Autonomous Agents and Multi-Agent Systems (2025) 39:27
https://doi.org/10.1007/5s10458-025-09707-7

®

Check for
updates

Entropy based blending of policies for multi-agent
coexistence

David Rother' . Franziska Herbert' - Fabian Kalter' - Dorothea Koert’ -
Joni Pajarinen? . Jan Peters' - Thomas H. Weisswange®

Accepted: 28 April 2025 / Published online: 16 May 2025
© The Author(s) 2025

Abstract

Research on multi-agent interaction involving humans is still in its infancy. Most approaches
have focused on environments with collaborative human behavior or a small, defined set of sit-
uations. When deploying robots in human-inhabited environments in the future, the diversity
of interactions surpasses the capabilities of pre-trained collaboration models. ”Coexistence”
environments, characterized by agents with varying or partially aligned objectives, present a
unique challenge for robotic collaboration. Traditional reinforcement learning methods fall
short in these settings. These approaches lack the flexibility to adapt to changing agent counts
or task requirements without undergoing retraining. Moreover, existing models do not ade-
quately support scenarios where robots should exhibit helpful behavior toward others without
compromising their primary goals. To tackle this issue, we introduce a novel framework that
decomposes interaction and task-solving into separate learning problems and blends the
resulting policies at inference time using a goal inference model for task estimation. We
create impact-aware agents and linearly scale the cost of training agents with the number of
agents and available tasks. To this end, a weighting function blending action distributions
for individual interactions with the original task action distribution is proposed. To support
our claims we demonstrate that our framework scales in task and agent count across sev-
eral environments and considers collaboration opportunities when present. The new learning
paradigm opens the path to more complex multi-robot, multi-human interactions.

B David Rother
david.rother @tu-darmstadt.de

Dorothea Koert
dorothea.koert @tu-darmstadt.de

Joni Pajarinen
joni.pajarinen @aalto.fi

Jan Peters
jan.peters @tu-darmstadt.de

Thomas H. Weisswange

thomas.weisswange @honda-ri.de

Intelligent Autonomos Systems (IAS), TU Darmstadt, Darmstadt, Germany
Aalto University, Espoo, Finland

3 Honda Research Institute EU, Offenbach, Germany

Honda Research Institute Europe GmbH, Offenbach, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-025-09707-7&domain=pdf

27 Page2of28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

Keywords Reinforcement learning - Multi-agent systems - Policy blending - Maximum
entropy - Cooperative intelligence

1 Introduction

Deployment of robots in environments shared with humans is a trending research topic [1,
2] as there is an increased push toward robots that work alongside humans. The applications
studied in the scientific literature vary and include topics such as teaching [3, 4], assistance [5—
71, entertainment [8], delivery [9], service [10] or elderly support [11]. The earliest example
of robots deployed to a human environment only cared about not colliding with them [12].
Nowadays, modeling of an interaction aims for an explicit collaboration with a human or a
group of humans to achieve a common goal [13, 14]. However, when sharing an environment
with multiple humans, a robot may not interact with only a single, dedicated user. Other
humans or robots may be bystanders that coexist in the same environment without being
directly involved in the current task of the robot [15]. The essence of these interactions lies
not just in the robots’ ability to perform tasks but also in their exposure to ’other’ humans who
are not the primary users but share the environment and may have independent objectives.
How to (co-)operate when facing other people while performing a task is an important
question that needs to be addressed in human-robot interaction.

Consider the situation of a robot for assisted living within a group of older adults. The
robot should be able to perform supportive tasks for a given person, while other humans with
independent intentions are sharing the same space. For example, the robot could be asked by
one person to prepare a sandwich while at the same time a second household member starts
cooking something for themself. The robot and the cook both require access to some shared
resources, like the dish rack, but they do not share a common goal. However, a robot that
does not acknowledge the right of a bystander to approach its own goals will likely not be
accepted by society but neither will one that ignores its given task while other humans are
close by.

We term such situations “coexistence” environments, where there are at least two agents
present, that do not share a goal and are not jointly controlled. Figure 1 depicts the relation to
other types of environments used in the literature. In coexistence environments, agents have an
impact on other agents’ performances, most likely through sharing space or resources, while

All Environments

Coexistence
Environments

Competitive
Cooperative Environments
Environments Non-Zero
Sum Zero Sum

Fig. 1 Classification of multi-agent environment structures. Coexistence environments constrain the per-
formance of multiple agents to be interdependent but not exclusive. Cooperative environments and some
competitive environments are considered sub-sets

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page3of28 27

both agents can in principle reach their goals. If there exists an explicit interdependence
to reach a certain goal, the joint task is classified as a cooperative scenario. Competitive
environments feature an explicit resource conflict. If this conflict results in sub-optimal
solutions for at least one agent, it can still be considered a coexistence environment. However,
zero-sum games, which result in only one agent being able to reach its goal at all will
not allow the coexistence of the agents. Coexistence environments are related to the Ad-
Hoc Teamwork (AHT) field where agents have to collaborate with unknown teammates.
Classical Ad-Hoc teamwork operates within the definition of cooperative environments as
agents have an overarching joint goal. AHT agents always share some part of the reward
function or goal, even in mixed-motive situations, where agents still share a collaborative
goal [16, 17]. A coexisting agent in contrast does not have to share a goal or part of the
reward function (but certainly can). This distinction places every AHT framework within the
realm of coexistence, extending the application space of AHT. Both AHT and coexistence
environments share common assumptions, including no prior coordination between agents,
no control over teammates, and no zero-sum competition. However, an important difference
between the two is that AHT environments have a single defined optimization target in the
joint reward, with which possible algorithms are evaluated. On the other hand, in coexistence
environments, defining an optimization target is not as straightforward as there are two
distinct, possibly opposing evaluation criteria. The first is the reward of the focal agent, and
the second is the joint reward of all other agents.

In this work, we propose a novel learning framework to solve coexistence environments.
Our approach entails obtaining two distinct sets of policies: one set for completing tasks
and another set based on how our actions influence other agents while they perform their
respective tasks. Task policies learn based on a reward function how to solve a given task
and the second type of policies is called interaction policies, which learn in self-play with
task policies how to assist them solving a task. Additionally, we derive an entropy-based
mechanism for blending these policies. Finally, we employ a goal inference approach, to
estimate the tasks of other agents during evaluation and include uncertainty.

Our method is based on the assumption that the environment is fully observable with
categorical action spaces. We assume further that every task can be (non-optimally) solved
by one agent alone. Each task that our agent wants to support needs to be solvable by the
agent alone, and it has to be able to simulate the task for self-play.

In addition to showcasing the scalability of this approach for agents with diverse intentions,
we analyze the advantages of employing this approach towards enhancing the task perfor-
mance of the population, while simultaneously minimizing any negative impact on the focal
agent’s performance. Scalability in our framework is achieved by decoupling task-specific
learning from interaction dynamics, allowing each component to be learned independently.
Once the task policies and interaction policies are trained, they can be recombined dynami-
cally for new agent-task scenarios without the need for retraining. The entropy-based blending
mechanism enables the seamless integration of these policies, adjusting to changing agent
populations and tasks. To support these claims we intend to answer the following research
question and sub-questions:

(1) Does incorporating entropy-based blending in policies enhance scalability and benefit
both population-level and individual focal agent behaviors?

(1.1) Does the combination of task and interaction policies enable an agent to solve the
given task while helping others under task uncertainty?

(1.2) Do we see a scaling benefit of the framework over traditional joint learning
approaches with an increasing number of agents?

(1.3) Does our system perform well when incorporating task uncertainty?

@ Springer

27 Page4of28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

The rest of the paper is structured as follows: We start by giving an overview over the
related work and show algorithms that achieve parts of our problem setting but fall short in
other aspects. Afterward, we present our algorithm with a new goal-predictive component to
deal with unknown goals of other agents extending previously published work [18]. Addi-
tionally, we extend our analysis to more complex scenarios with more agents, including a
new environment in our evaluation, and add a comparison to another method in a baseline
cooperative scenario. We conclude our paper by summarizing our findings and pointing out
interesting future research directions.

2 Related work

Coexistence environments provide several challenges, such as modeling other agents’ policies
and intentions, evaluating the impact of one’s own actions, integrating others in the learning
of a policy or interacting with unknown agents, working with many different tasks, and
scaling with the combination of single agent tasks. Many of the individual aspects have been
addressed by prior work.

An example of modeling other agents in the environment explicitly is the -POMDP [19]
framework. Decision frameworks using this model engage in explicit reasoning about humans
[20, 21] and use the mental model of others to improve their outcomes. Our approach does
not require a model of the environment during execution and uses the model of others to find
the best solution for the population while solving the agent’s task.

