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Abstract
This paper introduces UJI-Butler, an innovative multi-robot framework that blends symbolic and non-symbolic artificial
intelligence methods. Unlike previous systems, UJI-Butler integrates large language models (LLMs) with a knowledge base
akin to RAG-based systems, while imposing logical reasoning on LLM-generated results. It facilitates multi-modal interaction
with human users through speech, sign language, and physical interaction, fostering a human-in-the-loop learning paradigm.
By acquiring new knowledge through verbal communication and mastering manipulation skills via human-lead-through
programming, UJI-Butler enhances transparency and trust by incorporating human feedback during operations. Experimental
results demonstrate that UJI-Butler’s combination of symbolic and non-symbolic AI offers intuitive interaction and accelerates
the learning process with experience. It adeptly stores and utilizes knowledge gained from verbal communication, recognizing
hand gestures for requests. Additionally, UJI-Butler successfully performs user-taught physical skills and generalizes them to
varyingobject sizes and locations. The explicit nature of acquiredknowledge enables seamless transferability to other platforms
and modification by human users. The code of the whole project is available on Github, in addition, video demonstrations of
the UJI-Butler system are available online in a Youtube Playlist.
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1 Introduction

Robots have always been imagined to help in household envi-
ronments [1], but to the best of our knowledge, that has not
been achieved yet, at least not at scale. For robots to enter
households, a key feature is interaction; this is not required
in regular industrial situations where most robots are found.

Intuitive human-robot interaction1 is required to enable
robots to enter our homes by helping with our elderly or
automating our daily activities like cleaning, and cooking [2].
In addition, human-robot collaboration is key in small and
medium-sized industries to perform complex and adaptive
operations in the production line [3].

The UJI-Butler framework presented in this paper allows
interaction with various robots in different modalities which
include speech, sign language, and physical interaction. This
multi-modality facet of UJI-Butler interaction has been cho-

1 Intuitiveness here is meant to convey a sense of intelligence that the
human user attributes to the robot.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-025-01234-5&domain=pdf
http://orcid.org/0000-0002-7206-4551
http://orcid.org/0009-0007-9094-3238
http://orcid.org/0000-0002-6398-8488
http://orcid.org/0000-0001-6227-3758
https://github.com/orgs/UR5-Robotic-Intelligence/repositories
https://youtube.com/playlist?list=PLKYWqKMe8hVKP9UAvhe-WZa0OisrNtL-v


International Journal of Social Robotics

sen to be as inclusive as possible to different groups of people
with special requirements.

The UJI-Butler also introduces a way for robots to learn
from humans throughout their existence by taking advantage
of human-robot interaction situations. The ability to keep
learning with new experiences during the robot’s operational
life is termed in the literature as Life Long Learning [4]. Life
Long Learning (also referred to as continual or incremental
learning) [5–7] requires that the learning agent keeps upgrad-
ing its knowledge so that it becomesmore accurate (or at least
maintains its accuracy) by updating the old learned data.
However, if the learning process involves gradient descent
update ofweights of a neural network, themodels suffer from
catastrophic forgetting [8], since the models forget previous
knowledge and/or skills. This is one of the reasons why the
learning agent in the UJI-Butler framework uses KnowRob,
an ontology-based knowledge base with reasoning capabili-
ties [9] as a part of its architecture.

Moreover, to map between natural language and robot
knowledge, the UJI-Butler agent incorporates GPT-3 [10]
large language model in combination with its knowledge
component to provide a more intuitive human-robot inter-
action.

UJI-Butler is a multi-robot system that also involves
robot-robot communication and cooperation to complete
a manipulation task (e.g. drink preparation by a UR5e
robot) and delivery (by a Turtle-bot), including mapping,
localization, and navigation in the environment while also
avoiding obstacles. In this way, it can successfully deliver
the requested preparation anywhere in the mapped environ-
ment.

Figure 1 illustrates themain parts of the UJI-Butler frame-
work.

In light of this, the key capabilities of UJI-Butler can be
summarized as follows:

1. Combining symbolic and non-symbolic artificial intelli-
gence approaches to interpret andperform tasks requested
by human users.

2. Learning new manipulation skills using Lead-Through
programming techniques.

3. Acquiring new knowledge through verbal communica-
tion.

4. Ensure safety and trust by having a Human in the loop
for verification and feedback.

5. Rule-based fact-checking and correction on the results of
generative AI methods to minimize hallucinations.

6. Concurrent improvement of both the generative AI and
the knowledge-based reasoning with new experiences.

7. Provide multi-modal interaction capabilities like voice
and sign language to be more inclusive.

8. A perception system that can detect objects with different
states and synonyms as indicated by the user request.

9. Multi-robot communication andexecution for the requested
tasks.

The rest of the paper is organized as follows. Section2
describes the main components of UJI-Butler. It includes
Sub-Sect. 2.1 which discusses the Knowledge base, Sub-
Sect. 2.2 which presents how GPT-3 language models are
used in combination with the knowledge base and the logi-
cal reasoning. Then, Sub-Sect. 2.3 explains how interaction
works in the UJI-Butler framework. Sub-Sect. 2.4 describes
how theUJI-Butler agent learns and acquires newknowledge.
The perception of objects and sign language is explained in
Sub-Sect. 2.5.

Section 3 presents the robotic platforms, tools, and the
experimental setup in UJI-Butler. This section includes
Sub-Sect. 3.1 which describes the setup and tools used to per-
form manipulation tasks. In addition, Sub-Sect. 3.2 presents
multi-robot collaboration using Turtlebot-2 (Kobuki) for per-
formingmeal/drink delivery in collaboration with the robotic
arm. Then, Sect. 4 shows the experimental results and pro-
vides a detailed discussion. Finally, the related work and the
conclusions are presented in Sect. 5 and Sect. 6 respectively.

2 UJI-Butler Components

2.1 Knowledge Base

The UJI-Butler uses KnowRob [9], an ontology knowledge
base with reasoning capabilities. KnowRob uses ontologies
based on OWL [11] and SWI-Prolog [12] as a logic language
for querying and reasoning. KnowRob uses a knowledge
representation based on temporalized triples. These triples
consist of subject, predicate, and object, with an additional
element specifying the time frame when the statement holds
true. Thus all facts can be described in this triple format
with the ability to define predicates, subjects, and objects as
needed by the application.

