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Tractable Probabilistic Models such as Sum-Product Networks are a powerful category of models 
that offer a rich choice of fast probabilistic queries. However, they are limited in the distributions 
they can represent, e.g., they cannot dfine distributions using loops or recursion. To move towards 
more complex distributions, we introduce a novel neurosymbolic programming language, Sum 
Product Loop Language (SPLL), along with the Neuro-Symbolic Transpiler (NeST). SPLL aims to 
build inference code most closely resembling Tractable Probabilistic Models. NeST is the first 
neuro-symbolic transpiler—a compiler from one high-level language to another. It generates 
inference code from SPLL but natively supports other computing platforms, too. This way, SPLL 
can seamlessly interface with e.g. pretrained (neural) models in PyTorch or Julia. The result is a 
language that can run probabilistic inference on more generalized distributions, reason on neural 
network outputs, and provide gradients for training.

1. Introduction

Sum-Product Networks (SPNs) are a deep learning architecture that support exact tractable probabilistic inference of a wide range 
of probabilistic queries [1]. Accordingly, they can be used to build efficient models of complex distributions. In particular, SPNs 
support efficient marginalization and conditional queries. Their probabilistic nature is useful when reasoning about uncertainty of 
the underlying distribution.

Although quite successful, unfortunately, SPNs lack the capability of handling control structures such as for and while loops, 
featured in probabilistic programming languages. The core idea of probabilistic programming languages is that writing down a 
generative description of a stochastic system is often easier, while developing a probabilistic inference strategy can be difficult and 
is often a custom effort for each probabilistic model. Probabilistic programming languages aim to make probabilistic inference easier 
for the user by encoding within the language all the mechanisms necessary for probabilistic inference. The user merely writes down 
how to sample from a distribution, while inference is done by the language. In this way, the developers of the language perform the 
difficult task of developing inference strategies once, and users only need to write the more straightforward generative description. To 
illustrate this, consider Fig. 1�-for most purposes, the programmatic, generative description is more intuitive to reason about. From 
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Fig. 1. A simple program with randomness (left) and a Sum-Product Network (SPN) encoding the same distribution (right). The distribution describes two booleans 
A and B, with B depending on A.

Fig. 2. An overview of NeST, showing the various modes in which it can be applied. Before transpilation, NeST checks whether the provided source program has 
tractable solutions. The resulting annotated representation can be transpiled to Julia or PyTorch code, or be interpreted directly. From the exposed interfaces, users can 
generate samples or perform probabilistic inference, i.e. compute the likelihood of a sample. Parameters in the program can be trained by maximizing the probability 
of a data set.

a perspective of probabilistic programming, SPNs can be seen as representing a small class of probabilistic programs that provide 
tractable, exact inference. Note how the example program is quite simple, while the equivalent SPN uses all essential features of 
SPNs. Actually, the example program in Fig. 1 has been written in the sum-product loop language (SPLL) [2]. It generalizes SPNs 
to more general programmatic structures while retaining the guarantees around fast inference. Recursion is of particular interest 
here, as either recursion or unbounded loops are a necessary component of Turing completeness. This probabilistic lens is useful for 
differentiating programs. A program containing hard decision boundaries and thus non-continuous behavior may not have a usable 
gradient. However, if it deals with uncertainties, e.g., by utilizing random number generators, then inference on the distribution is 
differentiable with regard to parameters of the program. In this way, SPLL can enable learning in programmatic pipelines.

Here, we expand upon SPLL by integrating neural networks and other differentiable programming methods via the Neuro-Symbolic 
Transpiler (NeST), see Fig. 2 for an overview. NeST builds probabilistic inference code. In order to interface easily with existing neural 
models, NeST transpiles (i.e. compiles from one high-level language to another) this inference code to other languages, thus integrating 
pre-trained models in PyTorch or Julia. NeST-generated code can also be used to train these integrated pre-trained models seamlessly 
or supervise new models. NeST is a significant extension of a previously published conference paper [2], showing how to make SPLL 
modeling more flexible. Further, we extend this previous work with a more detailed experimental study. In particular, demonstrating 
modular programming of large language models shows the advantages of NeST.

In summary, we make the following contributions:

1. We propose sum-product loop language (SPLL), a novel probabilistic programming language capable of handling loops in complex 
probabilistic code.

2. We show that SPLL is more expressive than Sum Product networks (SPNs), as it can express any SPN and can express tractable 
models that SPNs can not.

3. With NeST, we extend SPLL’s tools to allow transpilation of SPLL into Julia and PyTorch, enabling integration with existing 
machine learning ecosystems.

4. In a computer vision case study, we show supervision and training of Neural Networks via SPLL.

5. In a natural language processing case study, we show that SPLL can coordinate pre-trained transformer models in a mixture of 
experts.

These contributions demonstrate the advantage of neuro-symbolic transpilation. We publish the source code of the transpiler at 
https://github.com/vektordev/haskell-dppl.

We proceed as follows. We start by discussing related work on probabilistic modeling and neuro-symbolic AI in Section 2. Then, 
we will give an intuitive introduction to SPLL in Section 3, followed by a detailed description of semantics, including some extensions 
over the state described in previous work. Section 4 then describes how NeST transpiles SPLL into either Julia or PyTorch code, 
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and how differentiable connections to neural networks are built. We then build a theoretical connection to the expressiveness of 
Sum-Product Networks in 5. Before concluding, Section 6 validates various language features in a suite of experiments.

2. Related work

Neuro-symbolic transpilation is related to several lines of research: tractable probabilistic models, probabilistic programming, 
neuro-symbolic AI, and differentiable programming.

2.1. Tractable probabilistic models

Probabilistic models to perform exact tractable inference have been proposed, such as Sum-Product Network (SPNs) [1] and 
Probabilistic Sentential Decision Diagrams (PSDDs) [3]. Exact inference is different from approximate inference in that the probability 
assigned to a query is deterministic and ‘aligned’ with the model, while approximate inference yields either an estimated probability, 
or the probability of a proxy problem. These models are called Probabilistic Circuits (PCs) [4]. However, these models are not capable 
of handling structured programs that contain loops or recursion. SPLL offers the capability of tractable inference and the handling of 
structured programs. Sum-Product Probabilistic Language (SPPL) has been proposed as a generalization of SPNs to a programming 
language with an extension of symbolic expressions [5]. SPPL achieves tractable exact inference. However, it does so by restricting 
the user to bounded loops. This is a meaningful restriction, as some functions (e.g. the Ackermann function) can not be expressed 
using bounded loops, only using general recursion or unbounded loops.

2.2. Probabilistic programming

Probabilistic programming languages aim to provide a toolset for describing distributions, and then run inference on these distribu

tions. Considering the breadth of existing PPLs, we will only highlight a few: Church [6] is an example of a probabilistic programming 
language with similar functional notation to SPLL. More recently, the focus of the field has shifted towards Deep Probabilistic Pro

gramming Languages (DPPLs) such as DeepProblog [7], Pyro [8] and Edward [9]. These have been developed to enable users to 
combine probabilistic programs with deep architectures. Generally, probabilistic programming languages use approximate methods 
such as variational inference or sampling-based methods. Variational inference offers a appealing tradeoff of speed, expressivity and 
robustness, but requires the user to dfine guide models that approximate the target distribution. Sampling-based methods are par

ticularly simple and expressive, but require additional effort to ensure fast inference. Sum-Product Loop Language (SPLL) takes a 
different approach to inference from other DPPLs. Instead of the predominant approach of variational inference, SPLL focuses on 
exact tractable inference instead. Naturally, not every distribution is tractable, so this is per se detrimental to expressiveness. How

ever, SPLL can exactly capture many interesting distributions, generalizing substantially over Sum-Product Networks, and can be 
easily expanded to incorporate approximate or intractable methods where needed, while keeping control in the user’s hands. The 
goal of SPLL is to use approximate or intractable methods only as much as necessary, and use exact tractable methods to simplify 
the problem as much as possible. In the domain of tractable probabilistic programming, DICE [10] is a noteworthy example of a 
probabilistic programming language that can perform exact probabilistic program inference. However, unlike SPLL, DICE supports 
tractable inference only on discrete distributions and programs with bounded recursion. However, extensions of DICE exist that pur

sue unbounded recursion [11]. In SPLL, recursion is more restricted than that, as programs are only tractable when their inference is 
known to converge.

2.3. Neuro-symbolic AI

Neuro-Symbolic AI is the recent effort to combine symbolic and neural methods, thus combining their respective strengths. The 
resulting models should ideally be composable, generalizable, interpretable and resistant to noise. We view SPLL as one way of 
implementing neuro-symbolic AI. We can encode symbolic constraints or operations on the output of neural networks in SPLL to 
dfine a pipeline, and then train the pipeline end-to-end. Previous work towards integrating neural and symbolic computations 
exist [7,12--15]. Many existing approaches in this space work with restrictions on the computations that can be encoded, mostly 
working with propositional or first-order logic. SPLL expands this space to computations with control flow.