Multi-agent reinforcement learning The issues usually faced with problems involving
multiple agents are that learning a single network based on a joint reward signal faces a
credit assignment problem and has to deal with the combinatorial space over the task-agent
space, which leads to catastrophic forgetting and performance degradation. For this reason,
multi-agent approaches commonly deal with cooperative environments, where a common
goal is present such that individually optimal behavior is preferable in comparison to egoistic
behavior to achieve the best possible reward [22] and the aforementioned problems do not
occur. Such problems explore the difficulty of coordinating to achieve the best reward [23]
but do not generalize to problems where the focal agent’s best strategy does not align with
the strategy that achieves, given successful coordination, the highest population reward.
Integrating other agents from the population in the learning process of a policy is a central
aspect of Multi-Agent Reinforcement Learning (MARL), where all agents are jointly trained
together [22, 24]. One approach in MARL is to train a set of agents by extracting joint action
values as a complex non-linear combination of single agent values to act on decentralized
local observations [25-27]. The resulting policies are restricted to a specific set of tasks for the
agents, which restricts the generalizability of the system to new tasks, which we do consider in
this work. In [28], agents are trained in a centralized learning, decentralized execution regime
and compute a credit score by taking other’s perspectives but need to retrain the complete
policy if their own goal or that of the other agent changes. Previous work has also considered
Multi-Agent systems that have to solve multiple tasks [29]. They introduce a monolithic
learning regime to learn over multiple tasks using a single policy without providing task
identities. This approach scales well for cooperative tasks but is strictly limited to these
areas, whereas we do not rely on shared goals between agents.

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page50f28 27

Ad-hoc Teamwork Another multi-agent problem setting is Ad-hoc teamwork, where, in
contrast to traditional multi-agent reinforcement learning approaches, one agent is controlled
instead of many during evaluation. Ad-hoc teamwork is a single-agent learning problem
where the agent has to be capable of cooperating on the fly with other agents without prior
coordination [17]. A popular approach is to compute Bayesian posteriors over predefined
teammate types, which are then used in other models, such as reinforcement learners [30,
31]. Others use transfer learning intending to reuse knowledge across agents to enable faster
adaptation to new agent types [32, 33]. Melo and Sardinha [34] learn a teammate’s task from
a set of predefined tasks and learn to cooperate in any of them. However, this does not factor
in the possibility of changing the task of the learning agent, and only joint policies that do
not scale beyond a few select tasks are learned.

Almost all approaches in the current literature are restricted to a joint goal formulation
of all agents and do not consider open environments [35]. The framework of [36] models
action impact on policies using Graph-Based Policies (GPL) to adapt to open environments.
However, GPL only considers the impact of other agents’ actions on their reward not how
much impact one has on everyone else in the environment. Additionally, GPL is trained on
one task distribution for the present agents and can not deal with a different task distribution
during evaluation by design. Our framework addresses the problem of learning to coexist in
environments with a changing number of agents that each perform their tasks, addressing
openness in the task space as described in [35].

Policy Blending Maximum entropy methods have been shown to produce policies that are
robust to minor changes in the environment or other agents’ behaviors [37-40]. Combining
energy-based policies as a product of experts has also been shown as an effective measure to
solve problems that include multiple sub-tasks [41-43]. Other policy blending measures in
the literature are used for shared control with an arbitration mechanism between policies [44—
46]. They either use the human policy or a generated one, which is decided based on some
computed factor or the presence of human inputs. On the other hand, we look at interaction
with others instead of sharing control and blending policies by combining them instead of
arbitrating which one to use.

Goal Inference To solve the problem of not knowing other agents’ intentions, various meth-
ods and approaches exist to tackle goal inference. Some approaches try to reimplement
human Theory of Mind (ToM) models from Cognitive Science on an agent [47-51] or make
use of perspective-taking to infer a ToM [52-54]. In our work, we also take the perspective
of the other agent to infer their goals. Other approaches are more computationally inspired
and make use of Inverse Reinforcement Learning [55-57] or Bayesian Inference [58—60] to
implement a ToM model. In recent years several approaches made use of deep neural net-
works to estimate the mental state of an agent [61-63] and we use a fully connected neural
net as well in our work to estimate a distribution of goals because of the simplicity of the
approach.

Prior work has not dealt with the complexities that come with coexistence and, as a result,
only solves the problem in part. Our work creates a new framework to view multi-agent
interaction in varied tasks as a decomposable problem and solves it through this inherent
structure.

@ Springer

27 Page6of28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

3 Entropy-based policy blending interaction

We propose to model a coexisting agent that navigates the world using separate task and
impact policies. In addition to modular policies, we use a goal inference model and a recom-
bination mechanism to infer the action distribution to sample from during evaluation (Fig. 2)
to avoid both of these problems.

We start this section with the formal definition of the problem setting. We describe how to
learn task policies and interaction policies. We follow with a section on how we construct our
goal inference module. To close off the section, we explain how our policy recombination
works and derive its formal properties.

We define the problem where each policy attempts to solve a stochastic game given as
the tuple (N, S, {A'}icq1...ny Py {r'}ieq1... Ny, ¥)- N tefers to the number of agents where
N = 1 is the standard single-agent MDP. S is the set of states of the world. A’ is the set of
actions available to agent i with A := Al x ... x A¥. P : S x A — A(S) defines for a
time step ¢ € N the transition probability to go from state s € S to state s’ € S in the next
time step. We introduce an action that does not change the world state as ag and can be seen
as the neutral action (i.e. standing still) in each environment. r} :S x A — R is the reward
function that returns a scalar value to the i -th agent for a transition from (s, a',a ina given
timestep 7, where @~ is the action vector of all agents except agent i . For formulations where
only the action of the ego agent is relevant, we abbreviate our notation to a classic single-
agent MDP formulation and omit to mention other agents. We define the policy function that
outputs an action given a world state as 7 : S — A. We also use pr (s;) and p5 (¢, a;) to
denote the state and state-action marginals of the trajectory induced by a policy m(a;|s;).
Individual success is defined as R' = > r,i, while coexistence success can be measured
through the sum of rewards Z,N R’ of all agents in a given episode. For abbreviation and
clarity purposes, when talking about distributions in the following section, it is implied that
the distribution of a policy is given by = ~ m(:|s) | s € S. An agent can only control its
actions and receive the corresponding reward signal. We refer to policies learned to solve
a given task as “task policies” and policies learned to improve the interaction with another
agent with a given task as "interaction policies”. We do not consider planning on the level of
continuous trajectories but rather on a level of categorical actions. Based on this abstraction
level, we also assume that our agent learns to solve the other agent’s task conceptually. We

Interaction
Policies

Interaction
Model Store

Goal
Inference
" [Task Model
@ Store

Fig. 2 Architecture of the entropy-based blending framework. It consists of task policies, that are trained to
solve the task of the acting agent and the interaction policies model the influence of actions on other agents’
possible goals. The goal inference model estimates the distribution over goals for the other agents, which is
then used together with an entropy measure between policies to create a combined policy and act based on it

sample a
action

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page70f28 27

Algorithm 1 Action selection of the entropy-based blending framework.
Task policy: ¢
Interaction policies: w1, ..., 7, : n = Number other agents
Goal inference model: 6

for tinl : T do
Observe state s € S
Compute action distributions 7 (-|s), w; (:|s) | i €1l,...,n
Compute goal distributions g; =6(s) | i€l,...n

Combine action distributions using weights based on (9), (8), (5)
Sample action a from 7 using (7)
return a

end for

motivate these assumptions by reasoning that a robot cannot do exactly the same as a human
physically due to the limited capabilities of the robot. Instead, our method focuses on being
able to reproduce the same goal on an abstract, predefined level, where the robot comes up
using simulation with a theoretical plan of how the human would solve a problem. Multiple
individually learned task policies will be kept in a task model store, to be activated based on
the current task and likewise for interaction policies. Once an agent is deployed, their task and
all relevant interaction policies are recombined into a single policy to solve the compound
system (Fig. 2) using an entropy-based blending mechanism.

3.1 Learning task policies

We derive our theoretical work based on the maximum entropy reinforcement learning (Max-
EntRL) framework [38, 64]. Maximum entropy policies have many desirable properties, such
as good exploration and possibly finding multiple solutions to a problem, something that is
desirable in coexistence environments because it allows agents to be flexible in their decision-
making. We learn our task and impact policies using PPO and use the connection of policy
gradient learning to Maximum Entropy RL. Schulman et al. [65] proves the equivalence of
entropy regularized policy gradient methods and Soft Q learning. Due to the usage of PPO
with an entropy regularization term, we can view it as a Boltzmann distribution, despite using
additional implementation details to stabilize the training process, such as gradient clipping.
We show the derivations regarding maximum entropy RL and then show how they can be
practically applied to PPO policies when discussing the combination of the policies. MaxEnt
RL adds an entropy term to the reward and maximizes the entropy over the policy distribution
over each time step in addition to the traditional reward. In PPO the entropy is added as an
additional loss term, which is maximized similarly. The optimal policy function for MaxEnt
RL with finite horizon T is
T

Thlaxfor = ArEMaX D Esapmps 1 (s, ar) + aH G Cls)], (1)
t=0
where temperature parameter « controls the importance of the entropy in relation to the
reward. By using this adapted objective, the policy automatically explores more of the state
space. The expected future return includes the future entropy for taking an action a in state
s and following policy 7. The optimal policy 7 can be estimated by a Q-function as an
energy-based model (EBM) [38]

1
m*(als) o exp <& 0*(a, S))) 2

@ Springer

27 Page8of28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

with the Q-function taking on the role of negative energy. The resulting Boltzmann policy
is shown to be similar to policies produced by policy gradient algorithms such as PPO. The
Q-values are the basis for drawing samples from a Boltzmann distribution, which offers the
advantage of being able to derive the distribution we are sampling from analytically. The
adoption of this method constrains our work to discrete action settings, such as robots using
an action library. The method is applicable to any environment, where policies that output
categorical distributions for action sampling can be trained. Following [18, 38] one can define
the optimal soft Q as

oo
ot (51 an) =r1 + Es, 1,)~p, |:Z v i + QH(JT*('|SZ+1))):|

I=t

with y € [0, 1) as the temporal discount factor.