KnowRob has been chosen for several reasons: firstly it is
an active project and has been active for more than a decade,
secondly it has interfaces with common robotics tools like
ROS (Robot Operating System), finally it is mostly used for
tasks involving everyday activities which are the focus of a
butler or a personal robot as is the case for UJI-Butler. More-
over,KnowRob seems to be themost popular knowledge base
in service robotics for performing everyday activities [13].

SWI-Prolog is the query interface that is available for
querying and interacting with KnowRob, also it is available
through ROS services which makes it very convenient to use
in the UJI-Butler framework.

In UJI-Butler, KnowRob is used as a source of knowledge
that is needed by the robot to perform its tasks. KnowRob
is also used for fact-checking on the results of GPT-3, and
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Fig. 1 UJI-Butler Framework

also for adding new knowledge (e.g. adding new activities
learned from experience). In that sense, whatUJI-Butler adds
to KnowRob is the ability to add more knowledge from robot
experience gained through answering human requests related
to tasks that are part of everyday activities (e.g. meal and
drink preparation). This is facilitated by the use of large lan-
guage models like GPT-3.

The UJI-Butler queries activities that can be performed,
such asMaking-CoffeeTheBeverage andMaking-TeaTheBeveage.
It can also query the objects and steps used to make these
activities. For that, the UJI-Butler takes into account the
objects needed to accomplish the activity as well as the out-
puts of the activity. The UJI-Butler knowledge base can be
logically queried on all activities that involve preparing a
drink or a meal:
subclass_of(B, Sb),

subclass_of(Sb, PreparingFoodOrDrink)
where B would be an activity, Sb would be the superclass
of the activity, which would be either PreparingFood or
PreparingABeverage and those two are a subclass of Prepar-
ingFoodOrDrink.

Any activity that involves acting on objects is expressed
as an OWL restriction in Prolog as follows:

is_restriction(A, some(objectActedOn, C)),

subclass_of(B, A)
where A is an OWL description of the restriction, C is the
object that is acted on during the activity, and B is again the
activity. The activity is related to the restriction by being a
subclass of the restriction. An activity also usually has an
output, which in Prolog is also expressed as an OWL restric-
tion:
is_restriction(A, some(outputsCreated, C)),

subclass_of(B, A)
where A is an OWL description of the restriction, C is the
output created from the activity, and B is the activity. So,
by using these simple logic Prolog queries one can retrieve
information about the activity and its components.

The next section presents how the KB at UJI-Butler can
be used with language models.

2.2 Retrieval and Insertion of Activities Using LLMs,
Knowledge Base, and Rule-Based Fact-Checking

Large Language Models (LLM) require context to work as
intended,
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so a very powerful solution can be combining knowl-
edge from KBs with the ability of LLMs to process this
information, complete it with missing information, or trans-
form it into another representation. This is known as a RAG
(Retrieval Augmented Generation) system [14].

RAG systems have noticeably increased the accuracy and
reliability of LLMs by making them ground their outputs
in facts represented in the knowledge sources provided to
them. While RAG systems are more reliable, they are less
expressive. RAG systems neutralize the ability of LLMs to
answer more complex or completely different inputs/queries
that cannot be answered through the provided knowledge
base.

InUJI-Butler, the humanuser could ask formeals or drinks
that are not previously known to the system (i.e. activities that
do not exist in the knowledge base). The key question is how
to make use of the power of LLMs while keeping them as
reliable as possible. The answer to this in UJI-Butler is rule-
based fact-checking. In UJI-Butler, the answers to human
commands or requests can contain information that does not
exist in the knowledge base, but still, they will abide by the
rules defined in the reasoning system. This is a key difference
and improvement that UJI-Butler provides over RAG-based
systems.This is especially importantwhenworking in safety-
critical domains such as social robotics.

The reason why GPT-3 was selected for UJI-Butler is that
it was arguably the most powerful LLM that was freely avail-
able at the time of development of this work. Still, the LLM
used is not a fixed part of UJI-Butler: it can be easily changed
or upgradedwith newer versionswhen they are available.Our
focus is rather on how it is used with the knowledge base to
design the prompt, which should be general to any other
LLM that works with prompting. In that sense, UJI-Butler
improves the use of LLMs by giving them the ability to use a
knowledge base to design their prompt and also to make use
of logic rules for fact-checking the results generated from the
LLMs. For comparisons and results see Sect. 4.1.

2.2.1 Find the Requested Activity: From Text Instructions to
Keywords

To find the requested activity by the user, the UJI-Butler
framework applies the pipeline shown by Fig. 2. It uses GPT-
3 as an LLM to extract keywords from text instructions given
by the user, query the possible activities from the knowledge
base, and finally find the best matching activity.

Firstly, a large languagemodel is used as a keyword extrac-
tor from human speech input which is in natural language.
For example, the sentence “We would love to have a cup of
tea" is converted to “tea" and “cup" which can be used to
find the best matching activity that has these keywords in its
description or its components in the knowledge base. In this
case, it should find the activity Making-TeaTheBeverage. To

Fig. 2 Finding the requested activity pipeline for UJI-Butler

allow GPT-3 to give these specific keywords as an answer, a
prompt is designed that contains a couple of examples show-
ing the required behavior, an example prompt is as follows:
Q: Put lemon on water please:

1. lemon

2. water

Q: Prepare a meal for dinner please:

1. meal

2. dinner

Using the keywords that were the output of GPT-3, one
can find matching activities in the KB by finding similar
words in their descriptions or the objects that are used to per-
form this activity. TheUJI-Butler finds the similarity between
these keywords by applying the Levenshtein distance [15]
between characters. However, sometimes two keywords can
be not similar in writing but very similar in meaning (e.g.
cup and drinking-mug), so in the cases when users say
“drinkingmug" then the Levenshtein distance might not help
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Fig. 3 Adding a new unknown activity for UJI-Butler

find the instructions in the robot KB. In these cases, BERT
embeddings are used to find the needed keywords as they
provide statistical similarity by comparing the distance of
their embeddings, but through experimentation, it was found
that although Levenshtein distance lacks expressivity, it is
the safer option. The Levenshtein distance would have a bet-
ter true positive rate and lower false positive and this is more
important in human-robot interaction because, in our opin-
ion, a robot performing the wrong task (False Positive) is
much more unacceptable than not performing the task at all
(False Negative). For these reasons, the Levenshtein distance
is chosen as the default method to use.