2.4. Differentiable programming

Since SPLL and, in turn, NeST can be used to pass a gradient through a program, we can also compare our work to differentiable 
programming techniques such as Continuous Relaxations [16,17]. They smooth over discrete control flow decisions by interpolating 
the outcomes, weighed by a factor that corresponds to e.g. Gaussian noise on the condition. In contrast, SPLL offers exact computations, 
i.e., the distribution of the inference function is guaranteed to align with that of the generator. Meanwhile, Continuous Relaxations 
can lead to unintended program behavior, where the act of relaxing control flow conditions can lead to e.g. impossible paths in the 
program becoming possible. The cost of this exactness is that some programs can not be expressed in SPLL and some others scale 
badly in their computational cost. Meanwhile, continuous relaxations have no restriction of expressivity resulting from tractability. 
Instead, restrictions arise here from interpolability of outputs. Within SPLL, continuous relaxations can be used to compute gradients 
for parameters in places where it is not otherwise possible - i.e., deterministic expressions. For a more in-depth discussion of modes 
of making programs differentiable and their consequences, see also Section 5.1.
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 →   |  = 
 → if  then  else  |  >=  | theta[ℤ] | uniform | normal |

constant  |  ∗  |  +  | null | cons   | Var |
Lambda Var  |   | call 

Fig. 3. The syntax for SPLL.  represents top-level definitions,  represents expressions,  represents function names, 𝑉 𝑎𝑟 represents variable names and  represents 
values. The production rules of the grammar describe what each nonterminal ( ,  ) can expand to. Alternative options are separated by |.

3. The core of NeST: the sum-product loop language SPLL

Let us start with an intuitive introduction to SPLL. To do so, we provide a few simple programs, along with brief explanations, 
and their syntax. Afterward, we will provide a more formal description of the semantics.

3.1. Examples and syntax of SPLL

Our first program will linearly transform samples from  (0,1) using parameters Theta to produce a  (𝜇,𝜎)-distribution. 

gaussian = Normal * Theta[0] + Theta[1] 

Parameters Theta can be used to represent floating-point numbers that are subject to gradient descent optimization. The user is 
expected to initialize these to viable values, while the training process can be used to align them with the data distribution.

Bernoulli’s distributions can be represented by comparing whether a uniform random sample is greater or equal to a parameter: 

bernoulli = Uniform >= Theta[0] 

We can combine these concepts with list construction. This example returns either an empty list or constructs a list from a single, 
normally distributed float and an empty tail list (𝙽𝚞𝚕𝚕). 

main = if Uniform >= Theta[0] 
then Cons (Normal * Theta[1] + Theta[2]) Null
else Null

Building on top of that, we can build a recursive generator by generating the tail list. 

main = if Uniform >= Theta[0] 
then Cons (Normal * Theta[1] + Theta[2]) main 
else Null

By using Lambda expressions, we can also construct parametric functions. The probabilistic interpretation of these is a conditional 
distribution 𝑝(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙|𝑥). 
conditional x = Cons (Normal * x + Theta[2]) Null

More correctly, this ``desugars'' to: 

conditional = Lambda x: (...) 

The complete syntax of SPLL is shown in Fig. 3. It borrows heavily from functional programming. The definitions for  , Var and 
 are left under-specified, representing values, variables, and function names, respectively. Note that not all programs derived via 
this grammar are valid, as the transpiler (Section 4) will reject certain intractable programs or those with type errors. 
A Note on Functional Programming: Functional programming languages tend to be expression-focused. That is, the result of a 
function is often given as a simple expression. Statements in the form of a variable assignment are comparatively rare, though they 
can be expressed in ways that are not currently covered by SPLL. Furthermore, functional languages often rely strongly on recursion 
as an alternative to loops. This is rflected in SPLL. As a result, specific syntax for loops is not present and is instead represented by 
function calls.

3.2. The semantics of SPLL

Given that we know what SPLL programs look like, we will now describe the semantics of SPLL and fill in some of the details 
that were left out in our previous work [2]. To this end, we will use blue typewriter font to denote program code and program 
variables (For interpretation of the colors in this article, the reader is referred to the web version of this article.). We describe SPLL 
using big-step semantics, i.e. we describe with some abstraction how results are obtained, rather than giving each individual step. 
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We denote generative semantics as 𝚎𝚡𝚙𝚛 ⇓ 𝑣𝑎𝑙𝑢𝑒, thus describing which results 𝑣𝑎𝑙𝑢𝑒 an expression 𝚎𝚡𝚙𝚛 can evaluate to and how 
to compute them. The probabilistic semantics, denoted 𝑝(𝚎𝚡𝚙𝚛 ⇓ 𝑣𝑎𝑙𝑢𝑒) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, give the actual probability or density of an 
expression evaluating to a value. The probabilistic semantics will return a density or probability, depending on the value queried. 
Discrete values will of course always yield a probability, while continuously distributed ones yield densities. We have found it helpful 
to simply count the dimensionality of a result, with 0-dimensional measures being probability masses. Integrating out dimensions 
then reduces dimensionality, while multiplying measures adds their dimensionalities. For any expression, the generative semantics 
shall yield each possible result with the probability or density yielded by the probabilistic semantics. Both semantics should thus 
describe the same distribution but with the goal of making different computational tasks -- sampling and inference -- clearer and 
easier. Note that we only give rules for soundly typed programs. Unsoundly typed programs will be rejected during compilation, as 
will be described in Section 4.

3.3. Generative semantics: the groundwork

Firstly, we will go over generative semantics. The first two rules describe that the constant expression, encapsulating a value, 
evaluates to that value, while the second rule describes that parameters evaluate to the respective position in the parameter vector 𝜃.

𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝 𝚡 ⇓ 𝑥
𝜃𝑖 = 𝑥

𝚝𝚑𝚎𝚝𝚊[𝚒] ⇓ 𝑥
The next two rules describe the ranges of primitive distributions.

𝑥 ∼𝑁(0,1)
𝚗𝚘𝚛𝚖𝚊𝚕 ⇓ 𝑥

𝑥 ∼𝑈 (0,1)
𝚞𝚗𝚒𝚏𝚘𝚛𝚖 ⇓ 𝑥

The next two rules describe conditional statements. These can be read as ‘if the condition 𝚌 of an if-expression evaluates to 𝑇 𝑟𝑢𝑒 and 
the expression 𝚊 evaluates to 𝑥, then the entire expression evaluates to 𝑥.’ The other branch follows symmetrically.

𝚌 ⇓ 𝑇 𝑟𝑢𝑒 𝚊 ⇓ 𝑥
𝚒𝚏 𝚌 𝚝𝚑𝚎𝚗 𝚊 𝚎𝚕𝚜𝚎 𝚋 ⇓ 𝑥

𝚌 ⇓ 𝐹𝑎𝑙𝑠𝑒 𝚋 ⇓ 𝑥
𝚒𝚏 𝚌 𝚝𝚑𝚎𝚗 𝚊 𝚎𝚕𝚜𝚎 𝚋 ⇓ 𝑥

The next rules cover basic arithmetic and comparison operators.

𝚊 ⇓ 𝑥 𝚋 ⇓ 𝑦
𝚊 ∗ 𝚋 ⇓ 𝑥 ∗ 𝑦

𝚊 ⇓ 𝑥 𝚋 ⇓ 𝑦
𝚊+ 𝚋 ⇓ 𝑥+ 𝑦

𝚊 ⇓ 𝑥 𝚋 ⇓ 𝑦 𝑥 ≥ 𝑦
𝚊 >= 𝚋 ⇓ 𝑇 𝑟𝑢𝑒

𝚊 ⇓ 𝑥 𝚋 ⇓ 𝑦 𝑥 < 𝑦

𝚊 >= 𝚋 ⇓ 𝐹𝑎𝑙𝑠𝑒
The symbol 𝚗𝚞𝚕𝚕 denotes an empty list and 𝚌𝚘𝚗𝚜 constructs a linked list out of a single element 𝑥 and a tail list 𝑦. To distinguish 
values from syntax, we denote lists as [] and (𝑎 ∶ 𝑏) for empty and non-empty lists.

𝚗𝚞𝚕𝚕 ⇓ []
𝚊 ⇓ 𝑥 𝚋 ⇓ 𝑦
𝚌𝚘𝚗𝚜 𝚊 𝚋 ⇓ (𝑥 ∶ 𝑦)

For simplicity, we have thus far ignored any notion of environments, in which local variables could exist. An environment is simply a 
mapping of variables to values. We will use the notation 𝐸 ⊢ 𝚎𝚡𝚙𝚛 ⇓ 𝑣𝑎𝑙𝑢𝑒 to denote that in environment 𝐸, 𝚎𝚡𝚙𝚛 evaluates to 𝑣𝑎𝑙𝑢𝑒. 
Where we previously omitted environments, they can be assumed to be carried over into the evaluation of subexpressions. Lambda 
expressions evaluate to closures, which exist to capture the surrounding environment 𝐸 for use within the expression 𝑓 .

Closures are resolved when applying another expression 𝚎𝟸 to them. The result of that second expression is inserted as the 
parameter into the original lambda expression that formed the closure, while the closure gives access to any variables that were 
captured by it

𝐸 ⊢ 𝙻𝚊𝚖𝚋𝚍𝚊 𝚡 𝚏 ⇓ (𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑥→ 𝑓, 𝐸) 𝐸,𝑣↦ 𝑥 ⊢ 𝚅𝚊𝚛 𝚟 ⇓ 𝑥

𝐸1 ⊢ 𝚎𝟷 ⇓ (𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑥↦ 𝑓, 𝐸2) 𝐸1 ⊢ 𝚎𝟸 ⇓ 𝑣𝑎𝑙 𝐸2, 𝑥↦ 𝑣𝑎𝑙 ⊢ 𝚏 ⇓ 𝑟
𝐸1 ⊢ 𝚎𝟷 𝚎𝟸 ⇓ 𝑟

3.4. Probabilistic semantics: the tractable case

Now we have everything at hand to tackle probabilistic semantics. Note that we do not claim that the probabilistic semantics 
are complete: Many different algorithms exist that can be employed here to solve additional cases, and the ones we show are not 
exhaustive. The presented ones are expressive enough to go beyond sum-product networks and build interesting control flow and 
reasoning. Additional solutions, however, can be integrated easily into NeST. Furthermore, in some cases, algorithms with satisfactory 
performance criteria might not exist even when the generative semantics are simple to dfine.

