corresponds to each ground clause. Edges represent
how the ground clauses connect the ground atoms and conjunctions. (Best viewed in color)

3.2 Message Passing for Forward Chaining

NEUMANN performs forward-chaining reasoning by passing messages on the
reasoning graph. Essentially, forward reasoning consists of two steps: (1) com-
puting conjunctions of body atoms for each clause and (2) computing disjunc-
tions for head atoms deduced by different clauses. These two steps can be
efficiently computed on bi-directional message-passing on the forward reason-
ing graph. We now describe each step in detail.

(Direction→) From Atom to Conjunction. First, messages are passed
to the conjunction nodes from atom nodes. For conjunction node vi ∈ V∧, the
node features are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∧
j∈N (i)

v
(t)
j

)
, (3)

where
∧

is a soft implementation of conjunction, and
∨

is a soft implemen-
tation of disjunction. Intuitively, probabilistic truth values for bodies of all
ground clauses are computed softly by Eq. 3.

(Direction ←) From Conjunction to Atom. Following the first mes-
sage passing, the atom nodes are then updated using the messages from con-
junction nodes. For atom node vi ∈ VG , the node features are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∨
j∈N (i)

wji · v(t)j

)
, (4)

where wji is a weight of edge ej→i. We assume that each clause Ck ∈ C has
its weight θk, and wji = θk if edge ej→i on the reasoning graph is produced
by clause Ck. Intuitively, in Eq. 4, new atoms are deduced by gathering values
from different ground clauses and from the previous step.

Performing message-passing by Eq. 3-4 corresponds to deducing new atoms
by Eq. 1 in FOL using probabilistic inputs and weighted clauses. We used

Learning Differentiable Logic Programs for Abstract Visual Reasoning 9

Algorithm 2 Reasoning on NEUMANN
Input: input scene s, reasoning graph RG, clause weights w, background knowledge B,

reasoning step T , target atom Gi

1: x
(0)
atoms = fperceive(s,B) # visual perception

2: for t ∈ [1, . . . , T] do
3: # massages from atom nodes to conjunction nodes

4: x
(t)
conj = atom2conj (x

(t−1)
atoms ,RG)

5: # massages from conjunction nodes to atom nodes using clause weights

6: x
(t)
atoms = conj2atom(x

(t)
conj ,RG,w)

7: end for
8: # extract the value of the target atom Gi

9: p(Gi | x
(0)
atoms ,RG,w,B, T) = x

(T)
atoms [i]

Output: p(Gi | x
(0)
atoms ,RG,w,B, T)

product for conjunction, and log-sum-exp function [18] for disjunction:

softorγ(x1, . . . , xn) = γ log
∑

1≤i≤n

exp(xi/γ), (5)

where γ > 0 is a smooth parameter. Eq. 5 approximates the maximum value
given input x1, . . . , xn in a differentiable manner.

3.3 Prediction

The probabilistic logical entailment is computed by the bi-directional message-

passing. Let x
(0)
atoms ∈ [0, 1]|G| be input node features, which map a ground

atom to a scalar value, RG be the reasoning graph, w be the clause weights,
B be background knowledge, and T ∈ N be the infer step. For ground atom
Gi ∈ G, NEUMANN computes the probability as follows:

p(Gi | x(0)
atoms ,RG,w,B, T) = x

(T)
atoms [i], (6)

where x
(T)
atoms ∈ [0, 1]|G| is the node features of atom nodes after T -steps of the

bi-directional message-passing.
Algorithm 2 summarizes the reasoning steps on NEUMANN. (Line 1)

Input scene s is converted to probabilistic atoms x
(0)
atoms by the perception

function fperceive . We used the perception module of αILP [91], which performs
visual perception to produce object-centric representations, and converts them
to probabilistic atoms. Given background knowledge is also incorporated to

produce x
(0)
atoms . (Line 2-4) For each reasoning time step, the messages are

propagated from the atom nodes to the conjunction nodes by Eq. 3. (Line
5-6) The messages are propagated from the conjunction nodes to the atom
nodes by Eq. 4. (Line 8-9) The value for the target atom Gi is extracted by
Eq. 6 and returned.

10 Hikaru Shindo et al.

3.4 NEUMANN Memory Consumption

We now compare NEUMANN to conventional differentiable forward reason-
ers [29,90,91]. NEUMANN achieves memory-efficient reasoning by message-
passing.

Proposition 1 Let G be a set of ground atoms and C be a set of clauses, which
produce a set of ground clauses C∗ with a language L. The memory consump-
tion of the reasoning graph is O (|G|+ |C∗|), while that of the conventional
differentiable forward-chaining tensors is O (|G| × |C∗|).

Proof. The number of atom nodes is |G|, and the number of the conjunction
nodes is |C∗|. Thus, the memory consumption by the nodes is O(|G| + |C∗|).
For each ground clause C∗ = A :- B1, . . . , Bn ∈ C∗, each body atom Bi is
connected to a conjunction node, i.e. n edges, and another edge from the
conjunction node to a head atom A. Thus, the memory consumption of the
edges isO(|C∗|×(n+1)). To this end, the total memory consumption of the sum
of those of the nodes and edges, i.e. O(|G|+ |C∗|+ |C∗|(n+1)) ≈ O(|G|+ |C∗|).
The tensor-based reasoners build a tensor I ∈ N|G|×|C∗|, which holds the indices
of ground atoms for each ground clause. Thus the overall memory consumption
is O(|G| × |C∗|).

3.5 Learning Logic Programs by NEUMANN

Now we describe how NEUMANN searches logic programs given a visual ILP
problem.

Problem Statement. Let Q = (E+, E−,B,L,Z) be a visual ILP problem,
where E+ is a set of positive examples, E− is a set of negative examples, B
is background knowledge, L is a language, and Z is a language bias. Each
example is given as a visual scene. The task is to find a logic program that
can perform classification correctly based on the attributes and relations of
objects in the scenes.

Fig. 4 shows an overview of learning of NEUMANN. It learns logic pro-
grams in two steps: (1) NEUMANN generates promising clauses by iterating
scoring and sampling of clauses. Candidate clauses are evaluated by comput-
ing their gradients for a classification loss, and promising clauses are sampled
via differentiable sampling using the Gumbel-max trick. To this end, new can-
didate clauses are generated by refining the sampled clauses, and a new rea-
soning graph is produced. (2) After the iteration of clause generation steps,
NEUMANN assigns randomly-initialized clause weights and optimizes them
to minimize the classification loss. It uses stochastic gradient descent for the
optimization.

We first describe the clause-generation step and weight-optimization step in
detail, respectively, and then we explain the whole learning algorithm for NEU-
MANN, highlighting the difference from existing differentiable ILP solvers.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 11

Gradients Evaluation

Weight Optimization

Clause Scores

Visual ILP Problem

New Reasoning Graph

(, ,

,,(
︙

)
)

Differentiable Sampling

Clause Generation

Initial Clauses

0.98:delete(X,[X|Y],Y):-.
0.95:delete(X,[Y|Z],[Y|V]):-
 delete(X,Z,V).︙

Output

Input

Language Bias

Fig. 4 Structure learning on NEUMANN. Given positive and negative examples as
visual scenes, NEUMANN learns logic programs by the following two steps. (1) NEUMANN
generates promising clauses by iterating scoring and sampling of clauses. Candidate clauses
are evaluated by computing their gradients for a classification loss, and promising clauses
are sampled via differentiable sampling. To this end, new candidate clauses are generated
by refining the sampled clauses, and a new reasoning graph is produced. (2) After the
iteration of clause generation steps, NEUMANN assigns randomly-initialized clause weights
and optimizes them to minimize the classification loss. (Best viewed in color)

3.5.1 Clause Generation

NEUMANN generates candidate clauses by iteratively (1) scoring clauses using
gradients and (2) performing differentiable sampling on the scores and refining
them. We extend the beam search approach used in αILP [91] to achieve more
efficient clause generation using gradients avoiding nested loops.

Clause Scoring by Gradients. NEUMANN generates candidates of
clauses C by refining given initial clauses C0 repeatedly. We evaluate clauses
by computing gradients at once. By using the end-to-end reasoning architec-
ture, NEUMANN scores each clause efficiently using automatic differentiation.
Given a visual ILP problem Q, a reasoning graph RG, clause weights w, and
background knowledge B, NEUMANN computes the binary-cross entropy loss:

L(Q,RG,w) = −E(e,y)∼Q[y log p(y | e,RG,w,B, T) +
(1− y) log(1− p(y | e,RG,w,B, T))],

(7)

where (e, y) is a tuple of a visual scene e and its label y, i.e. if e is a positive
example then y = 1 otherwise y = 0. The conditional probability of the label
p(y | e,RG,w,B, T) is computed by using Eq. 6.

Using the loss, NEUMANN scores candidate clauses C by computing gradi-
ents w.r.t. the clause weights, i.e. NEUMANN computes clause scores s ∈ R|C|:

s = −
∑
X∼Q

∂L(X ,RG,w)

∂w
, (8)

where X is a sampled batch of labeled examples, RG is a reasoning graph con-
structed using clauses C, and w ∈ R|C| is a clause weight. Intuitively, useful

12 Hikaru Shindo et al.

clauses to classify given visual scenes get negatively large gradients to mini-
mize the classification loss. Thus we compute the negative raw gradients and
consider them as the evaluation scores, i.e. promising clauses that contribute
much to classify examples correctly will get high scores. For scoring, all clauses
are associated with a uniform value to exclude the influence of the difference
in weight values. Note that we do not update the clause weights w in this step
but compute gradients to score clauses.

Example. Suppose we want to solve a simple classification of visual scenes
with a pattern: “If there is a red cube, the scene is positive.”, e.g. a scene in
Fig. 2 is a positive example. The task is to learn a classification rule in FOL:

positive(X):-in(O1, X), color(O1, red), shape(O1, cube).

We start from a general clause positive(X):-in(O1, X)., and by refining, we
get, e.g.

positive(X):-in(O1, X), color(O1, red).

positive(X):-in(O1, X), color(O1, blue).

positive(X):-in(O1, X), color(O1, yellow).

We compose a reasoning graph using these three clauses and give a uniform
weight to all clauses. Using the reasoning graph, we compute the scores by
Eq. 8. The first clause contributes the most to correct classifications and thus
is scored higher than other clauses. NEUMANN performs inference over given
visual scenes only once to score all clauses, not iterating it for each individual
clause.

Fig. 5 illustrates the difference from the conventional clause-scoring strat-
egy. The task is to score candidate clauses C given visual ILP problem Q to
perform clause search. In ∂ILP-ST [90] and αILP [91], each clause Ci ∈ C
needs to be evaluated individually, and thus the computational cost increases
quadratically with respect to the number of training data and the number
of clauses to be evaluated. In contrast, NEUMANN evaluates all clauses by
calling the backward function once.

Generation by Differentiable Sampling. Given clause scores s, we gen-
erate new candidates of clauses by performing differentiable sampling based
on the Gumbel-max trick [37,56] and refine them. The Gumbel-max simulates
efficiently sampling procedures given scores in a differentiable manner. For
the clause scores s, a noise term is computed as g = − log(− log(u)) where
u ∼ Uniform(0, 1). Then we add the noise to the original scores as k = s+ g,
i.e. k represents scores mixed with a Gumbel noise. Then clause Ci ∈ C is
sampled with i = argmax (k1, . . . , k|C|). The sampled clauses are refined using
downward refinement operator [71], which specifies given clauses, i.e. gener-
ates more specific clauses than the given clause in terms of the number of
atoms to be entailed with it. Given clause C (e.g. p(X, Y):-.), the refinement
operator consists of the following four specifications: (i) add an atom to the
body of C (e.g. p(X, Y):-q(X, Y).), (ii) substitute a constant to variable in C
(e.g. p(X, a):-.), (iii) remove a variable by substituting another variable in C

Learning Differentiable Logic Programs for Abstract Visual Reasoning 13

Scoring in αILP / ∂ILP-ST

for each batch of examples

for each clause to be scored

scoring by computing loss

initialize clause scores

Scoring in NEUMANN

for each batch of examples

score all clauses by gradients

initialize clause scores

Fig. 5 NEUMANN avoids nested loops for clause scoring. Input is a visual ILP
problem Q and clauses C, output is the scores s over C. αILP [91] and ∂ILP-ST [90] evaluate
each clause independently. In contrast, NEUMANN evaluates a set of clauses efficiently
without performing for-loop over them. X ∼ Q denotes a sampled batch of examples from
visual ILP problem Q.

