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Abstract

Strong meta-learning capabilities for systematic compositionality are emerging as
an important skill for navigating the complex and changing tasks of today’s world.
However, in presenting models for robust adaptation to novel environments, it is
important to refrain from making unsupported claims about the performance of
meta-learning systems that ultimately do not stand up to scrutiny. While Fodor
and Pylyshyn famously posited that neural networks inherently lack this capacity
as they are unable to model compositional representations or structure-sensitive
operations, and thus are not a viable model of the human mind, Lake and Baroni
recently presented meta-learning as a pathway to compositionality. In this position
paper, we critically revisit this claim and highlight limitations in the proposed
meta-learning framework for compositionality. Our analysis shows that modern
neural meta-learning systems can only perform such tasks, if at all, under a very
narrow and restricted definition of a meta-learning setup. We therefore claim
that ‘Fodor and Pylyshyn’s legacy’ persists, and to date, there is no human-like
systematic compositionality learned in neural networks.
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1 Introduction

Meta-learning, or learning to learn from different situations, is an interesting challenge closely
related to human intelligence. It is a core element of our educational system that we learn how to
learn without explicit prior knowledge about each situation in life, as their variations are manifold.
Similarly, the use of language embodies this adaptability, requiring the integration of learned rules
with contextual nuances to navigate both familiar and novel scenarios. Language exemplifies how
humans apply systematic generalization, seamlessly combining learned grammatical structures and
vocabulary to create and interpret new expressions. This dynamic interplay between rules and
context bridges the abstract principles of meta-learning with the practical mechanisms that underlie
communication and cognitive reasoning.

The principle of compositionality is a key challenge for artificial neural networks, as it requires
the ability to develop systematic representations and behaviors. Unlike humans, neural models
often struggle to generalize such rules (Nezhurina et al. 2024, Wüst et al. 2024a, Bayat et al. 2025)
across contexts, reflecting fundamental gaps in their representational and operational frameworks.
Because artificial neural networks are constrained by their reliance on finite representational spaces
and distributed encoding schemes, these limitations manifest themselves in their difficulty in applying
composition rules consistently across scenarios. While humans can effortlessly recombine learned
concepts to interpret novel sentences or solve unique problems, neural networks lack the inherent
transparency, flexibility, and reflexivity to perform similar feats. Their opacity, driven by distributed
representations, hinders their ability to systematically manipulate components and infer relationships.

Lake and Baroni [2023] introduced a meta-learning framework attempting to mitigate these challenges
by introducing episodic training tasks that require rule inference. The framework involves presenting
neural networks with support examples governed by hidden grammars and testing their ability to
generalize these rules. This episodic approach aims to train networks for systematic generalization,
using meta-learning principles to approximate human-like reasoning. They claimed to overcome
some fundamental limitations of neural networks, prominently stated by Fodor and Pylyshyn [1988].
However, there is also plenty of evidence of the limitations of modern deep learning models with
human-like capabilities in language understanding that rely on systematic compositional reasoning
(Deletang et al. 2023, Zhang et al. 2023, Dziri et al. 2024, Mészáros et al. 2024, Bayat et al. 2025),
and we provide further insights that even Lake and Baroni’s model fails to prove its systematic
behavior in several instances.

Despite its potential, the framework’s reliance on learned distributions and predefined rule shapes lim-
its its scope. Generalization remains limited to permutations of known rules rather than the discovery
of entirely new principles. The difficulty of scaling to complex tasks with deeper nesting underscores
the persistent gaps in achieving true human compositional reasoning. Lake and Baroni’s framework
provides valuable insights, but also highlights the need for innovation in neural network training and
evaluation to overcome these limitations, as behavioral similarities may mask fundamental differences
in underlying mechanisms.

Thus, in this paper we argue that: Neural networks have not yet achieved learning systematic
compositional abilities. Specifically, based on a case of effective criticism of Lake and Baroni’s
framework, we outline how to argue, test, and train for systematic generalization and compositionality,
and demonstrate the relevance of our position (c.f. Figure 1 for a schematic).

We develop this position as follows: (I) We identify Fodor and Pylyshyn’s main arguments in the
context of the compositionality challenge for artificial neural networks and locate the nature of
Lake and Baroni’s approach in refuting Fodor and Pylyshyn’s claims that neural networks cannot
reliably develop compositional representations and structure-sensitive operations. (II) We show that
within their setup, the model exhibits various non-systematic behaviors that can not be considered
human-like and clearly violates structure-sensitivity. (III) We argue for several necessary aspects
of training and evaluation of meta-learning systems to achieve and assess their systematicity, taking
into account the relevance of compositional representations and structure-sensitive operations. (IV)
We adapt the arguments of Fodor and Pylyshyn in light of the modern development of deep learning
systems to argue for a future of models capable of learning symbolic representations for artificial
cognition and representation learning.
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Structure-sensetive Operations?

Systematic Compositionality? Compositonal Representations?

Only assessable with 
systematic OOD testing

Only accessible with
 inspectable architecture

?

?

Figure 1: The challenge of claiming and testing systematic compositionality. Given the undis-
puted importance of compositional representations and structure-sensitive operations for systematic
compositionality, their evaluation remains crucial and challenging. While structure-sensitivity can
be assessed by comprehensive OOD testing, the investigation of representations requires some in-
spectable model architecture.