To describe the probabilistic semantics, please note that 𝑎 ̸⇓ 𝑥 ⟹ 𝑝(𝚊 ⇓ 𝑥) = 0, and we will usually only describe the nontrivial 
cases where 𝑎 ⇓ 𝑥. Furthermore, we consider 𝑝(𝚎 ⇓ 𝑥) = 𝑞 to be the probability (density) 𝑞 of result 𝑥 given expression 𝚎, i.e. 𝑝 is 
conditioned on 𝚎. Consequently, continuous and discrete 𝑥 respectively are normalized as follows:

∫
𝑥 
𝑝(𝚎 ⇓ 𝑥)𝑑𝑥 = 1 or

∑
𝑥 
𝑝(𝚎 ⇓ 𝑥) = 1
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For readability, we also leave any calculation of dimensionalities implicit. Firstly, we will consider the relatively simple cases: 
Constants and Parameters are deterministic and thus can be described like a discrete distribution.

𝑝(𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝 𝚡 ⇓ 𝑥) = 1
𝑥 ≠ 𝑦

𝑝(𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝 𝚡 ⇓ 𝑦) = 0

𝜃𝑖 = 𝑥
𝑝(𝚝𝚑𝚎𝚝𝚊[𝚒] ⇓ 𝑥) = 1

𝜃𝑖 ≠ 𝑥
𝑝(𝚝𝚑𝚎𝚝𝚊[𝚒] ⇓ 𝑥) = 0

Primitive distributions can be dfined via their density functions.

𝜑𝑁(0,1)(𝑥) = 𝑎
𝑝(𝚗𝚘𝚛𝚖𝚊𝚕 ⇓ 𝑥) = 𝑎

0 ≤ 𝑥 < 1
𝑝(𝚞𝚗𝚒𝚏𝚘𝚛𝚖 ⇓ 𝑥) = 1

𝑥 ≥ 1 ∨ 𝑥 < 0
𝑝(𝚞𝚗𝚒𝚏𝚘𝚛𝚖 ⇓ 𝑥) = 0

Conditional statements evaluate both branches, and weigh the results of both branches by the probability of the condition.

𝑝(𝚎𝟷 ⇓ 𝑇 𝑟𝑢𝑒) = 𝑎 𝑝(𝚎𝟸 ⇓ 𝑥) = 𝑏 𝑝(𝚎𝟹 ⇓ 𝑥) = 𝑐
𝑝(𝚒𝚏 𝚎𝟷 𝚝𝚑𝚎𝚗 𝚎𝟸 𝚎𝚕𝚜𝚎 𝚎𝟹 ⇓ 𝑥) = 𝑎 ∗ 𝑏+ (1 − 𝑎) ∗ 𝑐

List construction will be handled as follows: Null can be regarded as a constant, so it will evaluate to the empty list with probability 
1. Cons meanwhile encodes an independence assumption: The probability that a cons-expression evaluates to a list x:y is the product 
of the probabilities that the respective subexpressions evaluate to x and y. This independence assumption is justfied, as there is no 
random variable that can ifluence both subexpressions.

𝑝(𝚗𝚞𝚕𝚕 ⇓ []) = 1
𝑝(𝚎𝟷 ⇓ 𝑥) = 𝑎 𝑝(𝚎𝟸 ⇓ 𝑦) = 𝑏
𝑝(𝚌𝚘𝚗𝚜 𝚎𝟷 𝚎𝟸 ⇓ (𝑥 ∶ 𝑦)) = 𝑎 ∗ 𝑏

In the following rules about lambda expressions, we enforce determinism of substeps by mandating that the respective evaluations 
happen with probability 1. These restrictions might not be strictly necessary, but we introduce them in the interest of simplifying 
inference.

𝑝(𝐸 ⊢ 𝙻𝚊𝚖𝚋𝚍𝚊 𝚟 𝚏 ⇓ (𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑣↦ 𝑓, 𝐸)) = 1 𝑝(𝐸, 𝑣↦ 𝑥 ⊢ 𝚅𝚊𝚛 𝚟 ⇓ 𝑥) = 1

𝑝(𝐸 ⊢ 𝚎𝟷 ⇓ (𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑟↦ 𝑓, 𝐸𝑐 )) = 1 𝑝(𝐸 ⊢ 𝚎𝟸 ⇓ 𝑥) = 1 𝑝(𝐸𝑐, 𝑣𝑎𝑟↦ 𝑥 ⊢ 𝚏 ⇓ 𝑟) = 𝑎
𝑝(𝐸 ⊢ 𝚎𝟷 𝚎𝟸 ⇓ 𝑟) = 𝑎

Arithmetic warrants some additional explanation: In the probabilistic semantics of multiplication, we assume that one side of 
the operation is a deterministic expression. In that case, we can undo the multiplication by way of division. We will focus on the 
multiplication rule on the left, but the other case follows symmetrically. 𝚊 being deterministic lets us compute 𝑦. Knowing 𝑦 and 𝑥 ∗ 𝑦, 
we can deduce 𝑥. We can then compute the overall probability of the result of this multiplication. The division by 𝑦 is necessary for 
multiplication of continuous variables to ensure proper normalization. This division is inappropriate in case of addition or in case of 
probabilities rather than probability densities.

𝑝(𝚎𝟸 ⇓ 𝑥) = 𝑎 𝑝(𝚎𝟷 ⇓ 𝑦) = 1
𝑝(𝚎𝟷 ∗ 𝚎𝟸 ⇓ 𝑥 ∗ 𝑦) = 𝑎∕𝑦

𝑝(𝚎𝟸 ⇓ 𝑥) = 1 𝑝(𝚎𝟷 ⇓ 𝑦) = 𝑎
𝑝(𝚎𝟷 ∗ 𝚎𝟸 ⇓ 𝑥 ∗ 𝑦) = 𝑎∕𝑥

𝑝(𝚎𝟸 ⇓ 𝑥) = 𝑎 𝑝(𝚎𝟷 ⇓ 𝑦) = 1
𝑝(𝚎𝟷+ 𝚎𝟸 ⇓ 𝑥+ 𝑦) = 𝑎

𝑝(𝚎𝟸 ⇓ 𝑥) = 1 𝑝(𝚎𝟷 ⇓ 𝑦) = 𝑎
𝑝(𝚎𝟷+ 𝚎𝟸 ⇓ 𝑥+ 𝑦) = 𝑎

One last operator we need to cover is comparisons. Again we can solve this whenever one side is constant, in which case the 
probability is given by an integral over the density of the other side. Cases for evaluation to False and other potential operators follow 
the same structure as the cases given here, which cover evaluation to True with the right and left sides being constant respectively. 
The rules for computation of said integrals are omitted here, as they follow from the rules of integration and the previous computation 
of the PDF. Such integrals are possible for arithmetic and if-then-else expressions as well as primitive distributions.

∫ ∞
𝑦
𝑝(𝚎𝟷 ⇓ 𝑥) 𝑑𝑥 = 𝑎 𝑝(𝚎𝟸 ⇓ 𝑦) = 1

𝑝(𝚎𝟷 >= 𝚎𝟸 ⇓ 𝑇 𝑟𝑢𝑒) = 𝑎
𝑝(𝚎𝟷 ⇓ 𝑦) = 1 ∫ 𝑦−∞ 𝑝(𝚎𝟸 ⇓ 𝑥) 𝑑𝑥 = 𝑎

𝑝(𝚎𝟷 >= 𝚎𝟸 ⇓ 𝑇 𝑟𝑢𝑒) = 𝑎

3.5. Weighted model counting: the intractable case

In some cases, we are interested in computing probabilities even if said probability is intractable. For example, consider integer 
addition. We can not compute the probability 𝑝(𝚊+ 𝚋 ⇓ 𝑥) for all cases of a and b in a tractable manner, as the number of possible 
values of 𝑎 and 𝑏 can be made to increase exponentially in program size. However, if a and b yield integers of known ranges, we can 
enumerate all possible cases that sum to x and add up their probabilities:

𝑝(𝚎𝟷 ⇓ 𝑖) = 𝑎𝑖 𝑝(𝚎𝟸 ⇓ 𝑥− 𝑖) = 𝑏𝑖
𝑝(𝚎𝟷+ 𝚎𝟸 ⇓ 𝑥) =

∑
𝑖 𝑎𝑖 ∗ 𝑏𝑖
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Fig. 4. SPLL Modality Lattice. The four modalities at the top describe classes of SPLL expressions. From left to right, inference becomes more restricted, as deterministic 
evaluation (Eval), tractable computation of the cumulative distribution function (CDF) and finally tractable computation of the probability density function (PDF) 
become impossible as higher-complexity language aspects are introduced into a program.