3.2 Learning impact-aware interaction policies

Formally, we define the impact / to be the value/reward an action of one agent i provides for
another agent j as

T

Iis,ai —E . Z [rjs,ai,aj
/(t,d;) SH_I:TNPﬂj,alJNnj(SI) ; v ri (s, ap,a;)
=t

T
-k ' > ylrl s ah.al) |
S[+11T~pn‘j»a/"’ﬂj(8[) v (1> dgs l)

I=t

i i
Q17 = “o}

where we assume a finite horizon 7'. For an action a taken by agent i in state s, the impact is
the change in expected return for agent j between the original state and the subsequent state,
where the actions a/ and @’ are made simultaneously. We measure only the impact this one
intervention action has by setting all hypothetical subsequent actions not to change the world
state. This formulation quantifies the marginal contribution of agent i’s action to the expected
future reward of agent j, capturing how much agent j’s expected performance changes due
to agent i’s decision. As such we rewrite the impact in terms of the value function of agent j

(s a) = i (s, af.al ~7i(s0)) + VI (si11) = VI (s),

where P (s;+1|s;, a;). Computing the impact requires estimating the value function of the
given task of agent j. We assume the agent knows how to solve the other agent’s task as the
agent has learned all tasks that other agents might be doing and that we want to be able to
assist later. During self-play later this assumption allows us to initialize the other agent with
previously learned task policies. We take the other agent’s perspective and use our internal
Q-model to estimate the values with the internal Q model corresponding to the task that agent
Jj is currently pursuing. Using this impact measure, the agent learns an impact-aware policy
in the maximum entropy fashion, where the reward is now given by /.
We formulate our impact training objective as

N T-1
Tty = Y Y Eag~pll (s a)) + aH(mi(ls)]. ©)
J=L.j#i 1=0

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page90f28 27

From that formulation, it is straightforward to derive a soft Bellman operator as with the
task policies _
Qi(s,a) < I(s,a") + YEy~p(s'is.a) [V,(S/)] -

The agent uses self-play to learn the impact models, eliminating the need to train with
others with policies unknown to the agent.

3.3 Learning a goal inference model

In order to compute the impact that one agent has on the other agent, we need to know which
goal the other agent is currently pursuing and learn a Goal Inference (GI) model. Since
agents in a coexistence environment can interact on the fly without prior communication, the
goal of the other agent might not be known a priori and need to be estimated. We propose
a dedicated model to infer the goal for each other agent in the current environment, which
is learned from past episodes. We focus inference on the goal g; pursued by a given agent
Jj - The model predicts a probability distribution p(g) over all ng possible discrete goals G
given a sequence of the past states of the environment s; ;1 ;—2. We record episodes with
agents solving their tasks in an environment and train on a fully connected neural net on the
goal-labeled data with the cross-entropy loss

L(B1) = —) _ yg log p(glst,i-1,-2; 6.
8€g

We train to minimize the average loss

1 N
min 5 Z LG “)

i=1

The resulting distribution

P(glsti—1,1—2; Oc1) = Softmax(0g1(ss,1—1,1—2))

can be used as a weight factor for each present agent for every task as a weight vector
wg = p(glss,i—1,0—2; OaD). ©)

During deployment, the model selects the task policy corresponding to its goal, and for
each agent in the scene, the impact-aware interaction policies match the respective agents’
goal distribution as computed by the goal-predictive model.

3.4 Recombination of policies

Our framework’s final and integral building block is the combination of the resulting distri-
butions from interaction and task policies. We propose a blending mechanism that bounds
the experienced regret of blending. In Fig. 3 we depict the weighting for a simple case with
only one interaction policy. Combining policies is also known as policy blending and prior
work has shown that compositionality arises naturally when using maximum entropy rein-
forcement learning [40] and that this approach is also known as a product of experts [41, 42].
Policy blending enables a clear separation between the policies directed toward other agents
and those directed toward one’s own goal. This is a crucial factor in enabling scalability to a
greater number of agents and a wider range of task combinations. In the following equations,

@ Springer

27 Page 100f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

Task Distribution Interaction Distribution Blended Distribution
High Entropy
1.0 1.0 1.0
- ® | — |
00 fv¥err—rr—r— 00 f¥moreoreor—— 00 +t————
a0 a1 a2 a3 a4 a0 a1 a2 a3 a4 a0 a1 a2 a3 a4
Low Entropy
1.0 1.0 1.0
_ O —> |
00 "= 00 L—r>v—r—+— 00 t—7—7——
a0 a1 a2 a3 a4 a0 a1 a2 a3 a4 a0 a1 a2 a3 a4

Fig.3 Visualization of the weight blending. Example of two different distributions produced by task policies
with the same distribution by an interaction policy. The combined policies blend according to the entropy of
the task distribution

we show the composition based on Q-values but note that this can be done in an analog
manner for categorical distributions to sample actions from a policy gradient method such
as PPO by establishing that the sum of Q-values at any inference step for every network is
normalized. We compose an agent’s final policy with Q-function Q¢ based on the (weighted)
sum of a given task policy Q7 and the impact policies Qg ;

QC—tht‘i‘(l—wt)ZZngm (6)
jel £keG ™)

iel geg

The weighting of g-values aims to reduce the negative impact of incorporating interaction-
aware elements into the task policy. When using policy gradients that directly compute a
distribution over actions, we need to adapt the combination of policies. By taking (2) we
derive that

N N
exp (Qc) = exp (Z wy Qn> =[[exp . 0n)
N N
(0% 1_[T = exp (Z W log(nn)> . (7)

Thus, we conclude that we can directly sum the weighted policies in log space and that
they are not bound to value-based methods through the previously mentioned equivalence in
resulting action distributions. The objective of our weighting scheme is to automatically find
a good trade-off between the focal agent’s reward and the reward of the other agents. The

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 110f28 27

weighting scheme prioritizes the task distribution when following the policy is critical, and
assigns bigger weights to the interaction policies if we can blend them in without incurring
significant costs. We propose using the entropy’s complement H € [0, 1] to weigh the task
distribution 7; and the compound interaction distribution 7. o Q.. First, we introduce a
lower bound of the policy blending process using an arbitrary weight w € [0, 1], extending
the proof of [40].

Lemma 1 Let QF and Q3 be the soft Q-functions corresponding to the optimal policies for
reward functions ry and ry, respectively. Define Oy = wQT + (1 — w)Q3, where w is a
weight parameter. Then, the optimal soft Q-function QF. for the combined reward function
rc £ wry 4+ (1 — w)ry satisfies the following inequalities for all s € S and a € A:

Oy (s,a) = Q¢(s,a) = Oy (s,a) — C*(s, a),
where C* is the fixed point of

C(s,a) < YEgps'is.a) [Dw(m(~|s/)llﬂz(~|8’)) + max C(s', a’)]
a
and Dy, is the Rényi divergence of order w € [0, 1].
Proof See Appendix A. O

Corollary 1 Following Lemma 1 we can deduce that the regret of using policy w> instead of
policy w1 is proportional to the Rényi divergence K (i1, w2) o Dy, (7r1]|72).

Lemma 2 The expected Jensen-Shannon distance to a fixed policy m; for a policy . drawn by
a Dirichlet process DP with a non-informative prior is proportional to the negative entropy
of the policy ;.

Er ~pir(1,1,..,1) [ISD(s||7e)] o —H(7y).s

This establishes that we have a regret term that is bound by the Rényi divergence of the
two policies. In the following section, we use the fact that the JSD is the Rényi divergence
with order 2, and since the Renyi divergence is strictly increasing with its order [66], the JSD
is an upper bound to the previously established bound of the regret. We continue to show that
in the expectation the JSD is proportional to the entropy of the task policy and is an upper
bound of the regret K, establishing

K, me) < Eqo~pirai,1,...,1) ISD(||7me)] o¢ —H (),

By utilizing the relationship between the entropy of the task policy and the amount of
blend-in of the compound interaction policy, we can ensure that incorporating it does not
increase regret. The entropy of the distribution H4|(r) is computed based on the number
of actions and the max entropy is normalized to one. The entropy of a policy encodes the
uncertainty of which action to take and lets us assign a small weight to distributions with high
uncertainty and a large weight to those with low uncertainty. Entropy is a sensible choice
for blending two policies as the regret is inversely proportional to the entropy. Therefore, we
propose to compute the weight w, of the task policy depending on the entropy

w, =1—"Hp(m,), (8)
where | A| is the number of actions in the action space. Since the regret of using the compound

policy is influenced by the distance of the task distribution to the interaction policies, we use

@ Springer

27 Page120f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

the pairwise Jensen-Shannon Distance (JSD) as the weights of the interaction policies in the
blending process. We define the weight w; for policy n; as the JSD to the task distribution
times the respective goal’s assumed probability as computed by the goal predictive model

Wi = weISD(m||mi).)
geg

These weights are then used in (7). To summarize, we compute the Q-values of the given
task for each action, then compute the Q-values for each action with respect to the impact
on each other agent and obtain categorical distributions. The weighting of distributions is
done using the entropy and JSD between the task action distribution and the impact action
distribution. Finally, the distributions are combined as a weighted sum, and an action from
the resulting categorical distribution is sampled.