2 The Challenge of Compositionality

2.1 Fodor and Pylyshyn’s legacy

In their influential 1988 paper, Connectionism and cognitive architecture: A critical analysis1,
Fodor and Pylyshyn claim that artificial neural models are unsuitable for modeling the human mind
on a cognitive level. They review several arguments for the combinatorial structure of mental
representations, highlighting the systematicity of these representations that follow the compositional
nature of cognitive capabilities; the ability to understand some given thoughts implies the ability to
understand various thoughts not only with semantically related content but also of a more complex
combinatorial structure. Nevertheless, they also consider the possibility that artificial neural networks
may play a role in implementing cognition.

Differentiating neural networks and symbolic systems. They begin by discussing the disagreement
about the nature of mental processes and mental representations between the so-called Connectionist
approach, which focuses on artificial neural networks, and the Classical approach, which favors
symbolic systems like Turing machines for modeling cognitive abilities. They emphasize that it
is neither about the explicitness of rules, nor about the reality of representational states, nor about
non-representational architecture, since a "Connectionist neural network can perfectly well implement
a Classical architecture at the cognitive level"2. While both "assign semantic content to something"3,
it is identified as the central difference that they disagree about what primitive relations hold between
these content-bearing entities. The sole importance of causal connectedness in neural networks is
contrasted with a range of semantic and structural relations in symbolic systems. Only the sensitivity
to both semantic and structural relations is expected to allow a commitment to the compositionality
of mental representations with combinatorial syntax and semantics. Furthermore, the operations that
models perform in transforming one representation into another are sensitive to the structure of these
representations and not only to their semantics.

Productivity, compositionality, and systematicity of cognitive ability. The need for these two
properties of symbol systems, compositional representations and structure-sensitive operations, is
justified by "three closely related features of cognition: its productivity, its compositionality, and its
inferential coherence"4. Only structure-sensitive operations combined with a combinatorial structure
and semantics of representations can account for the (under appropriate idealization) unbounded
capacities of a representational system. Similarly, cognitive capacities are systematic in that the
ability to produce or process some representations is syntactically linked to the ability to produce or
process certain other representations without relying on the processing of any particular semantics,

1[Fodor and Pylyshyn, 1988].
2Ibid., p.11.
3Ibid., p.12, emphasis in original.
4Ibid., p.33.
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e.g., understanding the form of the expression (A ∧ B) → A implies the ability to understand the
expression for any substituents of A or B. In fact, systematicity makes a stronger argument by
using a weaker assumption, since "[p]roductivity arguments infer the internal structure of mental
representations from the presumed fact that no one has finite intellectual competence [and by] contrast,
systematicity arguments infer the internal structure of mental representations from the patent fact
that no one has punctuate competence." 5 Closely related to systematicity is the compositionality
of mental representations, since representational abilities can be linked not only syntactically but
also semantically. It is important to note here that not every mental representation is expected to be
compositional, e.g., the understanding of some expressions in natural language, since "similarity of
constituent structure accounts for semantic relatedness between systematically related sentences only
to the extent that the semantic properties of the shared constituents are context independent."6 A final
cognitive feature is the systematicity of inference. Recalling the example of the conjunction A ∧B
entailing its constituent A, it is not only the mental representation of the understanding of this rule
that is systematic, but also its application for coherent inference between thoughts, which in turn
requires the structure-sensitivity of operations in symbolic systems.

Neural networks for implementing symbol systems. Finally, Fodor and Pylyshyn comment on
treating Connectionism as an implementation theory for cognitive architecture. They "have no
principled objection to this view"7. However, they emphasize that if neural networks are only a
method for implementing cognitive architecture, their internal states are useless for understanding the
nature of mental representations and therefore "irrelevant for psychological theory"8; neural networks
would only be neurological, and the need for and relevance of symbol systems for modeling cognition
would remain untouched.

2.2 Lake and Baroni’s objection

Compositional seq2sec tasks. Lake and Baroni present their work as evidence against the claims
of Fodor and Pylyshyn. They present a meta-learning framework that they claim achieves or
exceeds human-level systematic generalization in its evaluations. Their experimental setup is based
on sequence-to-sequence (sec2sec) transduction tasks, considering sequences generated over 8
pseudolanguage tokens u ∈ U for the input domain X = U∗, while the output domain Y = C∗

comprises sequences generated over 6 different color tokens c ∈ C. Both domains are connected by
a transduction grammar, i.e. a set of production rules that define how a sequence of input tokens is
translated into a color sequence. Each rule is of two kinds; it can state a primitive transduction rule
u → c, which simply maps an input token to an output token; otherwise it states a unary operation
v1u → fu(v1) or a binary operation v1uv2 → gu(v1, v2), where each f is some n-fold (n ≤ 8)
repetition, each g is some combination of repetition, permutation, and concatenation. Each vi is either
a single token ui or the entire preceding or succeeding token string xi. By iteratively composing
these rules, such a grammar generates a set of translatable input sequences X̄ ⊆ X .