This is directly analogous to weighted model counting [18], where all assignments of values to variables that satisfy a constraint are 
enumerated, weighted according to their probability, and summed. Techniques for accelerating weighted model counting might also 
find future application here. This general procedure can be used to solve for many different operations in place of +.

In SPLL, a practical implementation of this requires that we know which models to count. This can be achieved by static analysis, 
where leaf distributions have known ranges and those ranges propagate through arithmetic expressions and conditional statements. 
Any discrete operation that required one deterministic operand for tractable inference can now be relaxed to merely require one side 
with a statically known range of values, so long as the operation is invertible. If the operation is not invertible, then we need to 
enumerate more models, by enumerating both sides and checking that the operation yields the desired result:

𝑝(𝚎𝟷 ⇓ 𝑖) = 𝑎𝑖 𝑝(𝚎𝟸 ⇓ 𝑗) = 𝑏𝑗 𝑝(𝚏 𝚒 𝚓 ⇓ 𝑥) = 1
𝑝(𝚏 𝚎𝟷 𝚎𝟸 ⇓ 𝑥) =

∑
𝑖,𝑗 𝑎𝑖 ∗ 𝑏𝑗

Overall, this is an extension of the basic semantics of SPLL. The tractable basics we discussed previously take precedence, such 
that whenever an efficient algorithm can be found, it will also be used by NeST.

4. The neuro-symbolic transpiler NeST

Having discussed semantics, we are ready to fill most of the steps in the architecture overview previously seen in Fig. 2 with detail. 
Specifically, we now have everything at hand to build the neuro-symbolic transpiler NeST. We start by showing how to transpile SPLL 
programs in the following Section 4.1 and afterward extend it to the neuro-symbolic case in Section 4.2. The changes required to 
make this transpiler work well with neural models will actually be relatively minor, as long as our target language is differentiable.

4.1. Transpiling sum-product loop programs

For the sake of easy understanding, we use a simple program to explain the intermediate results and the steps taken along the 
way. We will also split the transpilation process into three stages:

1. Validation, consisting of type checking, modality checking, and static analysis,

2. Expansion, where the previously discussed semantics are implemented in an intermediate representation, and

3. Translation, where the intermediate representation is translated into another high-level language.

The big challenges in this process are soundness and semantics. Both will be made easier by relying on the semantics we described 
previously. In practice, we achieve this by validating the program to ensure that well-defined semantic rules exist for the program, 
and then expanding those rules correctly. The transpilation part at the end is comparatively straightforward. Recall the Bernoulli 
program from Section 3:

bernoulli = Uniform >= Theta[0] 

During validation, NeST will initially type check the program and run static analyses. As a first pass, all programs that violate 
typing rules are rejected. In addition to regular type checking, we annotate the program with ‘modalities’, which describe which 
kinds of inference are possible on an expression. Since the modality of an expression naturally depends on the modality of its sub

expressions, this property propagates throughout the program like type information. We use a Hindley-Milner style algorithm [19] 
to compute types and modalities, i.e. we collect constraints on types and modalities, until we arrive at a single most general elabora

tion of the program, or run into an error of contradiction or ambiguity. These constraints encode type information such as ‘addition 
of integers accepts two integers and yields an integer’, or modality information such as ‘if the left operand of addition is deter

ministic, then the result is integrable if the right operand is integrable.’ The type constraints are unchanged from those found in 
regular programming languages. The modality constraints correspond to the implicit assumptions about subexpressions made in the 
semantics.
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For example, the following rule assumes that 𝚎𝟷 is in modality deterministic (on account of it yielding 𝑦 with probability 1) and 
that 𝚎𝟸 is in modality unintegrable or better (as 𝚎𝟸’s PDF gets queried). In turn, the rule then yields a PDF, thus putting 𝚎𝟷 ∗ 𝚎𝟸 into 
modality unintegrable if those assumptions are met. 

𝑝(𝚎𝟸 ⇓ 𝑥) = 𝑎 𝑝(𝚎𝟷 ⇓ 𝑦) = 1
𝑝(𝚎𝟷 ∗ 𝚎𝟸 ⇓ 𝑥 ∗ 𝑦) = 𝑎∕𝑦

This constraint - 𝚎𝟷 ∗ 𝚎𝟸 being unintegrable given the above conditions - is added to the constraints pool when validating the program. 
Modalities exist on a lattice (see Fig. 4) that describes whether e.g. queries of the CDF or PDF are possible on a program. Along this 
lattice exists a hierarchy, where all simpler queries are automatically supported by a program that supports more complex queries. 
For example, a program supporting CDF queries (i.e. one in Integrable) implies that it must also support PDF queries. Due to the lattice 
structure of modalities, these constraints are often (chained) inequality constraints, e.g. that 𝚎𝟷 ∗ 𝚎𝟸 is of a modality no better than 
𝚎𝟸. The purpose of using constraints and resolutions is that even cyclical dependencies can be expressed, which appear in recursive 
programs. In resolving constraints and creating the modality annotations, we determine which algorithm is appropriate for each 
expression, if there are multiple choices. For example, we choose which probabilistic semantics of >= to apply, depending on which 
subexpression is deterministic, thus informing the modality of the compound expression. The static analyses include the range of 
outputs of an expression, if required for weighted model counting.

Using this system of modalities, we can for example express that 𝚃𝚑𝚎𝚝𝚊[𝟶] is deterministic, 𝚄𝚗𝚒𝚏𝚘𝚛𝚖 can be integrated (i.e. has a 
CDF), and thus the probability of 𝚄𝚗𝚒𝚏𝚘𝚛𝚖 >= 𝚃𝚑𝚎𝚝𝚊[𝟶] can be inferred via its PDF and its CDF.

Following the above Bernoulli’s distribution, the type annotations will look as follows, containing types, modalities, and any further 
annotations. In this case, that is the choice of inference strategy for >=. This is also where ranges of outcomes will be annotated in 
case Weighted Model Counting is needed.

bernoulli =

GreaterThan :: (Bool, Integrable, [greaterThanRight]) 
Uniform :: (Float, Integrable, []) 
Theta[0]:: (Float, Deterministic, []) 

The second step, expansion, uses the annotated SPLL program to produce an intermediate representation (IR). This IR is a target 
language-agnostic representation of computations. During conversion to IR, we also resolve the inference strategy choice of the previ

ous step into a concrete implementation. The result is a representation that could be interpreted as is, without additional knowledge 
about the probabilistic semantics of SPLL. Additionally, we introduce two different entry points here, representing generative and 
probabilistic semantics:

1. The first entry point samples from the underlying distribution, potentially conditioned on any function arguments.

2. The second entry point is for inference and computes the probability corresponding to a sample, likewise potentially conditioned 
on any function arguments.

The arguments of the sampling function match those of the SPLL code, while the inference entry point additionally accepts the 
queried sample. The inference function is implemented by expanding the previously selected algorithms into an implementation. 
This implementation is directly derived from the semantics discussed in Section 3.4.

Using the greaterThanRight inference rule, we can proceed in our example as follows. 

∫ ∞
𝑦
𝑝(𝚎𝟷 ⇓ 𝑥) 𝑑𝑥 = 𝑎 𝑝(𝚎𝟸 ⇓ 𝑦) = 1

𝑝(𝚎𝟷 >= 𝚎𝟸 ⇓ 𝑇 𝑟𝑢𝑒) = 𝑎

This rule calls for a deterministic sample of the right-hand side operand and integrates the PDF of the left-hand side with appropriate 
bounds. The 𝑙3 and 𝑙4 variables below represent the upper limit of the integral over the uniform distribution and the integral itself. 
The if-expression then transforms the integral to rflect whether the sample was given as true or false. The below IR implementation 
of Bernoulli’s distribution was edited for readability, as the IR notation is not intended for human interaction. 
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bernoulli_prob sample =
let l_3_high =

if 1 > Theta[0] then Theta[0] else 1 
let l_4_lhs_integral =

if 0 > l_3_high then 0 else l_3_high - 0 
in if sample == True

then 1 - l_4_lhs_integral 
else l_4_lhs_integral 

bernoulli_gen = Uniform >= Theta[0] 

Finally, we translate the IR representation into code of the target language. The IR code from the last step already makes the 
complexities of inference explicit, so this last step is just a matter of translating the IR code to the target language. Since the IR 
is merely a straightforward computation without additional semantics, this is quite straightforward. By deferring target language 
specific decisions until now, we can add other languages relatively simply, by adding a code generator from this IR to the new target 
language. Code generators for PyTorch and Julia have been implemented. Shown here is the resulting PyTorch implementation. 

class Main(Module): 
def forward(self, sample): 

if (1.0 >= self.thetas[0]): 
l_3_high = self.thetas[0] 

else: 
l_3_high = 1.0 

if (0.0 >= l_3_high): 
l_4_lhs_integral = 0.0 

else: 
l_4_lhs_integral = (l_3_high - 0.0) 

if (true == sample): 
return (1.0 - l_4_lhs_integral) 

else: 
return l_4_lhs_integral 

def generate(self): 
return (rand() >= self.thetas[0]) 

Note that parameters 𝜃 are owned by the module here, changing the way parameters are shared. This can be adjusted easily to make 
the parameter vector 𝜃 shared globally. A Julia translation can be found in Appendix A.

