DP-DocLDM: Differentially Private Document
Image Generation using Latent Diffusion Models

Saifullah Saifullah (5)1-2[0000-0003—-3098-2458] Gpefan
Agnel,B[0000700027969774285] Andreas Dengell,2[0000700027610078255]

Sheraz Ahmedl ,3[0000—0002—4239—6520]

, and

! Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH (DFKI),
Trippstadter Strafe 122, 67663 Kaiserslautern, Germany
{firstname.lastname}@dfki.de
2 Department of Computer Science, RPTU Kaiserslautern-Landau,
Erwin-Schrédinger-Strafte 52, 67663 Kaiserslautern, Germany
3 DeepReader GmbH, 67663 Kaiserlautern, Germany

Abstract. As deep learning-based, data-driven information extraction
systems become increasingly integrated into modern document process-
ing workflows, one primary concern is the risk of malicious leakage of
sensitive private data from these systems. While some recent works have
explored Differential Privacy (DP) to mitigate these privacy risks, DP-
based training is known to cause significant performance degradation
and impose several limitations on standard training procedures, making
its direct application to downstream tasks both difficult and costly. In
this work, we aim to address the above challenges within the context of
document image classification by substituting real private data with a
synthetic counterpart. In particular, we propose to use conditional la-
tent diffusion models (LDMs) in combination with differential privacy
(DP) to generate class-specific synthetic document images under strict
privacy constraints, which can then be utilized to train a downstream
classifier following standard training procedures. We investigate our ap-
proach under various pretraining setups, including unconditional, class-
conditional, and layout-conditional pretraining, in combination with mul-
tiple private training strategies such as class-conditional and per-label
private fine-tuning with DPDM and DP-Promise algorithms. Addition-
ally, we evaluate it on two well-known document benchmark datasets,
RVL-CDIP and Tobacco3482, and show that it can generate useful and
realistic document samples across various document types and privacy
levels (¢ € {1,5,10}). Lastly, we show that our approach achieves sub-
stantial performance improvements in downstream evaluations on small-
scale datasets, compared to the direct application of DP-Adam. To the
best of the authors’ knowledge, this is the first work to explore differ-
entially private document generation via latent diffusion for document
analysis. The source code for this work has been made publicly available
at: https://github.com/saifullah3396 /dpdocldm.git
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1 Introduction

Modern breakthroughs in deep learning (DL) [26,11,14] have revolutionized the
automated processing of business documents, leading to significant progress
across a variety of document analysis tasks, such as document image classifi-
cation [2,50,36,32], key information extraction [47,32,35], and document layout
analysis [53,32]. However, given the recent alarms raised about potential data
breaches [7,10,20] and privacy risks [3,31,54] surrounding DL-powered systems,
deploying such models on real-world business documents—which typically con-
tain a wealth of sensitive and confidential information—carries significant legal
and ethical risks, such as violating the GDPR [17] and the AT Act 2022.

Recent studies [7,10,20,64,8] have shown that modern deep learning models
provide little privacy for their training data, enabling malicious adversaries to ex-
tract various types of information from these models, such as the reconstruction
of training images through gradient inversion [64], the recovery of training data
statistics [20,10], or the extraction of sample membership information [54]. To
address these issues, Differential Privacy (DP) [16,15,1] has emerged as the most
prominent privacy framework, which, by definition, provides rigorous privacy
guarantees for the training data and has been applied to a wide range of appli-
cation domains [43,67,63,37|. However, training deep learning models with DP,
especially in resource-constrained environments, remains a significant challenge
due to its high computational costs [37,45], excessive hyperparameter-tuning re-
quirements [52,37], and the substantial degradation of model utility [45,5,43,51,6]
observed under private training. These issues have also been particularly high-
lighted in recent applications of DP to document analysis tasks, such as docu-
ment classification [52], document key information extraction [51] and document
visual question answering [59].

To circumvent these challenges, recent studies [24,38,13] have explored the
potential of private generative approaches, such as differentially private gener-
ative adversarial networks (DP-GANSs) [24,38] or differentially private diffusion
models (DPDMs) [13], to replace real sensitive data with private synthetic coun-
terparts that follow the same distribution as the real data. This not only en-
ables the secure generation of additional data samples in domains with limited
data availability but also makes it possible to train deep learning models for
downstream tasks using standard training procedures. However, despite signif-
icant progress in the field of document image analysis [2,50,36,32,53,32], and
considerable recent attention given to non-private synthetic document data gen-
eration [58,22,23,27], research focused on data privacy—particularly focused on
privacy through synthetic counterparts—remains relatively scarce.

To address this research gap, we investigate private synthetic data generation
for the task of document image classification, a vital component of automated
document processing workflows. In particular, we analyze the potential of us-
ing latent diffusion models (LDMs) [48] in combination with differential privacy
(DP) [16,15] to generate class-specific private synthetic document images that
can substitute real private data for downstream tasks, in this case, document
image classification. To this end, we first pretrain a class- and layout-conditioned
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latent diffusion model on a large public document image dataset, and then trans-
fer this knowledge via differentially private fine-tuning to generate documents
for the smaller private datasets. Finally, we replace the real private data with
synthetic data for downstream evaluation.