2.2.2 Adding a New Activity to UJI-Butler KB: From text to
Commands

The UJI-Butler adds a new activity to its KB as Fig. 3 illus-
trates: first it asks the user about the activity type and what
steps are involved in this activity, then it generates robot com-
mands using GPT-3 with a prompt designed from the KB
using similar activities. Finally, it verifies with the user the
correctness of the generated commands; this improves safety
and ensures transparency and trust while also guaranteeing
that the data is correct before inserting it into the KB.

Here GPT-3 is used to convert user instructions describ-
ing the activity into steps that can be performed by a

robot. Let us illustrate this with an example of a prompt:
Q:You put tea packet in a cup and then you put water in the cup:

1.transport(tea-packet, cup)

2.pour(water, cup)

container(cup)

Q:Put oats in a bowl, add milk, add honey, mix it all together, and enjoy:

1.transport(oats, bowl)

2.pour(milk, bowl)

3.pour(honey, bowl)

container(bowl)

Normally the last line in the prompt where the container is
mentioned is not necessary, but this helps the fact-checking
afterward to ensure that the container is an object that can
contain the required objects in the transport and pouring steps
above it. Currently, only one container is considered but it
can be easily extended to handlemore containers by adjusting
the example prompt.

Further analysis and experimentation of different ideas
that led to this final design are laid out in detail in section 4.1.

2.2.3 Closed Loop Reasoning

Closed-loop reasoning is the icing on top of the cake, since
it constrains the GPT-3 output to conform with facts. These
facts can come from two sources in the current version of
UJI-Butler: (1) the knowledge base (KB), where an ontol-
ogy exists and provides relationships and attributes to and
between entities, and (2) the human user during operation
when requested by UJI-Butler, thus serving as a human in
the loop.

UJI-Butler is currently limited to correcting or verifying
two kinds of situations: (i) referring to the container and (ii)
clarifying the action and the source involved in it.

Regarding the container identification, that is, given that
the type of the activity meal or drink is known, and given
that the KB has containers for liquid (used for drink serving
like a cup or a glass), and also containers for food (used
for meal serving like a plate or a bowl), if the GPT output
contradicts itself by assigning a food container for a drink or
vice versa, the reasoning system can find that mistake when
verifying, and then UJI-Butler would query the human user
about changing the container or not. This is solved by using
the following Prolog query:

holds(Container, transitive(subClassOf), Type).

where Container is the container in question, and Type is
either a DrinkingVessel, if the activity type is a drink, or a
EatingVessel, if the activity type is a meal. This query checks
if this relationship holds transitively, i.e. if theType is a super-
class either direct or indirect of the container.
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Fig. 4 User teaching the UJI-Butler how to pour from a bottle to a cup. On the left, the first waypoint, and on the right, the second waypoint. For
results of the taught sequence on different objects see Fig. 17

Fig. 5 Teaching UJI-Butler how to pick a cooking pot

The second situation where the UJI-Butler reasoner inter-
venes concerns the first argument of the pour and transport
functions that the GPT assigns. The first argument for pour
should not be a solid substance, while for transport it should
not be a liquid or granular substance. In this case, a correction
is done automatically –without asking the human user– by
changing the function from transport to pour or vice versa.
In Prolog, it is checked as follows:

holds(Object, transitive(subClassOf), Type).

where Object is the first argument of transport or pour, and
the Type is the LiquidTangibleThing, if the function is trans-
port, and SolidTangibleThing, if the function is pour. Thus,
if the query answers true, then this is a mistake and the func-
tions are changed.

2.3 The Interaction Between Users and UJI-Butler

In the UJI-Butler framework, the human and the robot can
collaborate not just in physical tasks, but also by exchanging
information using natural language (Fig. 5).

2.3.1 Teaching Using Human-Robot Physical Interaction

Physical interaction requires the human to move the robot
arm to teach, or show it how to perform a certain action. In our
approach the user specifies some waypoints to accomplish
the desired motion (see Fig. 4 for an illustration showing a
user teaching how to pour from a bottle to a cup). The reason
behind it is to make the taught skill as general as possible
to that object. A complete motion is useless if the object
is displaced, while the waypoints offer more freedom to the
robot’smotion. For example, the pouring action is carried out
using two waypoints, the first is the pouring position, and the

second is the pouring angle. Tomake thesewaypoints general
in any other position of the object, they are collected relative
to the object centroid instead of being relative to the robot
base or world frame. This is calculated using equations 1 &
2.

oPt =r Pt −r Po (1)

where oPt is the tool position relative to the object centroid,
rPt is the tool position relative to the robot base, and rPo is
the object centroid position relative to the robot base.

oqt = (rqo)
−1 ∗r qt (2)

where oqt is the tool orientation relative to the object, rqo is
the object orientation relative to the robot base, and rqt is the
tool orientation relative to the robot base.

Equation1 yields the position of the robot tool relative to
the object centroid and Eq.2 finds the orientation (quater-
nion) of the robot tool relative to the object centroid (note
that the object frame has the same orientation as the robot
base frame). To use the stored position and orientation in a
new object position, equations 1 & 2 are solved for rPt and
rqo respectively.

Even though theUJI-Butler framework useswaypoints for
robot teaching, it records the whole motion from the robot
sensors and the camera, saving the collected data in the form
of episodes to enable offline learning. The waypoints mode
is convenient for instant online learning of a new task that
is general for different positions of the object. Still, offline
learning is required to generalize and make a model that uses
all the data collected from the different skills on different
objects.

2.3.2 Teaching Using Speech and Computer Interface

Knowledge exchange in the UJI-Butler framework can take
place by using natural language or computer input (key-
board/touch screen). For example, when a user describes the
steps to perform a certain task, s/he can use natural language,
and the robot could speak to the user to ask them if it has
detected an ambiguous situation (e.g. a required object is
missing, or there are multiple instances of the same object,
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or there is a specific action that has not been done before, so
it needs the user to show how to perform this new task, etc.).
If the required information is numerical or digital it can be
directly entered through a computer interface by the user. For
example, the user indicates to the robot “you need to sense
a specific force in a specific direction”, then the robot will
ask the user to add this information through the computer
interface.

Using Google Cloud Speech to Text,2 a human user can
communicate with the UJI-Butler to ask for a cup of tea or
coffee, tomato, or whatever activity the user needs. If the
robot knows how to execute it, then it will perform it right
away, assuming that everything that is required is available
within the robot’s reach and field of view. Otherwise, it will
ask the human aboutwhat ismissing, either from the environ-
ment or from the robot knowledge itself. The human can then
respond using natural language –if the answer is descriptive–
or by showing and moving the robot physically –if the ques-
tion concerns how to perform a certain action.