3.5 Training procedure

We propose to use PPO as a training algorithm but emphasize that any algorithm, that produces
a maximum entropy policy and can learn the tasks at hand, is compatible with the framework.
The algorithm trains a set of ego task policies and uses them to simulate a second agent in self-
play to learn a separate impact policy for each task it has previously learned. During impact
learning the agent performs actions but uses the reward of the second agent for training.
The agent optimizes its positive impact according to the impact reward formulation in (3).
The interaction policies are updated using the same methodology as is standard for PPO.
For optimization we use the ADAM optimizer [67] with weight decay. After training has
finished, we test the framework by simulating our agent in coexistence with agents trained
on their given task with an independent method and measure the focal agents’ performance
and the team’s performance.

We use two fully connected layers with 64 units for each policy in the particle environment
and an additional CNN layer with 3x3 kernels and 16 channels in the Level-Based Foraging
and cooking-zoo environment. In each environment, we use a policy head with the number
of actions as output. We train on 6000 episodes in the cooking environment, 1000 in the
Level-Based Foraging environment, and 200 in the particle environment for each task.

4 Experimental evaluation

We test our framework in coexistence and cooperative environments, namely a navigation
multi-particle environment [68], a cooking environment!, and a gathering environment [69].
We use CookingZoo and show the scalability of our method to complex environments and
tasks, even when the intentions of others are unknown. We analyze the model’s performance
compared to the ablation of our blending methods and the baseline.

CookingZoo Previously established cooking environments were limited to a single joint goal
of cooperating agents, modeling only strictly cooperative tasks, whereas our environment
allows each agent to have separate recipes. Our environment supports the latest versions of
the gymnasium? and pettingzoo® libraries, enabling easy usage of common RL frameworks.

1 https://github.com/DavidRother/cooking_zoo
B https://gymnasium.farama.org/
3 https://pettingzoo.farama.org/

@ Springer

https://github.com/DavidRother/cooking_zoo
https://gymnasium.farama.org/
https://pettingzoo.farama.org/

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 130f28 27

We support different reward schemes with rewards for sub-goals or only for complete dishes,
as well as a configurable time penalty.

Kitchens in our environment consist of movable components and static stations (such as
counters, knife stations, and dish racks). Agents can move in all four directions or stand still
and all agents move simultaneously. Moving against a counter or tool picks up, puts down,
or uses an object or tool. An episode is concluded once all agents have delivered their recipe
or after a defined amount of time steps have elapsed. Positive rewards are given either only
for completing recipes or for each correct step within a recipe (such as cutting the correct
ingredient). In this work, we used the latter scheme. In addition, each time step/action comes
with a small negative reward. Finally, we penalize actions that revoke recipe progress (i.e.,
placing a wrong ingredient on a plate along with the correct ingredients). The observation
space is represented by a tensor that consists of stacked layers containing information about
each object type, where the layers have the dimensions of the grid.

Figure 4 depicts the cooking setup used in our experiments and two possible recipes.
The environment is divided into two separate spaces to focus on interactions through active
actions (placing an ingredient) and avoid other influences such as collision. One space is
for the focal agent that is separately trained according to the corresponding training regime,
and the other is on the right for the other agents that are task-specific trained PPO agents.
A specification of the hyperparameters and network used during training can be found in
Table 1. We sample during training of the task policies from all valid starting positions,
placing any ingredient anywhere reachable for that agent if it is needed for its recipe. The

()

/.

NCISIE

fge-

e
N

NCISIE
m

Fig.4 The cooking environment used in the experiments. CookingZoo is a sparse reward environment with
distinct goals in the form of recipes. Recipes require a combination of ingredients, which might have to
be processed using tools. Two examples are shown in the lower part of the figure. The placement of tools,
ingredients, and layout are freely configurable to create diverse scenarios. Two example states are shown with
separate workspaces for two agents. While the human (right) picks up bread, the robot (left) moves the carrot
to a space accessible by the human

@ Springer

27 Page 140f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

Table 1 Customized hyperparameters for proximal policy optimization

Hyperparameter Description Standard Value
y Discount factor 0.99

X GAE (Generalized Advantage Estimation) parameter 0.95

€ Clipping parameter 0.2

K Number of epochs per PPO update 10

T Number of steps per environment rollout 2048

N Number of actors (parallel environments) 1

o Learning rate 3x 1074
cl Value function loss coefficient 0.25
Entropy start Initial entropy coefficient 0.1
Entropy end Final entropy coefficient 0.001
Annealing steps Entropy coefficient annealing steps 4000
Batch size Size of batch sampled from buffer 100
Buffer size Size of experience buffer 4000
Gradient clipping Maximum gradient norm 0.3
Weight decay Use of L2 regularization 0.0001

) Entropy loss coefficient 0.01

design of the counter and tools remains fixed. For training interaction policies and evaluation,
we move one ingredient the agent on the right side needs to the left side, making it dependent.
On the left side, there are three possible recipes to be completed, while on the right side,
there are four recipes to be completed, since there are more agents on that side during our
experiments. The structure of the recipes is depicted in Fig. 4. An agent has to prepare two
different ingredients using the cupboard, place them in any order on a plate, which he has
to get from the dish rack, and then put those on a star-marked square. We train one policy
for each of the 7 recipes available in our framework’s environment. Subsequently, we train a
goal inference (GI) model to recognize the recipe other agents are cooking. At last, we train
the interaction policies for the recipes. The training plots of the policies Fig. 5. To evaluate
our system we look at scenarios with two, three, and four agents present. The position of the
tools is fixed, while the ingredients are randomly sampled, with the only restriction during
evaluation being that one ingredient per agent on the right side is only accessible to the left

Task Training Interaction Training
40 A 40 A
e
g 20 A 20
&
0 1 0
—20 A —20 4
T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Episodes Episodes

Fig. 5 Average reward of the task learner on the left and the interaction learner on the right during training
plotted over the number of training episodes in the cooking environment for all recipes using 10 random seeds.
The shaded area shows the standard deviation

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 150f28 27

agent and that all required ingredients of the left agent are reachable. This allows us to test
only relevant scenarios, where an interaction of the focal agent is useful and necessary, and
no symmetric reliance on others is ensured.

Particle Navigation We evaluate a target area reaching task on the particle environment as
seen in Fig. 6, as navigating in a space with multiple other agents present is one of the most
prominent tasks anyone has to solve when roaming in the real world. We explore different
combinations of target areas for our agents to reach. Compared to the original, the twist in our
environment version is that agents are additionally rewarded based on the others’ position,
such that, within an agent’s target area, there is an optimal area for the other. Starting positions
are randomly sampled within the entire area. The reward function is the distance to its goal
area summed with the others’ distance to the second area times -1 to penalize being further
away. The observation space is a tensor consisting of four layers, where each layer is a grid
over the world space and contains information about the speed or position of an agent at that
position.

We train the task and interaction policies on 35 goal areas and their corresponding inter-
action areas in separate training processes. We rasterize the environment to have a sufficient
number of tasks available in a single environment to be able to evaluate how a system scales
with an increase in the number of available tasks. As in the cooking environment, we trained
a goal inference model that predicts a distribution over the expected goal area. We conduct
experiments on 5 scenarios with four other agents present and compare the results of our
framework with and without entropy weighting with a joint learning system, which is learned
on the final tasks with four other present agents.

Level-Based Foraging In the LBF environment [69], agents and apples are placed on an
8x8 grid as shown on the right in Fig. 6. This environment is a cooperative environment as
all agents have the same goal. This environment allows us to compare the performance in
a previously established domain. Apples have levels 1, 2, or 3. The main objective for the
agents is to gather all the objects on the grid. Agents can move in any of the primary four
directions, remain stationary, or collect objects that are next to them. To successfully collect
an object, the combined levels of the agents trying to collect it must be at least equal to

Fig.6 The particle (left) and level-based foraging (right) environments

@ Springer

27 Page 16 0of 28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

the object’s level. When an agent gathers an object, it earns a reward corresponding to the
object’s level. An episode concludes once all objects are collected, or after the maximum
number of time steps (400) are exceeded. We add a step penalty to the original environment
to encourage faster completion of the task. The observation space is a tensor consisting of
four layers, where each layer is a grid over the world with either the level information of an
agent or the level information of a fruit type.