Overall, our main contributions are as follows:

— We propose DP-DocLLDM, a novel approach that combines conditional la-
tent diffusion models (LDMs) [48] with differential privacy (DP) [16,15] to
generate private synthetic document images. To the best of the authors’
knowledge, this is the first work to explore differentially private synthetic
document image generation with diffusion models.

— We present an extensive benchmarking of the proposed strategy across vari-
ous pretraining setups, including unconditional, class-conditional, and layout-
conditional pretraining, in combination with various private training strate-
gies, such as class-conditional and per-label private fine-tuning with DPDM [13]
and DP-Promise [62].

— Lastly, through a rigorous qualitative and quantitative assessment of our ap-
proach on two well-known document benchmark datasets, RVL-CDIP [25]
and Tobacco3482, we demonstrate its ability to generate useful and real-
istic document samples across various document types and privacy levels
(e € {1,5,10}). Furthermore, we show that our approach achieves signifi-
cant performance improvements in downstream evaluations on small-scale
datasets, compared to the direct application of DP-SGD [52].

2 Related Work

2.1 Differential Privacy in Document AI

Differential Privacy (DP) [16,15] and its various adaptations [1,46,19] have gained
significant attention in recent years for ensuring privacy within the field of Doc-
ument Al, encompassing both textual and visual contexts.

In the textual context, Li et al. [37] proposed optimal training hyperparam-
eters for the private fine-tuning of large language models in text classification
and generation tasks. Hoory et al. [30] investigated global DP for named-entity
recognition in medical documents and introduced a domain-specific private vo-
cabulary for training BERT-based models. Basu et al. [6] investigated global
DP for the classification of financial documents. McMahan et al. [42] proposed
large-scale distributed training of recurrent neural networks (RNNs) for textual
data under global client-level differential privacy. For a comprehensive overview
of the applications of local and global DP in textual documents, we refer the
reader to a related survey [31].

In visual contexts, privacy has been relatively underexplored and has only
recently gained attention. Saifullah et al. [52] presented a comprehensive study
benchmarking several state-of-the-art privacy-preserving methods, including dif-
ferential privacy, federated learning, and homomorphic encryption, for document
image classification. In another recent study, Saifullah et al. [51] explored the
combination of differential privacy and federated learning in a multi-modal set-
ting for the task of document key information extraction. Similarly, Tito et
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al. [59] proposed a large-scale differential privacy training setup for document
visual question answering (VQA) tasks. Most recently, Guan et al. [22] investi-
gated the applications of traditional masking approaches and the PixelDP [34]
algorithm on sensitive identity documents.

2.2 Privacy through Generative Modeling

Privacy through generative modeling has recently gained considerable traction
due to the superior generative capabilities of diffusion models [13,61,21]. While
earlier works in this area relied predominantly on generative adversarial networks
(GANSs) [60,9], their well-known training instability issues, coupled with model
utility challenges associated with DP, presented significant obstacles. In con-
trast, Differentially Private Diffusion Models (DPDMs) [13,62] have emerged as a
promising alternative, offering both stable training and improved sample quality
under private training. A number of recent works have also extended DPDMs [13]
to latent-space diffusion, achieving promising results in high-resolution image
synthesis under rigorous privacy constraints [61,21].

2.3 Diffusion Models for Synthetic Document Generation

Diffusion models (DMs) [28] have also recently gained significant popularity
for non-private document image synthesis. For instance, Tanveer et al. [58] re-
cently proposed text-based layout conditioning for generating pre-annotated syn-
thetic document images for document layout analysis. Similarly, Hamdani et
al. |23] proposed mask-based layout-conditioning for document table generation.
Guan et al. [22] proposed to incorporate latent diffusion models [48] for generat-
ing fake identity images in synthetic identity documents. In a slightly different
direction, Liu et al. [27] proposed diffusion-based layout generation for docu-
ments.

3 Preliminaries
3.1 Diffusion Models

Diffusion models [57,28] have gained significant traction in recent years due to
their excellent generative capabilities [29,12], the core working principle behind
which is to first gradually transform the real data distribution into a prior distri-
bution (typically Gaussian) through a forward diffusion process, and then gradu-
ally undo this transformation to recover the original data distribution. In particu-
lar, for any data point sampled from the real distribution o ~ ¢g(z¢), the forward
diffusion process ¢(x1,...,zr|xo) defines a fixed Markov chain {z1,...,z7} by
iteratively perturbing it with Gaussian noise € ~ N(0,):

q(xi|wi—1) = N (43 Beave—1, (1 — B)T) (1)

where 31, r is a fixed variance schedule that controls the magnitude of noise
added at each timestep and is defined such that g(xr) ~ N (0,I). A notable
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property of the forward process is that it enables sampling x; at any arbitrary
timestep t in closed form:

q(xilzo) = N (243 Vauwi—1, (1 — ap)I) (2)
= Vo + V1 —age, e~ N(0,1) (3)

where o := 1 — §; and a; = szl ag. In the reverse diffusion process, a
denoising diffusion model, py with parameters 6 learns to approximate each
backward transition step q(z—1|xt) as pg(x:—1|x:) by predicting the approximate
mean pg(x¢,t) and covariance og (x4, t) of the transition, which is then repeatedly
applied to generate new samples zg ~ pg(xo):

po(zi_1|me) = N (15 po(2e, 1), Doz, 1)) (4)