Seq2seq meta-learning framework for evaluation of human systematic generalization. With
these transduction tasks, Lake and Baroni set up a meta-learning framework with episodes associated
with different transduction grammars. Each episode combines a SUPPORT set of input-output
transduction pairs and a QUERY set of input-output pairs, each pair being consistent with the
associated grammar. The query outputs are hidden, and the task is to reproduce them with the support
examples as the only information given; the underlying transduction grammar also remains hidden. In
this way, it is not necessary to infer the grammar rule explicitly. Nevertheless, the ability to implicitly
extract or hypothesize the actual grammar rules is expected to be essential for reliably deriving the
correct query outputs. A standard seq2seq transformer network is now trained on query examples
from different episodes. The transformer encoder processes a query input combined with the support
pairs of its episode as context, and the transformer decoder generates an output sequence.

5Ibid., p.40, emphasis in original.
6Ibid., p.42.
7Ibid., p.67.
8Ibid., p.65.
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GRAMMAR #133 (Lake and Baroni)
wif → •, tufa → •, kiki → •, lug → •,

u1 zup x1 → u1 x1, x1 gazzer → x1 x1 x1,
x1 fep → x1 x1

DECODING (this paper; for readability)
wif : ■, tufa : ■, kiki : ■, lug : ■,

zup : before, gazzer : thrice, fep : twice
SUPPORT (Lake and Baroni)

■ → •, ■ → •, ■ → •, ■ → •,
■ ■ → ••, ■ ■ → ••,

■ thrice → •••, ■ ■ thrice → ••••••,
■ ■ before ■ → •••, ■ ■ before ■ → •••,

■ before ■ thrice → ••••,
■ before ■ before ■ → •••,

■ ■ ■ before ■ before ■ → •••••,
■ thrice twice → ••••••

QUERY (Lake and Baroni)
IN OUT #

■ before ■ before
■ twice

•••••
••••••
••••

••••••

6
2
1
1

■ twice
•••
••
••

9
1
−

QUERY (Lake and Baroni)
IN OUT #

■ ■ twice

••••••
••••
•••

••••••
••••

7
1
1
1
−

■ twice

•••
••
••
••
••

5
2
2
1
−

■ before ■ before
■ twice

•••••
••••

••••••
••••••
••••••
••••••

3
2
2
1
1
1

■ before ■ twice

••••••
••••
••
•••
••••

••••••
••••

4
1
1
1
1
1
1

Table 1: Episode #133 with 10 evaluations for each query example; SUPPORT and QUERY are
decoded for better readability. Expected outputs backed with green. The model shows incoherent
processing and systematically mistakes twice for thrice. Further results can be found in Appendix
A.2.1. (Best viewed in color.)

3 Systematicity through Meta-Learning

In the following, we illustrate the limitations of current neural network approaches by examining
the systematicity achieved by Lake and Baroni’s meta-learning approach. After revealing a severe
lack of compositionality in their framework, we propose how to better test and train for systematic
generalization and compositionality with meta-learning systems. In doing so, we highlight the
ongoing challenges associated with compositional representations and structure-sensitive operations.

Locating Lake and Baroni’s approach. In order to evaluate the proposed framework for systematic
generalization by meta-learning neural networks with respect to Fodor and Pylyshyn’s claims,
we will first clarify which of Fodor and Pylyshyn’s arguments Lake and Baroni are referring to,
since they primarily present an implementation of what they claim is a human-like systematic
capability, but directly address a challenge. They themselves situate their work as a contribution
to the line of argument that Fodor and Pylyshyn’s statements no longer apply to current model
architectures; they are not criticizing the properties of human cognition, but the alleged inability of
neural networks to reliably develop compositional representations and structure-sensitive operations.
By focusing on behavioral tests rather than ablation studies that directly examine the structure
of learned representations, Lake and Baroni emphasize the structure sensitivity and systematicity
of their model, which is crucial for demonstrating compositional abilities and coherent behavior.
Furthermore, they present their meta-learning framework for compositionality to systematically train
neural networks with these abilities. While a single neural network with compositional abilities would
not contradict Fodor and Pylyshyn, who did not claim any limits on implementability of cognitive
abilities, a framework that reliably achieves compositional abilities by stochastic learning methods
would actually contradict their main point of criticism. Unfortunately, we will see in the following
section that the model trained on meta-learning still fails to reliably demonstrate compositional ability
in several examples.
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3.1 Examining the lack of compositionality

Lake and Baroni mention that generalization beyond training occurs only with respect to new
combinations of three grammar rules from the same set of grammar rules used during training.
However, if we consider the invariance under the atomic assignments of colors to language tokens
and the mere labeling of operations, we find that 179/200 validation episodes have a combination of
non-primitive grammar operations that were already present in the 100000 training episodes. (See
Appendix A.1 for details.) Thus, even if the model achieves highly systematic results on the test
episodes, this could be due to memorization of the experienced operation patterns and learning to
extract the correct labels from the episode’s support examples. However, we can even show that there
is non-systematic behavior within their repository of test episodes; we re-evaluate their pre-trained
′net− BIML− top′ model on the same set of ′algebraic′ test episodes, with the only difference
that we did 10 evaluations of all query examples for each test episode, for statistical purposes, similar
to the one episode they further evaluated against human performance. We find that the model performs
worst on episodes #133, #32, and #122, with accuracies of only 41%, 52%, and 54% on the query
examples, respectively. (See the next paragraph and the Appendix A.2 for details.)