We train a baseline agent to solve the task with pre-trained agents on the joint reward, as
well as an agent using our proposed system, who gets a separate reward for collecting apples
himself for the task policy and the interaction policy only gets rewards for apples the other
agent collects. We also compare our method in the cooperative to the state-of-the-art baseline
GPL [36].

4.1 Evaluation of coexistence environments

To answer our research questions we first show the performance in coexistence environments.
We compare our proposed entropy-based blending method to a baseline joint learning model
and the maximum performance of a single-agent learner. An episode for an agent counts as
completed once its recipe has been finished or the target location has been reached. The joint
reward learner explicitly optimizes for the combined reward of the team and shows potential
gaps in either one’s own completion rate or those of others.

The experiments were conducted using ten different random seeds, with each seed sam-
pling 100 environment setups for three different task combinations each. The primary metric
for evaluation was the completion rate.

We show in Fig. 7 that the entropy-based blending method for both individual agents
and the team reward outperformed the joint learning method in the cooking environment.
Notably, the joint learning method demonstrated an inability to learn effective coexistence
strategies, performing much worse than the entropy-based blending method.

In the particle environment, similar trends can be observed. The entropy-based method
surpassed the joint learning model, suggesting its effectiveness scales with an increased
number of agents. While performing better than in the cooking environment, the joint learning
method did not match the entropy-based blending method’s performance. The entropy-based
method and the joint reward learner were able to perform their own tasks at a high rate.
In the particle environment, both approaches perform nearly the same as in a dense reward

[Team [Focal Agent [Other Agents [l Best Task

Cooking 2 Agents Particle 2 Agents
Q
‘:E
X
c
i)
Q
£
o
o
Entropy Joint Entropy Joint

Fig.7 Average completion rate over 3000 testing episodes on 10 training seeds of the entropy-based blending
approach and the joint rewardlearner in the cooking and particle environment with a single other agent present.
The red line shows the average completion rate of an agent acting only based on its task policy

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 17 0f 28 27

- Team - Focal Agent - Other Agents

Cooking 2 Agents LBF 2 Agents Particle 2 Agents
20 30
40
15
X 20
= 20
g 10
2
10
0 5
-20 0 0
Entropy Joint Perfect Gl Entropy Joint Perfect Gl Entropy Joint Perfect Gl

Fig.8 Average reward over 3000 testing episodes on 10 training seeds of the entropy-weighted blending, the
joint learning, and the perfect goal inference with entropy blending with task uncertainty

environment. In the cooking environment, the entropy-based method outperforms the joint
reward learner, which we found to be significant when using a two-sample t-test (p = 0.0)
for the team performance results. The performance of both approaches is close to an ego
agent, indicated by the red line in both plots, showing that we do not have to sacrifice to
achieve our goals in order to coexist. The results are within expectation, except for the
joint reward learner not being able to learn a meaningful joint policy that helps the other
agent. The joint reward agent does not discover the optimal joint solution but only finds
suboptimal local solutions, which benefit either himself or others, highlighting the difficulty
of the exploration problem with off-the-shelf RL methods. This highlights the complexity of
the credit assignment problem [70-73], when other actors cause a reward signal and when
the reward of a good interaction is delayed, as in the sparse reward cooking environment.

4.2 Evaluation with task uncertainty

In the next evaluation, we tested whether our framework can effectively handle the uncertainty
of which tasks others are doing. We compared our model’s performance with and without
perfect goal prediction and the joint learning strategy, which has access to the other agent’s
tasks. The comparisons were made in the cooking and particle navigation environment, as
shown in Fig. 8. The accuracy of our goal inference in the cooking environment is shown in
Fig. 9. At the start of the episode, when little information is available about the other agent,

Goal Inference Accuracy over Episode Time

-
o

’_\/'W

o
o

Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Episode Time

Fig. 9 Goal inference accuracy over episode time in the cooking environment evaluated on 3000 testing
episodes on 10 training seeds using one agent to interact with. The episode times are normalized between 0
and 1 to account for episodes of different lengths. The shaded area is the standard deviation from the mean

@ Springer

27 Page 180f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

accuracy is lowest and then increases over time until about 60% of the episode time. This
shows that meaningful interaction is only possible after some time, and opportunities to have
a positive impact, especially at the start of an episode, might be missed. The decrease in the
later half of the episode in accuracy can be attributed to the other or focal agent not being
able to finish the episode and something unexpected happening, hindering task inference.
We use the same setup for the first results but use reward as a metric to highlight differences
in total performance.

In the cooking scenario, our framework with the entropy-based combination performed
very well, even when compared to the version with perfect goal prediction, with only slight
differences in the achieved reward. As observed before, the joint learning model did not
perform as well, failing to learn effective ways for the agents to interact and collaborate
while completing tasks. In the particle environment, the differences between all the models
were minor, with the joint learning and perfect prediction module showing only a small 0.08%
improvement over our framework. This suggests that having a perfect prediction or complete
information in these environments does not significantly impact the overall performance.
The only noticeable difference was found in the cooking environment, where a t-test showed
that the difference between the perfect goal prediction and our entropy-based model was
significant(p = 0.02).

Overall, the results confirm that our framework is capable of handling task uncertainty
effectively. The improvements that a perfect goal inference yields in performance are minor,
underlining the stability of our approach. We also see that a joint reward learner, even with
complete information, does not always lead to better outcomes, especially in complex tasks,
where good interactions earn delayed rewards.

4.3 Scaling to multiple agents

This section examines the scalability of the entropy-based blending approach when the num-
ber of agents increases. We extended our evaluation to include setups with four agents in
the cooking environment and five in both the particle navigation and LBF environments.
In the LBF environment, we additionally compared against a state-of-the-art method for
cooperative environments graph policy learning (GPL) [36]. Results are presented in Fig. 10.

In the coexistence tasks represented by the cooking and particle environments, our method
demonstrated an ability to outperform the joint learning approach, reinforcing the scalabil-

B team [FocalAgent [Other Agents

Cooking 4 Agents Particle 5 Agents LBF 5 Agents
20
40 -15.0
° 15
= 20
-17.
% 5
® o0 -20.0 10
-20 . -22.5 . 5 .
Entropy Joint Entropy Joint Entropy Joint GPL

Fig. 10 Average reward over 3000 testing episodes on 10 training seeds of the entropy blending, the joint
learning, and the perfect goal inference approach reached during evaluation in the cooking, particle, and
level-based foraging environment with 4, 5 and 5 agents respectively

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 190f28 27

ity of our entropy-based blending method when handling multiple agents. The observed
effectiveness is attributed to our system’s dynamic adaptation to the increased interaction
complexity that more agents introduce.

Contrastingly, in the cooperative LBF environment, our approach showed a lower per-
formance compared to GPL and the joint reward learner, which we found to be significant
(p = 0.0). The decrement in efficiency can be attributed to the higher entropy levels within
the agents’ policy distributions in our framework, as seen in Fig. 3. The increased entropy
caused slower execution times during the task execution phase, subsequently affecting the
overall reward.

The inherent increase in entropy is a trade-off for the enhanced exploration and robustness
against uncertainty in agent behaviors. While this trait is advantageous in scenarios requir-
ing diverse solution strategies, it becomes a limitation in environments where the speed of
execution is directly correlated to the reward, such as the LBF setup.

The joint learning approach fared well in the LBF environment, where the agent’s individ-
ual success naturally aligns with the team’s performance. In such contexts, the direct coupling
of individual rewards to collective success proves beneficial, as evidenced by the superior
results of the joint reward learner when paired with GPL.

The results confirm that our entropy-based blending framework can effectively scale to a
larger number of agents in multi-agent systems. Even though there is a performance trade-off
in cooperative environments where execution speed is crucial, our system maintains compe-
tence in solving the given tasks. These findings suggest that our framework, with its ability
to balance exploration and exploitation, holds promise for diverse multi-agent applications,
especially in complex coexistence scenarios. Future work may explore optimizing the entropy
levels to enhance execution speed without compromising the quality of exploration.

4.4 Effects of entropy-based weighting

We establish whether an entropy-based weighting approach for combining interaction and
task policies in multi-agent environments has empirical benefits over an equal weighting
scheme. Again, we tested the entropy-based blending across the three environments: cooking,
particle navigation, and LBF. The findings, illustrated in Fig. 11, show the results of our
entropy-based method in comparison to the equal-weighting baseline.

I Team [Focal Agent [Other Agents

Cooking 2 Agents Particle 2 Agents LBF 2 Agents
40 15
o -20
S 20 10
=
i 5
0 -30
-20 , ; 0 _
Entropy Equal Weight Entropy Equal Weight Entropy Equal Weight

Fig. 11 Average reward over 3000 testing episodes on 10 training seeds of the entropy-weighted and equal-
weight blending in the cooking, particle, and level-based foraging (LBF) environments

@ Springer

27 Page 20 o0f 28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

The cooking and particle navigation environments show a performance difference between
the entropy-based and equal weighting approaches. Empirically, the entropy-based method
accomplishes its task objectives with a higher reward and demonstrates, in addition, more
efficient interaction with other agents. The faster execution times allow the agent additional
time to assist others, further compounding the advantage of the entropy-based blending.
Conversely, the equal weighting method sometimes encounters situations where interaction
and task policies command the agent to go in different directions, leading to indecision or
suboptimal actions.