In practice, instead of predicting the mean pg(x¢,t) directly, the diffusion model
is typically trained to predict the source noise eg(z;,t) added at each timestep
with the following simplified loss objective:

Etw[l,T],GNN(O,I),xONq(xU) | |6 — €9 (xta t) | |2 (5)

whereas the mean pg(x,t) is indirectly obtained as:

po,t) = = (1 = eyl 1). )

3.2 Differential Privacy (DP)

Differential Privacy (DP) is a well-known privacy framework that formalizes the
information release from any randomized algorithm and offers strong theoretical
guarantees for data privacy. In this work, we focus on the sample-level privacy
of the training dataset under the global (e, §)-DP, formally defined as follows:

Definition 1. A randomized algorithm M : D — R with domain D and range
R is (e, d)-differentially private if for all S C R and for all datasets D, D’ € D
that differ at most in one record:

P(M(D) € S) < eP(M(D') € S) + 6

Intuitively, applying Differential Privacy (DP) to an algorithm M ensures that
its output distribution on two datasets that only differ in a single sample does
not vary significantly. Whereas, the degree of this variability is controlled by
the privacy parameters (e,d), with lower values of these parameters indicating
stronger privacy constraints.

DP-SGD/Adam For applying DP to deep neural networks, differentially pri-
vate stochastic gradient descent (DP-SGD) [1] is the primary algorithm. The
core idea behind DP-SGD [1] is to add noise to the per-sample gradients of the
model during model optimization in order to minimize its dependence on indi-
vidual samples. In particular, to satisfy the constraints of global (e, §)-DP, the
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DP-SGD [1] algorithm first clips the per-sample gradients to a fixed bound C,
and adds Gaussian noise n ~ N(0,0%2C?) to the sum of the gradients before
each gradient optimization step. Here, o is the noise multiplier that determines
the overall privacy strength with higher values resulting in stronger privacy con-
straints (lower ¢). In practice, o is chosen such that over the complete training
cycle, a required privacy budget (g, §) is spent. This is done by tracking the
privacy loss using privacy accountants [44,33].

DPDM DPDM |[13] is an extension of DP-SGD [1] that incorporates noise
multiplicity n in private optimization. Essentially, noise multiplicity involves
sampling multiple diffusion timesteps for each sample in a batch, repeated 7
times, and then averaging the per-sample gradients over these timesteps before
applying DP-SGD [1] update. This allows for significant improvements in model
performance without any additional privacy loss. The full pseudocode of the
DPDM [13] algorithm is provided in Appendix B.

DP-Promise DP-Promise [62] is another algorithm recently proposed for train-
ing diffusion models under differential privacy (DP). Since diffusion models
themselves also add noise to the input during training, which evolves into pure
noise € ~ N (0, I) as the timestep ¢t — T, the learned transitions pg(x;—1|z¢) in
the high-noise regimes lose most of the information about the original sample.
Wang et al. [62] showed that one can use this forward noise addition process to
also directly ensure differential privacy (DP) for the sample training. However,
this is only possible in high-noise regimes (¢ — T'). Overall, DP-Promise [62]
works by first training the diffusion model for a few epochs only on timesteps
t close to T and then privately training the model using the standard DP-SGD
algorithm [1]. In this work, we investigate both DP-SGD [1] and DP-Promise [62]
for private training of latent diffusion models.

4 DP-DocLDM: Differentially Private Document Image
Generation using Latent Diffusion Models

In this section, we present the details of our proposed approach, DP-DocL.LDM,
for replacing private document datasets with synthetically generated counter-
parts using differentially private latent diffusion models. As outlined in Fig. 1,
our method involves generating private document images in three steps: (A)
non-private pretraining of a class- and layout-conditioned latent diffusion model
on a large public document image dataset Dpyplic, (B) private fine-tuning of the
model on the private document dataset Dprivate, and (C) sampling from the pri-
vate model to generate a new synthetic dataset, which is then substituted for
the private dataset in downstream evaluation.

4.1 Non-private Pretraining on Public Dataset

Training a diffusion model with DP-SGD [1] on high-resolution images (sizes
> 256 x 256) is computationally expensive. Therefore, in this work, we in-
stead train a private latent diffusion model (LDM) [48] as done in previous
works [21,39]. Latent diffusion models (LDMs) [48] learn to generate new sam-
ples in the compressed latent space of a pretrained autoencoder z = D(E(x)),
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Fig.1: Overview of the proposed approach, DP-DocLDM. The input image is
first converted into a noisy latent representation using forward diffusion. Simul-
taneously, an OCR-based binary layout mask is encoded into a separate latent
image and concatenated with the noisy image. The model is then trained to
predict the noise added to the sample. We first pretrain the model on Dpypiic
(A), followed by private fine-tuning on Dpyivate (B). Finally, the privately trained
model is used to generate a synthetic counterpart for Dprivate (C).