(p(X, X):-.), and (iv) apply a functor (e.g. p(X, f(Y, Z)):-.). Downward refine-
ment operator ensures completness, i.e. any clauses that consist of a finite set
of symbols can be generated by applying the operator for finite times to the
most general clause [71]. NEUMANN uses mode declarations [64] (cf. App. D)
to restrict the search space, and clauses that do not satisfy the declarations
will be discarded. The newly generated clauses are added to the set of clauses
C and evaluate the added clauses by Eq. 8 in the next step.

3.5.2 Weight Optimization

After the clause generation, NEUMANN performs loss minimization for clas-
sification with respect to clause weights. So far, we assumed that we have one
clause weight vector. By using softmax, NEUMANN can learn to select one
clause out of multiple generated clauses. However, in practice, we should be
able to learn logic programs consisting of multiple clauses.

NEUMANN composes differentiable logic programs that consist of multiple
clauses as follows: (1) We fix the target programs’ size as M , i.e. where we
try to find a logic program with M clauses out of generated clauses C. (2) We
introduce randomly-initialized |C|-dimensional weights W = [w(1), . . . ,w(M)]
(w(j) ∈ R|C|), i.e. each clause gets M individual weights. (3) We take softmax
of each weight vector w(j) ∈W and softly choose M clauses out of |C| clauses,
i.e. ŵ(j) = softmax (w

(j)
0 , . . . , w

(j)
|C|). (4) We compose a clause weight vector

w ∈ [0, 1]|C| as:

wi = softorγ
(
ŵ

(1)
i , . . . , ŵ

(M)
i

)
= γ log

∑
1≤j≤M

exp(ŵ
(j)
i /γ), (9)

where γ > 0 is a smooth parameter, approximating the maximum value out
of M weights for each clause in a differentiable manner.

For example, suppose 3 clauses are generated by NEUMANN, and we
want to compose a logic program that consists of 2 clauses, i.e. |C| = 3 and
M = 2. By initializing 2 weight vectors and applying softmax to each, we

14 Hikaru Shindo et al.

get, e.g. ŵ(1) = [0.1, 0.7, 0.2]⊤ and ŵ(2) = [0.8, 0.1, 0.1]⊤. Using Eq. 9, we get
w ≈ [0.8, 0.7, 0.2]⊤, where the first 2 clauses get large weights.

The weights for the clauses are trained to minimize the loss function. By
using the end-to-end reasoning architecture, NEUMANN finds a logic program
that explains the complex visual scenes by gradient descent, i.e. solves

w∗ = argminwL(Q,RG,w), (10)

where L is the cross-entropy loss (Eq. 7). NEUMANN minimizes the loss based
on stochastic gradient descent. After performing sufficient weight-update steps,
the generated clauses and their trained weights are returned.

Algorithm 3 shows the entire learning process of NEUMANN. (Line 1-
3) An initial reasoning graph is built. (Line 5-10) Clauses C are scored by
computing gradients. Useful clauses in C get negatively large gradients, and
thus they are scored high at line 10. (Line 13-21) Sample clauses to be refined
to generate new clauses according to the scores using the Gumbel-max trick.
(Line 22-25) The sampled clauses are refined to generate clauses to be scored
in the next iteration. (Line 27-32) NEUMANN performs weight optimization
using the generated clauses Csampled with randomly initialized clause weights
w.

We highlight the difference between NEUMANN and other differentiable
ILP approaches in terms of the memory cost and clause-search cost in Tab. 2.
As shown in Prop. 1, NEUMANN consumes less memory than other ap-
proaches, i.e. NEUMANN consumes memory linearly with the number of
ground atoms and clauses, but others consume quadratically. ∂ILP generates
clauses by templates without any symbolic search. Thus it requires no cost
for searching but needs to exclude functors to manage the number of clauses
to be generated. ∂ILP-ST and αILP perform beam search using exact scoring
of clauses. As illustrated in Fig. 5, the time complexity of exact scoring is
O(Ndata × |C| ×R), where Ndata is the number of data, C is the set of clauses
to be scored, and R is the time complexity of the reasoning function. Although
they require nested loops for data and clauses, they can handle functors be-
cause beam search can prune redundant clauses. In contrast, NEUMANN com-
putes forward and backward pass for each data to evaluate clauses C, and thus
the time complexity of the scoring is O(Ndata × (R + R)) ≈ O(Ndata × R)
because both forward and backward pass have the time complexity of R. The
scoring of clauses needs to be conducted at every step of the search, and thus
it is crucial to have an efficient scoring strategy.

4 Experiments

We empirically show that NEUMANN is a memory-efficient differentiable for-
ward reasoner equipped with a computationally-efficient learning algorithm
by solving visual reasoning tasks. Moreover, we show that NEUMANN solves
the proposed Behind-the-Scenes task, where different model-building abilities
are required beyond perception. To this end, we show that NEUMANN can

Learning Differentiable Logic Programs for Abstract Visual Reasoning 15

Algorithm 3 Learning NEUMANN
Input: visual ILP problem Q, ground atoms G, language L, initial clauses C0, language bias
Z, search parameters Ntrial , Nsamlpe , target program size M

1: RG = build reasoning graph(C0,G,L) # initialize a reasoning graph
2: Csampled = ϕ # all sampled clauses
3: C = C0 # clauses to be scored next
4: # perform clause-generation for Ntrial times
5: for n ∈ [1, . . . , Ntrial] do
6: # clause evaluation by computing gradients
7: s = 0 # initialize clause scores
8: for X ∼ Q do
9: # compute scores by gradients with coefficient β > 0
10: s = s+ β · (−∇wL(X ,RG,w))
11: end for
12: # sample Nsample clauses based on the scores
13: Dsampled = ϕ # sampled clauses at step n
14: for m ∈ [1, . . . , Nsample] do
15: # sample Nsample clauses using the Gumbel-max trick
16: u ∼ Uniform(0, 1)
17: g = − log(− log(u))
18: k = s+ g
19: Ci ∈ C is sampled with i = argmax(k1, . . . , k|C|)
20: add Ci to Dsampled

21: end for
22: # generate new clauses to be scored in the next iteration using language bias
23: C = downward refinement(Dsampled ,L,Z)
24: # update all sampled clauses
25: Csampled = Csampled ∪ Dsampled

26: end for
27: # initialize a reasoning graph using all sampled clauses
28: RG = build reasoning graph(Csampled ,G,L)
29: # initialize the clause weights according to the target program size M
30: w = initialize weights(Csampled ,M)
31: # clause weight optimization by stochastic gradient descent
32: w∗ = argminwL(Q,RG,w)
Output: Csampled ,w

∗

perform scalable visual reasoning and learning and provide visual explanations
efficiently, outperforming existing symbolic and neuro-symbolic benchmarks.
We implemented NEUMANN using PyTorch. All experiments were performed
on one NVIDIA A100-SXM4-40GB GPU with Xeon(R):8174 CPU@3.10GHz
and 100 GB of RAM.

We aim to answer the following questions:

Q1: Does the message-passing reasoning algorithm simulate the differen-
tiable forward reasoning dealing with uncertainty?
Q2: Can NEUMANN solve visual ILP problems combined with DNNs
outperforming neural baselines and consuming less memory than the other
differentiable ILP benchmarks?
Q3: Does NEUMANN solve the Behind-the-Scenes task outperforming
conventional differentiable reasoners providing the model-building abilities
(cf. Tab. 1)?

16 Hikaru Shindo et al.

Table 2 NEUMANN is a memory-efficient differentiable ILP solver equipped
with an efficient learning algorithm. A comparison of memory consumption, search cost
for each step, scoring method, and the capability of handling functors with other differen-
tiable ILP solvers. G is a set of ground atoms, C is a set of clauses, and C∗ is a set of ground
clauses. Ndata is the number of examples, R is the time complexity of the differentiable
forward chaining.

Memory
Cost

Search Cost
per Step

Scoring
Method

Functors

∂ILP [29] O(|G| × |C∗|) O(1) No Scoring (Template) ✗
∂ILP-ST [90] O(|G| × |C∗|) O(Ndata × |C| ×R) Exact Scoring ✓
αILP [91] O(|G| × |C∗|) O(Ndata × |C| ×R) Exact Scoring ✓

NEUMANN O(|G|+ |C∗|) O(Ndata ×R) Gradient-based ✓

Q4: Does NEUMANN provide advantages over state-of-the-art symbolic
and neuro-symbolic methods?

4.1 Differentiable Reasoning with Uncertainty

To answer Q1, we compare NEUMANN with a conventional tensor-based dif-
ferentiable forward reasoner, αILP [91], and show that both reasoners produce
almost the same proof histories dealing with uncertainties given the same in-
put. We explore two datasets used in ∂ILP [29].

Even/Odd. Even/Odd is a synthetic dataset to classify even and odd
numbers. We used the following program:

1.0 : even(s2(X)):-even(X).

and background knowledge B = {even(0)}. s is a functor that represents
sucessor of natural numbers, e.g. natural number 2 can be represented by a
term s(s(0)). The task is to deduce even numbers given the rule about even
numbers and the base fact that 0 is an even number.

Fig. 6 shows the proof history produced by NEUMANN and αILP for the
even/odd dataset. Each element of the x-axis represents a ground atom. For the
y-axis, from top to bottom, each row represents a vector of probabilities over

atoms for 5-steps of differentiable forward reasoning, i.e. x
(0)
atoms , . . . ,x

(5)
atoms .

Both reasoners deduced step by step the following atoms, even(0), even(s2(0)),
. . . , even(s10(0)), with high probabilities, which are almost 1.0, but not any
odd numbers, i.e. they successfully deduced even numbers producing almost
the same proof histories. The message-passing algorithm simulates forward
reasoning (Eq. 1) in FOL.

Cyclic Graph. Cyclic Graph is a dataset to classify if each node in a
graph is cyclic or not. We used the same directed graph used in ∂ILP [29] as
shown in Fig. 7 (top). We used the following weighted clauses to describe the
rules of cyclicity:

0.51 : cyclic(X):-edge(X, X).

0.54 : edge(X, Y):-edge(X, Z), edge(Z, Y).

Learning Differentiable Logic Programs for Abstract Visual Reasoning 17

Pr
oo

f
st

ep
s

Pr
oo

f
st

ep
s

Fig. 6 NEUMANN performs differentiable forward reasoning. Proof histories in
the Even/Odd task [29] by NEUMANN (left) and αILP [91]. NEUMANN produces almost
the same values as the tensor-based reasoner.

and background knowledge to represent the graph:

B =

{
edge(a, b), edge(b, c), edge(b, d), edge(c, a),
edge(d, e), edge(d, f), edge(e, f), edge(f, e)

}
.

cyclic(X) means node X is a cyclic node, i.e. there is a path to trace that
starts and ends at node X. The task is to deduce whether each node is a cyclic
node or not, given the set of nodes and weighted clauses.

Fig. 7 shows a proof history produced by NEUMANN and αILP for the
Cyclic Graph dataset. We show the proof history of the 5-steps of differentiable
forward reasoning. Both reasoners produced almost the same probabilities for
each ground atom at each time step. More importantly, both reasoners deal
with uncertainty, i.e. since the given programs have different weights and thus
reasoners need to compute probabilistic values for each ground atom accord-
ing to the weights, and NEUMANN successfully simulates the differentiable
forward reasoning by the message-passing algorithm. These results show that
the message-passing reasoning on NEUMANN is a valid differentiable for-
ward reasoning function, even though it consumes much less memory than the
tensor-based differentiable forward reasoners, e.g. ∂ILP, ∂ILP-ST, and αILP.

4.2 Differentiable ILP on Complex Visual Scenes

To answer Q2, we compare the performance of NEUMANN with conventional
differentiable ILP solvers and neural baselines on visual reasoning tasks and
show obtained explanatory programs. We also compare the memory consump-
tion of NEUMANN with conventional differentiable forward reasoners.