To have a more intuitive way of interacting with the robot,
Google Cloud Text to Speech API3 is used to let the robot
ask questions to the human when needed, or to describe a
problem that the robot currently faces. For example, the UJI-
Butler can ask a human about the steps of an activity, or tell
the human that it cannot detect a certain object, either because
it is not there or because the robot model cannot detect this
instance of the object. Moreover, the UJI-Butler can also ask
the user to reduce the ambiguity in a situation: for example,
if there are multiple cups in front of the robot, but only one
of them is needed to make tea, the UJI-Butler would ask the
human which cup to use.

The UJI-Butler framework incorporates the possibility of
asking the user for help in carrying out unknown physical
tasks. For instance, when the robot does not know how to
pick or place an object, or do any action in general, it would
ask the human to show how to perform this action. Also, it
would ask if the task is similar to any of the already known
actions –like picking or placing another object.

2.4 Learning

TheUJI-Butler learns by augmenting itsKB,which improves
GPT-3 predictions, and it also collects data for offline learn-
ing.

2.4.1 Augmenting Robot Knowledge Base

After a user answers a question about “what are the steps
of a certain activity" or “what is the description of a cer-
tain object", the UJI-butler converts this information into

2 https://cloud.google.com/speech-to-text.
3 https://cloud.google.com/text-to-speech.

robot commands andkeywords that are stored in theKnowrob
ontology for later usage. This allows knowledge to be gained
transparently and explicitly. It also allows the knowledge to
be modified by humans themselves later, either to add new
knowledge or to modify existing ones.

Further reasoning can be triggered from the newly gath-
ered facts (i.e. inference of similar situations, or inference
of new relations that are predicted from the other existing
relations). Importantly, this helps prevent catastrophic for-
getting.

2.4.2 GPT-3 Improved Prediction

The larger the robot KB is, the better GPT-3 predictions will
be. This is simply because theGPT-3 prompt can bemodified
from the KB to be more relevant and suitable for a certain
prediction. For example, a human asks the robot to prepare
coffee but the robot does not know how coffee is made. If
still it knows that it is a drink, then it can prompt GPT-3 with
a drink that it knows about from the ontology, and tell GPT-3
to generate commands that are similar to the ones that are
used in the known drink. Thus, the more similar the prompt
to the required prediction is, the better and more robust the
GPT-3 output will be.

2.4.3 Data Collection For Later Offline Learning

We have already seen how data about classes of objects
and task steps are added directly to the ontology after user
verification, giving the robot an online or instant learning
capability. Moreover, all the data from human-robot interac-
tion can be stored in a KB to be used later for offline machine
learning. This is especially relevant for data coming from the
robot sensors and actuators which cannot be included in the
ontology but require motor skill learning.

2.5 Perception

The perception module at UJI-Butler includes object detec-
tion and sign language interpretation.

2.5.1 Object Detection

Perception needs in UJI-Butler cannot be satisfied with off-
the-shelf state-of-the-art object detectors like YOLO [16].
The reason is that perception in UJI-Butler not only requires
detection of objects in the environment but also linking them
to what the human user is saying and/or asking for. In addi-
tion, objects in the environment have states that are important
to recognize for the correct execution of the tasks (e.g. to
place a tomato inside a cooking pot, the cover of the cooking
put has to be removed).
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Fig. 6 Object detection
pipeline: (a) the point cloud is
retrieved (the environment is
constrained in x,y,z), then the
largest plane is segmented; (b) a
density-based clustering is
performed; (c) calculating a
de-projection; (d) CLIP
classification by passing the text
sentences for each class and the
de-projected images after
adjusting/enlarging the object
frame; (e) the ‘object’ is chosen
to represent classes other than
the requested ones. For results
see Fig. 22, and Fig. 21

For that purpose, CLIP [17] is used. CLIP is a deep neu-
ral network model that can give a numeric measure for the
similarity between text describing an image and the image
itself. This allows grounding human descriptions in objects
in the environment and would also allow for the recogni-
tion of object states by comparing their similarity to a text
describing a certain state.

Since CLIP is not an object detector (i.e. it cannot find the
location of objects in an image), it cannot be used alone. For
this reason inUJI-Butler a perception pipelinewas developed
to first find all the objects in theworking area of the robot, and
then query these objects usingCLIP. This perception pipeline
complements the interaction experience of human users with
UJI-Butler resulting in more versatility to perceive various
situations and react accordingly. Moreover, UJI-Butler can
ask for help depending on the perceived state/situation: e.g.
it can recognize that the cooking pot is covered and it needs
to be uncovered; since currently it cannot do that on its own,
it would communicate with the human about this issue.

The object detection process at theUJI-Butler is illustrated
by Fig. 6. The object detection pipeline was designed to be
agnostic to the object class. This is a very important prop-
erty since it allows the detection of unknown objects that are
visible in the robot workspace. They can then be matched to
what the human user is describing using CLIP, thus enabling
UJI-Butler to handle new situations and learn new activities
without requiring (orminimizing) the need for learning a new
classification or detection model. The object detection steps
are explained in detail below.

2.5.2 (a) Constraining the Environment

The environment is constrained by only allowing certain
points that lie in a certain range in the x, y, and z axes. This
is achieved by first transforming all the point-cloud points

Fig. 7 The left image shows the overlayed depth image on the RGB
image before constraining the environment (i.e. adjusting the lower
and upper bounds of the x,y, and z values), the right one shows the
same overlay of the depth and RGB images but after constraining the
environment

with respect to the robot base so that everything is described
from the robot base as a reference system (RBRS), making
it independent of camera location or orientation. This helps
in deciding on the needed ranges of the axis, since the base
frame is aligned with the table frame/plane. An illustration
showing the view before and after constraining the environ-
ment is shown in Fig. 7. Note that the environment is only
constrained once (within a specific range of the x, y, and z-
axis) assuming that the robot base and the working table are
fixed in a place, while the camera canmove anywhere as long
as the table and the robot are in its field of view.

Finally, a plane segmentation algorithm is used to separate
the objects from the table plane as shown in Fig. 6(b). This
algorithm is based on RANSAC [18].