REXHXW into a com-

which down-scales the high-resolution input images x ~
pressed latent representation z ~ RO=XF % %, where f is the down-scaling factor.
Using the latent-space representation of the data not only reduces training and
data generation costs but also facilitates the model to focus only on high-level
semantic features instead of high-frequency details in the pixel space. Following
Romback et al. [48], we pretrain a KL-reg autoencoder variant on the public
document image dataset Dppiic using a combination of adversarial and percep-
tual losses. It is worth noting that since the autoencoder is trained on the public
dataset, it does not introduce any privacy risks. Subsequently, we pretrain the
latent diffusion model on Dpyplic by minimizing the loss objective in Eq. 5 in the
latent space:

M0 By [1,7],em NV (0.1). 208 (D) ||€ — €0 (26, 1) (7)

Note that the above loss objective is for unconditional case. Apart from explor-
ing the unconditional pretraining on original public dataset (Uncond.+Unaug.),
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we explore 3 additional options: (1) pretraining on augmented dataset (Un-
cond.+Aug.), (2) pretraining with class-conditioning (Class Cond.), and (3)
pretraining with a combination of class and layout conditioning (Layout+Class
Cond.). We explore pretraining on the augmented dataset mainly to assess how
a wide discrepancy between the public data (Dpybiic) and the private dataset
Doprivate may affect model performance. We explore class-conditioning [28,29] to
assess whether prior class information can help guide the private fine-tuning
process. Finally, since class information is generally not available in public pre-
training datasets, we propose using OCR-based layout-conditioning to provide
additional information about the document during the generation process. To
this end, we first extract the text bounding-boxes from the data using the pub-
licly available Tesseract OCR library [55], and generate a binary mask image
(as shown in Fig. 1) that holds the layout information of the document. In this
work, we use line-level segmentation to generate the layout masks. With these
conditioning mechanisms, the loss objective in Eq. 5 can be updated as follows:

1IN By 1, 7),en A (0,1) 20~ (Do) 1€ — €0 (22,2, ¢, Em))|P (8)

where ¢ denotes the class embedding, which is added to the timestep embedding
t, and £(m) denotes the latent-space encoding of the input layout mask m,
which is concatenated with the noisy latent image z;. Note that we use the same
encoder, &, for both the layout mask m and the input image z.

4.2 Differentially Private Fine-tuning on Private Dataset

To generate a synthetic counterpart of the private dataset Dpripete With pri-
vacy constraints, we privately fine-tune the pretrained diffusion model directly
on Dprivate using DPDM [13] and DP-Promise [62] (with Adam optimizer). In
particular, for all 4 pretraining setups outlined in Section 4.1, we fine-tune the
model on the private dataset under 2 different setups. (1) In the first setup,
we privately fine-tune the models with class conditioning [28,48] and classifier-
free guidance [29] similar to previous works [21,39]. (2) In the second setup, we
drop the class conditioning entirely and instead fine-tune an independent pri-
vate LDM for each document class subset. There are several reasons for adopting
this approach. First, document datasets are well-known for exhibiting extremely
high intra-class variance and inter-class similarity [2,50]. This means that two
samples from entirely different document classes may be perceptually similar,
while two samples from the same document class may look completely different.
This makes it challenging for a diffusion model to correctly learn the class dis-
tributions under private training. Therefore, by using unconditional training for
each document class, we allow the model to focus solely on learning the semantic
features of the given class, rather than simultaneously learning to discriminate
between classes. Note that for both private fine-tuning setups, in cases where lay-
out conditioning is used during pretraining, we also apply layout conditioning
during private training by extracting the layouts from the private dataset.
Finally, once the models have been fine-tuned in a private manner, we gen-
erate new samples for each target document class by conditioning on the target
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classes in the first setup and by using the individual class-specific LDMs in the
second setup. Additionally, for both setups, when layout conditioning is required,
we apply layout conditioning during sampling using layouts extracted from the
training set of the private dataset.

5 Experiments and Results
5.1 Datasets

Public dataset For public pretraining of both the autoencoder and the diffu-
sion model, we utilize the large-scale public document dataset IIT-CDIP Test
Collection 1.0 [56]. The IIT-CDIP Test Collection 1.0 [56] contains a total of 11
million document images, approximately 4.5 million of which are weakly labeled
with multiple class labels per document. For pretraining the autoencoder, we use
the entire set of 11 million document images. However, for both conditional and
unconditional pretraining of the diffusion model, we filter the dataset to the 80
most frequent classes that contain at least 1,000 samples each for training. More-
over, we observed that the class distribution within the dataset is highly skewed,
with millions of documents belonging to some classes and only a few thousand
to others. To address this imbalance, we apply weighted random sampling in all
pretraining experiments.