Failure in rule extraction. Further investigation of Episode #133 (see Table 1) reveals that the model
has trouble correctly processing the semantics of the language token ⟨fep⟩ with the hidden grammar
rule x1 fep → x1 x1 and will therefore call it ⟨twice⟩ and confuse it up with the token ⟨gazzer⟩
(with x1 gazzer → x1 x1 x1) which we will call ⟨thrice⟩. It seems to have a problem with the only
example with ⟨twice⟩, ⟨■ thrice twice → ••••••⟩, which also happens to contain ⟨thrice⟩.
But since ⟨thrice⟩ has several iconic examples in the support, it is expected that a reasoner with
compositional skills will be able to systematically use a single example and remain consistent with the
rest of the support information. Considering the examples ⟨■ → •⟩, ⟨■ → •⟩, ⟨■ thrice → •••⟩,
human systematicity would at least suspect some semantics of ⟨twice⟩ that are different from those
of ⟨thrice⟩.
Non-systematic parsing. Interestingly, the hidden grammar allows for an ambiguous interpretation
of nested transduction queries, which would normally be a challenge for a systematic reasoner. For
example, the query ⟨■ before ■ twice⟩ could be parsed as either ⟨■ before (■ twice)⟩ (marked
as the target by Lake and Baroni ) or ⟨(■ before■) twice⟩, and similarly for a query with ⟨thrice⟩.
But the support example ⟨■ before ■ thrice → ••••⟩ should at least induce a bias toward the
intended processing. But the answers to this challenge also lack systematicity; while the common
mistakes ⟨■ before ■ before ■ twice → •••••⟩ and ⟨■ before ■ before ■ twice →
•••••⟩ could be explained by processing ⟨u1 before (u2 before (u3 thrice))⟩ while, in contrast,
a similar explanation to the the error ⟨■ before ■ twice → ••••••⟩ would be the parsing
⟨(u1 before u2) thrice⟩. We will further discuss the importance of systematicity for meta-learning
systems in Section 3.2.

Violating structure-sensitivity. Besides both previous failure modes that are related to incompetence
in extracting information from the support examples, we also found query examples for episode #1
that reveal additional non-systematicity (see Table 2 or Appendix A.2 for extended version). For
queries with the patterns ⟨u1 thrice around u2 u3⟩ and ⟨u1 around u2 u3 twice⟩ we first see
that the model never parses ⟨around⟩ as intended. Instead of ⟨((u1 thrice) around u2) u3⟩ and
((⟨u1 around u2) u3) twice⟩, the stable output can be explained by parsing ⟨around⟩ as intended.
Instead of ⟨(u1 thrice) around (u2 u3)⟩ and (⟨u1 around (u2 u3)) twice⟩ – except for the cases,
⟨■ thrice around■■⟩, ⟨■ thrice around■■⟩, ⟨■ around■■ twice⟩, where it would make
no difference! Only the (also ambiguous) case ⟨■ around ■ ■ twice⟩ is processed correctly in 6/10
cases – but with even worse performance than with the unambiguous examples. Despite the structural
similarity to the other query examples, down to the color combination, we see a non-systematic
deviation in the response, which raises doubts about compositional skills.

Limits in productivity. Finally, we would like to point out that Lake and Baroni’s setup only allows
the model to process input sequences of up to 10 tokens and generate output sequences of up to 8
color tokens (which further restricts the allowed input sequences). This limits the ability to test more
complex input sequences and thus to assess the productivity of the model’s ability.
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GRAMMAR #1 (Lake and Baroni)
tufa → •, wif → •,
lug → •, fep → •,

u1 gazzer → x1 x1 x1,
x1 kiki u1 → x1 u1 x1,

x1 zup → x1 x1

DECODING (this paper; for readability)
tufa : ■, wif : ■,
lug : ■, fep : ■,
gazzer : thrice,
kiki : around,
zup : twice

SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ ■ → ••,

■ twice → ••, ■ thrice → •••,
■ ■ twice → ••••,

■ ■ thrice → ••••••,
■ ■ twice → ••••,

■ ■ thrice → ••••••,
■ around ■ → •••, ■ around ■ → •••,

■ around ■ around ■ → •••••••,
■ around ■ twice → ••••••,
■ thrice around ■ → •••••••

QUERY (new; this paper)
IN OUT #

■ thrice around ■ ■
••••••••
••••••••

10
−

■ thrice around ■ ■
••••••••
••••••••

8
−

■ thrice around ■ ■
••••••••
••••••••

8
−

■ thrice around ■ ■
••••••••
••••••••

9
−

■ thrice around ■ ■
•••••••
••••••••

8
−

■ thrice around ■ ■
•••••••
••••••••

9
−

■ around ■ ■ twice
••••••••
••••••••

8
−

■ around ■ ■ twice
••••••••
••••••••

8
−

■ around ■ ■ twice •••••••• 6

■ around ■ ■ twice
••••••••
••••••••

7
−

■ around ■ ■ twice
••••••
••••••••

5
2

Table 2: Episode #1 with our own query examples and with 10 evaluations for each input; SUPPORT
and QUERY are decoded for better readability. Expected outputs backed with green. Further results
can be found in Appendix A.5 (Best viewed in color.)