2.5.3 (b) Density Based Clustering

The second step involves Density-Based Clustering (DBC)
which is also provided by Open3D and it joins points that are
densely packed together and defines them as a single cluster.
Thus each object has one cluster of 3D points associated with
it as shown in Fig. 6(c).
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Fig. 8 Deprojected Objects to the RGB Image from the 3D Point Cloud
shown in Fig. 6(a-d)

2.5.4 (c) De-Projection

After obtaining the 3D points belonging to each object, a
de-projection step is required to get the RGB image part of
each object. This is done by applying the camera’s intrinsic
and extrinsic parameters. This step is also required for the
classification step by CLIP.

A correct de-projection is aligned with the object location
and area in the RGB image as shown in the sample results in
Fig. 8, which correspond to the inputs shown in Fig. 6 (a,d).

2.5.5 (d) Classification Using CLIP

CLIP [17] is a deep neural network that uses a transformer
architecture. Its advantage is that it was trained using self-
supervision on a very large internet dataset, and so it can
classify thousands of classes of objects. CLIP is not just a
classifier, it also tells the users how similar is a text descrip-
tion to an image. In a classification, a user can ask how similar
is the image of an unknown object to the following text “a
photo of a cup", and once a similarity value above a cer-
tain tuneable threshold is obtained, this image is classified
as a cup. The challenge is how to define a proper question to
CLIP so that it is useful in the UJI-Butler setting. If one uses
just one sentence (e.g. “a photo of a cup"), the model could
give a relatively high similarity between this sentence and an
image containing something that looks like a cup (a concave
cylindrical object) but is not exactly a cup. To deal with this
issue, an extra sentence “a photo of an object" is added,which
was found experimentally to perform well in this work. This
extra sentence made the model less certain and distributed its
probability nearly equally between the two sentences. Then,
if there is a cup in the image, the model produces a much
higher similarity with “a photo of a cup" than with “a photo
of an object".

To handle the outlier clusters which are deemed as objects
by the clustering algorithm, CLIP is asked if they belong to
the classes needed for the task, if they are unknown, or if
they are some other object (Fig. 9, left). On some occasions,
parts of the same object are clustered as separate objects (this
happens mostly when the object is transparent or reflective).
This is solved using a non-maximum suppression technique

Fig. 9 Unknown object (left), rejected duplicate detection (right)

Fig. 10 American Sign Language Alphabet (samples from the dataset)
from A to F

which removes overlapping detected objects that are lower
in confidence than the maximum threshold (Fig. 9, right).

2.5.6 Sign Language Interpretation

Sign language is not a universal method to communicate, it
has many forms, such as American Sign Language (ASL),
British Sign Language (BSL), and Australian Sign Language
(Auslan) [19]. For the UJI-Butler framework, the dataset
selected was the American Sign Language for Letters [20]
which was labeled and annotated using bounding boxes
around the gestures (signs). It has 26 classes for the English
alphabet (Fig. 10 shows samples of this dataset) and the num-
ber of images in the original dataset was 784, which was
enhancedwith extra images fromaYouTubevideowith about
250 images that explain how to produce American Sign Lan-
guage signs. These images were annotated manually [21].
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Fig. 11 Experimental Lab Setup for the UJI-Butler

YOLOv7 (You Only Look Once version 7) was used to
detect sign language for the English alphabet. YOLOv7 is
a real-time object detection, it predicts the bounding box
and classifies the objects in the image or video in real-time
[16]. YOLOv7 has outperformed other object detectors such
as YOLOR, YOLOX, Scaled-YOLOv4, and YOLOv5 [16].
YOLOv7 Tiny is a smaller version of the YOLOv7 model
that is designed to run faster and make predictions more
quickly. YOLOv7Tiny is preferred to ensure real-time object
detection and decrease the training. It uses the Leaky ReLU
(Rectified Linear Unity) activation function.

3 UJI-Butler Platforms and Experimental
Setup

3.1 Manipulation Setup and Tools

The UJI-Butler framework includes a manipulation arm
UR5e4 which has force-torque sensing integrated, and joint
torque measurements. The arm is endowed with a 3-finger
Robotiq gripper.5 An Intel-Realsense D4356 stereo camera
with infrared and laser is also included (Fig. 11 shows the
manipulation setup).

3.1.1 Robot & Environment Description

At the UJI-Butler framework, for the manipulation to be per-
formed successfully, the following goals should be met: (i)
the robots have to avoid collisions, (ii) themanipulator should
be able to plan with the tool-tip, and also (iii) be able to per-
form hand-camera calibration correctly. For these goals to be
achieved, the correct modeling of the robot’s kinematics and
the environment is essential.

4 https://www.universal-robots.com/products/UR5-robot/.
5 https://robotiq.com/products/3-finger-adaptive-robot-gripper.
6 https://www.intelrealsense.com/depth-camera-d435/.

Fig. 12 Calibration Frames. The RGB image shows the detected aruco
frame on the gripper palm, and the 3D visualization shows the URDF
setup with the overlaid point cloud and the aruco frame of the gripper in
3D. This shows the correct calibration and detection of the aruco frames

It is important to note that due to time constraints in the
development of the project, only static parts of the environ-
ment are included in the description, although some objects
(e.g., cups, coffee, or tea) are dynamic andmight change their
position. So under this constraint, usual collisions with these
objects can occur, but this does not hinder the demonstra-
tion of the project given that the robot will not collide with
well-placed objects during operation. To this end, the robot,
the robot mounting base, the gripper, and the working table
are the only objects that are included in the description. The
description is a URDF file that contains all the links, all robot
joints, and all the other fixed objects that are attached as fixed
joints and are considered parent links to the robot base.

3.1.2 Robot-Camera Calibration

After setting up the robot & environment description with
the gripper attached to the manipulator, the UJI-Butler cam-
era can detect the gripper tip by detecting an aruco7 tag on
the gripper palm area. OpenCV8 is used for the aruco detec-
tion as seen in Fig. 12. Using the URDF, the transformation
between the gripper palm and base can be calculated. Using
the aruco detection, the transformation from camera to grip-
per palm can be found. By using these two transformations,
the camera-to-base (robot base) transformation can be cal-
culated using Equation. 3.

bTc =b Tg ∗g Tc (3)

where bTc is the camera to robot base transform, bTg is the
gripper palm to robot base transform, and gTc is the camera
to gripper transform.
For the sake of simplicity, another aruco was attached to the
robot base. Thus, once the camera-to-base transformation is

7 https://chev.me/arucogen/.
8 https://opencv.org/.
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Fig. 13 Robotiq 3F Gripper in Pinch Mode

calculated, then the base aruco can be detected and its trans-
formation to the base link of the robot can be calculated. The
key here is that this transformation between the base link and
the aruco attached near the robot base is static, so it needs
to be calculated only once. So, whenever the camera-to-base
transformation is needed for any camera position or orienta-
tion, the only thing required is to detect this aruco attached
to the base. This calculation is obtained using Equation. 4.

bTc =b Tba ∗ba Tc (4)

where bTc is the camera to robot base transform, bTba is the
base aruco to robot base transform, and baTc is the camera
to base aruco transform.

