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Abstract

Rapid advancements in generative modeling have made synthetic
audio generation easy, making speech-based services vulnerable
to spoofing attacks. Consequently, there is a dire need for robust
countermeasures more than ever. Existing solutions for deepfake
detection are often criticized for lacking generalizability and fail
drastically when applied to real-world data. This study proposes a
novel method for generalizable spoofing detection leveraging non-
semantic universal audio representations. Extensive experiments
have been performed to find suitable non-semantic features using
TRILL and TRILLsson models. The results indicate that the pro-
posed method achieves comparable performance on the in-domain
test set while significantly outperforming state-of-the-art approaches
on out-of-domain test sets. Notably, it demonstrates superior gener-
alization on public-domain data, surpassing methods based on hand-
crafted features, semantic embeddings, and end-to-end architectures.
Index Terms: spoofing detection, synthetic speech detection, deep-
fake detection

1. Introduction

In the past decade, significant strides in generative speech research,
particularly in the context of text-to-speech (TTS) and voice
conversion (VC) systems, have enabled the generation of synthetic
speech that is more natural sounding and of higher quality. These
developments have effectively narrowed the distinction between
authentic (real) and artificial (synthetic) speech. This development
makes speech-based systems like automatic speaker verification
(ASV) extremely susceptible to spoofing or more generally to
presentation attacks [1]. Furthermore, new TTS and VC systems
are emerging so quickly that countermeasure systems are quickly
rendered ineffective against a newer spoofing system. Hence,
research into accurate, robust, and generalizable countermeasure
systems has become imperative and is of considerable interest to
both academic and industrial sectors.

To advance this critical research domain, several challenges have
been organized, including the ASVspoof' and the Audio Deep Syn-
thesis Detection (ADD)? challenges, which have gained popularity.
These challenges provide essential datasets to develop countermea-
sure systems. The datasets include spoofed and synthetic speech
generated by a wide range of TTS or VC systems as well as synthetic
speech generated using heuristic or statistical methods. In contrast
to the controlled datasets commonly associated with research
challenges, which predominantly feature meticulously curated
laboratory data, researchers have also proposed other datasets like
“In the Wild” (ItW) [2]. This dataset contains uncontrolled, noisy
bonafide, and fake data directly from the public domain, which is not
part of any such challenge and better reflects real-world scenarios.

Thttps://www.asvspoof.org/
2http://addchallenge.cn/

Literature on synthetic or spoofed speech detection formulated
the task as a binary classification problem [3, 4, 5] between the
bonafide and fake classes. Several attempts have been made over the
years to improve the accuracy of this classification task by proposing
different architectures and training strategies, namely end-to-end,
hand-crafted feature-dependent, and self-supervised semantic
feature-based models [6]. In early countermeasure frameworks,
classifiers such as the Gaussian mixture model (GMM) [7] or
support vector machine (SVM) were trained on hand-crafted speech
representations like linear frequency cepstral coefficient (LFCC)
[8] and mel-frequency cepstral coefficient (MFCC) [9]. Early
DNN-based methods by [10] introduced ResNet and Inception-
based binary classifiers, outperforming prior speech representation
frameworks. The authors suggest that shallow networks are better
suited for detecting artifacts from spoofing algorithms, rather than
focusing on high-level, respectively deep semantic speech structures.
In [11], a multi-task learning objective is proposed and demon-
strated to outperform traditional ResNet methods. An alternative
end-to-end framework leveraging RawNet2 [12] directly processes
raw waveforms, utilizing a fixed band-pass filter bank modeled as
sinc functions [13], followed by a trainable convolutional neural
network (CNN). Subsequently, an advanced variant of RawNet2
is proposed in [14], which employs an attention-based channel
masking mechanism and claims to improve performance.

Recently, [15] proposed AASIST, a graph neural network-based
method, which shows SOTA performance on ASVspoof challenge
datasets. Apart from these methods, some of the latest models
also use semantic speech representations extracted from the audio
and perform the spoofing detection task on the embedding space.
A fusion method proposed in [16] uses XLS-R[17], WavLM[18],
and Hubert[19] embeddings as multiple views of the same input
waveform, whereas [20] uses WavLM features with Ecapa-tdnn[21]
backend. However, some of these countermeasure techniques have
been criticized for drastically failing to generalize well to previously
unseen test datasets [2, 22].