In contrast, within the purely cooperative LBF environment, our analysis indicates no sta-
tistically significant performance difference between the entropy-based and equal weighting
schemes. This outcome aligns with our expectations, as the LBF’s cooperative nature renders
the policy alignment less impactful on the overall performance. A possible reason is that the
challenge within the LBF environment lies in the collective discovery of an effective strategy
rather than the reward structure. The reward structure causes the optimal strategy for a single
agent to be closely related to the optimal strategy of an agent. This is in strong contrast with
our coexistence environments, where the discovery of strongly coordinated behavior is not
necessary but the reward structure inherent to the problem makes joint learning hard.

5 Conclusion & future work

This paper introduced a formulation and methodology to systematically learn a framework
of task and interaction policies separately from each other and to combine them under task
uncertainty using an entropy-based blending. We showed that we can learn these policies
and a goal inference model for task uncertainty. The interaction policies worked with more
than one other agent and increased the group’s overall performance in multiple environments
across various tasks. Our entropy-based policy blending shows that our system keeps the
regret drastically lower than a simple policy averaging approach. Despite never seeing the
test distribution of tasks with specific other agents, our framework achieved good results
in all tested scenarios even with multiple interaction partners. We demonstrated the extrap-
olation ability by recombining policies to new task combinations, allowing our system to
scale much more favorably than a joint training approach while keeping and even exceeding
performance. Experiments demonstrated an ability to scale to a complex, sparse environment
with multiple agents. Our goal inference model performed reasonably and supported finding
good interaction policies with increased accuracy over time. Our comparison to established
methods using joint learning and GPL in a cooperative environment highlights that we can
learn cooperative behavior and that the difficulties one encounters in coexistence challenges
lie in the reward structure of the presented tasks. Our work is limited to discrete action spaces
because the computation of the entropy factor requires a bounded range. Additionally, our
method is constrained to environments where tasks can be done independently or when coor-
dination with others does not exceed one additional player, since we trained with only one
partner in our experiments. This limitation could be worked on in future work by incorpo-
rating policies that know how to interact with a group in environments where coordinated
actions of groups larger than two agents are crucial. Another possible extension of this work
could extend the approach to account for different types of co-existing agents, particularly
human players, to establish robustness.

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page210f28 27

Appendix A: Proof of Lemma 1

Lemmal Let Qf and Q3 be the soft Q-functions corresponding to the optimal policies for
reward functions ry and ry, respectively. Define Oy =S wQi + (1 — w)Q3, where w is a
weight parameter. Then, the optimal soft Q-function QY. for the combined reward function
re 2 wry 4+ (1 — w)rs satisfies the following inequalities for all s € S and a € A:

Oy (s,a) > Q¢(s,a) = Oy (s,a) — C*(s, a),
where C* is the fixed point of

C(s,a) < yEy~psis.a [Dw(ﬂf(-IS’)llﬂik(-IS’)) + mggC(S’, a’)} ;
a

and Dy, is the Rényi divergence of order w € [0, 1].

Proof We will prove Lemma 1 by induction on the number of Bellman updates and by using
properties of soft Q-functions. The idea is to show that the soft Q-function for the combined
reward rc can be bounded by the weighted sum of the individual Q-functions Q7 and Q%,
with an error term that depends on the divergence between the policies 7{ and ;.
Step 1: Base Case k =0

For the base case (no Bellman updates), we start with Qg)) (s,a) = QOy(s,a) =
wQ7(s,a) + (1 —w)Q3(s, a). This holds trivially by definition of Qy-.

Thus, at k = 0,

0x(s,a) = 0L (s,).

Step 2: Inductive Hypothesis
Assume that after £k Bellman updates, the following inequality holds:

Oy (s.a) = QX (s,a) = Ox-(s.a) — CV(s, a),

where C® is the cumulative regret up to step k.
Step 3: Bellman Update and Inductive Step

We apply the soft Bellman update at step k + 1. The soft Q-function for the combined
reward rc after one more Bellman update is:

08V (s,a) = re(s.a) + YEgmpisis.a) | log) exp(Q¢ (s, a')

L a’ _
For the weighted sum of soft Q-functions QZ’ after a Bellman update, we have:

Q%H)(s, a) =ry(s,a) + yEy~pis.a) 10g2exp(Q%)(S',)
a/

where ry~ = wry + (1 — w)r. Since the soft Bellman update is a contraction, we know that

the updated soft Q-function Qg(H) (s, a) is bounded by:

0§ s a) = 065, @),
Thus, we have the upper bound:
Oy (s,a) > Q¢ (s, a).

Step 4: Lower Bound with Divergence Term

@ Springer

27 Page22o0f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

To derive the lower bound, we look at the gap between the weighted sum Q%H) and

the optimal Q-function Qg“H). This gap is due to the divergence between the individual
policies 7r{" and 7} The regret from using Qy- instead of the optimal Q. can be bounded
by the expected divergence between the two policies 7{ and ;. Specifically, the gap is
proportional to the Rényi divergence Dy, (r{||7), which measures the difference between
the two policies. Thus, the lower bound can be written as:

Q¢ (s,a) > Oy (s,a) — C*(s, a),

where C*(s, a) is the fixed point of:
C(s,a) < yEs’Np(s’\S,a) I:Dw(nr('|sl)||ﬂ;('|s/)) + n}é‘g C(S/s a/)j| .
a

Since we can switch the order of the probability distributions 7| and 7} as part of the
calculations, and the weight @ controls their contribution to the combined policy, we always
choose the order where w is the lower value. Specifically, we calculate the Rényi divergence
Dy, (7r{||75) using the smaller weight, which ensures that the contribution of the divergence
remains bounded.

Given that w is restricted to the range [0, 1] and the maximum value for the smaller @
occurs at 0.5, we can further guarantee that the Rényi divergence, which is a non-decreasing
function of w, will bound the regret between the policies within the interval [0, 0.5]. This
is because, as w approaches 0.5, the divergence reaches its highest value, and beyond this
point, the contribution of one policy over the other diminishes.

Thus, by always selecting the smaller w, we limit the regret to this bounded range, ensuring
that the blending of the two policies remains stable. This property of the Rényi divergence
provides a safeguard against excessive regret as the policies are combined, keeping the
performance loss within manageable bounds.

Appendix B: Proof of Lemma 2

The expected Jensen-Shannon distance to a fixed policy 7; for a policy . drawn by a Dirichlet
process DP with a non-informative prior is proportional to the negative entropy of the policy
7;. 7, is the task policy and m, is the compound policy.

Er ~Dir(1,1,...,1y ISD (| |7me)] o< —H(7ry).

Following we prove lemma 2. We consider the A”~! simplex for categorical distributions,
which represents all possible probability distributions over n outcomes. We aim to show that
the expected Euclidean distance from any point on the simplex to all other points is minimized
at the centroid of the simplex. For simplicity, we choose the Euclidian distance and note that
this proof directly applies to all geometric distance measures (such as the JSD).

The probability simplex A"~ ! is defined as

n
AL — (pl,..,,pn)eR":Zpi:L pi > 0Vi¢.

i=1

@ Springer

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page230f28 27

The Euclidean distance between two points x and y on the simplex is given by

n

D i =y

i=1

d(x,y) =

The centroid c of the simplex is the point where each coordinate is equal, representing the
uniform distribution

The expected squared distance from a point p to a random point X uniformly distributed
over A" 1 is

Eld*(p, X)1 = Y El(pi — X0)*1 = Y _(p} — 2pi E[Xi] + E[X7),
i=1 i

where E[X;] = % given the uniform distribution of X over A"~!. By substituting p = ¢
into the expected squared distance equation, we find

n
Eld*(e,)] =Y (niz -2+ E[x,?]) ,
i=1

which simplifies to a minimal value, showing that the centroid minimizes the expected squared
distance to all points on the simplex.

Now that we have established that the distribution that minimizes the expected JSD on a
probability simplex given a Dirichlet distribution with all o; = 1, we only need to show that
the JSD of a distribution a and the uniform distribution is proportional to the entropy of a.

Proof Assume a and b are two categorical distributions over the same finite set, S, with
¢ as the uniform distribution over § representing the maximum entropy distribution and
M = %(p + g). We prove that if H(a) > H(b), then JSD(al|c) < JSD(b||c). The mixed
distribution M when comparing to the uniform distribution c is

1

1 1
Mizi pit).

The KL divergence Dk (p||M) simplifies to
Dk (plIM) = Zpllog— > pilo gl(
l

ieS ieS

Given ¢; = %, we have

+ n).