3.1.3 Motion Planning

The UJI-Butler framework uses Moveit!9 for motion plan-
ning, in particular, it uses Cartesian path planning since there
are Cartesian constraints during robot motion. For example,
when carrying a cup, it must always stay in the upright posi-
tion so that, if it contains a drink, it does not spill it.

3.1.4 Gripping

For almost all UJI-Butler gripping tasks a pinch grip is used
(Fig. 13), but with different orientations depending on the
object location from the base and also on the object height.
Note that short objects can make the gripper collide with
the table so a pitch shift is needed to avoid collisions. For
gripping cups, a better option is to use a horizontal power
grip instead, since it provides more support when the cup is
filled with a drink.

9 https://moveit.ros.org/.

Fig. 14 Navigation stack on ROS1 working at UJI-lab

3.2 Multirobot Platforms: Turtlebot2 (Kobuki)
Collaborating with UR5e in a Delivery Service

While the UR5e robot manipulator is preparing the bever-
age/meal, the Turtlebot2 waits for the drink to be served on
top of it. After that, the robot goes to a predefined location
on the map where the beverage/meal should be delivered.

3.2.1 Navigation and SLAM

The Turtlebot2 uses GMapping [22, 23] to build the map of
the laboratory, so that this map is used later for navigation.
Astra RGB-D camera was used in this context and only the
depth topic was used in GMapping acting as a lidar. The map
shown in Fig. 14 was used for robot navigation at the UJI-lab
scenario.

3.2.2 Visual Servoing

Visual servoing is used for the Turtlebot tomove to a location
near the manipulator, so it can receive the beverage on top
of it. The visual servoing is carried out using a single Aruco
marker. The interaction matrix is calculated along with the
error, which is pixel error, and the difference in x, y, and z.
This error is converted into velocities, which are passed to the
robot so that it can move to this defined location. The robot
was able to go near a place for its ultimate goal but not with
100% accuracy. This did not hinder the UR5e manipulator
from carrying out the mission, so further improvements in
the visual servoing were not required at the moment. The
Aruco marker was placed on the UR5e’s base as shown in
Fig. 15.

3.2.3 Autonomous Docking

The mobile robot can dock using three infrared (IR) sensors.
For that, a predefined location on the map near the docking
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Fig. 15 Turtlebot2 (Kobuki) performing visual servoing on Aruco
marker on the base of the UR5e robot, while the UR5e robot is placing
the drink on top of the Turtlebot

Fig. 16 Turtlebot2 (Kobuki) charging at dock station

station is needed, as the IR sensors have limited range. Fig-
ure 16 shows the Turtlebot2 (Kobuki) in the docking station.

4 Experimentation

TheUJI-Butler frameworkwas tested in the lab using aUR5e
manipulator arm, which has integrated force-torque sensing,
and joint torque measurements. An Intel-Realsense D43510

camera was also used, which is a stereo camera coupled with
infrared and laser distance sensors. A 3-finger Robotiq grip-
per11 was also part of the UJI-Butler framework. Figure 11
shows the setup.

10 https://www.intelrealsense.com/depth-camera-d435/.
11 https://robotiq.com/products/3-finger-adaptive-robot-gripper.

4.1 Results on Reasoning Using KnowRob & GPT-3

The UJI-Butler receives information or requests from the
user. Given this information on one activity from the user,
one can divide the type of information into three categories:

• Request: a request from the user expressed in language
e.g. asking UJI-Butler to make a meal or a drink.

• Description: Language description of the steps required
to perform an activity.

• Description & Request: A combination of both. This is
done using the following template “Request; To do it;
Description".

Given a request for an activity that the UJI-Butler does
not recognize, UJI-Butler will ask the user to describe the
steps required to perform the activity in natural language.
It would have been better if UJI-Butler with the power of
LLMs like GPT-3would be able to perform the activity given
only the request without the need to ask the human user for
further information. However, through experimentation, it
was found that providing GPT-3 with only the request results
in a much lower accuracy of the generated steps. For this
reason, it was decided to compare the results given the two
types of information and whether experience could improve
or mitigate these issues. In light of that, a multi-dimension
comparison of the possible information and the application
of reasoning and experience was conducted as seen in Fig. 18
and Table 1.

Furthermore, when having multiple examples to use from
the KB, one would think that using as many examples as
the prompt can handle would yield the best results. While
experimenting with GPT prompts, it was observed that, the
more concise and relevant the prompt, the more accurate and
predictable the result. The point is not only how large and
varied the prompt is, but also how concise it is 12. To put this
idea to the test, three more prompt design categories were
added for comparison:

• Fixed Prompt (Baseline): using a fixed prompt that is
human-designed and does not change at all.

• Augmented Prompt: using a prompt that gets aug-
mented with new examples obtained from new knowl-
edge of any activity.

• Type Filtered Prompt: This could be either fixed or aug-
mented, but with the addition that the prompt contains
only activity examples that belong to the same type as
the requested activity.

12 “Expressing what needs to be said without unnecessary words" -
https://dictionary.cambridge.org/dictionary/english/concise.
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Fig. 17 Pouring to cooking pot from teaching that was performed on a
cup, sequence from left to right, the leftmost image being the first way-
point registered during teaching, and the rightmost image is the second

waypoint, and the middle image is an example point from the generated
plan by the motion planner from waypoint 1 to waypoint 2

Fig. 18 Results regarding the different prompts and reasoning options
used: average Fuzzy Score for each test on the Test Set after training
using the Train Set and 24 configurations resulting from combining
description-requests inputs with the type of prompts. In vertical, the
description-requests communication categories: Description&Request
(in orange), Description (in cyan), Request (in magenta), Description

& Request filtered by type Meal/Drink (in light orange), Description
filtered by type Meal/Drink (in light cyan), Request filtered by type
Meal/Drink (in pink). For each category, lines connect the averageFuzzy
Scores obtained as a result of the tests using 4 kinds of prompts: Aug-
mented Prompt &Reasoning (in dark blue), Fixed Prompt &Reasoning
(in red), Augmented Prompt (in green) and Fixed Prompt (in dark red)