Dataset. We adopted Kandinsky patterns [66] and CLEVR-Hans [97]
dataset. Both datasets are defined as a classification task of visual scenes,
and the classification rules are defined by attributes of the objects and their

18 Hikaru Shindo et al.

ba c d e f

Pr
oo

f
st

ep
s

Pr
oo

f
st

ep
s

Fig. 7 NEUMANN performs differentiable forward reasoning. A directed graph
(top) and proof histories in the Cyclic Graph task [29] by NEUMANN and αILP [91] (bot-
tom). NEUMANN produces almost the same values as the tensor-based reasoner dealing
with uncertainty.

relations. Fig. 8 shows examples of the patterns we used. We use 5 Kandinsky
patterns: (P1) twopairs, (P2) closeby, (P3) red-triangle, (P4) online-pair, and
(P5) long-line. (P5) is an extension of (P4) where the number of objects is
increased to 7 and the constraints of pairing are removed. We performed struc-
ture learning on (P1)-(P4), and for (P5), we used a given clause2 to perform
reasoning to assess the scalability of logic reasoners for many objects. The
dataset contains 10k training examples for each pattern for each positive and
negative class, respectively. Likewise, each validation and test split contains 5k
examples for each positive and negative class. The CLEVR-Hans dataset [97]
contains CLEVR [38] 3D images, and each image is associated with a class la-
bel. Examples for each are shown in Fig. 8. We consider 3 binary classification
tasks for each pattern. Each class contains 3k training images, 750 validation
images, and 750 test images, respectively. More examples for both datasets
are available in App. E.

Models. For Kandinsky patterns, we compare NEUMANN against two
neural baselines and a differentiable ILP baseline. We adopted the ResNet-
based CNN model [34] as a benchmark and also an object-centric bench-
mark, YOLO+MLP, where the input figure is fed to the pre-trained YOLO
model [79]. The output of the pre-trained YOLO model is fed into MLP with 2
hidden layers with nonlinearity to predict the class label. We trained the whole
YOLO+MLP network jointly. For CLEVR-Hans tasks, the considered base-
lines are the ResNet-based CNN model [34], and the Neuro-Symbolic (NeSy)

2 kp5(X) : −in(O1, X), in(O2, X), in(O3, X), in(O4, X), in(O5, X), in(O6, X), in(O7, X), online(O1, O2, O3, O4, O5, O6, O7).

Learning Differentiable Logic Programs for Abstract Visual Reasoning 19

(P1) two pairs (P2) cloesby (P3) red triangle (P4) online pair

(C1) large cube /
large cylinder

(C2) small metal cube /
small sphere

(C3) large blue sphere /
small yellow sphere

Fig. 8 Examples of Kandinsky patterns and CLEVR-Hans datasets. The task is
to classify visual scenes by obtaining explicit classification rules. Each Kandinsky pattern
is characterized as follows: (twopairs) A pair with the same shape and color, and another
pair with the same shape and different colors. (closeby) Two objects closely located. (red-
triangle) A red triangle close to a non-triangle and non-red object. (online-pair) Five
objects aligned on a line and a pair with the same shape and color. (long-line) Seven
objects aligned on a line. (Best viewed in color)

model [97]. The NeSy model uses slot attention [55] to perceive objects and
feeds its output to Set Transformer [52]. NeSy-XIL is a NeSy model trained us-
ing additional supervision on their explanations. NeSy-XIL is the SOTA neural
baseline in the CLEVR-Hans dataset. We used αILP [91] as a differentiable
ILP baseline for both tasks, and we used the mode declarations [64], a com-
monly used language bias in ILP. The perception networks (YOLO and slot
attention) are also used for NEUMANN and αILP in Kandinsky patterns and
CLEVR-Hans, respectively. More details about each baseline are in App. C.

Result. We show the accuracy in the test split of the Kandinsky patterns
in Tab. 3. Both αILP and NEUMANN achieved perfect accuracies for each
pattern, although CNN’s over-fit while training and performed poorly with
testing data. In (P5), the αILP produced run-out-of-memory3 because the
pattern involves seven objects, and many ground atoms and clauses are pro-
duced. NEUMANN can perform scalable visual reasoning beyond tensor-based
reasoners. Moreover, we compare the memory consumption of NEUAMANN
and αILP on Kandinsky patterns in Tab. 4. NEUMANN clearly consumes less
memory than αILP for each pattern, e.g. NEUMANN’s reasoning graph size

3 It is not trivial to distribute the tensor-based forward reasoners to several GPUs because
each of the instances requires the whole index tensor, i.e. if we split the large index tensor
to distribute, each distributed reasoner cannot refer some atoms and clauses, and thus the
reasoning result will be incomplete. Tensor parallelism requires non-trivial engineering [67,
103].

20 Hikaru Shindo et al.

Table 3 Efficiency of NEUMANN does not sacrifice accuracy. The mean classifi-
cation accuracy in the test split in the Kandinsky patterns dataset over 5 random seeds.
OOM denotes out-of-memory on a single GPU. Both αILP and NEUMANN achieved perfect
accuracies for each pattern, although CNN’s over-fit while training and performed poorly
with testing data. As we mentioned in main text, for pattern P5, we evaluated αILP and
NEUMANN with a given program and no structure-learning has been performed. Best re-
sults are bold.

Model (P1) pairs (P2) close (P3) red tri. (P4) online (P5) line
CNN 50.0 52.33 55.0 50.59 -
YOLO+MLP 99.0 72.93 82.95 80.18 -
αILP 100.0 100.0 100.0 100.0 OOM
NEUMANN 100.0 100.0 100.0 100.0 100.0

Table 4 NEUMANN is memory effi-
cient and scales beyond tensors. Mem-
ory consumptions on Kandinsky patterns and
the visual ILP dataset are shown. The ratio is
graph size/tensor size. OOM denotes out-of-
memory on a single GPU.

NEUMANN αILP
Dataset graph size (ratio) tensor size
two pairs 6957 (12.4%) 56064
closeby 1173 (75.8%) 1548
red-tri. 4079 (3.12%) 130410
online-p. 15637 (3.13%) 498960
long-l. 55632 (NaN %) OOM

Table 5 Accuracy for CLEVR-
Hans dataset compared to base-
lines over 5 random seeds. For αILP
and NEUMANN, we report the mean
over the three ILP problems. • de-
notes best, ◦ denotes second best re-
sult.

Model Validation Test
CNN ◦99.55 70.34
NeSy 98.55 81.71
NeSy-XIL •100.00 91.31
αILP 97.5 •97.52
NEUMANN 96.67 ◦97.43

is just 3.12% of the tensor size produced by αILP. These results show the
memory efficiency of the message-passing reasoners of NEUMANN.

Tab. 5 shows the results for the CLEVR-Hans dataset. As one can see,
NEUMANN achieved high accuracy similar to αILP, outperforming neural-
based baselines, showing the capability of NEUMANN in complex 3D visual
scenes. Moreover, CLEVR-Hans is a confounded dataset, e.g. for the first pat-
tern (C1), a large gray cube and a large cylinder appear in the training and
validation scenes, but in the test scenes, the large cube can be different col-
ors. Thus, neural baselines perform poorly on the test split because the pure
data-driven neural models can be easily confounded [97]. Both αILP and NEU-
MANN achieved high accuracy in the test split because the downward refine-
ment-based clause generation can control the generality of clauses, i.e. prevent
generating too specific clauses to avoid over-fit. This is achieved by trying the
small number of search steps in the clause generation and increasing it step
by step by checking the performance in the validation split.

We observed peaked weight distributions after training, i.e. only one clause
gets a large weight. The classification rules obtained by discretizing the clause
weights by taking argmax for Kandinsky patterns and CLEVR-Hans are shown
in Fig. 9. NEUMANN discovered explanatory clauses for each visual pattern.
This shows that NEUMANN’s learning algorithm can find proper classification
rules given positive and negative examples as complex visual scenes.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 21

% A pair with the same shape and color, and another
% pair with the same shape and different colors.
kp1(X):-in(O1,X),in(O2,X),in(O3,X),in(O4,X),

same_shape_pair(O1,O2),same_color_pair(O1,O2),
same_shape_pair(O3,O4),diff_color_pair(O3,O4).

% Two objects closely located.
kp2(X):-in(O1,X),in(O2,X),closeby(O1,O2).
% A red triangle close to a non-triangle and non-red object.
kp3(X):-in(O1,X),in(O2,X),closeby(O1,O2),

color(O1,red),shape(O1,triangle),
diff_shape_pair(O1,O2),diff_color_pair(O1,O2).

% Five objects aligned on a line, and a pair with the same
% shape and color.
kp4(X):-in(O1,X),in(O2,X),in(O3,X),in(O4,X),in(O5,X),

same_shape_pair(O1,O2),same_color_pair(O1,O2),
online(O1,O2,O3,O4,O5).

% There is a large cube and a large cylinder.
ch1(X):-in(O1,X),in(O2,X),size(O1,large),shape(O1,cube),

size(O2,large),shape(O2,cylinder).
% There is a small metal cube and a small sphere.
ch2(X):-in(O1,X),in(O2,X),

size(O1,small),material(O1,metal),shape(O1,cube),
size(O2,small),shape(O2,sphere).

% There is a large blue sphere and a small yellow sphere.
ch3(X):-in(O1,X),in(O2,X),size(O1,large),

color(O1,blue),shape(O1,sphere),
size(O2,small),color(O2,yellow),shape(O2,sphere).

Fig. 9 Clauses discovered by NEUMANN for Kandinsky patterns and CLEVR-
Hans. The first 4 clauses for Kandinsky patterns and the last 3 clauses for CLEVR-Hans.

4.3 Visual Reasoning Behind the Scenes

To answer Q3, we compare the performance of NEUMANN with conventional
differentiable forward reasoners on the behind-the-scenes task showing that (i)
it can learn from small data, (ii) it can handle complex visual scenes, (iii) it can
learn explanatory programs, and (iv) it can reason about non-observational
scenes. Moreover, we also compare the running time of the clause search with
a differentiable ILP benchmark.

The task consists mainly of two parts: (Task 1) learning abstract opera-
tions, and (Task 2) solving queries with imagination, as shown in Fig. 1. We
describe each task in detail.

4.3.1 Task 1: Learning Abstract Operations - CLEVR-List

The first task is inductive logic programming from visual scenes for list oper-
ations: the member, delete, and sort functions. This is a 3D visual realization
of ILP tasks with structured examples, where the goal is to learn abstract list
operations given observed input-output pairs, which has been a long-standing

22 Hikaru Shindo et al.

member

delete

cyan<gray<
 red<yellow

sort

Fig. 10 Task 1: Abstract Program Induction from Visual Scenes (CLEVR-List).
Positive examples for abstract list operations of member, delete, and sort (with an order of
colors: cyan < gray < red < yellow, alphabetical order). Each example consists of several
visual scenes representing the input and output of the target programs to be learned. The
agents need to handle multiple visual scenes, understanding them deely and comparing each
other. (Best viewed in color)

Fig. 11 NEUMANN achieves robust and fast learning. Training loss and validation
accuracy for learning the delete operation by NEUMANN (left), and comparison of learning
time of logic programs against ∂ILP-ST [90], measured for each clause generation step
(right). Computed for 5 different random seeds. (Best viewed in color)

task in classical symbolic ILP settings [89,13], and addressed in the differen-
tiable ILP setting recently [90].

We propose CLEVR-List, a visual realization of the list-program induction
task by using the CLEVR environment [38], which allows users to generate
visual scenes that contain multiple objects with different properties, e.g. large
red rubber sphere and small gray metal cube. Fig. 10 shows positive examples
for the member, delete and sort functions, which consist of several images
representing the inputs and outputs of the target programs to be learned.
For example, the first row in the figure represents a positive example for
member(, [, ,]). In each training, validation, and test split, we used
200 examples for each positive and negative label, respectively.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 23

% member(X,Y) means X is an element of Y.
member(X,[X|Y]):-.
member(X,[Y|Z]):-member(X,Z).

% delete(X,Y,Z) means Z is the result of deleting X from Y.
delete(X,[X|Y],Y]):-.
delete(X,[Y|Z],[Y|V]):-delete(X,Z,V).

% sort(X,Y) means Y is the result of sorting X.
is_sorted([X,Y|Z]):-smaller(X,Y),is_sorted([Y|Z]).
is_sorted([X]):-.
sort(X,Y):-permutation(X,Y),is_sorted(Y).

Fig. 12 Abstract operations discovered by NEUMANN for CLEVR-List. NEU-
MANN learns abstract list operations from visual scenes dealing with functors.

Compared to the previously addressed visual reasoning benchmarks, e.g.
Kandinsky patterns and CLEVR-Hans, CLEVR-List is challenging in the sense
that the agents need to handle multiple visual scenes as input, i.e. deeply
understanding them and comparing each other. The list programs are involved
with functors, and thus, models need to have the capacity to deal with a
large number of ground atoms produced by functors. CLEVR-List requires the
following model-building abilities: learning from small data, handling several
visual scenes, and learning explanatory programs.