Private datasets For private training, we evaluate our approach on two widely
used document benchmark datasets: RVL-CDIP [25] and Tobacco3482%, both of
which are frequently employed for document classification tasks [32,25,50,18].
RVL-CDIP [25] consists of 400,000 document images labeled into 16 different
document categories. It has a balanced class distribution and is split into train-
ing, validation, and testing sets with sizes of 320,000, 40,000, and 40,000 samples,
respectively. In contrast, Tobacco3482 is a relatively small-scale dataset with an
imbalanced class distribution and 10 document categories. Following previous
work [52], we split this dataset using an 80/20 ratio into training, validation,
and testing sets, with sizes of 2,504, 279, and 700 samples, respectively.

5.2 Implementation details

For all our experiments, we utilize two pretrained autoencoders, KL-F4 and
KL-F8, each with an image downscaling factor of f = 4 and f = 8, respec-
tively. To predict the noise at each timestep, we adopt a UNet-based architec-
ture proposed by Ho et al. [29], which combines standard residual blocks [26]
and attention blocks [11] with a timestep embedding to generate its output.
For the forward diffusion process, we use standard linear noise scheduler with
(B1, Br) = (107%,0.02) and T = 1000. To track the privacy loss (g, ) in private
training setups, we use the R’enyi Differential Privacy (RDP) accountant for
DPDM [13] and the Gaussian Differential Privacy (GDP) accountant for DP-
Promise [62], as originally proposed. The noise multiplier o is computed based on
the required privacy budget (¢ € {1,5,10}, § = =———) over a fixed number of

|DpTivat€ |

training epochs (see Appendix A for more details). Note that for per-label private

4 https://www.kaggle.com/datasets/patrickaudriaz /tobacco3482jpg
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training setups, the noise multiplier ¢ is computed separately for each labeled
subset. All private training experiments are conducted with a gradient clipping
threshold of C' = 0.01, a batch size of 1096, and a learning rate of 3 x 10~*. For
private training on the RVL-CDIP [25] dataset, we train the models for 50 epochs
with a noise multiplicity [13] of n € {1,4}, while for the Tobacco3482 dataset,
we train the models for 250 epochs with a noise multiplicity [13] of n = 32. For
all private fine-tuning setups, we freeze the timestep embedding and train the
rest of the model parameters (~32M). Moreover, in order to utilize classifier-free
guidance [29] in the class-conditional private setup, we replace the class labels
with the null label with a probability of 0.1 during training. For generating data
samples after private training, we use the standard DDPM sampler [28] with a
total of 200 inference steps.

5.3 Evaluation protocol

We conduct the evaluation of our approach in two stages: (1) comparative anal-
ysis of training strategies and (2) comprehensive final evaluation. In the first
stage, we evaluate our approach across the different pretraining setups described
in Section 4.1: (1) Uncond.+Unaug., (2) Uncond.+Aug., (3) Class Cond., and (4)
Layout+Class Cond., in combination with the private training setups outlined in
Section 4.2: (1) private fine-tuning with classifier-free guidance (CFG) [29], and
(2) private fine-tuning on per-label subsets of the dataset, using both DPDM [13]
and DP-Promise [62]. In this stage, we train the diffusion models on RVL-
CDIP [25] dataset with a target privacy budget of ¢ = 10 across all settings
and conduct downstream evaluation by training the ConvNeXt-B [41] model on
50K generated samples.

In the second stage, we use the best-performing approach from the first stage
to conduct an evaluation under stricter privacy budgets of ¢ € {1,5,10} and
perform downstream evaluation using three different classifiers: ResNet-50 [26],
ConvNeXt-B [41], and DiT-B [36], where the DiT-B [36] model is pretrained
in a self-supervised manner on the IIT-CDIP Test Collection 1.0 [56] dataset.
Additionally, we use a noise multiplicity [13] of n = 4 for RVL-CDIP [25] dataset
in this stage. For all downstream evaluations, we train the models using Cut-
Mix [65], Mixup [66], a dropout rate of 0.5, and use soft-cross-entropy loss for
model optimization.