Figure 18 shows the experimentation results using differ-
ent configurations of prompts (using GPT-3 with a Knowl-
edge base) and reasoning (with a human in the loop). A total
of 24 configurations are tested which result from 6 possi-
ble input communication situations to describe each activity
(Description & Request, Description, Request, Description
& Request filtered by type Meal/Drink, Description filtered
by type Meal/Drink, Request filtered by type Meal/Drink)
and 4 possible prompt features: Augmented Prompt as Expe-
rience is Gainedwith Reasoning& human in the Loop, Fixed
PromptwithReasoning,AugmentedPromptwith noReason-
ing, and Fixed Prompt with no benefit of Experience). The
Train Set consists of 16 tests composed of 8 activities ask-
ing for meals and 8 activities asking for drinks. And the Test

Set is composed of 16 activities, equally distributed between
meals and drinks.

Note that in all categories, the Augmented prompts (dark
blue andgreen lines) are performingbetter thanfixedprompts
(light anddark red lines).And also note that themore success-
ful communication results are obtained when a Description
is provided, either alone or together with a request (vertical
columns 1, 2, 4, 5 in Fig. 18). The low successful results are
obtained when a request is provided without a description
(vertical columns 3 and 6 in Fig. 18).

From the results note that when one comparesDescription
& Request versus Description and versus Request indepen-
dent of whether type filtration is used or not, one finds that
Description is better by at least 4% when the GPT prompt is
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Table 1 Fuzzy scores –Mean (μ) & Standard deviation (σ )– for each
of the 24 configurations across all 16 tests on the Test Set, where each
one of the 16 tests is done after each new activity encountered from the

Train Set. The coloring of the rows and columns headings’ are the same
as in Fig. 18. The three topμ values and the top averages are highlighted
in bold, and the three worst values are highlighted in italic

Prompts Description & request Description Request X
Not F. Type F. Not F. Type F. Not F. Type F.
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Augmented & reasoning 90.59 2.05 88.91 3.14 90.13 1.54 92.39 1.32 74.9 2.59 75.34 2.16 85.36 2.13

Augmented 90.23 2.02 88.4 3.13 89.94 1.48 91.89 1.31 74.96 2.61 74.84 2.24 85.04 2.13

Fixed & reasoning 83.51 1.82 80.64 1.34 87.89 0.59 90.14 0.24 71.71 1.01 67.55 0.93 80.24 0.99

Fixed (baseline) 82.7 1.69 77.97 1.25 87.41 0.41 89.37 0.03 71.3 0.99 67.65 0.9 79.4 0.88

X 86.74 1.9 83.98 2.22 88.84 1.0 90.95 0.72 73.22 1.8 71.34 1.56 - -

fixed (i.e. when the prompt does not increase or change with
experience) compared to Description & Request and by 20%
compared to Request which shows that

Description is superior. Thus, extra unnecessary informa-
tion gives a disadvantage by increasing the ambiguity of the
task that makes the results of GPT unstable, which is clear
when the standard deviation of Description & Request is
compared to that of Description, which is also very clear
from the graphs shown in Fig. 18, and from the averaged
values of the standard deviation shown in Table 1.

The activity type can be used to further reduce the prompt
size while keeping only the most relevant examples. This
technique seems to improve the results when using only the
Description of the activity (see Table 1 column Descrip-
tion). This suggests that a selective in-context approach to
the available examples yields better results than considering
all examples.

Note that GPT cannot make use of the activity type (even
when given explicitly) as efficiently as the knowledge base.
The knowledge base inherently distinguishes between dif-
ferent types, and it can infer where to look, but GPT cannot
do that. Thus, improving GPT results by only giving exam-
ples of the requested type helps in confining its results to that
type –although this does not enforce it on GPT– so it greatly
decreases the probability of GPT giving results for a different
type of activity.

A crucial advantage to UJI-Butler compared to the tra-
ditional RAG-based systems is closed-loop reasoning, and
human-in-the-loop, which are the last steps where the GPT
output is verified and corrected against known facts. If a mis-
take correction can be done from the knowledge base, it is
done, if not, and it is recognized as amistake, thenUJI-Butler
asks the human user to correct it. This allows UJI-Butler to
make use of the power of LLMs without requiring them to
only get data from the knowledge base, but also it can gen-
erate new knowledge and the reliability will come from the
fact-checking step which ensures that the results follow the
logical rules defined. Almost all the results shown in Fig. 18
and in Table 1 show that reasoning gives a better result, also it

is important to note that the reasoner makes use of the type of
activity as well in order to detect mistakes in container type.
Example corrections of the results are shown in Table 2.

Another important measure is the number of human inter-
actions (verbal or physical) needed to learn a new task, this
could be a feasible measure for the intuitiveness of the inter-
action. Table 3 shows the mean and standard deviation of
the number of human interventions on the three types of
input (Description &Request, Description only, and Request
Only) and two types of prompts (Augmented Prompt of pre-
vious relevant experience vs Fixed Prompt). The results in
Table 3 show that augmenting the prompt with experience
has approximately 8 times lower mean number of human
interventions compared to using a fixed prompt in the case
where the taskDescription is used as input (which was found
to be the best type of input for better accuracy), and a 130
times lower as well in case of Description & Request. Mean-
while, in the case of Request only, the interventions are less
in the augmented prompt compared to the fixed prompt. This
is believed to be so because the Request only input of new
activities does not contain the information needed to perform
the activity, and thus augmenting the prompt with this type
of input

increases the uncertainty of the LLM –as seen from the
high standard deviation marked in red in Table 3– and thus
worsens the results, requiring more human intervention.

4.1.1 Scalability of the Knowledge Base and GPT-3
Combined System

The knowledge base in UJI-Butler is used for storing knowl-
edge that is gained from experience. It is not constrained by
the examples provided so far in this work. The other usage
of the knowledge base is for checking the adherence of the
results generated by the LLM to the logical rules by applying
reasoning to them. These rules are currently human-informed
or human-designed and can be further enhanced by adding
more rules as required for new situations, whichwould inher-
ently improve the system. Future work could, for example,
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Table 2 Example corrections of GPT-3 output by the reasoning system

Steps description Output Correction
Transport (milk, mug) Pour

Pour milk into a mug Container (mug) -

Transport (chocolate-powder, bowl) Cup

You have to use chocolate powder, and milk Pour (milk, bowl) Cup

Container (bowl) Cup

focus on the ability to extract these rules from the knowl-
edge contained in LLMs and then verify their correctness
manually.