In contrast to semantic audio embeddings, TRILL [23],
a self-supervised universal non-semantic audio representation
extraction model trained with TRIpLet loss, excels in non-semantic
tasks such as language identification, speech command recognition,
and emotion detection by discarding semantic temporal features
like content. Subsequently, TRILLsson [24], a series of universal
paralinguistic embedding models trained via knowledge distillation,
was introduced. Similar to TRILL, TRILLsson models achieve
improved performance on non-semantic tasks outlined in the NOSS
benchmark [23], while being significantly smaller in terms of the
number of parameters than semantic embedding models like XLS-R.

To address the challenges of robustness and generalizability in
developing countermeasures, this study proposes a novel approach
using TRILL/TRILLsson features and investigates the effectiveness
of non-semantic representations for spoof detection by conducting
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Figure 1: Schematic architecture diagram of the proposed framework.

cross-dataset evaluations. Experimental results demonstrate perfor-
mance comparable to state-of-the-art (SOTA) models for in-domain
evaluation. Moreover, the proposed method leveraging these
representations exhibits improved generalization to out-of-domain
test datasets. Notably, it achieves superior performance on noisy
real-world public-domain data, surpassing SOTA models.

2. Methodology

A high-level architecture diagram of the proposed framework is il-
lustrated in Figure 1. Initially, the input audio waveform is chunked
into frames and each chunk is processed through TRILL or TRILLs-
son models to extract audio representations. The resulting frame-
wise representations are then stacked to form a 2D representation
X € R¥*, where d denotes the embedding dimension and ¢ repre-
sents the number of frames. TRILL and TRILLsson models generate
a global representation vector by temporal aggregation from entire
waveforms of any length. Therefore, chunking is necessary to obtain
localized non-semantic feature vectors for more effective analysis.
The optimal balance between localized and globalized features nec-
essary for spoofing detection tasks remains an open question and is
subject to our experimental evaluation. In the proposed framework,
TRILL and TRILLsson models serve as fixed feature extractors
with frozen weights and are not fine-tuned. The pre-trained model
weights are publicly available®*. Non-semantic representations from
TRILL and TRILLsson models exhibit greater temporal stability
than semantic embeddings, as non-semantic attributes of speech
evolve slowly and gradually compared to rapidly fluctuating lexical
and phonetic features [23]. Given that, this study experiments with
TRILL and TRILLsson variants 1 to 4. The different TRILLsson
models represent distinct network architectures, as outlined in [24].
The embedding dimension d is set to 512 for TRILL-based models
and 1024 for TRILLsson-based models. Additionally, we experi-
mented with various chunking window sizes (50ms, 100ms, 200ms,
and 300ms) to determine the optimal window for spoofing detection.

The stacked representation X is processed through a convo-
lutional block with a residual connection. This block comprises
two layers of 1D convolutional filters, followed by batch normal-
ization and SELU activation [25]. The convolutional block extracts
high-level features, while the residual connection preserves relevant
low-level information. Hence this convolution block effectively
augments the incoming feature vector X — X'. The features then
optionally undergo a frame-wise delta step to capture variations
in non-semantic features across consecutive frames, performing
X =X{,1—X;. Experiments are conducted both with and with-
out this step. Subsequently, two LSTM layers model long-term
temporal dependencies or inconsistencies. Post LSTM, the features

3https://www.kaggle.com/models/google/nonsemantic-speech-
benchmark/tensorFlow?2/trill
“https://www.kaggle.com/models/google/trillsson/

are projected to a 1536-dimensional space. A multi-head attention
(MHA) pooling mechanism is then applied along the time dimension
to focus on salient regions of the sequence. Finally, an MLP block
generates logits for the bonafide and fake classes. The framework is
trained using cross-entropy loss with class weights of 0.1 and 0.9, fol-
lowing the recommendations of [15]. The code is available online 3,

Table 1: Evaluation results (EER%) of different TRILL or TRILLsson
representation-based models on the LA19 evaluation set. Results
considering different feature extraction window sizes are also
reported. For each model, the best configuration is in boldface.

| Models | Type | 50ms | 100ms | 200ms | 300ms |

My Direct | 9.29 9.49 8.48 745
Delta 8.8 9.15 8.86 8.77
M Direct | 8.46 3 1.39 2.56
Delta 6.12 4.24 3.34 5.8
Mo Direct | 2.78 1.67 1.56 143
Delta 3.16 2.29 1.93 1.85
Mo Direct | 2.54 1.35 0.96 1.32
Delta 2.87 2.04 1.4 1.45
Moy Direct | 13.24 | 1141 4.49 2.39
Delta | 17.72 | 14.11 6.33 2.67

3. Experimental setup
3.1. Datasets

We conducted extensive experiments using four distinct English
datasets.