And similarly for ¢ to M

1
Dir(cllM) =} —log

ieS

;‘:_

Thus, JSD for p and ¢ becomes

1 1
ISD(pllc) = (Zpl T—I—Zflog 11))

ieS 2 +n) iesn Q(Pi‘f‘g

@ Springer

27 Page240f28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

Both components involve expressions dependent on the values of p; relative to % As p

becomes more uniform (i.e., p; approaches % and hence its entropy H (p) increases), both
terms in the JSD expression decrease because the partial second derivates of p; increases.
This shows that given the JSD function

1
BMMM—* XhAg oy 2) —t
ieS Di n) zeS (’+)
the overall second derivative is
1
ISD"(pi) = E(f//(l’i) +¢"(pi)).

where

1 1
%»—— :
/ npi(pi+ 1) @wbz

1

g (pi) = L
) = .
2 (pi+ %)2

The second derivative of JSD increases as p; diverges from %, indicating increased sen-
sitivity and variability in the divergence as probabilities move away from uniformity. Thus
we conclude that if H(a) > H(b), then a is closer to uniform than b, meaning the terms
involving a in the JSD expression are smaller than those involving b as demonstrated above.
Therefore, JISD(a||c) < JSD(b||c). This result confirms the principle that higher entropy in
a distribution leads to a smaller JSD to the uniform distribution, indicating closer similarity.

Author Contributions David Rother and Thomas Weisswange prepared the draft of the manuscript; All authors
contributed to the conception of this work. David Rother, Thomas Weisswange, Fabian Kalter, and Franziska
Herbert contributed to the architectural design. David Rother built and test the framework; David Rother,
Thomas Weisswange, Dorothea Koert, Joni Pajarinen, and Jan Peters reviewed the Manuscript. The work was
supervised by Thomas Weisswange and Jan Peters.

Funding Open Access funding enabled and organized by Projekt DEAL. Joni Pajarinen acknowledges funding
by the Research Council of Finland (345521, 353198). Dorothea Koert was funded by the German Federal
Ministry of Education and Research (project IKIDA 011S20045).This research is supported by the Honda
Research Institute Europe.

Data Availability Reinforcement Learning Environments, which support the findings of this paper are made
available under https://github.com/DavidRother/cooking_zoo ; https://github.com/DavidRother/Ib-foraging.

Declarations

Competing interests This work was supported by the Honda Research Institute Europe, Germany Dorothea
Koert was funded by German Federal Ministry of Education and Research (project IKIDA 011S20045) Joni
Pajarinen was supported by Research Council of Finland (formerly Academy of Finland) (decision 345521)
Thomas H. Weisswange is an employee of the Honda Research Institute Europe GmbH.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

https://github.com/DavidRother/cooking_zoo
https://github.com/DavidRother/lb-foraging
http://creativecommons.org/licenses/by/4.0/

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page250f28 27

References

20.

21.

22.

. Goodrich, M. A., & Schultz, A. C. (2008). Human-robot interaction: A survey. Foundations and Trends

in Human-Computer Interaction, 1(3), 203-275.

. Sheridan, T. B. (2016). Human-robot interaction: Status and challenges. Human Factors, 58(4), 525-532.
. Akgun, B., Cakmak, M., Yoo, J. W., & Thomaz, A. L. (2012). Trajectories and keyframes for kines-

thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual ACM/IEEE
international conference on Human-Robot Interaction (pp. 391-398).

. Du, G., Chen, M, Liu, C., Zhang, B., & Zhang, P. (2018). Online robot teaching with natural human-robot

interaction. I[EEE Transactions on Industrial Electronics, 65(12), 9571-9581.

. Carros, F., Meurer, J., Loffler, D., Unbehaun, D., Matthies, S., Koch, 1., Wieching, R., Randall, D.,

Hassenzahl, M., & Wulf, V. (2020). Exploring human-robot interaction with the elderly: Results from
a ten-week case study in a care home. In Proceedings of the 2020 CHI conference on human factors in
computing systems (pp. 1-12).

. Mast, M., Burmester, M., Graf, B., Weisshardt, F., Arbeiter, G., §panél, M., Materna, Z., Smrz, P., &

Kronreif, G. (2015). Design of the human-robot interaction for a semi-autonomous service robot to assist
elderly people. In Ambient assisted living (pp. 15-29). Springer.

. Zhu, J., Gienger, M., & Kober, J. (2022). Learning task-parameterized skills from few demonstrations.

IEEE Robotics and Automation Letters, 7(2), 4063-4070.

. Aaltonen, L., Arvola, A., Heikkil4, P., & Lammi, H. (2017). Hello Pepper, may I tickle you? Children’s

and adults’ responses to an entertainment robot at a shopping mall. In Proceedings of the companion of
the 2017 ACM/IEEE international conference on human-robot interaction (pp. 53-54).

. Boysen, N., Fedtke, S., & Schwerdfeger, S. (2021). Last-mile delivery concepts: A survey from an

operational research perspective. OR Spectrum, 43(1), 1-58.

. Gonzalez-Aguirre, J. A., Osorio-Oliveros, R., Rodriguez-Herndndez, K. L., Lizdrraga-Iturralde, J.,

Morales Menendez, R., Ramirez-Mendoza, R. A., Ramirez-Moreno, M. A., & de Jesus Lozoya-Santos,
J. (2021). Service robots: Trends and technology. Applied Sciences, 11(22), 10702.

. Bedaf, S., Gelderblom, G. J., & De Witte, L. (2015). Overview and categorization of robots supporting

independent living of elderly people: What activities do they support and how far have they developed.
Assistive Technology, 27(2), 88—100.

. Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y., & Endo, 1. (1991). Collision avoidance

among multiple mobile robots based on rules and communication. In /JROS (Vol. 91, pp. 1215-1220).

. Buehler, M. C., & Weisswange, T. H. (2020). Theory of mind based communication for human agent

cooperation. In 2020 IEEE International Conference on Human-Machine Systems (ICHMS) (pp. 1-6).
IEEE.

. Sendhoff, B., & Wersing, H. (2020). Cooperative intelligence-a humane perspective. In 2020 IEEE Inter-

national Conference on Human-Machine Systems (ICHMS) (pp. 1-6). IEEE.

. Street, C., Lacerda, B., Staniaszek, M., Miihlig, M., & Hawes, N. (2022). Context-aware modelling for

multi-robot systems under uncertainty. In 20th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2022) (pp. 1228-1236). International Foundation for Autonomous Agents
and Multiagent Systems.

. Grosz, B. J., & Kraus, S. (1999). The evolution of SharedPlans. In Foundations of rational agency (pp.

227-262). Springer.

. Mirsky, R., Carlucho, 1., Rahman, A., Fosong, E., Macke, W., Sridharan, M., Stone, P., & Albrecht, S.

V. (2022). A survey of Ad Hoc teamwork research. In European Conference on Multi-Agent Systems
(EUMAS) (pp. 275-293). Springer International Publishing.

. Rother, D., Weisswange, T., & Peters, J. (2023). Disentangling interaction using maximum entropy rein-

forcement learning in multi-agent systems. 26th European Conference on Artificial Intelligence (ECAI
2023).

. Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings.

Journal of Artificial Intelligence Research, 24, 49-79.

Doshi, P., Qu, X., Goodie, A., & Young, D. (2010). Modeling recursive reasoning by humans using empir-
ically informed interactive POMDPs. In Proceedings of the 9th international conference on autonomous
agents and multiagent systems: volume 1-volume I (pp. 1223-1230).

Hoang, T. N., & Low, K. H. (2013). Interactive POMDP Lite: Towards practical planning to predict and
exploit intentions for interacting with self-interested agents. In Proceedings of the 23rd international joint
conference on Artificial Intelligence (IJCAI 2013 (pp. 2298-2305).

Oroojlooy, A., & Hajinezhad, D. (2023). A review of cooperative multi-agent deep reinforcement learning.
Applied Intelligence, 53(11), 13677-13722.

@ Springer

27

Page 26 of 28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Christianos, F., Papoudakis, G., & Albrecht, S. V. (2023). Pareto actor-critic for equilibrium selection in
multi-agent reinforcement learning. Transactions on Machine Learning Research.

Yang, Y., & Wang, J. (2020). An overview of multi-agent reinforcement learning from game theoretical
perspective. arXiv:2011.00583

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., & Whiteson, S. (2018). Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In International
conference on machine learning (pp. 4295-4304). PMLR.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., Lanctot, M., Son-
nerat, N., Leibo, J. Z., Tuyls, K., & Graepel, T. (2018). Value-decomposition networks for cooperative
multi-agent learning. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS ’18) (pp. 2085-2087).

Zhang, T., Li, Y., Wang, C., Xie, G., & Lu, Z. (2021). Fop: Factorizing optimal joint policy of maximum-
entropy multi-agent reinforcement learning. In International conference on machine learning (pp. 12491—
12500). PMLR.

Yang, J., Nakhaei, A., Isele, D., Fujimura, K., & Zha, H. (2019). CM3: Cooperative multi-goal multi-stage
multi-agent reinforcement learning. In International conference on learning representations.
Omidshafiei, S., Pazis, J., Amato, C., How, J. P., & Vian, J. (2017). Deep decentralized multi-task multi-
agent reinforcement learning under partial observability. In International conference on machine learning
(pp- 2681-2690). PMLR.