3.2 Our position on meta-learning systems

We now discuss whether meta-learning, beyond Baroni’s framework, could be a promising approach
towards human-like compositional skills, despite the demonstrated limitations in the specific setup.
Meta-learning systems aim to emulate human-like learning by incorporating systematicity and
flexibility into their architectures. These systems aim to (1) generalize beyond training examples by
inferring composition rules from limited examples, (2) adapt to novel contexts with flexibility as a
key expectation, allowing systems to quickly transfer skills to new domains with minimal retraining,
and (3) mirror human-like cognition by ensuring that error patterns and reasoning paths are still
systematic, explainable, or even self-correcting.

Weakness of non-reflective training. A major shortcoming of Lake and Baroni’s work is the use of
a one-shot prediction approach. Models are trained to perform a direct transduction on the presented
support examples without any intermediate reflection or validation steps. To ensure the systematic
production of results, we argue that it is of primary importance for meta-learning models to iteratively
extract, validate, and correct their current beliefs in the extracted rules. In the previous section, we
showed that Lake and Baroni’s models fail to validate extracted rules against the support, and thus
systematically fail to correctly extract (and consequently apply), for example, the twice rule.

Focus on systematicity rather than productivity. Given the role that underlying grammars play
with respect to meta-learning, or more precisely, non-meta-learning problems, any of today’s modern
transformer systems can be broken by feeding them increasingly complex problems until the models
are no longer expressive enough to capture the problem as a whole. This can be due to the depth of
rule nesting or simply the length of the input. While the general ability to learn to transcribe rules
is certainly a prerequisite for meta-learning systems in the particular setting discussed, one would
not necessarily deny such systems the ability to perform meta-learning reasoning even if they fail
at such tasks for the reasons discussed above. When discussing meta-learning tasks, the focus is
not on the ability to derive rules of arbitrary complexity – which is a problem of classical machine
learning – but on the ability of these models to systematically discover, verify, apply, and combine
these rules, or to systematically learn from their mistakes. Compared to human reasoning [Nezhurina
et al., 2024, Wüst et al., 2024b], meta-reasoning abilities are not judged by the ability to produce
transductions in a one-shot fashion, but rather with a focus on the correctness of the result in the final
output. Therefore, we make the following claim:
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Claim 1. A characteristic of successful meta-learning systems is the ability to consistently abstain
from non-systematic errors.

Our primary concern is with the consistency of model behavior, and we therefore distinguish between
systematic and non-systematic errors. Systematic errors can result from incorrect assumptions inher-
ent in the model, which are then applied systematically. In our setting, this may involve assumptions
about the unique interpretation of rules – see, e.g., our discussion of potentially ambiguous rule
interpretations in Lake and Baroni – and, more generally, may be due to exogenous factors and
implicit assumptions not captured during the training phase. While such errors may not produce the
desired result, they follow a systematicity that suggests that the model might have been able to learn
the correct rules given the correct underlying assumptions. The lack of systematicity, however, is a
much larger error. Here, models may exhibit erratic ‘glitches’ that result in non-human-like behavior
that lacks any systematicity. Since the underlying reasons for such behavior may not be generally
understood, it is unclear how to handle and correct such errors. Finally, we derive two positions
regarding essential aspects of evaluation and training of successful meta-learning systems:

Position on evaluation. Assessing and postulating systematic or compositional skills in neural
networks requires either the direct evaluation of the model’s internal representations, which would
require an inspectable or explainable network architecture, or the use of comprehensive ablation
studies that systematically test a model’s behavior in out-of-distribution situations.

Position on implementation and training. To achieve compositionality and systematicity within the
discussed meta-learning tasks, the presence of symbolic representations within neural networks is
essential to ensure consistent application and composition of rules. We would like to emphasize that
while Fodor and Pylyshyn remain unrefuted in the general analysis, today’s discussion of modern
neural network architectures is constantly evolving to develop symbolic representations, e.g., in
the form of circuits [Olah et al., 2020, Wang et al., 2022, Conmy et al., 2023, Hanna et al., 2024].
These explicit representations are important building blocks that promote consistent behavior and
allow explicit reflection and iterative correction of possible inconsistencies in the extracted rule sets.
Finally, it is important to note that reflective behavior is not likely to evolve from training on one-shot
transduction tasks, but requires models to have the ability to iterate, validate, and correct over the
extracted rule sets. Recently, important breakthroughs in this direction have been made in RL training
of language reasoning models [Stiennon et al., 2020, Ouyang et al., 2022, Bai et al., 2022, Lee et al.,
2023, DeepSeek-AI et al., 2025].

4 Related Work

Human-like compositionality. Regarding the importance of compositionality for cognitive abilities,
Fodor and Lepore [2001] and Fodor [2001] extend the discussion of Fodor and Pylyshyn [1988]
on the compositional nature of language and thought. While (natural) language contains some
non-compositional structures due to context sensitivity, compositionality is argued to be essential for
(a language of) thought. This is in line with recent work by Fedorenko et al. [2024], which tries to
find evidence that language is primarily a tool for communication rather than for thinking.

Compositionality in neural networks. Besides Lake and Baroni [2023], there is older as well as
recent work trying to demonstrate compositional or meta-learning capabilities achieved with neural
network architecture [Botvinick and Plaut, 2004, Santoro et al., 2016, Park et al., 2024, DeepSeek-AI
et al., 2025]. Other work is proposing frameworks for learning and assessing compositional skills
[Petrache and Trivedi, 2024, Sinha et al., 2024] or other intelligent behavior [Chollet, 2019] and Bayat
et al. [2025] is introducing memorization-aware training to tackle overfitting to spurious correlations
encountered in training.