ASVspoof 2019 Logical Access (LA19): ASVspoof 2019 challenge
made this dataset publicly available [1], comprising 12,483 genuine
and 108,978 spoofed utterances sampled at 16 kHz. The dataset
features male and female speakers sourced from the VCTK corpus
of read speech [26]. The spoof utterances are generated using 19
different algorithms (AO1 - A19), including 17 different TTS and
VC techniques. In the evaluation subset, counterfeit utterances result
from a distinct set of spoofing attack algorithms (A07-A19), while
spoof samples in the training and development datasets originate
from the same set of spoofing algorithms (A01-A06). The LA19
training subset is used to train all our models.

ASVspoof 2021 LA (LA21): The dataset for the ASVspoof
challenge in 2021 [27] extends its predecessor, aiming to narrow the
disparity between controlled laboratory conditions and real-world
scenarios. This is achieved by introducing channel artifacts, wherein
both bonafide and spoof samples undergo transmission through
various real telephony systems along with different speech codecs
applied to them. Although the number of speakers and spoofing

Shttps://github.com/armabdas8901/TRILLFake



Table 2: Spoofing algorithm wise EER(%) score comparison for LA19 evaluation set.

| Models | AO7 | A0S | A09 | A10 | A1l | A12 | AI3 | Al4 | A15 | A16 | A17 | AIS | A19 |
Mzr1 (200ms) | 008 | 134 | 0.12 | 049 | 051 | 0.08 | 0.06 | 026 | 024 | 0.51 | 1.08 | 297 | 429
Mrs (200ms) | 077 | 244 | 034 | 085 | 067 | 0.38 | 0.08 | 055 | 0.71 | 042 | 0.53 | 1.09 | 252
Mrs (50ms) | 0.12 | 545 | 024 | 043 | 039 | 0.16 | 0.12 | 1.02 | 061 | 0.71 | 5.02 | 22 | 608

algorithms is unaltered from the previous LA19 version, the LA
21 set contains additional bonafide and spoof speech samples.
ASVspoof 2021 DF (DF21): The deepfake (DF) evaluation set
from the ASVspoof 2021 challenge [27] includes 14,869 bonafide
samples and 519,059 spoofed samples, sourced from 50 female
and 43 male speakers. Unlike the LA sets, the DF set features
source utterances also from the 2018 and 2020 Voice Conversion
Challenge (VCC) databases. Spoofed utterances in this DF set are
processed with lossy codecs meant for media storage. The DF set
also includes previously unseen voice conversion (VC) algorithms
that are not present in any of the LA sets.

In the Wild (ItW): The dataset comprises approximately 17.2
hours of fake and 20.7 hours of authentic audio clips (podcasts,
speeches, etc.) featuring English-speaking celebrities or politicians,
totaling 31,779 utterances with an average duration of 4.3 seconds
[2]. All data within this collection are sourced from the public
domain. The details of the spoofing algorithms used in this dataset
are not provided. Additionally, the utterances include background
noise, which more accurately reflects realistic scenarios.

In this study, the LA21 evaluation, DF21 evaluation, and ItW
datasets are used solely to evaluate the generalization capabilities
of the proposed framework. No training or fine-tuning is conducted
on these datasets.

3.2. Implementation details

The model based on TRILL features is referred to as M7, while the
models based on representations extracted using TRILLsson 1, 2,

3, and 4 are denoted as M1, Mr2, M3, and Mr4, respectively.

In this study, the maximum audio length is set to 6 seconds. Longer
audio samples are truncated, while shorter ones are padded. Our
models are trained for 50 epochs on an NVIDIA H100 GPU with
a batch size of 64. Best models are chosen based on performance
on the LA19 dev set. Optimization is performed using the Adam
optimizer with an exponential learning rate scheduler, where the
initial learning rate is set to 10™* and decays at a rate of 5% after
each epoch. For evaluation, We report the equal error rate (EER).

4. Results & discussion

To determine the most suitable representation for spoofing detection
among TRILL and TRILLsson models, we evaluate our models on
the LA19 evaluation set. The results are presented in Table 1. For
each model, two rows are presented based on whether the frame-wise
delta is performed or not as mentioned in Section 2. We define that in
the Type column. Direct refers to the model configuration without the
optional delta step. We also experimented with different chunking
window sizes for feature extraction. We can gain a few insights from
Table 1. 1) For each model configuration, the best result is achieved
when the representations are extracted using a 200ms or 300ms long
window. 2) For models Mr, M2, and M4, the performance kept
on increasing with larger window size and eventually getting the
best scores for 300ms chunk size. We empirically found that further
increasing the chunking window size does not improve results. The
best possible score for My is 7.45% EER whereas the same for the
other two models are 1.43% and 2.39% respectively. Whereas for

M1 and M3, the best possible results are achieved with represen-
tations from 200ms chunks. The models achieve an EER score of
1.39% and 0.96% respectively. These results show that TRILLsson
features are better suited for the task compared to TRILL features.
This performance difference aligns with the superior effectiveness of
TRILLSsson models over TRILL in non-semantic tasks, as TRILLs-
son outperforms TRILL across all tasks in the NOSS benchmark
[24]. 3) For M and M7 ; models the Delta variant works better
than the Direct variant when the representations are extracted using
smaller chunk size for example 50ms. However, this trend is not
followed for other models and for most of the configurations, the
Delta variants are underperformant compared to the Direct ones.