One major feature that this example did not cover is that of recursive programs. In such cases, NeST generates a recursive inference 
strategy. A more in-depth discussion of termination and tractability of this inference follows in Section 5.3

4.2. Extension to the neural case

A major goal of the Neuro-Symbolic Transpiler NeST that we have not covered so far is the combination of neural networks (or 
differentiable programs in general) with SPLL. For this, we have to be a little bit more careful and make some additions to SPLL to 
ensure meaningful gradients propagate to the neural network:

1. We will consider what we want such a conjunction to do: We want neural networks to produce symbolic variables, which SPLL 
can then reason about. In order to make this conform with existing SPLL constructs, we require the outputs of neural networks to 
be distributional, such as when using a softmax output layer on a classfier. The neural architecture is then essentially forward

declared in SPLL and fully implemented by the user in the target language. From there, the probabilistic semantics of a neural 
network call is exactly the output of the network, assigning a probability to each outcome. Consequently, sampling from this 
distribution is just sampling from the categorical distribution encoded by the softmax output.

2. It is essential that gradients from training the SPLL program are passed on to the neural network.

3. The computation of the probability function needs to seamlessly integrate with any attached neural networks, such that gradients 
of the probability function can be used to train the neural network. This informs the choice of target languages we support for 
the transpilation presented in Section 4, as both strong neural network ecosystems and expressive automatic differentiation tools 
make this integration technically simpler.

4. Furthermore, since we are not always interested in learning the joint probability distribution of a data set, we introduce con

ditional distributions. Where a parameterless SPLL function models a joint distribution of all its outputs, a parametric function 
models a conditional distribution. When generating a sample, these parameters are considered as given, much like in a conditional 
distribution. For example, the task of MNIST-addition can be implemented as
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𝚖𝚗𝚒𝚜𝚝𝙰𝚍𝚍 𝚒𝚖𝚐𝟷 𝚒𝚖𝚐𝟸 = 𝚛𝚎𝚊𝚍 𝚒𝚖𝚐𝟷 + 𝚛𝚎𝚊𝚍 𝚒𝚖𝚐𝟸,

encoding the distribution 𝑝(𝑠𝑢𝑚|𝑖𝑚𝑔1, 𝑖𝑚𝑔2) - the complete joint probability of 𝑝(𝑠𝑢𝑚, 𝑖𝑚𝑔1, 𝑖𝑚𝑔2) is not modeled.

With this, neural networks can directly be supported within SPLL and in turn NeST as long as everything is differentiable. In order 
to technically facilitate this integration, we expect the user to provide a forward declaration of the neural network’s interface, i.e. its 
input and outputs. This can then be used to ensure the type soundness of the program and to ensure the output of such networks is 
enumerated properly by Weighted Model Counting. With soundness ensured, neural network integration is as simple as calling the 
specfied neural network and transforming outputs as appropriate.

5. Faithful differentiability and model expressiveness

5.1. On the differentiability of programs

NeST is, among other things, motivated by a desire to pass gradients through arbitrary programs. This is useful for neuro-symbolic 
AI in various ways: For one, when a known algorithm can be used to generate the output, a preceding neural network can be trained 
to simply handle input transformation and does not need to deal with the often-times complicated control flow needed to replicate 
the algorithm. As an example, consider pathfinding based on image data: By explicitly using a pathfinding algorithm, the neural 
network need not deal with the complexity of emulating the control flow thereof. Secondly, the algorithm makes assumptions about 
the representation of its inputs. A neural network that complies with these assumptions can be used to generate this representation 
also for use in other tasks. Such a neural network can then effortlessly be reused in other programs. As an example of this, consider a 
program that uses a neural network to convert a natural language to subject-predicate-object-relations, for knowledge graph building. 
Such a neural network can easily be reused to also provide such relations for use in question answering.

Further generalization of these principles results in pipelines that freely intermix neural and programmatic modules, where neural 
modules are used to black-box model intricate transformations with simple control flow, while programmatic modules handle white

box transformations, incorporate expert knowledge, and provide advanced control flow. Put simply, we envision a language in which 
use, training, and reuse of neural components of a program is as natural as other programming tasks.

We will first inspect the current state of differentiable programming as it applies to programs generally by looking at some 
existing tools. We will exemplarily look at Julia’s Zygote [20] and Haskell’s AD library [21]. They and many similar tools have in 
common that code written in the host language can be made differentiable with relatively little effort. As a result, writing down a 
regular computation graph, e.g. a neural network, is as simple as implementing the forward pass. Additionally, we can also write more 
complex programs with loops, recursion, and symbolic operations and still get a gradient. However, here we are no longer guaranteed 
a useful gradient. While the gradient is mathematically correct, it does not exhibit the qualities we require to base gradient descent 
on it. Control flow and symbolic operations will often exhibit a gradient that behaves like a step function: Zero gradient up to the 
decision boundary, then a discontinuity as the output shifts abruptly. This is amplfied whenever control flow builds on top of other 
control flow to construct more complex behavior. Thus, if the programs we write using the aforementioned tools shall be trained 
using gradients, we must be careful whenever we implement discontinuous program behavior.

For example, consider a program such as: 

step x = if x > 0 
then 1 
else -1 

In this program, the gradient of x is always zero or undfined, and any gradient passed through the program is therefore useless. That 
is, we can not use gradient descent to optimize x such that 𝚜𝚝𝚎𝚙 𝚡 returns a desired result.

Discontinuities, however, are a fundamental property of Turing-complete programs, and no (modfied) gradient can be constructed 
that gives useful results in all cases. However, this has not stopped the field from engineering solutions that address large parts of the 
problem. Consider that neural networks were originally designed around step functions as non-linearities [22]. Nowadays, we use 
ReLUs or sigmoids instead, due to their useful gradients. Likewise, we can approximate step functions in our differentiable programs 
with sigmoids, interpolating between the outcomes of the above example according to the sigmoid [17]. As a result, we can repair 
gradients for large classes of programs that include control flow such as loops and conditions.

This comes, however, with trade-offs: For one, the behavior of such approximations can become unpredictable and even useless 
in more complicated programs: 

two_step x = if x < 5 
then 1 
else if x < 10 
then 2 
else 0 

Here, regular gradients are again useless. In this example, interpolating over results does not offer great results either. Consider 𝑥 = 10
for example. We would interpolate mostly over the second conditional, resulting in an output of 𝑡𝑤𝑜_𝑠𝑡𝑒𝑝 10 ≈ 1. This might not be 
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acceptable: Suppose the desired output would be 1. The proper optimization step would be to shift x s.t. 𝑥 < 5, but in relaxed form, 
gradient descent makes no changes to x, as the modfied function outputs 1, which is the desired result already.

Furthermore, continuous relaxations also restrict the set of valid programs, as one must interpolate between the different outcomes 
of the subprograms. 

step x = if x > 0 
then "A" 
else "B" 

In this example, interpolation between the outcomes is no longer viable. This might not be a fundamental problem, as we can build 
powerful programs in spite of this particular limitation, but we take many tools away from the programmer.

SPLL takes a different approach to differentiation: We observe that while the outcome 𝑥 of a program might not be smooth in 
its parameters 𝜃, the probability of an outcome of a program 𝑝(𝑥|𝑝𝑟𝑜𝑔, 𝜃) is smooth in the parameters 𝜃. Thus, wherever we can 
compute this probability, we can also compute a gradient that accurately rflects the underlying program for the sake of gradient

based optimization. A constraint imposed by this is that the result of a program needs to be probabilistic to some degree. This can 
be because a deep probabilistic model decomposes the input into a distribution of possible symbolic representations, or because the 
SPLL program itself invokes random numbers. The downside of this approach is that the probability of an outcome can be difficult to 
compute. One of the goals of SPLL is to clarify the boundary between programs for which computing this probability is easy or hard.

5.2. Comparing expressiveness of SPNs and SPLL

In this section, we establish two key theoretical results regarding the expressive power of SPLL: (1) SPLL can express any Sum

Product Network (SPN), and (2) SPLL can express structures beyond the capabilities of SPNs.

Theorem 1. Any Sum-Product Network can be expressed in SPLL.

Proof sketch. We can express any SPN in SPLL by encoding its sampling procedure. The key is to show that SPN nodes map directly 
to SPLL constructs:

• Sum Nodes are equivalent to if-then-else statements in SPLL with a random condition. Formally, a sum node associating node 
A with weight 𝑝 and node B with weight (1 − 𝑝) is equivalent to

𝚒𝚏 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(𝚙) 𝚝𝚑𝚎𝚗 𝙰 𝚎𝚕𝚜𝚎 𝙱

• Product Nodes map to list concatenation in SPLL. Both assume independence and multiply the probabilities of their components.

• Leaf Nodes are represented by primitive distributions in SPLL (e.g., Normal distribution). Since leaves in SPNs include parametric 
normal distributions, and SPLL includes merely the standard normal distribution, we have to add linear transformations. □

A minimal grammar for SPLL programs covering SPNs, where linear transformations are folded into the probabilistic primitive, 
would be:

Expr → if (bernoulli p) then Expr else Expr

Expr → normal 𝜇 𝜎

Expr → null

Expr → cons Expr Expr

We restricted this proof to only nodes with two children. SPN nodes with more than two children can always be split into multiple 
nodes with two children each.

Theorem 2. SPLL can express probabilistic structures that cannot be represented by SPNs.