Limitations in systematicity. Several works evaluate and demonstrate the limitations of modern
AI models in compositional or systematic generalization tasks [Bender et al., 2021, Deletang et al.,
2023, Dziri et al., 2024, Mészáros et al., 2024, Nezhurina et al., 2024, Zhang et al., 2024, Wüst et al.,
2024b] and there is a direct response to the work of Lake and Baroni, which presents problems of
non-systematic behavior [Goodale and Mascarenhas, 2023].

Importance of symbolics. There is also more recent work that emphasizes the importance of
symbolics. Ellis et al. [2020] presents a machine learning system that uses neurally guided program
synthesis to learn to solve problems. Wüst et al. [2024a] further demonstrates the advantages of using
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program synthesis for unsupervised learning of complex, relational concepts from images, focusing
on the benefits in terms of generalization, interpretability, and revisability. Stammer et al. [2024b], on
the other hand, investigated the benefits of symbolic representations for improving the generalization
and interpretability of low-level visual concepts. The position of the importance of symbols for AI
explanations is further discussed by Kambhampati et al. [2022]. The approach of Dinu et al. [2024]
combines generative models and solvers by using large language models as semantic parsers. Shindo
et al. [2025] models the human ability to combine symbolic reasoning with intuitive reactions by a
neuro-symbolic reinforcement learning framework.

5 Alternative Views

Historically, [Fodor and Pylyshyn, 1988] argued for the emergence or implementation of symbolic rea-
soning structures within neural networks as a necessary aspect of achieving human-like meta-learning.
However, the meta-learning considerations discussed in their paper and ours focus strongly on the
learning of logical and arithmetic rules, where concepts can be reduced to symbolic representations.
These representations, therefore, naturally fit well with the capabilities of symbolic reasoners but
leave out other possible forms of meta-learning systems. The consideration of different modalities,
e.g., for the composition of visual patterns or motion sequences, can be a strong hurdle for classical
symbolic systems. Such domains, which do not operate on discrete ‘crystallized’ symbols but rather
on abstract ‘fluid’ concepts, still lack a well-defined notion of what constitutes meta-learning within
them. As a consequence, it is unclear how to measure and systematically evaluate the meta-learning
abilities of models in possible benchmarks.

Untargeted emergence of systematic reasoning. Even without training towards meta-learning
models, LLMs exhibit some emergent abilities for various tasks [Brown et al., 2020, Wei et al., 2022a,
Schaeffer et al., 2024]. While ‘true’ understanding of the world might only be achieved via (embodied)
interaction [Lipson and Pollack, 2000, Gupta et al., 2021, Zečević et al., 2023], some works have
argued that such abilities might even be learned through mere passive observation [Lampinen et al.,
2024], while other approaches argue for the value of self-explanatory guided learning [Stammer et al.,
2024a]. Considering the underlying aspect of systematic learning and reasoning, several works have
been able to distill symbolically acting circuits that emerge during training from LLMs [Olah et al.,
2020, Wang et al., 2022, Conmy et al., 2023, Hanna et al., 2024]. In light of these results, it remains
to be seen whether meta-learning abilities of language reasoning models might also emerge as a
consequence of pure scaling laws [Sutton, 2019, Kaplan et al., 2020, Bubeck et al., 2023].

6 Position Summary and Discussion

For this final section, we will reiterate the key points that make up our position (see Sec. 1) and that
we believe are important aspects of the goal of achieving meta-learning models capable of human-
like systematic compositionality: (I) Criteria for compositionality. The main criteria for models
with productive, systematic, and compositional capabilities remain compositional representation
and structure-sensible operations. (II) Non-systematic behavior. Since Lake and Baroni’s model
exhibits various non-systematic behaviors, it fails to demonstrate human-like compositional learning
capabilities, and further refutes the presented claims that their meta-learning framework achieves
human-like systematic generalization. (III) Assessment of compositionality. Systematic testing
of multiple types of out-of-distribution episodes is necessary to assess compositional abilities and
structure-sensitive operations. (IV) Emergence and Learning of Symbolic Representations. Meta-
learning systems need to support the emergence of compositional symbolic representations during
training. For this, we expect training tasks and model architectures that make iteration, self-validation,
and self-correction over the extracted rule sets possible and necessary. The limitations of current
neural models underscore the importance of hybrid architectures that integrate the strengths of
symbolic and connectionist paradigms. Key advances in this direction include systematicity, reflective
reasoning, and scalability.

Systematicity. Embedding mechanisms for representing and manipulating composition rules in
neural architectures is a key step toward improving generalization. In this paper, we argue that a
central property of meta-learning systems is the ability to refrain from non-systematic errors. This
includes the ability to represent explicit rules and apply them consistently across different contexts.
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Models that incorporate such structure are better able to generalize compositionally and avoid brittle
behavior when encountering novel combinations of inputs.

Reflection. Embedding iterative, self-correcting processes into models is essential for emulating
human-like adaptability. A distinctive ability of human reasoning is to reflect on and refine a set of
currently hypothesized rules. Extracting and validating rules from support examples can become
increasingly complex as the number of examples grows, often scaling exponentially. While one-shot
models can perform well within limited problem sizes, they are ultimately constrained by fixed
model capacity. We therefore argue for reflective learners –models capable of iteratively refining and
self– correcting their internal representations. This approach enables repeated validation of inferred
rules and aligns with recent successes in general language reasoning through iterative prompting and
reasoning [Wei et al., 2022b, Yao et al., 2024, DeepSeek-AI et al., 2025]. Unlike one-shot answers,
this iterative behavior supports progressive improvement and robust generalization.