Based on the results in Table 1, the top two models, M7 and
M3, both trained with a 200ms chunking size, are selected for
further experiments.

The LA19 evaluation set includes diverse spoofing mechanisms,
leading to varying performance across detection algorithms. To an-
alyze this, we compare the performance of the two selected models
against each spoofing algorithm, with results presented in Table 2.
For algorithms AQ7 to A15, M7 outperforms M3, whereas for
spoofing methods A16 to A19, M3 demonstrates superior perfor-
mance. Notably, A17, A18, and A19 are exclusively voice conver-
sion (VC) frameworks, while methods A07 to A15 involve text-to-
speech (TTS) systems or a combination of TTS and other techniques
[1]. The performance difference between these two models may
arise from variations in the features extracted by TRILLsson]1 and
TRILLsson3. TRILLsson1 has only 5 million parameters, whereas
TRILLsson3 contains 21.5 million parameters [24], potentially lead-
ing to differences (shallow vs deep) in the learned representations.

Table 3: Comparison of EER(%) for LA19, LA21, DF21 evaluation
datasets achieved by different models only trained on LA19 training
set. Best scores are in bold and second best scores are underlined.

‘ Models ‘ LA19 ‘ LA21 ‘ DF21 ‘
LFCC [28] 2.98 2093 | 23.05
RawNet2 [12] 1.14 9.5 22.38
RawGAT-ST [20] 1.22 1023 | 37.15
AASIST [20] 0.83 1146 | 21.06
ARawNet2 [14] 4.61 8.36 19.03
SE-Rawformer [29] 1.15 4.31 20.26
M1 (200ms, Direct) 1.39 6.36 17.17
M3 (200ms, Direct) | 0.96 7.28 13.27

Table 2 also presents spoofing method-wise results for an
alternative configuration of the Mr3 model, trained on represen-
tations extracted from 50ms chunks. Compared to the 200ms
model, the 5O0ms model exhibits significantly inferior performance
for A0S, A17, and A19. This discrepancy may arise because
embeddings extracted from 50ms chunks still could only capture
very local temporal features, whereas certain spoofing methods,
particularly generative models, introduce patterns at a global level
[30]. Consequently, representations derived from longer chunk sizes
are better suited for detecting global temporal inconsistencies.



To assess the out-of-domain generalization capability of our
proposed framework, we evaluate our models on LA21 and DF21
evaluation subsets without further fine-tuning and the results are
summarized in Table 3. We also compare our models against
current SOTA methods from the literature. For our models, the best
score is reported from three different seed runs. The RawNet2[12]
model achieves an EER score of 1.14% on the LA19 evaluation
set, SE-Rawformer [29] also archives a similar score of 1.15%
and AASIST [15] achieves an even lower score of 0.83%. Our
models also perform similarly to the SOTA models, Mr; and
M3 achieve an EER score of 1.39% and 0.96% respectively.
Upon evaluation on the LA21 evaluation set, performance drops
sharply for all SOTA models. AASIST could only achieve 11.46%
EER and the same for RawNet2 is 9.5%. The best performance
is achieved by SE-Rawformer, with an error rate of 4.31%. Our
framework demonstrates superior generalization ability compared
to end-to-end models such as AASIST and RawNet2, as well as
hand-crafted LFCC-based models. Notably, Mr; achieves an EER
of 6.36%, while M3 attains 7.28%. Upon testing on an even more
challenging DF21 evaluation set, the performances of the SOTA
models deteriorate drastically. SE-Rawformer achieves an EER of
20.26%, almost a five-times performance drop from LA21, whereas
AASIST could only achieve 21.06%. The limited generalization of
models such as AASIST and RawNet2 has also been documented
in several studies [6, 2, 20]. Under the same testing condition, M3
archives the best EER score of 13.27%, almost a 37% performance
improvement over AASIST, followed by Mpr; 17.17%. This
shows that models learned using our proposed framework with non-
semantic representations hold the key to improved generalization
toward unseen out-of-domain data for spoofing detection tasks.