Proof sketch. Consider a recursive process generating variable-length lists from a Gaussian mixture distribution:

main = if Uniform >= Theta[0] 
then Null

else Cons

Normal * Theta[1] + Theta[2] 
main 
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This SPLL program generates lists of variable and unbounded length, where longer lists are exponentially less likely. SPNs cannot 
model such a distribution due to the variable length of results: SPNs require a fixed set of variables, and variable-length outputs violate 
completeness. SPNs also have a fixed structure and cannot represent potentially ifinite recursive processes. This SPLL program can 
however be processed by the compiler, and the resulting density function is accurate.

Thus, SPLL can express distributions beyond the capabilities of SPNs. □

These theorems establish that SPLL is strictly more expressive than SPNs, capable of representing all SPN structures and beyond. 
This increased expressivity allows SPLL to model more complex probabilistic processes while still maintaining the ability to leverage 
the tractability guarantees of SPNs when appropriate.

5.3. Recursive inference and tractability

The above list-generating program is not only inferred correctly, but inference is also tractable. Generally, any program that 
generates structure with every recursion (such as the list elements here) will have a structurally recursive inference pass. Likewise, 
any time the generated structure determines the taken branch, the inference engine can know the trace of the generator and thus 
does not need to branch. Specifically, in the example program above, the list length informs the inference engine’s choice to evaluate 
the recursive or non-recursive branch. Thus, a query can be answered in as many recursive steps as there are list elements. On the 
flip side, a similar function that adds normally distributed numbers instead of accumulating them in a list is intractable. While this 
can syntactically be represented in SPLL, the compiler will refuse to compile this, as no tractable inference strategy is implemented 
for this.

Note also that we do not claim tractable inference for all recursive programs. There are potentially edge cases where NeST generates 
recursive inference code that does not terminate or is not tractable, though such behavior is considered a bug.

6. Experimental validation

Our intention here is to demonstrate capabilities enabled by NeST in five experiments. First, we empirically substantiate the 
previous theoretical arguments that showed that NEST’s expressivity strictly exceeds SPNs. Second, we demonstrate that NEST can 
easily organize multiple neural models into a mixture of experts. In a variant of this experiment, we show that multiple SPLL programs 
can cooperate to train the same set of experts in different ways. In another experiment, we show that probabilistic reasoning on 
neural network outputs is easily possible using SPLL. Finally, we demonstrate that NeST can be used for training and inference in 
large language models. Typically this requires access to large compute clusters. Instead, we use NeST to combine different parts of 
the model that are independently trained on different subsets of the data, reducing the need for multi-node training or inference.

More concretely, we aim to answer the following questions: (Q1) Does NeST cover SPNs? (Q2) Moving beyond SPNs, can NeST 
additionally deal with neural networks? (Q3) Can we switch learning settings, e.g. from supervised to semi-supervised learning, simply 
by reprogramming? (Q4) Does NeST support reasoning on the outputs of neural networks? (Q5) Can NeST help in orchestrating large 
pre-trained models and train the resulting combined model?

We note that the pre-trained models and neural architectures used here are not chosen to maximize performance. We intend to 
show how complex inference pipelines can be built from simple SPLL programs. The neural components can be exchanged easily. All 
experiments except for the large language models experiment were run on a single consumer-grade GPU.

6.1. (Q1) SPLL covers sum-product networks

Because SPNs offer good guarantees of e.g. tractability, it is desirable to demonstrate that SPLL can fall back on those guarantees 
if the problem at hand is sufficiently simple. We can express any SPN in our language simply by writing out its sampling procedure. 
Given identical sampling procedures, SPLL’s derived inference will also be identical. On the back of solid theory on this topic, we will 
only show a simple experiment here for illustrative purposes. In SPLL, we can make the independence assumption of an SPN product 
node by concatenating two lists of variables. Likewise, we can mix two distributions, i.e. sample from one or the other, by using an 
if-expression.

We can thus model a simple mixture of Gaussians using an SPN and using SPLL. We used a synthetic dataset consisting of two 
two-dimensional Gaussians. For this we use the SPLL code shown below. We will compare this to an equivalent SPN using SPFlow [23].

main = if Uniform >= Theta[0] 
then [Normal * Theta[1] + Theta[2] , 

Normal * Theta[3] + Theta[4]] 
else [Normal * Theta[5] + Theta[6] , 

Normal * Theta[7] + Theta[8]] 

We find that in both cases, the parameters of the respective structures match those found in the distribution: SPN and SPLL both 
get the mixture ratios and the underlying parameters of the normal distribution right to within a small approximation error. Please 
refer also to Fig. 5, where we display the probability density for both models. The resulting figures line up to the point of being 
indistinguishable.
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Fig. 5. Comparison of the learned density functions of synthetic data of an SPN (left) and SPLL (center). Absolute difference between the plot on the right (note the 
scale). We can see that the density functions learned by both are identical save for some noise, thus showing empirically that SPLLs are at least as powerful as SPNs.

Fig. 6. Illustration of the inference pass of the expert system. 

6.2. (Q2) differentiable mixture of expert programs

Having established that we can fall back to the guarantees of SPNs whenever appropriate, we will now tie neural networks into a 
model. To this end, we will show that NeST can be used to ensemble multiple neural networks into an expert model. We use MNIST 
and CIFAR10. Both datasets were brought to the same dimensionality by introducing color channels to MNIST and cropping the 
margin on CIFAR. We used the following SPLL code: 

expert im = if isMNIST im 
then classifyMNIST im 
else classifyCIFAR im 

Which transpiles to the following Julia model: 

function expert_prob(sample , img) 
return ( 

l_1_cond = isMNIST(img)[2]; 
((l_1_cond * classifyMNIST(img)[1 + sample]) 
+ ((1 - l_1_cond) * classifyCIFAR(img)[1 + sample])) 

) 
end

function expert_gen(img) 
return if randomchoice(isMNIST(img)) == 2 

randomchoice(classifyMNIST(img)) 
else

randomchoice(classifyCIFAR(img)) 
end

end

Here, isMNIST is a 2-way, and classifyMNIST and classifyCIFAR are 10-way classfiers. We use convolutional and dense networks, 
but the architecture and hyperparameters of these networks are largely interchangeable. A graphical illustration of the inference pass 
can be seen in Fig. 6.

We then pre-train classifyMNIST briefly on only MNIST, to ensure that the expert system aligns with our notion that each inner 
classfier specializes in the respective dataset. After that, we train the full model to completion, providing only image-classification 
pairs. That is, we train the entire expert system on a mixture of MNIST and CIFAR images. At the very beginning of this second training 
phase, we freeze the weights of classifyMNIST. In this pipeline, isMNIST is supervised in a very loose manner, and its training objective 
is basically to pick the better classfier.

International Journal of Approximate Reasoning 179 (2025) 109369 

13 



V. Pfanschilling, H. Shindo, D.S. Dhami et al. 

Fig. 7. Test performance during training epochs of the neural networks contained in the expert system. Displayed is mean and variance of 5 runs. For 0.2 epochs, 
we train only classifyMNIST on MNIST data. From this point on, samples are only labeled with their class label and not their dataset label. We freeze the weights of 
classifyMNIST, and train the rest of the expert system for 0.8 epochs. In the final two epochs, we train all parameters. The specializations in the expert system stabilize 
as desired. (Best viewed in color).

Results. The results can be seen in Fig. 7. As one can see, mixtures of neural network experts can be trained. Indeed, one can find 
that a little bias, e.g. via the training schedule, ensures that the mixture of experts converges towards its intended role. Furthermore, 
the results demonstrate that we can exert effective and fine-grained control over which components actively learn and what they 
learn. Meanwhile, SPLL provides useful gradients throughout the pipeline.

The key benfit of the above program is that it arranges different models with different structures and trained on different data 
sets to jointly handle a more complex problem. Each component adheres to a properly dfined and semantically meaningful role. As 
a result, the components of this pipeline can be reused in other pipelines, which we will explore further in the next experiment.

6.3. (Q3) semi-supervised learning via dynamic dispatching

We now modify the previous experiment’s SPLL code such that it annotates each sample with an integer indicating the classfier 
that was used to solve the instance: 

expert_annotate im = if isMNIST im 
then [0, classifyMNIST im] 
else [1, classifyCIFAR im] 

If we use this program to train the contained networks, then it also expects samples to be annotated with the dataset they belong to. 
Since the contained neural networks can share parameters between both programs, we can freely choose which program --annotating 
or not-- to train or evaluate on. We can thus train on unannotated or sparsely annotated data and evaluate to annotate data. That is: 
by dynamically dispatching samples that do not have the dataset annotation to the 𝚎𝚡𝚙𝚎𝚛𝚝 inference function and dispatching those 
with that annotation to the 𝚎𝚡𝚙𝚎𝚛𝚝_𝚊𝚗𝚗𝚘𝚝𝚊𝚝𝚎 inference function, we can train from partially labeled data. Samples with dataset 
annotations will provide gradients for 𝚒𝚜𝙼𝙽𝙸𝚂𝚃 as well as the respective expert, as if directly supervised. In experiments, we can 
show that even a small fraction of thusly annotated data is sufficient to make the neural networks converge to their intended goals. 
This is an alternative to the previously described pre-training and weight freezing. In the absence of such a mechanism, the neural 
networks will not align with their respective goals.

Results. can be seen in Fig. 8, where subnetworks might be trained on different data, or be trained on an unintended objective. In 
about half of all runs with 0% annotated data, the assignment of datasets to experts is generally correct. Shown here is a case where 
it is not.