Scalability, memory and context. Enabling models to dynamically extend rule sets and adapt to
new tasks is critical to mirroring human flexibility. A core requirement for reflective reasoning is the
ability to store and manipulate representations of a model’s current beliefs. This includes mechanisms
for reading and updating the memory as new information becomes available. When applying rules
to a query, a model may also need to track contextual factors-such as the nesting depth of current
rules-which requires memory components that can generalize beyond a fixed number of parameters.
Thus, overcoming the limitations of static architectures requires models that can manage dynamic
memory and evolving contexts to support scalable reasoning across diverse and complex tasks.

7 Conclusion

While the importance of compositional representations and structure-sensitive operations for human-
like systematicity remains, the previous consideration allows the training and testing of artificial neural
networks that encourage the development of such properties. By bridging the gap between symbolic
and connectionist principles, hybrid architectures may be particularly promising, since they do not
suffer from the limitations of neural networks without symbolic machinery as specified by Fodor
and Pylyshyn. Overall, the continued relevance of Fodor and Pylyshyn’s critique underscores the
challenges of developing systems capable of systematic generalization and compositional reasoning.
While meta-learning frameworks represent significant progress, they do not address fundamental
limitations. Future advances must embrace integrative approaches that combine the strengths of
symbolic and connectionist paradigms, paving the way for a more robust understanding of artificial
cognition. By addressing these challenges, we can move closer to realizing the vision of human-like
artificial intelligence.
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A APPENDIX: Fodor and Pylyshyn’s Legacy – Still No Human-like
Systematic Compositionality in Neural Networks

A.1 Note on analysis for different combinations of non-primitive grammar operations

In section 3.1 we state that only 179/200 validation episodes have a combination of non-primitive
grammar operations that were already present in the 100000 training episodes. This is the result of
counting every different combination of 3 operations, unary (v1u → fu(v1)) or binary (v1uv2 →
gu(v1, v2)), present in both training and validation episodes, when abstracting the individual function
names u.

A.2 Extended outputs for Lake and Baroni’s meta-learning testing episodes

Below we include the full set of grammar rules, support examples, and query examples from Lake
and Baroni’s meta-learning. We re-evaluated their pre-trained ′net− BIML− top′ model on the
same set of ′algebraic′ test episodes. Here we report the results for #133, #132, #122, and the
modified #1.

A.2.1 Complete responses for Lake and Baroni’s meta-learning testing-episodes #133.

GRAMMAR #133 (Lake and Baroni)
wif → •, tufa → •, kiki → •, lug → •,

u1 zup x1 → u1 x1,
x1 gazzer → x1 x1 x1,

x1 fep → x1 x1

DECODING (this paper; for readability)
wif : ■, tufa : ■, kiki : ■, lug : ■,

zup : before,
gazzer : thrice,

fep : twice
SUPPORT (Lake and Baroni)

■ → •, ■ → •, ■ → •, ■ → •,
■ ■ → ••,
■ ■ → ••,

■ thrice → •••,
■ ■ thrice → ••••••,
■ ■ before ■ → •••,
■ ■ before ■ → •••,

■ before ■ thrice → ••••,
■ before ■ before ■ → •••,

■ ■ ■ before ■ before ■ → •••••,
■ thrice twice → ••••••

QUERY (Lake and Baroni)

■ twice

•••
••
••
••
••

5
2
2
1
−

■ twice
•••
••
••

9
1
−

QUERY (Lake and Baroni)
IN OUT #

■ before ■ before
■ twice

•••••
••••••
••••

••••••

6
2
1
1

■ ■ twice

••••••
••••
•••

••••••
••••

7
1
1
1
−

■ before ■ before
■ twice

•••••
••••

••••••
••••••
••••••
••••••

3
2
2
1
1
1

■ before ■ twice

••••••
••••
••
•••
••••

••••••
••••

4
1
1
1
1
1
1

■ ■ •• 10

■ before ■
••
•••

9
1

■ before ■
••
•••
•••

8
1
1

■ before ■ •• 10
Table 3: Episode #133 with 10 evaluations for each query example; decoded for better readability.
Expected outputs backed with green. The model shows incoherent processing and systematically
mistakes twice for thrice. (Best viewed in color.)
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A.3 Complete responses for Lake and Baroni’s meta-learning testing-episode #32.