5.4 Stage 1: Comparative Analysis of Training Strategies

Table 1 provides a comparison of our approach across different conditioning
and private training setups. By comparing the performance between the Un-
cond.+Unaug. and Uncond.+Aug. pretraining setups, we observe slight perfor-
mance drops on Uncond.+Aug. compared to Uncond.+Unaug. case. These per-
formance drops are expected, as private fine-tuning is tasked with generating
full documents, while the Uncond.+Aug. setup uses an augmented pretraining
dataset with randomly cropped document images. Nevertheless, this demon-
strates that even with a significantly different pretraining distribution, the model
can learn to generate complete document layouts with reasonable accuracy, es-
pecially in per-label training setups, where it can achieve a downstream accuracy
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Uncond.+Unaug. Uncond.+Aug. Class Cond. Layout+Class Cond.
KL-F8 KL-F4 KL-F8 KL-F4 KL-F8 KL-F4 KL-F8 KL-F4
Method FID Acc FID Acc FID Ace FID Acc FID Acc FID Acc FID Acc FID Acc
Pretraining 9.97 - 3.29 - 11.10 - 5.65 - 9.44 - 3.26 - 8.12 - 2.70
DPDMcrc-1.0 25.02 52.03 12.94 57.24 26.52 49.03 23.31 53.37 21.63 64.22 18.16 59.35 14.64 75.23 11.37 76.30
DPDMcre-3.0 97.84 - 211.50 - 101.90 - 139.60 - 67.91 - 12273 - 4928 - 1263 -
DPDMper-label 12.46 70.54 4.62 73.02 14.85 64.57 8.14 68.33 13.72 71.30 7.38 76.34 13.26 77.29 6.42 77.73
DP-Promisecra-1.0 18.54 54.98 7.46 48.33 23.77 51.33 36.47 51.99 17.69 59.14 35.98 36.76 17.71 76.27 6.04 77.05
DP-Promisecra-3.0 85.64 - 121.90 - 70.20 - 70.54 - 50.90 - 151.16 - 53.91 - 1530

DP-Promiseper-label 12.35 72.05 15.56 70.80 15.63 67.37 43.77 67.59 18.80 73.14 71.06 71.50 13.20 77.70 6.98 78t44
Table 1: Performance comparison of various conditioning, pretraining, and pri-
vate training setups on the RVL-CDIP [25] dataset. The FID is computed be-
tween 50K real and generated samples, and the accuracy is obtained for each
approach by training a ConvNeXt-B model on 50K generated samples. Lay-
out-+Class Cond., along with per-label private fine-tuning, shows the best down-
stream performance across all setups.

of up to 68.33% with the KL-F4 autoencoder. On the other hand, if we com-
pare the performances across different private training strategies (DPDM [13]
and DP-Promise [62]), we find that while the model achieves sufficiently good
FID scores with class-conditional private fine-tuning (DPDMcpg.1.0 and DP-
Promisecrg.1.0 cases), it struggles to effectively distinguish between different
classes, leading to suboptimal downstream performance. Moreover, we observe
that using classifier-free guidance (DPDMcrg.3.0 and DP-Promisecrg.3.0 cases)
with a guidance scale of 3.0 severely degrades the generative performance. In
contrast to class-conditional private training, training an independent model for
each class (DPDMpey-label anid DP-Promiseper-1abel cases) while maintaining the
same privacy guarantees results in significant performance improvements.

With the introduction of class conditioning during pretraining (Class Cond.
case), we observe minor performance improvements in downstream evaluation,
suggesting that the additional class information was slightly beneficial to the
model. However, even with additional class information in pretraining, the class-
conditional private fine-tuning (DPDMcrq.1.0 and DP-Promisecra.1.0) performs
poorly on downstream evaluation. In contrast, with additional layout information
introduced in both pretraining and private fine-tuning (Layout + Class Cond.
case), the model not only achieves significant performance improvements in
DPDMyer-label and DP-Promiseper-1abel Setups but also gains significant improve-
ments on the class-conditional private fine-tuning setups (DPDM¢rg.1.0 and DP-
Promisecrg.1.0). Overall, the Layout+Class Cond. pretraining setup achieved
the best downstream performance (with accuracies of 78.44% and 77.73% on
DPDMer-label and DP-Promiseper-1abel Settings, respectively), indicating the ef-
fectiveness of layout conditioning in improving the diversity of generated sam-
ples.

Note that while DP-Promisepcr-1abel Wwith Layout-+Class Cond. setup achieved
the best performance, it resulted in significantly higher FID scores for the KL-F4
autoencoder under other pretraining setups. Since DP-Promise [62] applies local
differential privacy by introducing noise into the samples, the amount of noise
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Label: memo Label: resume

(bjszS

Label: file folder

Fig. 2: Visual comparison of the synthetic RVL-CDIP [25] samples generated us-
ing KL-F4 autoencoder at € € {1,5,10}. The visual quality of samples remained
comparable between ¢ = 1 and € = 10.

added depends on the embedding size. Specifically, with an embedding size of
64 x 64 x 3 in the KL-F4 autoencoder, the noise required to achieve a given
privacy level was considerably higher than that in the KL-F8. In addition, DP-
Promise [62] required manual tuning of the noise multiplier ¢ for each scenario.
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Label: invoice Label: letter

Label: budget

ozl |

Label: budget

(b) KL-F4

Fig.3: Visual comparison of synthetic RVL-CDIP [25] samples generated using
KL-F8 and KL-F4 autoencoders at ¢ = 1. The sample quality with the KL-F4
autoencoder is significantly better across various document classes.

Therefore, for simplicity and to avoid excessive noise addition in the KL-F4
case (especially at higher privacy levels, such as ¢ = 1 in the final evaluation),
we opted to use the DPDMypey.1abel training strategy with Layout+Class Cond.
pretraining setup for all final downstream evaluations.