6.4. (Q4) reasoning on network outputs

We will demonstrate reasoning on the task of MNIST-addition. That is, the task is to learn to classify MNIST from samples such as 
( , , 12), where each pair of training images is labeled with its sum. The challenge lies in reasoning through the addition operation 
and reconstructing probable classfications of the images from there. The SPLL code used for this experiment is simply

classifyMNist :: Symbol -> Int ([0..9]) 
mNISTAdd im1 im2 = classifyMNIST im1 + classifyMNIST im2 

where Symbol denotes a type which SPLL needs not handle, merely pass on. This transpiles to the following PyTorch module: 
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Fig. 8. Test performance during training epochs of the neural networks contained in the expert system. A fraction (0%, 0.2%, 2%) of the data has dataset annotations 
and is used to train 𝚎𝚡𝚙𝚎𝚛𝚝_𝚊𝚗𝚗𝚘𝚝𝚊𝚝𝚎, the rest is used to train 𝚎𝚡𝚙𝚎𝚛𝚝. While 0% annotations can lead to a misaligned network, already a very small number of 
annotated samples provides strong guidance and aligns each neural network with its prescribed task. (Best viewed in color).

class MNISTAdd(Module): 
def generate(self, im1 , im2): 
return ( 
randomchoice(classifyMNIST(im1)) 
+ randomchoice(classifyMNIST(im2))) 

def forward(self, sample , im1 , im2): 
return sum( 
map( 

(lambda l_1_enum: ( 
( 
classifyMNIST(im1)[l_1_enum] * 
classifyMNIST(im2)[(sample - l_1_enum)] 

) if contains( 
(sample - l_1_enum) , 
[0,1,2,3,4,5,6,7,8,9]) else 0.0)) , 

[0,1,2,3,4,5,6,7,8,9])) 

This transpilation employs the previously discussed intractable extension (see Section 3.5) and neural network bindings. For the 
sake of generating valid model counting code, the neural network here must be forward-declared with the range of values it out

puts. For a reference of the used functions here, see also Appendix B. As with previous experiments, the network architecture and 
hyperparameters are not the focus of this experiment. We train this program on a sample (im1= , im2= , 12) by maximizing 
𝑝(12|𝚖𝙽𝙸𝚂𝚃𝙰𝚍𝚍 𝚒𝚖𝟷 𝚒𝚖𝟸), adjusting the parameters of the neural network accordingly.

Please note that SPLL makes it easy to change what operation we do on the digit classfications. For example, we could easily 
exchange addition for multiplication. SPLL can also reason through noisy labels. For example, we can contaminate part of the data 
by adding 1 to the label. To reason about this noise, we implement an SPLL program that generates the same kind of noise: 

mNISTAddNoise im1 im2 = if theta[0] >= uniform 
then classifyMNIST im1 + classifyMNIST im2 
else 1 + (classifyMNIST im1 + classifyMNIST im2) 

Here, training samples could for example be ( , , 12) or ( , , 13). SPLL can still learn in this noisy environment, though of 
course slightly slower than without noise. The resulting training curves can be seen in Fig. 9. Naturally, we can also incorporate more 
complex reasoning. Trivial extensions of the above are multiplication, addition of multiple numbers, or addition of numbers with 
multiple digits.
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Fig. 9. Test negative log-likelihood and accuracy of neural networks trained via SPLL and MNIST-Addition. Aggregated across 5 runs. To ease comparisons, test 
performance is measured on 10-way classfication.

Table 1
Negative log likelihoods (lower is better) of the 
domain-specific expert models and the combined 
expert system on different datasets. Expert 1 was 
trained on eli5, expert 2 on stack. No model 
saw dialogsum during training. The supervisor was 
trained on an unlabeled mix of eli5 and stack. Note 
how the combined model consistently scores very 
close to the better expert, meaning the supervi

sor consistently identfies the correct model for the 
task, even on the third dataset.

Eli5 Stack Dialogsum 
expert1 4.139 4.419 4.330 
expert2 5.439 2.240 4.806 
NeST 4.150 2.286 4.368 

6.5. (Q5) modular programming of large language models

There is growing interest in gaining better insight and control over the competencies of large language models. For example, it 
is interesting to restrict answers to certain queries to only be derived from parts of the training data. This could be done to increase 
modularity and thus scalability [24] or in order to maintain information security. We show that SPLL can effectively be used with 
such larger models and provide this modularity. The goal is to verify that larger models can also be ensembled this way and that 
supervision works as intended. For this experiment, we build an expert system based on DistilGPT2 [25]. The model consists of 
two instances of DistilGPT2 that were fine-tuned on different datasets and one instance of a DistilGPT2-based binary classfier as a 
supervisor. The first expert was trained on the /r/askscience section of ELI5 [26], a dataset that contains natural-language questions 
and answers on scientific topics. The second expert was trained on a small subset of The Stack [27], a dataset that contains program 
code. Thus, the two experts are assumed to be pre-trained in a supervised fashion on their respective domains. In principle, they can 
be replaced by any other embedding-compatible models.

We train the supervisor by training the entire expert system on data from the two data sets, updating only the supervisor pa

rameters. Thus, supervisor weights are shifted such that the correct expert is selected. This process is fast and was done on a single 
Nvidia V100 GPU. We evaluate the combined, as well as the two contained generative models, by computing their average negative 
log-likelihood on test sets of each of the training datasets, as well as a third dataset, DialogSum [28]. DialogSum contains natural 
language dialogue interactions on varied topics. It is thus expected that this task is more strongly represented by the expert that 
was fine-tuned on natural language. However, since this dataset is distinct from the /r/askscience dataset, the supervisor needs to 
generalize beyond the training domain.

The results summarized in Table 1 clearly show that the supervisor was consistently capable of picking the right expert. Even on 
the third, unseen domain, the supervisor was capable of picking the right model, as the log-likelihood of the combined model almost 
matches that of the better expert. Concrete examples of prompts and the answers generated by all three models can be seen in Fig. 10. 
We show more generated samples from the expert model in the appendix in Table 2.

To summarize, our empirical evidence shows that all questions (Q1)-(Q5) can be answered affirmatively: NeST is a useful transpiler 
for formulating (conditional) distributions with recursive, looping, and differentiable properties.
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Fig. 10. NeST merges multiple experts to deal with multiple domain inputs. Comparisons of text generation on the ELI5 and The Stack datasets. Both experts fail to 
generate texts in the domain they are not trained in.

7. Discussion and conclusion

In this final section, we will discuss design decisions and limitations, draw conclusions and present possible avenues for future 
work.

7.1. Discussion

Design Decisions. Building NeST and SPLL required some design decisions that deserve discussion. One is the use of an intermediate 
representation (IR) within NeST. Using an IR allows the compiler developer to put a layer of abstraction between the derivation 
of inference strategies and their implementation within the target language. As a result, adding more inference strategies is made 
independent of the number of supported target languages. However, it comes with downsides, making careful consideration of 
the resulting tradeoffs necessary. One aspect we found crucial is the level of abstraction used within the IR. For example, during 
development we added several high-complexity, abstract operations to the IR that did specific tasks very well. They also generate 
compact and relatively readable target language code. However, these constructs are too specialized to be reused. A more productive 
approach here was to add smaller operations that combine readily into more complex units of meaning. Simpler operations are also 
easier to transpile to the target language. A disadvantage here is that some complex inference strategies need to be translated into 
many IR operations, which tends to hurt readability of the resulting code. From our experience implementing NeST, using a simpler 
IR appears to be the preferable choice. 
Limitations. We would also like to give a broad overview of the expressive limitations of SPLL. When introducing the syntax and 
semantics of SPLL, we incorporated several restrictions to ensure sound and fast inference. The first one is that SPLL does not allow 
for use of variables. In conventional programming, this might not always be a meaningful restriction, as variables can be inlined at 
the cost of redundant computations. In probabilistic programming, this is more restrictive, as the result of a random process can then 
not be shared in two different parts of the computation. Inlining in probabilistic programming is semantically meaningful and thus 
not an alternative. Furthermore, we restricted all functions to be non-parametric or only use deterministic parameters. This makes 
inference easy, but is restrictive. We are cofident that a more permissive restriction here would be sufficient to ensure fast inference, 
though deterministic parameters map neatly onto conditional probabilities. It is also likely that parametric functions adversely impact 
exact inference through the same mechanism as variables, as said parameters create information flow much like variables. As a last 
noteworthy restriction on expressivity, SPLL currently does not allow the use of tuples and sum types. While lists can be used to 
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emulate some of their respective properties in SPLL, tuples and sum types would both elevate the theoretical expressiveness as well 
as practical usability. Determining which of these constraints are fundamentally necessary to exact tractable inference and which are 
resolvable through continued development remains an open question. 
Densities or Probabilities? Previously, we switched between densities and probabilities ad hoc. However, it is generally prudent 
to properly distinguish between the two. Continuous random variables are modeled with PDFs(Probability Density Functions) where 
𝑝(𝑋 = 𝑥) is a probability density and discrete random variables are modeled with PMFs (Probability Mass Functions) where 𝑃 (𝑋 = 𝑥)
is a probability mass. We noted that our preferred implementation is to annotate each probability measure with its dimensionality, 
such that masses are considered dimension 0, while densities have positive dimensionality. Intuitively, this appears to be equivalent to 
matching densities with continuous return types and probabilities with discrete return types. However, we can build some examples 
that behave in interesting ways and make dynamic counting necessary. For example, we can use a discrete and continuous type 
each in a tuple (product type) or a tagged union (sum type)�-represented here with a list. Consider the following programs, which 
construct a sum and product type.

list = if theta[0] > Uniform

then Null

else Cons Normal Null

tuple =

(if theta[0] > Uniform

then True

else False, 
Normal) 

In both cases, the resultant type contains both discrete and continuous types. For the 𝚝𝚞𝚙𝚕𝚎 example, it makes sense to treat this as 
a continuous variable, as for any value (𝑎, 𝑏) we can find values (𝑎, 𝑏′) that are arbitrarily close. Therefore, a product type containing 
a continuous variable is again continuous. To be precise, the dimensions of each contained type are added. In the case of a discrete

continuous tuple, this is known as a mixed distribution.