GRAMMAR #32 (Lake and Baroni)
tufa → •, zup → •, kiki → •, lug → •,

x1 dax u1 → u1 x1,
x1 gazzer x2 → x1 x2,

x1 wif x2 → x1 x1 x2 x2 x2 x1

DECODING (this paper; for readability)
tufa : ■, zup : ■, kiki : ■, lug : ■,

dax : after,
gazzer : before,

wif : twice before and once after
three times

SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ → •,

■ ■ → ••,
■ ■ → ••,
■ ■ → ••,
■ ■ → ••,

■ ■ ■ → •••,
■ after ■ → ••,
■ before ■ → ••,

■ ■ after ■ → •••,
■ after ■ after ■ → •••,
■ after ■ after ■ → •••,

■ ■ after ■ after ■ → ••••
QUERY (Lake and Baroni)

IN OUT #

■
•
•
•

8
1
1

■ after ■
••
••

8
2

■ ■ before ■
•••
••••

9
1

■ ■ •• 10

QUERY (Lake and Baroni)
IN OUT #

■ after ■ after ■
before ■

••••
••••
••••
••••

5
3
1
1

■ ■ after ■ after ■
••••
•

••••

8
1
1

■ ■ ■ before ■
before ■

•••••
•••••
•••••

•••••••

4
4
1
1

■ twice before
and once after
three times ■

••
•••••
•••••
••••
•••••
••••
••••

•••••••
•••

••••••

2
1
1
1
1
1
1
1
1
−

■ twice before
and once after
three times ■

••
••••
••••
•••

•••••
•••••
••••••
••••••

3
2
1
1
1
1
1
−

■ ■ ■ after ■
before ■

•••••
•••••
•••••

•••••••
•••••

•••••••

4
2
1
1
1
1

Table 4: Episode #32 with 10 evaluations for each query example; decoded for better readability.
Expected outputs backed with green. (Best viewed in color.)
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A.4 Complete responses for Lake and Baroni’s meta-learning testing-episode #122.

GRAMMAR #122 (Lake and Baroni)
blicket → •, kiki → •, zup → •, lug → •,

x1 dax → x1 x1 x1 x1,
x1 fep x1 → x1 u1 u1 x1,

x1 gazzer → x1 x1

DECODING (this paper; for readability)
blicket : ■, kiki : ■, zup : ■, lug : ■,

dax : four times,
fep : twice within,

gazzer : twice
SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ → •,

■ ■ → ••,
■ ■ → ••,

■ twice → ••,
■ twice → ••,

■ four times → ••••,
■ four times → ••••,
■ ■ twice → ••••,
■ ■ twice → ••••,

■ ■ ■ ■ twice → ••••••••,
■ twice within ■ twice → ••••••,

■ ■ ■ ■ ■ ■ → ••••••
QUERY (Lake and Baroni)

IN OUT #

■ ■
••
•

9
1

■ ■ •• 10

■
•
•

8
2

■ four times
••••
••••
••••

8
1
1

■ twice
••
••

9
1

QUERY (Lake and Baroni)
IN OUT #

■ ■ four times
•••••

••••••••
•••

5
4
1

■ ■ twice within ■ ■

••••••••
••••••••
••••••••
••••••••
•••••••
••••••••

••••
••••••

••••••••
••••••••
•••••••

1
1
1
1
1
1
1
1
1
1
−

■ twice within ■ twice

••••
••••••
••••••
••••••
••••••
••••••
••••

••••••
••••••
••••••

2
1
1
1
1
1
1
1
1
−

■ twice within ■

•••
••••
•••
••
•••
••••
•••
••••
••••

3
1
1
1
1
1
1
1
−

■ ■ four times

•••••
••••••••
•••••
•••
•••

4
2
1
1
1
1

Table 5: Episode #122 with 10 evaluations for each query example; decoded for better readability.
Expected outputs backed with green. (Best viewed in color.)
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A.5 Complete responses for our modified version of Lake and Baroni’s testing-episode #1.

GRAMMAR #1 (Lake and Baroni)
tufa → •, wif → •, lug → •, fep → •,

u1 gazzer → x1 x1 x1,
x1 kiki u1 → x1 u1 x1,

x1 zup → x1 x1

DECODING (this paper; for readability)
tufa : ■, wif : ■, lug : ■, fep : ■,

gazzer : thrice,
kiki : around,
zup : twice

SUPPORT (Lake and Baroni)
■ → •, ■ → •,
■ ■ → ••,

■ twice → ••,
■ thrice → •••,

■ ■ twice → ••••,
■ ■ thrice → ••••••,
■ ■ twice → ••••,

■ ■ thrice → ••••••,
■ around ■ → •••,
■ around ■ → •••,

■ around ■ around ■ → •••••••,
■ around ■ twice → ••••••,
■ thrice around ■ → •••••••

QUERY (new; this paper)
IN OUT #

■ thrice around ■ ■
••••••••
••••••••

10
−

■ thrice around ■ ■

••••••••
•••••
••

••••••••

8
1
1
−

■ thrice around ■ ■

••••••••
•••••••
•••••

••••••••

8
1
1
−

■ thrice around ■ ■
••••••••
•••••••
••••••••

9
1
−

■ thrice around ■ ■

•••••••
•••••
•••••

••••••••

8
1
1
−

■ thrice around ■ ■
•••••••

••
••••••••

9
1
−

■ around ■ ■ twice

••••••••
•••••
•••••

••••••••

8
1
1
−

■ around ■ ■ twice

••••••••
••••••
••••

••••••••

8
1
1
−

■ around ■ ■ twice

••••••••
•••••
••••••
•••••

••••••••

6
1
1
1
1

■ around ■ ■ twice

••••••••
•••••
••••••
•••••

••••••••

7
1
1
1
−

■ around ■ ■ twice

••••••
••••••••
•••••••
•••••
•••••

5
2
1
1
1

Table 6: Our own query examples for Episode #1 with 10 evaluations each; decoded for better
readability. Expected outputs backed with green. (Best viewed in color.)
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