Models. We compare the performance of NEUMANN with ∂ILP-ST [90],
which is a state-of-the-art differentiable ILP solver dealing with functors. The
parameters for the clause generation (Ntrial , Nsample) are set to (5, 10) for
NEUMANN, and we used the same setting for beam search in ∂ILP-ST. We
performed 50 epochs of weight optimization using the RMSProp optimizer
with a learning rate of 1e− 2 and infer step T = 5 for both models. We used
mode declarations [64] as a language bias.The number of nested functors is at
most 3, discarding lists with duplicated elements. More details including used
mode declarations are in App. B.

Result. Fig. 11 (left) shows the training loss and validation accuracy of
NEUMANN in the delete task, showing the progress of the classification-loss
minimization by gradient descent. For five different random seeds, NEUMANN
achieved stable learning by producing small training loss and high validation
accuracy.

Fig. 11 (right) compares the running time of structure learning of NEU-
MANN and ∂ILP-ST. We measured the running time of each clause genera-
tion step. NEUMANN achieved faster learning using gradient-based scoring
and differentiable sampling. As highlighted in Tab. 2, ∂ILP-ST performs exact
scoring for each clause. As the search gets deeper, a large number of clauses
tend to be generated because of the large number of combinations of symbols.
Thus, the running time of ∂ILP-ST increases drastically in the search, but
NEUMANN consistently achieved fast structure learning.

24 Hikaru Shindo et al.

We observed peaked weight distributions after training, i.e. only some
clauses with large weights. Fig. 12 shows the logic programs learned by NEU-
MANN, obtained by discretizing clause weights using argmax after training.
NEUMANN produced explanatory programs that achieved 1.0 of accuracy in
the test split for each operation. These results show that NEUMANN solved
the proposed (T1) CLEVR-List task, outperforming a differentiable ILP base-
line by the running time.

4.3.2 Task 2: Reasoning on Behind-the-Scenes

The second task is to perform visual reasoning given queries where the answers
are derived by the reasoning behind the scenes, e.g. the agent needs to think
of the non-observational scenes with imagination. We consider 4 abstract op-
erations: delete, append, reverse, and sort. The input is a pair of an image and
a query represented as an atom. For example, a query “What is the color of
the second left-most object after deleting a gray object?” can be represented as
a query atom: query(q delete, gray, 2nd), where q delete is a constant that
represents the query type about the deletion. Forward reasoners can solve this
task by combining clauses to parse input visual scenes and derive answers. We
used 40k questions (10k for each operation) associated with 10k visual scenes.
We compare the performance of NEUMANN and αILP [91].

Image Generation. We generated visual scenes using the CLEVR en-
vironment [38]. Each visual scene contains at most 3 objects with different
attributes: (i) colors of cyan, gray, red, and yellow, (ii) shapes of sphere, cube,
and cylinder, (iii) materials ofmetal andmatte. We excluded color duplications
in a single image.

Query Generation. We generated queries for the dataset using query
templates, which produce various queries using different features of objects. We
used the following template: “What is the color of the [Position] object after
[Operation]?”, where [Position] can take either of: left-most first, second, or
third. [Operation] can take the following form: (i) delete an object, (ii) append
an object to the left, (iii) reverse the objects, and (iv) sort the objects with
an order of colors: cyan < gray < red < yellow (alphabetical order). Fig. 13
shows examples of an input scene and some paired queries with their answers.
More examples of input scenes, queries and their answers are in App. E.

Models. We used the clauses in Fig. 14 for NEUMANN and αILP. The
first clause about chain generates a chain of colors given a visual scene. For
example, given the visual scene in Fig. 13, the atom chain([, ,]) is
deduced using body atoms left of(,) and left of(,). The second
clause parses the chained objects to colors. For example, the atom scene([red,
gray, cyan]) is deduced using body atoms of chain([, ,]), color(, red),
color(, gray), and color(, cyan). The last 4 clauses compute answers for
different types of queries using the parsed scene atoms, list operations, and
other utility predicates (cf. Fig. 18 in the appendix). query2 and query3

represent queries, e.g. query2(q, q sort, 2nd) represents a query “What is the

Learning Differentiable Logic Programs for Abstract Visual Reasoning 25

Input Scene
(Operation / Position)

delete, gray / 2nd → cyan
append, yellow / 1st → yellow
reverse / 2nd → gray
sort / 3rd → red

Query → Answer

Fig. 13 Task 2: Visual Reasoning Behind the Scenes. The task is to compute the
answers for given queries paired with input visual scenes. A query consists of an operation
and a target position, and an answer is a color, e.g. a query “What is the color of the 2nd
left-most object after deleting a gray object?” whose answer is cyan. (Best viewed in color)

% generate a chain of objects from an image
chain([Object1,Object2,Object3]):-

left_of(Object1,Object2),left_of(Object2,Object3).

% parse the visual scene as a list of colors
scene([Color1,Color2,Color3]):-chain([Object1,Object2,Object3]),

color(Object1,Color1),
color(Object2,Color2),
color(Object3,Color3).

% answer the delete query
answer(X):-scene(Colors1),delete(Color,Colors1,Colors2),

query3(q_delete,Color,Position),get_color(Colors2,Position,X).

% answer the append query
answer(X):-scene(Colors1),append([Color],Colors1,Colors2),

query3(q_append,Color,Position),get_color(Colors2,Position,X).

% answer the reverse query
answer(X):-scene(Colors1),reverse(Colors1,Colors,Colors2),

query2(q_reverse,Position),get_color(Colors2,Position,X).

% answer the sort query
answer(X):-scene(Colors1),sort(Colors1,Colors2),

query2(q_sort,Position),get_color(Colors2,Position,X).

Fig. 14 Clauses to answer queries for behind-the-scenes. The first clause about
chain generates a chain of objects given a visual scene. The second clause parses the chained
objects to colors. The last 4 clauses compute answers for different types of queries using the
parsed scene atoms, list operations, and other utility predicates.

color of the 2nd-left object after sorting the objects?”. A query atom is given
being paired with an input image.

Result. Tab. 6 shows the accuracy for each type of queries. αILP pro-
duced run-out-of-memory, however, NEUMANN successfully solves different
types of queries with high accuracy. As shown in Fig. 14, the clauses to answer
the queries consist of many functors for the list representation and existentially
quantified variables, and thus a large number of ground atoms and clauses is

26 Hikaru Shindo et al.

Table 6 NEUMANN can rea-
son behind the scenes beyond
tensor-based reasoners. Classi-
fication accuracy for behind-the-
scenes tasks. OOM denotes out-of-
memory on a single GPU.

delete append reverse sort
αILP OOM OOM OOM OOM

NEUM. 0.98 0.99 0.98 0.98

Table 7 Many ground representa-
tions are required for reasoning about
behind-the-scenes. Number of ground
atoms |G| and ground clauses |C∗| for each
task. For Kandinsky patterns, the mean value
for different patterns (P1)-(P4) is shown.

Kandinsky CLEVR H. Behind-the-Scenes
#Atoms 131 165 150K
#Clauses 288 90 1.1M

generated, which is difficult to be handled by the conventional tensor-based
reasoner, i.e. ∂ILP, ∂ILP-ST, and αILP. In fact, Tab. 7 shows the numbers of
ground atoms and clauses generated for Kandinsky patterns, CLEVR-Hans,
and Behind-the-Scenes, respectively. Behind-the-Scenes requires the models
to handle many ground representations, i.e. a large Herbrand base with func-
tors, and thus memory-efficient reasoning is necessary. These results show that
NEUMANN solved the Behind-the-Scenes task outperforming conventional
tensor-based reasoners overcoming the bottleneck of the intensive memory
consumption scaling to deal with functors on visual scenes and query answer-
ing.

4.4 Advantages against other Symbolic and Neuro-Symbolic Methods

To answer Q4, we compare the performance of NEUMANN against state-of-
the-art symbolic and neuro-symbolic methods. Moreover, we show that NEU-
MANN can produce visual explanations efficiently using gradients using the
end-to-end differentiable reasoning architecture.

4.4.1 Scalable Visual Reasoning and Learning

First, we show that NEUMANN can perform scalable visual reasoning, i.e. it
can handle a large number of examples of complex visual scenes. To show that,
we compare the inference time for Kandinsky patterns and CLEVR-Hans. We
used two state-of-the-art neuro-symbolic methods to be compared:

– Feed-Forward Neural-Symbolic Learner (FFNSL) [17] is a neuro-
symbolic learning framework that integrates Answer Set Programming
(ASP) with neural networks. It performs visual perception using neural
networks, reads out their output as weighted logic representations, and
performs Inductive Learning of Answer Set Programs (ILASP) [49], which
conducts efficient structure-learning of logic programs based on ASP se-
mantics. It uses CLINGO [31], a well-established ASP-solving system for
inference. FFNSL can handle noisy input as weighted expressions, but its
inference engine requires discrete input and returns discrete logic represen-
tations.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 27

– DeepProbLog [58] is a neuro-symbolic framework that integrates neural
networks to ProbLog [24], which is a well-established probabilistic logic
inference engine. ProbLog accepts probabilistic input and produces prob-
abilistic output by performing exact probabilistic inference by compiling
logic representations into circuits, e.g. Sentential Decision Diagrams [21].
DeepProbLog obtains gradients out of the ProbLog output and train neu-
ral networks efficiently, and it is also applied to perform structure learning
in the sketching setting [95,8], where programs are learned to complete
partially-given input programs.

We measured the inference time (including the grounding of programs) for the
training split. We changed the proportion of the data to be used from 0.2 (use
20% of the training data) to 1.0 (use the full training data) for each dataset.
We used a batch size of 200 consistently throughout the experiments. We set
1000 seconds as the timeout.

Fig. 15 shows the inference-time comparison of NEUMANN, FFNSL, and
DeepProbLog on Kandinsky patterns and CLEVR-Hans. In each dataset,
NEUMANN achieved the fastest inference among the baselines. Especially in
the patterns that require complex classification rules and many ground atoms,
e.g. red-triangle and online-pair, NEUMANN significantly outperformed Deep-
ProbLog and FFNSL. On online-pair, DeepProbLog timed out even with 20%
of training data. This shows that NEUMANN can perform scalable visual
reasoning for a large amount of data. We note that NEUMANN and Deep-
ProbLog achieve differentiable reasoning, i.e. we can obtain gradients out of
the probabilistic reasoning result, but FFNSL does not provide this function
because of its pure-symbolic reasoner.

Moreover, to show that NEUMANN performs scalable visual learning, we
compare the performance and running time of learning of NEUMANN and
FFNSL using Kandinsky and CLEVR-Hans. In this setting, FFNSL serves
as a symbolic learning benchmark because it uses symbolic ILP systems,
e.g. ILASP [49], to learn programs.

We changed the proportion of the training and validation data: 0.01 (1
%), 0.05 (5 %), 0.1 (10 %), and 0.5 (50 %). We measured the test accuracy
using the full test data (100 %) consistently for each setting. We measured
the running time of learning, which includes the whole process, i.e. visual
perception, obtaining logic representations, and search logic programs. We
used a batch size of 200 and a learning rate of 1e− 2, and trained 20 epochs.
We set (Ntrial , Nsample) as (4, 10) for red-triangle in Kandinsky and (6, 10)
for the third pattern of CLEVR-Hans. To achieve FFNSL on Kandinsky and
CLEVR-Hans, we convert each visual scene to a weighted example for ILASP
as described in [17]. We set to time out as 5000 seconds.

Fig. 16 shows the accuracy of the test split (left) and the learning time
(right). In both datasets, FFNSL achieved high accuracy with a very small
number of training data (1% of training visual scenes), showing the advantage
of the symbolic learning method to generalize from small data. However, as
the number of training data increases, the learning time increases drastically.