Albrecht, S. V., & Stone, P. (2017). Reasoning about hypothetical agent behaviours and their parameters.
In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’17) (pp.
547—-555).

Barrett, S., Rosenfeld, A., Kraus, S., & Stone, P. (2017). Making friends on the fly: Cooperating with new
teammates. Artificial Intelligence, 242, 132-171.

Barrett, S., Stone, P., Kraus, S., & Rosenfeld, A. (2012). Learning teammate models for ad hoc teamwork.
In AAMAS Adaptive Learning Agents (ALA) Workshop (pp. 57-63). Citeseer.

Barrett, S., Stone, P., Kraus, S., & Rosenfeld, A. (2013). Teamwork with limited knowledge of teammates.
In Proceedings of the AAAI conference on artificial intelligence (Vol. 27, pp. 102-108).

Melo, F. S., & Sardinha, A. (2016). Ad hoc teamwork by learning teammates’ task. Autonomous Agents
and Multi-Agent Systems, 30(2), 175-219.

Eck, A., Soh, L. K., & Doshi, P. (2023). Decision making in open agent systems. Al Magazine, 44(4),
508-523.

Rahman, M. A., Hopner, N., Christianos, F., & Albrecht, S. V. (2021). Towards open ad hoc teamwork
using graph-based policy learning. In International conference on machine learning (pp. 8776-8786).
PMLR.

Wilmers, G. (2015). A foundational approach to generalising the maximum entropy inference process to
the multi-agent context. Entropy, 17, 594—-645. https://doi.org/10.3390/e17020594

Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement learning with deep energy-based
policies. In International conference on machine learning (pp. 1352-1361). PMLR.

Wang, Z., Zhang, Y., Yin, C., & Huang, Z. (2021). Multi-agent deep reinforcement learning based on
maximum entropy. In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC) (Vol. 4, pp. 1402-1406). IEEE.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., & Levine, S. (2018). Composable deep rein-
forcement learning for robotic manipulation. In 2018 IEEE international conference on robotics and
automation (ICRA) (pp. 6244-6251). IEEE.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Com-
putation, 14(8), 1771-1800.

Le, A. T., Hansel, K., Peters, J., & Chalvatzaki, G. (2022). Hierarchical policy blending as optimal
transport. In 5th annual learning for dynamics and control conference (pp. 211:797-211:812). PMLR.
Hansel, K., Urain, J., Peters, J., & Chalvatzaki, G. (2023). Hierarchical policy blending as inference for
reactive robot control. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp.
10181-10188). IEEE.

Tange, Y., Kiryu, S., & Matsui, T. (2020). Mild action blending policy on deep reinforcement learning
with discretized actions for process control. In 2020 59th annual conference of the Society of Instrument
and Control Engineers of Japan (SICE) (pp. 587-592). IEEE.

Singh, S., & Heard, J. (2023). Probabilistic policy blending for shared autonomy using deep reinforcement
learning. In 2023 32nd IEEE International conference on robot and human interactive communication
(RO-MAN) (pp. 1537-1544). IEEE.

Dragan, A.D., & Srinivasa, S. S. (2013). A policy-blending formalism for shared control. The International
Journal of Robotics Research, 32(7), 790-805.

@ Springer

http://arxiv.org/abs/2011.00583
https://doi.org/10.3390/e17020594

Autonomous Agents and Multi-Agent Systems (2025) 39:27 Page 27 0of 28 27

47.

48.

49.

50.

SI.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Hiatt, L. M., Harrison, A. M., & Trafton, J. G. (2011). Accommodating human variability in human-robot
teams through theory of mind. In Twenty-second international joint conference on artificial intelligence
(pp. 2066-2071).

Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in
Cognitive Sciences, 2(12), 493-501.

Nguyen, T., & Gonzalez, C. (2021). Theory of mind from observation in cognitive models and humans.
Topics in Cognitive Science.

Gray, J., Breazeal, C., Berlin, M., Brooks, A., & Lieberman, J. (2005). Action parsing and goal inference
using self as simulator. In ROMAN 2005. IEEE international workshop on robot and human interactive
communication, 2005 (pp. 202-209). IEEE.

Breazeal, C., Gray, J., & Berlin, M. (2009). An embodied cognition approach to mindreading skills for
socially intelligent robots. The International Journal of Robotics Research, 28(5), 656-680.

Trafton, J. G., Cassimatis, N. L., Bugajska, M. D., Brock, D. P., Mintz, F. E., & Schultz, A. C. (2005).
Enabling effective human-robot interaction using perspective-taking in robots. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(4), 460-470.

Berlin, M., Gray, J., Thomaz, A. L., Breazeal, C. (2006). Perspective taking: An organizing principle for
learning in human-robot interaction. In Association for the advancement of artificial intelligence (Vol. 2,
pp. 1444-1450).

Talamadupula, K., Briggs, G., Chakraborti, T., Scheutz, M., & Kambhampati, S. (2014). Coordination
in human-robot teams using mental modeling and plan recognition. In 2014 IEEE/RSJ international
conference on intelligent robots and systems (pp. 2957-2962). IEEE.

Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning. Current Opinion in Behavioral
Sciences, 29, 105-110.

Choudhury, R., Swamy, G., Hadfield-Menell, D., & Dragan, A. D. (2019). On the utility of model learning
in hri. In 2019 14th ACM/IEEE international conference on Human-Robot Interaction (HRI) (pp. 317—
325). IEEE.

Javdani, S., Srinivasa, S. S., & Bagnell, J. A. (2015). Shared autonomy via hindsight optimization. Robotics
science and systems: online proceedings.

Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Modeling joint belief-desire
attribution. In Proceedings of the annual meeting of the cognitive science society (Vol. 33, pp. 2069—
2074).

Wu, S. A., Wang, R. E., Evans, J. A., Tenenbaum, J. B., Parkes, D. C., & Kleiman-Weiner, M. (2021). Too
many cooks: Bayesian inference for coordinating multi-agent collaboration. Topics in Cognitive Science,
13(2), 414-432.

Yuan, L., Fu, Z., Zhou, L., Yang, K., & Zhu, S. C. (2019). Emergence of theory of mind collaboration
in multiagent systems. Emergent Communication Workshop, 33rd Conference on Neural Information
Processing Systems (NeurIPS).

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. A., & Botvinick, M. (2018). Machine theory
of mind. In International conference on machine learning (pp. 4218-4227). PMLR.

Oguntola, I., Hughes, D., & Sycara, K. (2021). Deep interpretable models of theory of mind. In 2021 30th
IEEE international conference on robot & human interactive communication (RO-MAN) (pp. 657-664).
IEEE.

Zhu, H., Neubig, G., & Bisk, Y. (2021). Few-shot language coordination by modeling theory of mind. In
International conference on machine learning (pp. 12901-12911). PMLR.

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University.

Schulman, J., Chen, X., & Abbeel, P. (2017). Equivalence between policy gradients and soft q-learning.
arXiv:1704.06440

Nielsen, F. (2020). On a generalization of the Jensen-Shannon divergence and the Jensen-Shannon cen-
troid. Entropy, 22(2), 221.

Kingma, D. P, & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd international con-

ference for learning representations, San Diego.

Lowe, R., Wu, Y. L., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. Advances in Neural Information Processing Systems,
30.

Albrecht, S. V., & Ramamoorthy, S. (2013). A game-theoretic model and best-response learning method
for ad hoc coordination in multiagent systems. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (AAMAS ’13) (pp. 1155-1156).

@ Springer

http://arxiv.org/abs/1704.06440

27

Page 28 of 28 Autonomous Agents and Multi-Agent Systems (2025) 39:27

70.

71.

72.

73.

Zhou, M., Liu,Z., Sui, P, Li, Y., & Chung, Y. Y. (2020). Learning implicit credit assignment for cooperative
multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 33, 11853—
11864.

Feng, L., Xie, Y., Liu, B., & Wang, S. (2022). Multi-level credit assignment for cooperative multi-agent
reinforcement learning. Applied Sciences, 12(14), 6938.

Zhou, T., Zhang, F., Shao, K., Li, K., Huang, W., Luo, J., Wang, W., Yang, Y., Mao, H., Wang, B, Li, D.,
Liu, W, & Hao, J. (2021). Cooperative multi-agent transfer learning with level-adaptive credit assignment.
arXiv:2106.00517

Nguyen, D. T., Kumar, A., & Lau, H. C. (2018). Credit assignment for collective multiagent RL with
global rewards. Advances in Neural Information Processing Systems, 31.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/2106.00517

	Entropy based blending of policies for multi-agent coexistence
	Abstract
	1 Introduction
	2 Related work
	3 Entropy-based policy blending interaction
	3.1 Learning task policies
	3.2 Learning impact-aware interaction policies
	3.3 Learning a goal inference model
	3.4 Recombination of policies
	3.5 Training procedure

	4 Experimental evaluation
	4.1 Evaluation of coexistence environments
	4.2 Evaluation with task uncertainty
	4.3 Scaling to multiple agents
	4.4 Effects of entropy-based weighting

	5 Conclusion & future work
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	References