The same process does not work for the 𝚕𝚒𝚜𝚝 example. Here, the value 𝙽𝚞𝚕𝚕 does not have a continuous neighborhood. Instead, 
this value is completely discrete. We should therefore treat it as such, assigning probabilities to 𝙽𝚞𝚕𝚕 while assigning densities to 
[𝚡]. Consequently, whether densities or probabilities are the correct language for expressing the probability of a return value is a run 
time property that depends not on the type of the expression, but on each value individually. Similar constructs are known as mixed 
random variables, though they are underexplored in tractable models. The dimensionality thus being a run time property means that 
statically determining the kind of measure is unviable, hence we count dimensions at run time.

With this distinction in mind, we can adjust the equations for normalized distributions as such:

∫𝑥 𝑝(𝚎 ⇓ 𝑥)𝑑𝑥+
∑

𝑦
𝑝(𝚎 ⇓ 𝑦) = 1

where 𝑥 and 𝑦 are continuous and discrete outcomes, respectively. We consider it future work to provide an actual implementation 
of a general system that can deal with mixed random variables and keep densities and probabilities properly separate.

7.2. Conclusions

We introduced Sum-Product Loop Language (SPLL), a probabilistic programming language that combines useful features of Sum

Product Networks, such as tractability and exactness, but can capture more complex distributions. By automatically generating 
inference code, the language provides inference to the user for low mental overhead. We also introduced the Neuro-Symbolic Tran

spiler (NeST), a tool to translate SPLL into high-performance differentiable computing ecosystems such as PyTorch or Julia. This 
way, NeST can integrate probabilistic programs with complex control flow into environments that support neural networks. We show 
easy integration of neural networks via experiments: Our probabilistic programs can supervise and train neural networks and even 
coordinate mixture-of-experts of large pre-trained models.

7.3. Future work

Our work provides several interesting avenues for future work on SPLL and NeST. 
Parameter Passing. While it is currently already possible to dfine large models in SPLL, handling the parameters for all these is still 
a largely manual task of keeping track of indexes into the 𝜃-vector. However, this could be drastically simplfied by providing a more 
comprehensive data structure that can more adequately rflect which parameters are relevant where in the program. For example, 
if a tree structure was chosen, within each function call only the appropriate part of the parameter space would be passed on to the 
called function. For example, we could dfine a sum node in an SPN like so: 

sum_node theta layer = if Uniform > (root theta) 
then product_node (subforest theta !! 0) (layer - 1) 
else product_node (subforest theta !! 1) (layer - 1) 

-- "list !! index" is notation for list indexing.
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This notation has the advantage of eliminating code duplication. Both product nodes can use the same code because their differences 
are dfined via the passed subforest of the theta structure. However, users need to reason about which weights to pass. As a simpler, 
but less general supplement to such an approach, it could also be useful to have completely local, anonymous parameters. These can 
easily be used ad-hoc to represent values that are not shared in any other part of the program. Likewise, for readability, it could be 
useful to have named parameters that represent clearly identfied concepts, e.g. the coefficient of friction in a mechanical device. 
Invertible Transfomations and Memory. Currently, SPLL does not have good support for local variables. This is because local 
variables substantially complicate probabilistic inference. The general case of a local variable looks like this: 

stateful = let x = e1 in e2 

In this general case, the completely general solution for inference is

𝑝(𝑦|𝚜𝚝𝚊𝚝𝚎𝚏𝚞𝚕) = ∫ 𝑝(𝑥|𝚎𝟷)𝑝(𝑦|𝚎𝟸, 𝑥)𝑑𝑥 ,
however this integral is rarely easily solved. While we can not solve all instances of the class of programs described by 𝚜𝚝𝚊𝚝𝚎𝚏𝚞𝚕, we 
can nonetheless solve many useful instances. For example, if 𝑥 is of a small set of discrete values, we can easily enumerate and solve 
similar to the strategy previously described in subsection 3.5. More interestingly though: If we know from the mathematical structure 
of 𝚎𝟸 that 𝑥 can be computed from 𝑦, i.e. ∃𝑓 ∶ 𝑓 (𝑦) = 𝑥, then the integral above collapses into a very straightforward computation: 
𝑝(𝑦|𝚜𝚝𝚊𝚝𝚎𝚏𝚞𝚕) = 𝑝(𝑥|𝚎𝟷)𝑝(𝑦|𝚎𝟸, 𝑥). Under this constraint, there is a connection to normalizing flow models, which make use of in

vertible functions to build probabilistic models. To achieve this, it would be necessary to build an understanding of the invertibility 
of expressions into the language. 
Queries. Currently, SPLL only has explicit support for simple probabilistic inference. However, we know that SPNs support fast eval

uation of more complicated queries. The implementations of such queries can be applied to SPLL too, thus enabling such queries for 
SPLL. Ideally, SPLL would support more advanced queries by adding tools to formulate such queries within the language, thus adding 
more tools to the language that can also be used in other situations. For example, it is already possible to query the cumulative distri

bution function of a distribution by using the >= operator. Adding more such tools to build up to the set of queries supported by SPNs 
should improve the expressiveness of the language while remaining closely informed by prior work on SPN inference. Additionally, 
such work on queries would make it possible to train from partial data by maximizing the probability of answering a marginal or con

ditional query correctly. For example, building on top of the ideas in Section 6.3, we could maximize 𝑝([_,3]|𝚎𝚡𝚙𝚎𝚛𝚝_𝚊𝚗𝚗𝚘𝚝𝚊𝚝𝚎 𝚒𝚖) to 
maximize the probability of classifying the image as belonging to class 3, without deciding which expert should make that decision. 
Parallelization. Since both the probabilistic semantics and the generative semantics can imply the evaluation of if-then-else expres

sions, running either code in parallel comes with extra challenges. The target language implementations shown in this paper are 
completely sequential, but an order of magnitude of performance or more is available via parallelization. The focus should be on 
probabilistic semantics here, as this is necessary for fitting parameters.
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Appendix A. Compiled SPLL programs

Below is the Julia compilation result of the example program shown in 4.1, preceded by another copy of the relevant SPLL source 
code.

bernoulli = Uniform >= Theta[0] 

function bernoulli_prob(thetas , sample) 
return ( 

l_4_lhs_integral = ( 
l_3_high = if (1.0 >= thetas[0]) 
thetas[0] 

else
1.0 

end
if (0.0 >= l_3_high) 
0.0 

else
(l_3_high - 0.0) 

end
) 
if (true == sample) 

(1.0 - l_4_lhs_integral) 
else

l_4_lhs_integral 
end

) 
end
function bernoulli_gen(thetas) 

return (rand() >= thetas[0]) 
end

Appendix B. NeST python library

Below is the implementation of common functions used by NeST in the implementation of SPLL inference:

import torch
import numpy as np

def rand(): 
return np.random.rand() 

def randn(): 
return np.random.randn() 

def hcat(head , tail): 
return [head] + tail 

def density_Normal(x): 
return (1 / torch.sqrt(torch.tensor(2 * 3.14159))) 
* torch.exp(-0.5 * x * x) 

def contains(elem , list): 
return elem in list 

def randomchoice(vector): 
return np.random.choice(np.arange(len(vector)) , p=vector / sum(vector)) 
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Appendix C. Further LLM expert system samples

Table 2
Text samples generated by the combined expert model. The supervisor reliably picks the correct model to sample from.

Prompt - Generated text

[..] The main problems with using renewables like solar and wind is that they can’t be ‘dialed’ up all the time. We need to have a fixed, lower load and this is 
absolutely correct and efficient. [..]
[..] U.S. energy consumption can largely be broken down into two main types: stationary and portable. The electrical power grid would be the main use of 
stationary power, while cars, trucks and the like would be the main use. Since cars are relatively limited in size they can pose a lot of problems with standards 
capacity, [..]
[..] The beam dumps are long, water-cooled rods of carbon encased in steel, designed to absorb the light of they are being pulled out of the suspended silicon 
beam hexagonal shape. [..]
ON_CHANGE ; change only if needed 
call SBDWriteFMReg 
add al, DISP_FROM_LEVEL_TO_ATTACK ; al <- attack address of mod
mov al, DR1 
add al, TRGE_STICK_INIT_TIMEOUT ;
nop 
dec %rcx 
lea addresses_normal_ht+0x18f3e, %r12 
add %r9, %r7 
mov (%rbx), %r11 
map

ymm4, %xmm4 
vpextrq $1, %xmm4, %rdi 
nop 
nop 
cmp %rcx, %rcx 
lea addresses_D_ht+0x 4830e, %r9 
nop 
movups (%r11, %rsi) 
nop 
lea addresses_

Data availability

The software used for this article is available under an Open-Source license.
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