28 Hikaru Shindo et al.

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

0

200

400

600

800

1000

Ti
m

e
[s

]

Inference Time / twopairs
NEUMANN
FFNSL
DeepProbLog

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

0

100

200

300

400

500

600

Ti
m

e
[s

]

Inference Time / closeby
NEUMANN
FFNSL
DeepProbLog

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

0

200

400

600

800

Ti
m

e
[s

]

Inference Time / red-triangle
NEUMANN
FFNSL
DeepProbLog

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

50

100

150

200

250

300

Ti
m

e
[s

]

Inference Time / online-pair
NEUMANN
FFNSL

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

0

200

400

600

800
Ti

m
e

[s
]

Inference Time / clevr-hans0

NEUMANN
FFNSL
DeepProbLog

0.2 0.4 0.6 0.8 1.0
Proportion of the Dataset

0

200

400

600

800

Ti
m

e
[s

]

Inference Time / clevr-hans1

NEUMANN
FFNSL
DeepProbLog

Fig. 15 NEUMANN performs scalable visual reasoning. We compare the infer-
ence time of NEUMANN, FFNSL [17] (using CLINGO [31]), and DeepProbLog [58] (using
ProbLog [24]) on Kandinsky and CLEVR-Hans using the training split (20k images for
each Kandinsky pattern, and 9k images for each CLEVR-Hans class). NEUMANN and
DeepProbLog compute probabilistic output, and FFNSL computes discrete output. As we
mentioned in main text, the time-out was set to 1000 seconds. In online-pair, DeepProbLog
timed out even with 20% of training data. Computed for 5 different random seeds. (Best
viewed in color)

To this end, FFNSL handled less than 10% of the training visual scenes in
Kandinsky and CLEVR-Hans. In contrast, NEUMANN performed learning
much faster than FFNSL using a large number of training visual scenes. This
shows that NEUMANN is scalable for large datasets, i.e. it can learn from a
large number of visual scenes. Moreover, in Kandinsky, although NEUMANN
produced test accuracy with a large variance with a small number of train-
ing data, it achieved higher accuracy and gained stability with less variance
by using more data. Overall, NEUMANN outperformed FFNSL in terms of
learning time, allowing the system to use more training data and producing
competitive test accuracy.

4.4.2 Explanations by Gradients

We show that NEUMANN can produce gradient-based explanations efficiently
by working with neural networks seamlessly. We use input gradients [4], which
is a widely-used explanation method for any differentiable models. Input gra-
dients are gradients with respect to input, i.e. for a differentiable function f
and an input x and output y, it computes e = ∂y/∂x, where each element e

Learning Differentiable Logic Programs for Abstract Visual Reasoning 29

0.01 0.05 0.1 0.3 0.5
Proportion of the Dataset

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

Accuracy / red-triangle

NEUMANN
FFNSL

0.01 0.05 0.1 0.3 0.5
Proportion of the Dataset

0

500

1000

1500

2000

2500

3000

Ti
m

e
[s

]

Learning Time / red-triangle
NEUMANN
FFNSL

0.01 0.05 0.1 0.3 0.5
Proportion of the Dataset

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Accuracy / clevr-hans2

NEUMANN
FFNSL

0.01 0.05 0.1 0.3 0.5
Proportion of the Dataset

0

1000

2000

3000

4000

Ti
m

e
[s

]

Learning Time / clevr-hans2
NEUMANN
FFNSL

Fig. 16 NEUMANN performs scalable learning on complex visual scenes.
We compare the performance and learning time of NEUMANN and FFNSL [17] (using
ILASP [49], which serves as a symbolic-learning benchmark), on Kandinsky patterns and
CLEVR-Hans by changing the proportion of training/validation data. The accuracy is mea-
sured on the full test data. As mentioned in main text, the time-out was set to 5000 seconds
and FFNSL timed out with more than 10% of training data. Computed for 3 different ran-
dom seeds. (Best viewed in color)

represents how the corresponding input (e.g. a pixel) is effective to the output4.
NEUMANN can produce input gradients over input atoms, i.e. we compute:

eatoms =
∂y

∂x
(0)
atoms

=
∂x

(T)
atoms

∂x
(0)
atoms

· ∂y

∂x
(T)
atoms

. (11)

Since the reasoning function of NEUMANN is end-to-end differentiable, eatoms

can be computed efficiently using automatic differentiation (AD), i.e. just
calling the backward function once after the reasoning5.

4 For simplicity, we do not take the element-wise product x⊙ ∂y
∂x

.
5 Since x

(0)
atom is not a leaf node in the computational graph, we prepare a dummy variable

z0 with the same shape as x
(0)
atoms and all elements are initialized with 0. In the forwarding,

we compute x
(0)
atoms = x

(0)
atoms + z0, and extract gradients stored in z0 after calling the

backward function.

30 Hikaru Shindo et al.

Let M1, . . . ,Mn be (attention) masks over n objects for an input scene
produced by an object-centric perception network. We compose visual expla-
nations as follows:

E(x) =
∑
i

ϕi ·Mi (12)

where ϕi is a weight for the i-th mask, which is computed as the maxi-
mum probability of input ground atoms regarding the i-th object. Let J =
{j1, . . . , jm} be indices of the ground atoms regarding the i-th object (e.g.
color(obji, red)) in ordered set of ground atoms G. We compute the weight
ϕi for the mask Mi:

ϕi = max(eatoms [j1], . . . , eatoms [jm]), (13)

where eatoms is computed by Eq. 11. For example, if obj1 is a key factor for
the classification, the corresponding attention mask M1 gets a large weight,
i.e. highlights obj1.To this end, Eq. 12 computes a heatmap that highlights
only objects which are effective in the reasoning result.

Fig. 17 shows explanations produced by NEUMANN for CLEVR-Hans us-
ing clauses listed in Fig. 9. For each pair of images, the left one shows the
original input and the right one shows the heatmap. NEUMANN successfully
produced explanations highlighting objects which are the factors for the classi-
fication. For example, the first class is about a large cube and a large cylinder,
and NEUMANN highlights both but not others for each input. The expla-
nation can be completed very efficiently by using automatic differentiation
(AD).

The same explanation could be obtained by using gradients in DeepProbLog.
However, as shown in Section 4.4.1, it has a scalability issue for a large amount
of complex visual scenes. In contrast, NEUMANN produces gradient-based ex-
planations but still can handle a large amount of complex visual scenes in a
scalable manner. Moreover, FFNSL relies on the discrete inference engine,
CLINGO, and thus it is difficult to produce gradient-based explanations using
automatic differentiation, i.e. it requires additional hard coding for explana-
tions. Overall, NEUMANN is the only framework that achieves scalable differ-
entiable forward reasoning and learning, producing explanations on complex
visual scenes working with neural networks efficiently.

4.5 Discussions

We now discuss NEUMANN’s advantages, computation, impact, and limita-
tions.
What are the advantages compared to pure-symbolic learners?

The most promising feature of NEUMANN compared to pure symbolic
systems is its capability to handle a large amount of visual input in a scalable
manner. As shown in Sec. 4.4, NEUMANN can perform visual reasoning and
learning, outperforming state-of-the-art neuro-symbolic benchmarks regarding

Learning Differentiable Logic Programs for Abstract Visual Reasoning 31

“Each figure contains a large cube and a large cylinder.”

“Each figure contains a small metal cube and a small sphere.”

“Each figure contains a large blue sphere and a small yellow sphere.”

Fig. 17 NEUMANN can explain its reasoning using gradients. Explanations pro-

duced by NEUMANN by computing input gradients [4] for input probabilistic atoms x
(0)
atoms

and visualizing together with relevant attention maps. (Best viewed in color)

running time and performance. This feature is crucial for tightly integrating
learning and reasoning with neural networks, e.g. algorithmic supervision [74]
where neural networks are trained efficiently using gradients via symbolic al-
gorithms. For such a setting, reasoners should be able to conduct scalable
reasoning for a large amount of data to train neural networks. Otherwise,
they would be the bottleneck, limiting the applicability of the neuro-symbolic
systems.

Moreover, as shown in Sec. 4.4.2, NEUMANN can use gradient-based XAI
methods to produce visual explanations working with perception networks
efficiently, and it is difficult to produce the same result with a pure symbolic

32 Hikaru Shindo et al.

system without additional hard coding. This feature of NEUMANN leads to
essential applications, e.g. the right for the right reasons [83] approach, which
trains neural networks to produce correct explanations using the gradient-
based explanations.

Overall, NEUMANN does not contradict symbolic approaches but provides
a basis for better neuro-symbolic systems. It has been reported that a pure
symbolic system can handle noisy examples [50], refuting the motivation of
∂ILP [29]. However, NEUMANN provides many other benefits of scalable rea-
soning and learning paradigm that is compatible with gradient-based methods
that include a significant part of the success of DNNs.
What makes NEUMANN’s reasoning and learning scalable?

The scalable performance of NEUMANN can be explained by two reasons.
(1) NEUMANN grounds programs once, then use the resulting computational
graph repeatedly, as other differentiable forward reasoners do [29,90,91]. It
means that NEUMANN does not compute logic operations (e.g. unification)
for each specific query. Instead, NEUMANN performs forwarding on the com-
putational graph and then obtains the results. In contrast, (differentiable)
backward reasoning, employed in DeepProbLog [58], needs to construct a new
computational graph for a new query, making the reasoning expensive. (2)
More importantly, NEUMANN is a graph neural network and performs rea-
soning on GPUs6. The ground-once scheme enables the reasoner to build and
fix the computational graph as users do with neural networks, i.e. defining the
network architecture and a set of weights, then the computational graph is
constructed and fixed so forwarding can be conducted on GPUs. When deal-
ing with a batch of examples (e.g. 200 examples), NEUMANN can process
them in parallel very efficiently. This feature is not trivial for logic reason-
ers. Typically, they process a batch of examples sequentially. For instance,
DeepProbLog uses Sentential Decision Diagrams [21] for its reasoning, and it
requires building different SDDs on CPUs for each query, and FFNSL uses the
CPU-based reasoner (CLINGO [31]). Thus it requires non-trivial efforts for
these reasoners to compute reasoning by using GPUs in a scalable manner.
Why is it crucial to improve the memory consumption of differen-
tiable forward reasoners?

Differentiable forward reasoning, introduced in the ∂ILP framework [29],
encodes logic programs to tensors. Differentiable forward reasoning is inher-
ently memory intensive and thus limits the expressivity of logic programs,
e.g. no functors are allowed, each rule consists of at most 2 body atoms, and
each predicate takes at most 2 arguments. ∂ILP has been extended to handle
structured programs with functors [90], by incorporating search techniques in
ILP [64,71,16], leading to αILP [91], which learns logic rules from complex vi-
sual scenes. However, these methods inherit the memory-intensive tensors and
thus cannot handle complex programs for abstract visual reasoning. Differen-
tiable forward reasoning gains several advantages compared to pure symbolic
reasoners, as discussed in the previous paragraph. Thus it is crucial to improve

6 NEUMANN is implemented using PyG, an established GNN library https://pyg.org/

Learning Differentiable Logic Programs for Abstract Visual Reasoning 33

memory consumption so that a wide range of programs can be handled in the
framework to expand the applicability of neuro-symbolic approaches.
Why is graph encoding more efficient than dense tensor encoding?

Graphs can represent the relations between different atoms more efficiently
than dense tensors. For example, suppose we want to encode the following
information, ”Atom X is not deduced by atom Y ”. A reasoning graph can
represent this information simply by not having edges between X and Y . In
contrast, the dense tensors in differentiable ILP frameworks [29,90,91] need to
hold false symbol ⊥ for each combination of X and Y , i.e. the system needs
to keep all of the combinations of ground atoms. This results in NEUMANN
being memory efficient as shown in Proposition 1.
Can sparse tensors result in reasoners comparable to message-passing
reasoners?

Sparse tensors cannot account for differentiable forward reasoning because
they do not support some essential tensor operations as they compress the
tensors by breaking the row-and-column structure. As shown in ∂ILP [29],
differentiable forward reasoning uses the slice and gather operations on ten-
sors repeatedly, and those are not supported by sparse tensors. Thus simply
using sparse tensors does not lead to memory-efficient differentiable forward
reasoners.
Why can existing VQA models not solve the Behind-the-Scenes task?

VQA models accept input as a tuple of an image and a question in natural-
language sentences [2]. Symbolic programs, typically described as a Domain
Specific Language (DSL) to compute answers, are generated by parsing the
input question using neural networks. Given visual scenes, it is unclear how to
perform program induction on their DSL since there is no uniform structure-
learning algorithm for each DSL. Thus simply using existing VQA models for
the proposed task cannot be a solution.
Limitations. Although NEUMANN is a more general framework compared
to classic symbolic and neuro-symbolic frameworks, it does suffer from some
limitations: (1) The language to be handled is limited to definite clauses, which
are rules in FOL with a single head atom. Symbolic systems can handle more
complex structures, e.g. choice rules in Answer Set Programming (ASP) sys-
tems [10]. (2) The learning algorithm is not jointly training perception net-
works and logic programs. (3) The message-passing algorithm is not connected
to well-known probabilistic semantics, e.g. distribution semantics [86].