5.5 Stage 2: Comprehensive Final Evaluation

Qualitative Evaluation In Fig. 2 and Fig. 3 we present document samples
generated using the DPDMpe, 1aber (with Layout+Class Cond.) training strat-
egy, across varying privacy setups ¢ € {1,5,10}. From Fig. 2, we observe that
our proposed approach is capable of generating a diverse set of document layouts
across various document classes and privacy levels. Furthermore, we find that the
visual quality of samples generated with ¢ = 10 remained comparable to those
generated with ¢ = 1. In Fig. 3, we also present a visual comparison between the
samples generated using KI-F8 and KL-F4 autoencoders for a random subset of
RVL-CDIP [25] classes. As expected, the samples generated with KIL-F4 exhib-
ited much better quality and were closer to the real data distribution compared
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e=1 e=5 e=10

Dataset KL-F8 KL-F4 KL-F8 KL-F4 KL-F8 KL-F4

RVL-CDIP 15.82 6.59 12.68 4.78 11.98 4.69

Tobacco3482  45.52 40.75 28.58 19.07 26.83 16.14
Table 2: FID scores achieved using the DPDMper.iabel (with Layout+Class
Cond.) training strategy under varying levels of privacy € € {1,5,10}. The FID
is computed between 50K real and generated samples for each setup on the RVL-
CDIP dataset and 1K real and generated samples for the Tobacco3482 dataset.

On both datasets, KL-F4 leads to significantly better sample quality compared
to KL-F8.

Dataset Model VAE Baseline Acc. e=1 e=5 =10
ResNet-50/224pp.sep [52] - 90.50 . 7834 7921
ConvNeXt-B/384pp-sep [52] - 93.64 - 79.68 82.32
ResNet-50/224pp_pocLom (ours) KL-F8 90.50 7431 76.95 78.15

RVL-CDIP ConvNeXt-B/224pp-poc.om (ours) KL-F8 92.86 78.72  82.51 82.62
DiT-B/224pp-pocLbM (0urs) KL-F8 92.89 77.89 81.91 82.38
ResNet-50/224pp-pocLbM (OUrs) KL-F4 90.50 74.74 7824 73.23
ConvNeXt-B/224pp-poct.om (ours) KL-F4 92.86 77.85 81.67 78.58
DiT-B/224pp-pocLbm (0urs) KL-F4 92.89 80.21 83.18 79.54
ResNet-50/224pp-scp [52] - 82.42 - 44.44  46.29
COIIVNeXt—B/384DP_SGD [52] - 89.42 - 71.58 74.29
ResNet-50/224pp-pocLpM (Ours) KL-F8 82.42 65.86 76.85  76.00

Tobacco3482 ConvNeXt-B/224pp-pocpm (ours) KL-F8 89.42 70.50 76.00 80.43
DiT-B/224pp-pocLbMm (0urs) KL-F8 92.71 69.85 79.57 80.14
ResNet-50/224pp-pocLpM (OUrS) KL-F4 82.42 65.14 77.71  78.28
ConvNeXt-B/224pp-poctom (ours) KL-F4 89.42 72.57 80.00 82.57
DiT-B/224pp-pocLbMm (0urs) KL-F4 92.71 67.28 79.57 82.57

Table 3: Downstream evaluation results for the proposed DPDMper 1abel (With
Layout+Class Cond.) training strategy on RVL-CDIP [25] and Tobacco3482.
Our approach brings minor performance improvements on the large-scale RVL-
CDIP [25] dataset and significant improvements on the small-scale Tobacco3482
dataset.

to those generated with KL-F8. Additional qualitative results for the samples
generated on the Tobacco3482 dataset are provided in Appendix C.

5.6 Quantitative Results

In Table 2, we present the FID scores achieved using the DPDMper-1abel (With
Layout+Class Cond.) training strategy under varying levels of privacy e €
{1,5,10}. We observe that on the RVL-CDIP [25] dataset, the KL-F4 autoen-
coder demonstrated significantly better FID scores compared to the KL-F8 au-
toencoder, with only minor drops in performance when increasing the privacy
level from € = 10 to ¢ = 1. This supports the qualitative results presented in
the previous section. We observe a similar pattern for the Tobacco3482 dataset;
however, the overall FID scores were much higher for ¢ = 1 compared to € = 10.