Table 4: Comparison of out-of-domain evaluation for models
trained on LA 19 training set and tested on ItW.

\ Models \ EER(%).. \
RawGAT-ST [20] 52.54
AASIST [20] 43.01
RawNet2 [2] 33.94
WavLM+Ecapa [20] 34.64
XLS-R,WavLM,Hubert & Fusion [31] 24.27
M1 (200ms, Direct) 20.08
M3 (200ms, Direct) 27.52

To further assess the generalization capability of the proposed
framework on real-world data, we evaluate our models on the ItW
dataset along with the SOTA models, and the results are presented
in Table 4. Performance by the SOTA models like AASIST drops
drastically and could only manage to keep the EER at 43.01%.
The spoofing detection method that uses semantic features like
WavLm and Ecapa only achieves 34.64% EER and the multi-view
method that uses a fusion of different semantic features like XLS-R,
WavLM, and Hubert achieves an EER of 24.27% Whereas, our
model M achieves the best EER score of 20.08%. The results
further confirm that utilizing non-semantic audio representations
significantly enhances generalization to out-of-domain data,
including noisy real-world utterances, compared to end-to-end
models and approaches leveraging semantic embeddings.

To ascertain the advantage of non-semantic features over
semantic features, we conduct an ablation study by replacing
TRILLsson features with Wav2Vec2-XLS-R® [17] features while
keeping the detector backend unchanged. The results of this

Shttps://huggingface.co/facebook/wav2vec2-xls-r-300m

Table 5: Ablation study: semantic vs non-semantic out-of-domain
generalization performance (EER%) by using same detector

backend.

| Models | LA19 | LA21 | DF21 |

M1 (200ms,Direct) 1.39 6.36 17.17
M3 (200ms, Direct) 0.96 7.28 13.27

| XLS-R+OurBackend | 1.59 | 28.78 | 2449 |

comparison are presented in Table 5. The model learned using
Wav2Vec2-XLS-R features achieves 1.59% EER on the LA19
evaluation set, similar to our M1 model. However, when tested
of the LA21 evaluation set as part of out-of-domain evaluation the
model fails drastically and shows a very high EER rate of 28.78.
This finding aligns with the results reported in [28], which also
observed a significant decline in generalization performance on
LA21 when using fixed Wav2Vec2-XLS-R features.

This advantage may stem from the fact that most semantic
feature extraction models employ a 25ms frame size with a 20ms
stride, limiting them to capturing only localized features specifically
trained to perform semantic tasks like automatic speech recognition.
Additionally, to preserve semantic meaning, these representations
encode variations driven by rapidly changing lexical and tonal in-
formation overlooking some of the global residual artifacts from the
generative spoofing algorithms. As a result, spoofing detection mod-
els built on these semantic features may overfit irrelevant features,
yielding strong in-domain performance but failing to generalize
effectively. In contrast, our experiments demonstrate that temporally
aggregated non-semantic features extracted over a longer window
(i.e., 200ms) exhibit strong generalization across datasets. Notably,
[32] reports that the maximum duration of phonemes in standard
English speech is approximately 200ms, while [33] empirically
finds the average syllable duration to be also around 200ms. This
gives us insight that features extracted over a duration of average
syllable length are more beneficial for spoofing detection tasks.
Similarly, end-to-end models that directly learn from raw waveform
can overfit to irrelevant variations in the highly time variant signal.

5. Conclusion & outlook

In this paper, we propose a spoofing detection method based on non-
semantic audio representation extracted from TRILL and various
TRILLsson models. We perform extensive experiments to find the
most suitable TRILLsson model and optimal chunking duration to
balance the local and global temporal features. Results show that the
proposed method with the most suitable configurations shows equiv-
alent performance to SOTA methods in the case of in-domain testing.
However, the proposed method outperforms existing methods on
out-of-domain datasets proving the efficacy of non-semantic features
for better generalization over hand-crafted, end-to-end, or even
semantic feature-based methods. Notably on in-the-wild data, the
proposed methods show drastic improvement over popular methods
like AASIST, RawNet2, and others. The ablation study eliminates
any doubt that performance improvements stem solely from the de-
tector backend, confirming that non-semantic features are inherently
better suited for generalization. Despite these advancements, the
quest for robust and generalized spoofing detection countermeasures
remains ongoing. Future work will explore alternative backend
architectures, such as graph neural networks, in conjunction with
these non-semantic feature extraction frontends. Additionally,
we will extend our study to partial spoofs and further investigate
the comparison between semantic and non-semantic features by
fine-tuning the frontend feature extractors for spoofing detection.
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