5 Related Work

NEUMANN builds upon different sub-fields of AI. We revisit relevant studies.
Symbolic AI. Symbolic representations, e.g. First-Order Logic (FOL),

provide essential functions of knowledge representation and reasoning capa-
bilities to AI systems, which are difficult to be provided by purely neural-
based models [5,9,70]. A pioneering study of inductive inference was done

34 Hikaru Shindo et al.

in the early 70s [75]. Many systems have been developed for inductive infer-
ence [1], e.g. Model Inference System (MIS) [89] has been implemented as an
efficient search algorithm for logic programs. Inductive Logic Programming
(ILP) [64,71,16] has emerged at the intersection of machine learning and logic
programming. ILP systems using Answer Set Programming (ASP) can learn
logic programs beyond definite clauses [49,48], e.g. choice rules. ILP has ad-
vantages compared to data-driven DNNs, e.g. it can learn explicit programs
and learn from small data. Thus, combining ILP with DNNs is a promising
approach to overcoming the limitations of the current data-driven machine-
learning paradigm. NEUMANN embraces the symbolic learning approaches
in the neuro-symbolic setting, where logical reasoning and neural learning are
tightly integrated.

Probabilistic Logic and Neuro-Symbolic AI. Combining probabili-
ties with symbolic logic has been addressed to establish reasoning systems
that can handle uncertainty, e.g. distribution semantics [86] and Bayesian
logic programs [41]. Probabilistic Inductive Logic Programming [23] combines
ILP with probabilistic semantics establishing a new learning paradigm. Struc-
ture learning algorithms for probabilistic logic programs have been developed,
e.g. SLIPCOVER [7]. These approaches focus on learning with probabilis-
tic semantics, but NEUMANN engages differentiable reasoning and learning,
where parameters get gradients optimized via gradient descent. Lifted infer-
ence [100] addresses efficient reasoning, e.g. reducing computational graphs
by using symmetry, and these techniques could be incorporated into NEU-
MANN since it employs graphs as its representation. Markov Logic Networks
(MLNs) [80] takes a similar approach to ground the logic programs to produce
a graph structure. MLNs perform inference based on Bayesian networks, but
NEUMANN computes differentiable forward reasoning by message-passing as
graph neural networks.

Integration of symbolic computations and neural networks, called neuro-
symbolic AI [30,40], has attracted a lot of attention in recent years. Many
frameworks have been developed for parameter estimation of DNNs using
symbolic programs, e.g. DeepProbLog [58,59], NeurASP [105], SLASH [94],
NS-CL [60], differentiable theorem provers [82], and Embed2Sym [3]. In a sim-
ilar vein, differentiable structure learners have been developed [29,62,90,91],
and NEUMANN extends their capacity by having memory-efficient reason-
ing and computationally-efficient learning. TensorLog [15] performs message-
passing for backward reasoning, but NEUMANN realizes forward reasoning.
GNNs have been used for reasoning [78,73] by composing logical expressions as
graphs, where neural representations are trained given symbolic knowledge. In
contrast, NEUMANN performs structure learning using reasoning graphs and
fuzzy logic operations. Logical Neural Networks (LNNs) [81] is a class of neural
networks where each node has its logical semantics. LNNs parameterize soft-
logical operations, but NEUMANN parameterizes clauses with their weights.
Lifted Relational Neural Networks [102] uses rules as a template to produce
deep neural networks. NEUMANN uses rules as a template to produce differ-
entiable message-passing forward reasoner. Integration DNNs with abductive

Learning Differentiable Logic Programs for Abstract Visual Reasoning 35

learning [20] has been addressed, where the agent learns to complete a symbolic
knowledge base. This approach does not address program induction from raw
inputs. In contrast, NEUMANN performs structure learning from complex vi-
sual scenes. MetaABD [19] has been proposed to perform program induction
based on abductive learning by integrating a learning system Metagol [65].
Metagol handles definite clauses without functors, but NEUMANN can learn
programs with functors.

Visual Reasoning Datasets. The deep-learning community has devel-
oped many image datasets for evaluating different image-recognition mod-
els, e.g. MNIST [26] and ImageNet [25]. However, these datasets are dedi-
cated to simple label classification, and thus difficult to assess the reason-
ing abilities of machine-learning models. To overcome this limitation, visual
datasets with reasoning requirements have been developed. Visual Question
Answering (VQA) [2,104,45] is a well-established scheme to learn to answer
questions given as natural language sentences together with input images.
VQA has an assumption that the programs to compute answers are given
as input questions. However, in Behind-the-Scenes, the agents need to learn
abstract programs to compute the answers. Moreover, VQA models do not
address learning from small data and transferring the obtained knowledge
to new tasks, which are parts of the Behind-the-Scenes requirement. Neuro-
symbolic models achieve multi-modal learning on VQA [107,98], but NEU-
MANN addresses rather structure-learning problems with differentiable logic
programming. VQAR [36] is a variant of VQA with relational reasoning,
CLEVRER [106] is an extension of CLEVR with sequential input, and MNIST-
Addition [58] is about learning DNNs to add hand-written digits. These datasets
involve essential aspects of reasoning, e.g. , relations with multiple entities,
temporal reasoning, and arithmetic computation. However, as shown in Tab. 1,
Behind-the-Scenes achieve the four essential model-building aspects: (i) learn-
ing from small data, (ii) learning from complex visual scenes, (iii) learning
explanatory programs, and (iv) reasoning beyond observations. Previously pro-
posed datasets cover some of these aspects but not all of them. The proposed
Behind-the-Scenes task is the first dataset to assess the four model-building
abilities of machine-learning models. Abstract Visual Reasoning (AVR) has
been addressed to test the ability to apply previously gained knowledge and
programs in a completely new setting, posing challenges to DNNs [35,57,
14]. The methods have been evaluated on simple tasks of abstract puzzles,
e.g. Raven’s progressive matrices [77]. The proposed task, Behind-the-Scenes,
requires structured program induction and reasoning beyond observation in
complex 3D visual scenes, which have not been addressed in previous AVR
studies.

A motivation of the proposed behind-the-scene task is problem solving,
which is an essential aspect of human intelligence of solving problems be-
yond perception using reasoning [69,68]. Humans can learn much from a small
number of experiences developing capacities to represent physical objects and
reason about their motion [96,6]. Inspired by these studies, the development
of adaptive learning skills of humans has been addressed as model building

36 Hikaru Shindo et al.

problems [47], and data-driven DNNs are insufficient to achieve these aspects.
NEUMANN tackles this challenge by performing memory-efficient differen-
tiable forward reasoning using DNNs.

Graphs and Circuits for Reasoning. Many approaches have been de-
veloped to encode the reasoning structures to graphs and circuits. Binary De-
cision Diagrams (BDDs) [12] encode propositional logic expressions compactly
as a directed graph, leading to variant structures, e.g. Sentential Decision Di-
agrams (SDDs) [21,44], Zero-suppressed Decision Diagrams (ZDDs) [61], and
Zero-supressed Sentential Decision Diagrams (ZSDDs) [72]. These architec-
tures are developed for propositional logic or combinatorial optimization, but
the reasoning graph of NEUMANN represents first-order logic and addresses
differentiable reasoning. Their efficient compression algorithms and operations
between graphs (e.g. taking conjunction between two graphs) for these struc-
tures could be applied to reasoning graphs in NEUMANN. Sum-Product Net-
works (SPNs) [76] encode tractable probability distributions in graphs, which
repeatedly consist of sum and product layers. NEUMANN shares a similar
structure since its reasoning graph consists of atom nodes to compute dis-
junctions and conjunction nodes, and performs bi-directional message-passing.
SPNs solve exact probabilistic inference, but NEUMANN addresses differen-
tiable reasoning on first-order logic.

6 Conclusion

We presented NEUMANN, a memory-efficient differentiable forward reasoner
that passes messages on reasoning graphs. NEUMANN compiles logic pro-
grams in first-order logic to a graph that encloses the process of forward reason-
ing and performs message-passing in a neural fashion. Moreover, we proposed a
computationally-efficient learning algorithm combining gradient-based scoring
and differentiable sampling of clauses. In our experiments, we have shown: (1)
The message-passing reasoning algorithm simulates the differentiable forward
reasoning dealing with uncertainty. (2) NEUMANN can solve visual ILP prob-
lems combined with DNNs, outperforming neural baselines and consuming less
memory than the other differentiable ILP benchmarks. (3) NEUMANN solves
the Behind-the-Scenes task outperforming conventional differentiable reason-
ers, providing model-building abilities beyond simple perception capabilities,
i.e. learning from small data, understanding visual scenes deeply, learning ex-
planatory programs, and reasoning about non-observational scenes. (4) NEU-
MANN performs scalable visual reasoning and learning, outperforming state-
of-the-art symbolic and neuro-symbolic methods regarding running time and
performance. Moreover, NEUMANN can incorporate XAI methods efficiently,
i.e. NEUMANN produces gradient-based visual explanations using DNNs.

NEUMANN provides several interesting avenues for future work. NEU-
MANN is an instance of GNNs, providing the capability of representation
learning to make neuro-symbolic reasoning more robust and multi-modal.
Moreover, NEUMANN enables differentiable reasoning on complex logic pro-

Learning Differentiable Logic Programs for Abstract Visual Reasoning 37

grams with functors and thus can be used for vital applications, such as plan-
ning, meta-interpreters, and knowledge-enhanced foundation models. NEU-
MANN is also promising for the right for the right reasons approach [83], where
neural networks are trained to produce correct explanations and thus a vital
factor to achieve explainable machine learning systems. Generally, it bridges
the current data-driven machine learning paradigm to perform problem-solving
beyond perception with knowledge representation and reasoning.

References

1. D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Comput.
Surv., 15(3):237–269, Sept. 1983.

2. S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. Vqa:
Visual question answering. In International Conference on Computer Vision (ICCV),
2015.

3. Y. Aspis, K. Broda, J. Lobo, and A. Russo. Embed2Sym - Scalable Neuro-Symbolic
Reasoning via Clustered Embeddings. In International Conference on Principles of
Knowledge Representation and Reasoning (KR), 2022.

4. D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K. Müller.
How to explain individual classification decisions. J. Mach. Learn. Res., 11:1803–1831,
2010.

5. C. Baral. Knowledge representation, reasoning and declarative problem solving. Cam-
bridge university press, Cambridge, 2003.

6. P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine
of physical scene understanding. Proceedings of the National Academy of Sciences,
110(45):18327–18332, 2013.

7. E. Bellodi and F. Riguzzi. Structure learning of probabilistic logic programs by search-
ing the clause space. Theory Pract. Log. Program., 15(2):169–212, 2015.

8. M. Bošnjak, T. Rocktäschel, J. Naradowsky, and S. Riedel. Programming with a
differentiable forth interpreter. In International Conference on Machine Learning
(ICML), volume 70, pages 547–556, 2017.

9. R. Brachman and H. Levesque. Knowledge representation and reasoning. Elsevier,
Amsterdam, 2004.

10. G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

11. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In
Advances in neural information processing systems (NeurIPS), pages 1877–1901, 2020.

12. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35:677–691, 1986.

13. R. Caferra. Logic for Computer Science and Artificial Intelligence. Wiley-IEEE Press,
New York, 2013.

14. G. Camposampiero, L. Houmard, B. Estermann, J. Mathys, and R. Wattenhofer. Ab-
stract visual reasoning enabled by language. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 2642–
2646, June 2023.

15. W. W. Cohen, F. Yang, and K. Mazaitis. TensorLog: A probabilistic database imple-
mented using deep-learning infrastructure. J. Artif. Intell. Res., 67:285–325, 2020.

16. A. Cropper, S. Dumančić, and S. H. Muggleton. Turning 30: New ideas in induc-
tive logic programming. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 4833–4839, 2020.

17. D. Cunnington, M. Law, J. Lobo, and A. Russo. FFNSL: feed-forward neural-symbolic
learner. Mach. Learn., 112(2):515–569, 2023.

18. M. Cuturi and M. Blondel. Soft-dtw: A differentiable loss function for time-series. In
International Conference on Machine Learning (ICML), volume 70, pages 894–903,
2017.

38 Hikaru Shindo et al.

19. W. Dai and S. H. Muggleton. Abductive knowledge induction from raw data. In
Z. Zhou, editor, Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

20. W. Dai, Q. Xu, Y. Yu, and Z. Zhou. Bridging machine learning and logical reasoning by
abductive learning. In Advances in Neural Information Processing Systems (NeurIPS),
pages 2811–2822, 2019.