In Table 3, we present the downstream evaluation results for the proposed
DPDMjer-laber (with Layout+Class Cond.) training strategy and compare its
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performance with previous work [52] that utilizes DP-Adam [1] to directly train
the classifiers under private settings. Examining the downstream performance
on the RVL-CDIP [25] dataset, we observe that ResNet-50 [26] with our pro-
posed approach slightly underperformed compared to direct training under DP-
Adam [1]. However, with ConvNeXt-B [41] we observed slight performance im-
provements in both e = 5 and € = 10 settings with just a 224 x 224 resolution
compared to 384 x 384 resolution used in previous work [52]. Surprisingly, while
KL-F4 resulted in better visual sample quality, it led to significantly poorer
downstream performance compared to KL-F8 on ¢ = 10. On € = 5, however,
both KL-F8 and KL-F4 led to better downstream performance compared to
DP-Adam [1]. Lastly, the DiT-B [36] model, with its self-supervised document-
specific pretraining, outperformed both ResNet-50 [26] and ConvNeXt-B [41]
across all privacy settings, achieving a reasonable downstream performance of
80.21% at ¢ = 1. Overall, with our proposed approach, we achieved slight per-
formance improvements on the RVL-CDIP [25] dataset compared to existing
approaches, with comparable performance observed across low (¢ = 10) and
high privacy regimes (¢ = 1)

The effectiveness of our proposed approach is more clearly highlighted on
the small-scale Tobacco3482 dataset, where DP-Adam [1] leads to significant
performance drops for both ResNet-50 [26] (with accuracies of 44%-46%) and
ConvNeXt-B [41] (with accuracies of 71%-74%) models. In contrast, with our
proposed approach, both models were able to achieve downstream accuracies
of 78%-82%, while also demonstrating reasonable performance under ¢ = 1.
Overall, these results suggest that our proposed method could serve as a more
viable alternative to DP-Adam [1] for private training, particularly for small-
scale document datasets.

6 Conclusion

In this work, we introduced a novel approach for private synthetic document im-
age generation and demonstrated its effectiveness (especially on small datasets)
through downstream evaluation on document classification. However, there are
some limitations in our approach that are worth discussing. Our approach re-
quires multiple steps for evaluation, making it costly to explore a broader range
of hyperparameter configurations for private training, which is often necessary
for the DP training. In this work, we used a fixed set of parameters for all our ex-
periments; however, better configurations may exist. Therefore, future research
could investigate more recent hyperparameter-free variants [40,4] of DP-Adam [1]
to eliminate the need for parameter tuning. Additionally, for generating synthetic
datasets, we used the standard DDPM sampler [28] in this work. In the future,
it will be worthwhile to explore more complex sampling approaches, such as
CADS [49], to improve sample diversity and reduce overfitting in downstream
training. Lastly, in this work, we only explored the potential of private docu-
ment generation for the document classification task. In the future, it will be
worthwhile to develop similar approaches for introducing privacy in more com-
plex document analysis tasks, such as layout analysis, handwriting recognition,
and table extraction.
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A Privacy Accounting

To calculate the overall privacy loss (¢) over a training cycle, we use the Rényi
DP (RDP) [44] privacy accountant for DPDM [13] and Gaussian DP (GDP) [33]
for DP-Promise [62]. Both RDP and GDP are improvements over the moments
accountant proposed by Abadi et al. [1], and can be used to track the overall
release of information from a differentially private random algorithm. Given
the data sampling rate ¢, a given noise multiplier ¢ and target privacy budget
(e,9), privacy accountants provide an estimate of the overall privacy loss over a
fixed number of training steps. Inversely, standard numerical optimization can be
applied to these accountants to estimate the required value of the noise multiplier
o in order to achieve a target privacy loss (g, ) over the training cycle. In this
work, we perform this numerical optimization for all DPDM [13] experiments to
compute the required noise multiplier for a given epsilon ¢ € {1, 5, 10}.

B Private Training Algorithm

For completeness, we provide the pseudo-code for the DPDM [13] training al-
gorithm, which is used in this work for private fine-tuning, in Algorithm 1.
DPDM [13] is a variant of DP-Adam [1] that uses noise multiplicity to improve
the training of diffusion models [13]. Note that we use the same DPDM [13]
variant in the private training step of DP-Promise [62].

Algorithm 1 DPDM Training (DP-Adam with noise multiplicity K)

Input: Private data set d = {z; }évzl, subsampling rate B/N, DP noise scale opp,
clipping constant C, sampling function Poisson Sample, denoiser Dy with initial
parameters 0, noise distribution p(o), learning rate 7, total steps T', noise multiplicity
K, Adam optimizer
Output: Trained parameters 6
fort=1to T do
B ~ Poisson Sample(N, B/N)
for i € B do
{(oi,mir) ooy ~ P(0)N(0,0%)
Ii = £ K o) Do(zitnin, oir)—il|3
end for ~
Ghatch = % ZieB Clipc (Velz)
ébatch = Gbatch + (~C/B)Z, z N(07 UIQDP)
0 =0 —n* Adam(Gpatcn)
end for

C Additional qualitative results

In Fig. 4, we present qualitative results on the Tobacco3482 dataset at different
privacy levels, € € 1,5, 10.
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Fig.4: Visual comparison of the synthetic Tobacco3482 dataset samples gener-
ated using KL-F4 autoencoder at € € {1,5,10}.

In Fig. 5, we present a qualitative comparison of the samples generated using
the KL-F4 and KL-F8 autoencoder configurations on the Tobacco3482 dataset.
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Fig. 5: Visual comparison of synthetic Tobacco3482 samples generated using KL-
F8 and KL-F4 autoencoders at ¢ = 1.
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