21. A. Darwiche. SDD: A new canonical representation of propositional knowledge bases.
In T. Walsh, editor, International Joint Conference on Artificial Intelligence (IJCAI),
pages 819–826, 2011.

22. R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? AI
Magazine, 14(1):17, 1993.

23. L. De Raedt and K. Kersting. Probabilistic Inductive Logic Programming, pages 1–27.
Springer, Berling, Heidelberg, 2008.

24. L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Mach.
Learn., 100(1):5–47, 2015.

25. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

26. L. Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

27. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pages 4171–4186, 2019.

28. V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

29. R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. J. Artif.
Intell. Res., 61:1–64, 2018.

30. A. Garcez and L. Lamb. Neurosymbolic ai: the 3rd wave. Artificial Intelligence Review,
pages 1–20, 03 2023.

31. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP solving with
clingo. Theory Pract. Log. Program., 19(1):27–82, 2019.

32. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1–58, 1992.

33. W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages
1024–1034, 2017.

34. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

35. S. Hu, Y. Ma, X. Liu, Y. Wei, and S. Bai. Stratified rule-aware network for abstract
visual reasoning. In AAAI Conference on Artificial Intelligence (AAAI), pages 1567–
1574, 2021.

36. J. Huang, Z. Li, B. Chen, K. Samel, M. Naik, L. Song, and X. Si. Scallop: From
probabilistic deductive databases to scalable differentiable reasoning. In Advances in
Neural Information Processing Systems (NeurIPS), pages 25134–25145, 2021.

37. E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations (ICLR), 2017.

38. J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick.
Clevr: A diagnostic dataset for compositional language and elementary visual reason-
ing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1988–1997, 2017.

39. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler,
T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis. Highly accurate protein structure prediction with Al-
phaFold. Nature, 596(7873):583–589, 2021.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 39

40. H. Kautz. The third AI summer: AAAI robert s. engelmore memorial lecture. AI
Magazine, 43(1):93–104, 2022.

41. K. Kersting and L. De Raedt. Basic principles of learning bayesian logic programs.
Probabilistic Inductive Logic Programming: Theory and Applications, pages 189–221,
2008.

42. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representation (ICLR), 2015.

43. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

44. D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision
diagrams. In International Conference on Principles of Knowledge Representation and
Reasoning (KR), 2014.

45. R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei. Visual genome: Connecting
language and vision using crowdsourced dense image annotations. Int. J. Comput.
Vis., 123(1):32–73, 2017.

46. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–90, 2017.

47. B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017.

48. M. Law, A. Russo, E. Bertino, K. Broda, and J. Lobo. Fastlas: Scalable inductive logic
programming incorporating domain-specific optimisation criteria. Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 2877–2885, 2020.

49. M. Law, A. Russo, and K. Broda. Inductive learning of answer set programs. In Logics
in Artificial Intelligence - 14th European Conference (JELIA), 2014.

50. M. Law, A. Russo, and K. Broda. Inductive learning of answer set programs from
noisy examples. Advances in Cognitive Sciences, 7:57–76, 2018.

51. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
52. J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A

framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning (ICML), volume 97, pages 3744–3753, 2019.

53. Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

54. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, Heidelberg, 1984.
55. F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit,

A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

56. C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning
Representations (ICLR), 2017.

57. M. Malkinski and J. Mandziuk. A review of emerging research directions in abstract
visual reasoning. Information Fusion, 91:713–736, 2023.

58. R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deepproblog:
Neural probabilistic logic programming. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3753–3763, 2018.

59. R. Manhaeve, S. Dumančić, A. Kimmig, T. Demeester, and L. De Raedt. Neural
probabilistic logic programming in deepproblog. Artif. Intell., 298:103504, 2021.

60. J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The Neuro-Symbolic Concept
Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. In
International Conference on Learning Representations (ICLR), 2019.

61. S. Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Proceedings of the 30th Design Automation Conference (DAC), pages 272–277, New
York, 1993. ACM Press.

62. P. Minervini, S. Riedel, P. Stenetorp, E. Grefenstette, and T. Rocktäschel. Learning
reasoning strategies in end-to-end differentiable proving. In International Conference
on Machine Learning, (ICML), volume 119, pages 6938–6949, 2020.

63. S. H. Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318,
1991.

40 Hikaru Shindo et al.

64. S. H. Muggleton. Inverse entailment and progol. New Gener. Comput., 13:245–286,
1995.

65. S. H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn., 100(1):49–
73, 2015.

66. H. Müller and A. Holzinger. Kandinsky patterns. Artif. Intell., 300:103546, 2021.
67. D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti,

D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Za-
haria. Efficient large-scale language model training on GPU clusters using megatron-
lm. In International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC), New York, 2021. ACM.

68. A. Newell. Human Problem Solving. Prentice-Hall, Inc., USA, 1972.
69. A. Newell and H. A. Simon. Computer simulation of human thinking. Science,

134(3495):2011–2017, 1961.
70. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine

learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.
71. S.-H. Nienhuys-Cheng, R. d. Wolf, J. Siekmann, and J. G. Carbonell. Foundations of

Inductive Logic Programming. Springer-Verlag, Berlin, Heidelberg, 1997.
72. M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Zero-suppressed sentential decision

diagrams. In AAAI Conference on Artificial Intelligence (AAAI), pages 1058–1066,
2016.

73. A. Paliwal, S. M. Loos, M. N. Rabe, K. Bansal, and C. Szegedy. Graph representa-
tions for higher-order logic and theorem proving. In AAAI Conference on Artificial
Intelligence (AAAI), pages 2967–2974, 2020.

74. F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen. Learning with algorithmic su-
pervision via continuous relaxations. In Advances in Neural Information Processing
Systems (NeurIPS), pages 16520–16531, 2021.

75. G. Plotkin. A further note on inductive generalization. In Machine Intelligence,
volume 6. Edinburgh University Press, Edinburgh, 1971.

76. H. Poon and P. M. Domingos. Sum-product networks: A new deep architecture. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 337–346, 2011.

77. J. C. Raven and J. H. Court. Raven’s progressive matrices and vocabulary scales.
Oxford Psychologists Press, Oxford, 1998.

78. M. Rawson and G. Reger. Directed graph networks for logical entailment. In EasyChair
Preprint no. 2185, 2020.

79. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-
time object detection. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 779–788, 2016.

80. M. Richardson and P. M. Domingos. Markov logic networks. Mach. Learn., 62(1-
2):107–136, 2006.

81. R. Riegel, A. Gray, F. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin,
F. Barahona, U. Sharma, et al. Logical neural networks. arXiv Preprint:2006.13155,
2020.

82. T. Rocktäschel and S. Riedel. End-to-end differentiable proving. In Advances in Neural
Information Processing Systems (NeurIPS), pages 3788–3800, 2017.

83. A. S. Ross, M. C. Hughes, and F. Doshi-Velez. Right for the right reasons: Train-
ing differentiable models by constraining their explanations. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 2662–2670, 2017.

84. S. Ruder. An overview of gradient descent optimization algorithms. arXiv Preprint,
abs/2110.09383, 2016.

85. S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach, Third Inter-
national Edition. Pearson Education, New York., 2010.

86. T. Sato. A statistical learning method for logic programs with distribution semantics.
In International Conference on Logic Programming (ICLP), pages 715–729, 1995.

87. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

88. M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.
Modeling relational data with graph convolutional networks. In The Semantic Web -
15th International Conference (ESWC), volume 10843 of Lecture Notes in Computer
Science, pages 593–607, 2018.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 41

89. E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, 1983.
90. H. Shindo, M. Nishino, and A. Yamamoto. Differentiable inductive logic programming

for structured examples. In AAAI Conference on Artificial Intelligence (AAAI), pages
5034–5041, 2021.

91. H. Shindo, V. Pfanschilling, D. S. Dhami, and K. Kersting. αILP: thinking visual
scenes as differentiable logic programs. Mach. Learn., 112(5):1465–1497, 2023.

92. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–503, 2016.

93. T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum. Few-shot
bayesian imitation learning with logical program policies. In AAAI Conference on
Artificial Intelligence (AAAI), pages 10251–10258, 2020.

94. A. Skryagin, W. Stammer, D. Ochs, D. S. Dhami, and K. Kersting. Neural-probabilistic
answer set programming. In International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2022.

95. A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California,
Berkeley, 2008.

96. E. S. Spelke, K. Breinlinger, J. Macomber, and K. Jacobson. Origins of knowledge.
Psychological review, 99(4):605, 1992.

97. W. Stammer, P. Schramowski, and K. Kersting. Right for the right concept: Revising
neuro-symbolic concepts by interacting with their explanations. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3619–3629, 2021.

98. H. Tan and M. Bansal. LXMERT: learning cross-modality encoder representations
from transformers. In Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 5099–5110, 2019.

99. J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow a mind:
Statistics, structure, and abstraction. Science, 331(6022):1279–1285, 2011.

100. G. Van den Broeck, K. Kersting, S. Natarajan, and D. Poole. An Introduction to Lifted
Probabilistic Inference. MIT Press, Cambridge, MA, 2021.

101. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), pages 5998–6008, 2017.

102. G. Šourek, V. Aschenbrenner, F. Železný, S. Schockaert, and O. Kuželka. Lifted rela-
tional neural networks: Efficient learning of latent relational structures. J. Artif. Intell.
Res., 62:69–100, 2018.

103. L. Weng. How to train really large models on many gpus? lilianweng.github.io, Sep
2021.

104. Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. Van Den Hengel. Visual question
answering: A survey of methods and datasets. Image Vis. Comput., 163:21–40, 2017.

105. Z. Yang, A. Ishay, and J. Lee. Neurasp: Embracing neural networks into answer set
programming. In C. Bessiere, editor, International Joint Conference on Artificial
Intelligence (IJCAI), pages 1755–1762, 2020.

106. K. Yi, C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba, and J. B. Tenenbaum. Clevrer:
Collision events for video representation and reasoning. In International Conference
on Learning Representations (ICLR), 2020.

107. K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum. Neural-symbolic
VQA: disentangling reasoning from vision and language understanding. In Advances
in Neural Information Processing Systems (NeurIPS), pages 1039–1050, 2018.

108. S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph transformer networks. In
Advances in Neural Information Processing Systems (NeurIPS), pages 11960–11970,
2019.

109. C. Zhao, C. Xiong, C. Rosset, X. Song, P. Bennett, and S. Tiwary. Transformer-xh:
Multi-evidence reasoning with extra hop attention. In International Conference on
Learning Representations (ICLR), 2020.

42 Hikaru Shindo et al.

A Logic Programs for Behind-the-Scenes

We show logic programs used for solving the Behind-the-Scenes task but not shown in
the main text. Fig. 18 shows a set of clauses to define utility predicates to solve the task,
e.g. extracting a color of an object according to its position. Fig. 19 shows additional logic
programs used for query answering.

% extract the target color according to the position
% e.g. get the color of the 1st (left-most) object
get_color([Color1,Color2,Color3],Position,X):-

first_obj([Color1,Color2,Color3],X),
same_position(Position,1st).

get_color([Color1,Color2,Color3]),Position,X):-
second_obj([Color1,Color2,Color3]),X),
same_position(Position,2nd).

get_color([Color1,Color2,Color3],Position,X):-
third_obj([Color1,Color2,Color3],X),
same_position(Position,3rd).

% mapping the list of colors to a color, according to the position
% used by the get_color predicate
first_obj([Color1,Color2,Color3],Color1):-.
second_obj([Color1,Color2,Color3],Color2):-.
third_obj([Color1,Color2,Color3],Color3):-.

Fig. 18 Additional clauses to define utility predicates to answer queries.

% append(X,Y,Z) means Z is the result of appending X to the head of Y.
append([],X,X):-.
append([X|Y],Z,[X|V]):-append(Y,Z,V).

% reverse(X,Y) means that Y is the result of reversing X.
reverse([H|T],A,R):-reverse(T,[H|A],R).
reverse([],A,A):-.

% permutation(X,Y) means Y is a permutation of X.
permutation([X,Y],Z):-permutation(Y,V),delete(X,Z,V).

Fig. 19 Additional clauses to compute abstract list operations.

B Experimental Details on Reasoning Behind-the-Scenes

We describe the experimental details of the behind-the-scenes task.
Task 1 (T1). We used the mode declarations in Tab. 8 for both NEUMANN and ∂ILP-

ST. The definition of mode declarations is available in Sec. D. We performed 50 epochs of
weight optimization with a batch size of 64. We used the RMSProp [84] optimizer with

Learning Differentiable Logic Programs for Abstract Visual Reasoning 43

Table 8 Mode declarations for Behind-the-Scenes.

modeb(1, member(+object,+objcets))
modeb(1, delete(+object,+objcets,+objects))
modeb(1, is sorted(+objects))
modeb(1, smaller(+object,+object))
modeb(1, permutation(+objects,+objcets))

a learning rate of 1e − 2. To prune too general clauses in the clause generation step, we
gradually increased the ratio of negative examples from 20% to 100% by 20% in the first 5
trials of the clause generation. For sort, we performed curriculum learning, e.g. learning a
simple predicate first (is sorted) and then finalizing the complete learning (sort).

We limit the number of nested functors at most 3 and discard lists with duplicated
elements. We used the same perception model as in CLEVR-Hans, which is described in
Section C.3. Visual examples for each operation are shown in Sec. E.

Task 2 (T2). Queries about different operations are given randomly, so the model needs
to handle different types of queries in the prediction. To generate visual scenes with queries
and their answers, we adopted the generation code of CLEVR [38]. When solving, NEU-
MANN reads out a JSON file which contains instances, and each instance contains a path to
an image file and pairs of a query and a corresponding answer, e.g. (query2(q delete, cyan,
2nd), ans(red)). NEUMANN assigns probabilities over query atoms according to the input,
i.e. it gives 1.0 for a query atom given input and 0.0 for other query atoms. The answer is
used only for computing accuracies and never in the prediction pipeline.

We used a batch size of 64 for NEUMANN and 1 for αILP, i.e. αILP produced out-of-
memory even with the smallest batch size, as shown in Tab. 6. We used the same perception
model as in CLEVR-Hans, which is described in Section C.3. We limit the number of nested
functors at most 3 and discard lists with duplicated elements. We used additional abstract
operations (append and reverse) shown in Fig. 19. Examples of input scenes paired with
queries and their answers are shown in Sec. E.

C Experimental Details on Kandinsky Patterns and CLEVR-Hans

In this section, we describe the experimental setting of Kandinsky Patterns and CLEVR-
Hans.

C.1 Kandinsky Patterns

CNN. We trained ResNet18 for 300 epochs with a batch size of 512. We used the Adam
optimizer [42,84] with a learning rate of 1e− 5.
YOLO+MLP. We used MLP with two hidden layers. Each hidden layer applies a linear
transformation and a non-linearity. The output of the pre-trained YOLO model is reshaped
and fed into MLP to predict the class label. We jointly trained the whole YOLO+MLP
network for 1000 epochs with a batch size of 512. We used the Adam optimizer [42,84] with
a learning rate of 1e− 5.
αILP/NEUMANN. We trained the αILP and NEUMANN model for 100 epochs with a
batch size of 64. We used the RMSProp [84] optimizer with a learning rate of 1e − 2. For
αILP, we used 500 positive examples in the validation split to generate clauses by beam
search.

Mode declarations we used are shown in Tab. 9. Tab. 10 shows the data types and
constants, and Tab. 11 shows the predicates used in our experiments. #obj represents the
number of objects to be focused on the classification, which can be identified by trying
from the smallest number and evaluating by validation split and increasing if the perfor-
mance is not enough. We set the initial clause to be the root node in the beam search as:

44 Hikaru Shindo et al.

Table 9 Mode declarations for Kandinsky
patterns and CLEVR-Hans.

modeh(1, kp(−image))
modeb(#obj, in(−object,+image))
modeb(1, color(+object,#color))
modeb(1, shape(+object,#shape))
modeb(2, same color pair(+object,+object))
modeb(2, same shape pair(+object,+object))
modeb(1, diff color pair(+object,+object))
modeb(1, duff shape pair(+object,+object))
modeb(1, closeby(+object,+object))
modeb(1, online(+object, . . . ,+object))
modeh(1, ch(−image))
modeb(#obj, in(−object,+image))
modeb(1, color(+object,#color))
modeb(1, shape(+object,#shape))
modeb(1, material(+object,#material))
modeb(1, size(+object,#size))

Table 10 Datatype and constants in Kandin-
sky patterns and CLEVR-Hans.

Datatype Terms
image img

object obj1, obj2, . . ., obj6
color red, blue, yellow
shape square, circle, triangle
image img

object obj0, obj1, . . ., obj9
color cyan, blue, yellow, purple,

red, green, gray, brown
shape sphere, cube, cylinder
size large, small
material rubber, metal

Table 11 Predicates in the Kandinsky patterns and CLEVR-Hans.

Predicate Explanation
kp/(1, [image]) The image belongs to the Kandinsky pattern.
same shape pair/(2, [object, object]) The two objects have the same shape.
same color pair/(2, [object, object]) The two objects have the same color.
diff shape pair/(2, [object, object]) The two objects have different shapes.
diff color pair/(2, [object, object]) The two objects have different colors.
in/(2, [object, image]) The object is in the image.
shape/(2, [object, shape]) The object has the shape of the second argument.
color/(2, [object, color]) The object has the color of the second argument.
closeby/(2, [object, object]) The two objects are located close by each other.
online/(5, [object, . . . , object]) The objects are aligned on a line.
ch/(1, [image]) The image belongs to the clevr-hans pattern.
in/(2, [object, image]) The object is in the image.
shape/(2, [object, shape]) The object has the shape of the second argument.
color/(2, [object, color]) The object has the color of the second argument.
material/(2, [object, material]) The object has the material of material.
size/(2, [object, size]) The object has the size of the second argument.

kp(X) :- in(O1, X), . . . , in(On, X)., where n is the number of objects to be focused. Background
knowledge given in for Kandinsky patterns is shown in Tab. 12.

C.2 CLEVR-Hans

We trained the αILP and NEUMANN model for 100 epochs with a batch size of 256. We
used the RMSProp optimizer [84] with a learning rate of 1e − 2. For αILP, we used 500
positive examples in the validation split to generate clauses by beam search.

Mode declarations we used are shown in Tab. 9. Tab. 10 shows the data types and
constants, and Tab. 11 shows the predicates. We set the initial clause to be the root node
in the beam search as: ch(X) :- in(O1, X), in(O2, X). We did not provide any background
knowledge for CLEVR-Hans tasks. We refer to [97] for details about CNN, NeSy, and NeSy-
XIL benchmarks.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 45

same shape pair(X, Y) : −shape(X, Z), shape(Y, Z),
same color pair(X, Y) : −color(X, Z), color(Y, Z),
diff shape pair(X, Y) : −shape(X, Z), shape(Y, W), diff shape(Z, W).
diff color pair(X, Y) : −color(X, Z), color(Y, W), diff color(Z, W),
diff color(red, blue), diff color(blue, red),
diff color(red, yellow), diff color(yellow, red),
diff color(blue, yellow), diff color(yellow, blue).
diff shape(circle, square), diff shape(square, circle),
diff shape(circle, triangle), diff shape(triangle, circle),
diff shape(square, triangle), diff shape(triangle, square).

Table 12 Background knowledge for Kandinsky patterns.

C.3 Perception Models

We describe the experimental setting of the pre-training of the perception models in our
experiments.

C.3.1 YOLO for Kandinsky Patterns

Model. We used YOLOv57 model, whose implementation is publicly available. We adopted
the YOLOv5s model, which has 7.3M parameters.
Dataset. We generated 15, 000 pattern-free figures for training, 5000 figures for validation.
The class labels and positions are generated randomly. The original image size is 620× 620,
and resized into 128 × 128. The label consists of the class labels and the bounding box for
each object. The class label is generated by the combination of the shape and the color of
the object, e.g., red circle and blue square. The number of classes is 9. Each image contains
at least 2 objects and, at most 10 objects.
Optimization. We trained the YOLOv5s model by stochastic gradient descent (SGD) for
400 epochs using the pre-trained weights8. We used the loss function that approximates
detection performance, presented in [79]. We set the learning rate to 0.01 and the batch size
to 64. The SGD optimizer used the momentum, which is set to 0.937. We set the weight
decay as 0.0005. We took 3 warmup epochs for training.

C.3.2 Slot Attention for CLEVR

We used the same model and training setup as the pre-training of the slot-attention module
in [97]. In the preprocessing, we downscaled the CLEVR images to a dimension of 128×128
and normalized the images to lie between −1 and 1. For training the slot-attention module,
an object is represented as a vector of binary values for the shape, size, color, and material
attributes and continuous values between 0 and 1 for the x, y, and z positions. We trained
the slot attention model with the set prediction architecture following [55], using the loss
function, which is based on the Hungarian algorithm. We refer to [97] for more details.

D Mode Declaration

Mode Declaration [64] is one of the common language biases for Inductive Logic Program-
ming. We used mode declaration, which is defined as follows. A mode declaration is either a
head declaration modeh(r, p(mdt1, . . . , mdtn)) or a body declaration modeb(r, p(mdt1, . . . , mdtn)),
where r ∈ N is an integer, p is a predicate, and mdti is a mode datatype. A mode datatype is

7 https://github.com/ultralytics/yolov5
8 https://github.com/ultralytics/yolov5/releases

46 Hikaru Shindo et al.

positive examples

negative examples

member

member

positive examples
sort

negative examples
sort

Fig. 20 Positive and negative examples for member and sort (with an order of colors: cyan
< gray < red < yellow, alphabetical order) in CLEVR-List.

a tuple (pm, dt), where pm is a place-marker and dt is a datatype. A place-marker is either #,
which represents constants, or + (resp. −), which represents input (resp. output) variables.
r represents the number of the usages of the predicate to compose a single clause.

E More Examples in Datasets

Fig. 20 shows some positive and negative examples for member and sort in CLEVR-List.
Fig. 21 shows some positive and negative examples for delete in CLEVR-List. We show some
examples of visual input, queries, and their answers in the behind-the-scenes task in Fig. 22.
We show some examples for each pattern we used in Kandinsky patterns in Fig. 23. We also
show some examples for each class of CLEVR-Hans in Fig. 24.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 47

positive examples

negative examples

delete

delete

Fig. 21 Positive and negative examples for delete in CLEVR-List.

48 Hikaru Shindo et al.

query3(delete,cyan,2nd) ans(red)

Query Answer

query3(append,gray,2nd) ans(cyan)

query2(reverse,1st) ans(red)

query2(sort,3rd) ans(yellow)

Image

query3(delete,cyan,2nd) ans(gray)

Query Answer

query3(append,red,1st) ans(red)

query2(reverse,3rd) ans(yellow)

query2(sort,2nd) ans(gray)

Image

query3(delete,gray,2nd)

Query Answer

query3(append,cyan,2nd)

query2(reverse,1st)

query2(sort,3rd)

Image Image

query3(delete,cyan,2nd) ans(red)

Query Answer

query3(append,gray,1st) ans(gray)

query2(reverse,3rd) ans(yellow)

query2(sort,2nd) ans(red)

ans(yellow)

ans(gray)

ans(yellow)

ans(yellow)

Fig. 22 Examples of visual input, queries, and their answers in the Behind-the-Scenes task.
Input is given as a pair of a visual scene and a query.

Learning Differentiable Logic Programs for Abstract Visual Reasoning 49

TwoPairs
“The Kandinsky figure has two pairs of objects with the same shape. In one pair, the
objects have the same colors in the other pair different colors. Two pairs are always

disjunct, i.e., they do not share objects.”

positive positive negative negative

Closeby
“The Kandinsky figure has a pair of objects that are close to each other.”.

positive positive negative negative

Red-Triangle
“The Kandinsky figure has a pair of objects that are close to each other, and one
object of the pair is a red triangle, and the other object has a different color and

different shape. (A red triangle is attacking someone who has a different color and a
different shape.”

positive positive negative negative

Online/Pair
“The Kandinsky figure has five objects that are aligned on a line, and it contains at

least one pair of objects that have the same shape and the same color.”

positive positive negative negative

Fig. 23 Examples in each Kandinsky pattern in our experiments. The left two images are
positive examples, and the right two images are negative examples.

50 Hikaru Shindo et al.

CLEVR-Hans3
class1

large (gray) cube
and

large cylinder

class2
small metal cube

and
small (metal) sphere

class3
large blue sphere

and
small yellow sphere

Fig. 24 Examples in CLEVR-Hans3 dataset [97]. The dataset consists of three classes. Two
images are shown for each class. The text on the top of the images describes the confounded
classification rule for each class. For example, images of the first class contain a large cube
and a large cylinder. The large cube has the color of gray in every image of the train and
validation split. In the test split, the color of the large cube is shuffled randomly.