Moreover, the knowledge acquired from new activities
can be semantic knowledge like in the case of the steps for
performing an activity. This type of knowledge is also not
constrained by the type of activity, and so it should be able
to scale with more complex activities.

The scalability of the LLM used in UJI-Butler can be of
two types, first by having more experience the system will
have better andmore relevant prompts to new situations, thus
improving the accuracy and usage of the system. The second
is by having a model more powerful than GPT-3 (note that
the LLM used is not a fixed part of the system and it can be
replaced in the future.

The knowledge base used in UJI-Butler is not robot-
dependent. The execution steps are activity specific, not
platform specific. Thus,UJI-Butler knowledge and reasoning
systemcan be transferredwith ease to another robot platform.

4.2 Results on Skill Teaching

Figure 17 shows the robot pouring from a bottle to a cooking
pot. It is interesting to note that this was not taught on a cook-
ing pot, andUJI-Butlerwas aware that it had not poured into a
cooking pot before. In consequence, it asked the userwhether
it was similar to one of the skills it has already learnt. The
user answered with the name of the skill that it was similar
to, which was: "pouring from bottle to cup". So, the UJI-
Butler executed the operation successfully. This was possible
because the relation between the robot pose to the centroid of
the tool objects was stored. Since the pouring action is car-
ried out with respect to the center of the object that is being
poured into, it generalized well to this case.

4.2.1 Scalability of Skill Teaching

The knowledge gained and stored in the knowledge base dur-
ing skill teaching is numerical data, in particular poses of the
key points recorded during the human-physical interaction.
If a task requires that the number of key points increase sig-
nificantly, this would be cumbersome for the human user,
and would make no sense to store such information in the

knowledge base. This is the case for activities that require a
specific motion profile instead of specific key points. A miti-
gation of this issue would be the pre-definition of the motion
profiles as a possible skill that could be performed by the
robot, and then just requiring the start and end key points
of such motions in different situations. Then, only these key
points need to be stored in the knowledge base.

Obviously, the method employed in this work for skill
teaching does not target dexterous manipulation. Instead, it
deals with the variations of some key points depending on
the context of the task. Moreover, this system depends on the
existence of pre-defined procedures for accomplishing the
dexterous part of the manipulation while using these proce-
dures correctly in the different contexts or situations that are
extracted from the knowledge base.

4.3 Results on Object Detection

An extra robustness to the vision pipeline implemented here
is the independence of the different orientations of the objects
(or the camera) when segmenting objects that are on the table
(see Fig. 19). However, a bottleneck comes from the classi-
fication of CLIP which is actually affected sometimes by the
orientation of objects.

Figure 20 shows the results of asking CLIP to classify
a cooking pot with lid and another without a lid. Note that
it was able to correctly classify it after some tuning of the
similarity thresholds.

Figure 21 shows our experimentation when different users
named the same object differently (e.g. the cooking pot or the
cooking bowl). TheUJI-Butler frameworkwas able to handle
that case using CLIP.

Figure 22 shows the results of the object detection pipeline
(Fig. 6).

The UJI-Butler perception was tested against 7 classes
of objects (cup, bottle, tea packet, tomato, cooking pot, lid,
bowl), still, the system shows the ability to be versatile to
many more classes since the tested classes were not prede-
fined in any way.

The system accuracy is affected by the object size since
small objects tend to have fewer points in the point cloud and
if they are smaller than a certain threshold they will be con-
sidered noise. Also, transparent objects cannot be detected
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Table 3 Mean (μ) & Standard
deviation (σ ) Human
Intervention across all 16 tests
on the Test Set. The lower the
mean intervention value the
better, also for the standard
deviation. The coloring of the
rows and columns headings’ are
the same as in Fig. 18, All of the
inputs are type filtered and have
a reasoning correction step
performed on the results

Prompts Description & request Description Request X

μ σ μ σ μ σ μ σ

Augmented 0.44 0.61 0.12 0.33 1.06 1.03 0.54 0.66

Fixed 3.56 0.61 1.0 0.0 0.31 0.46 1.62 0.36

X 2.0 0.61 0.56 0.16 0.68 0.74 – –

Fig. 19 Object detection
pipeline working well with
different camera orientations

Fig. 20 Cooking bot with the
lid on (left), cooking bot with
the lid off (right)

very well because they affect the depth image used to gen-
erate the point cloud. A better option for transparent objects
is the use of the RGB image also in the detection phase and
not only in the recognition phase.

4.4 Results on Sign Language Interpretation

The YOLOv7 model was tested on UJI-Butler, where the
robot was instructed by a human to prepare either tea or
coffee. Figure 23 depicts an operator using sign language to
instruct the robot to prepare a cup of tea.

The YOLOv7 algorithm demonstrated good performance
on an American Sign Language (ASL) dataset, with an over-
all accuracy of approximately 60%. When the model was
applied to a real camera feed, the accuracy decreased slightly
but remained relatively high. Figure 24 shows that the model
achieved an accuracy of 61% on the “W" letter from the
dataset and 42% on the camera feed.

The lower accuracy on the real camera feed might be due
to differences in lighting conditions between the dataset and
the real camera feed. In particular, the lighting in the real

camera feed was lower, which may have affected the model’s
performance.

5 RelatedWork

This section explains the contribution of the UJI-Butler
framework by differentiating it from other works in the liter-
ature.

A number of research works have dealt with the chal-
lenge of a robot butler before [24–27]. A humanoid butler
with a wheeled mobile base was located inside a smart home
with sensors and smart appliances [24]. It could interact with
human users by voice as part of its human-robot interface
but without instant learning from the interaction with the
user. Care-O-bot [25] is a robot butler with one hand that
is designed to do tasks like Fetch-and-Carry for home and
elderly assistance, one of its features is the ability to inter-
act using speech. In their future research, they mentioned
some interaction capabilities that the more advanced robot
butlers should have, two of which are present in UJI-Butler:
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Fig. 21 CLIP can correctly classify the same object when this object
could have different names by which it could be classified

Fig. 22 CLIP Detected Objects, with overlapped points (left), without
overlapped points (right)

Fig. 23 An operator using sign language to instruct the UJI-Butler to
prepare a cup of tea

(1) the ability to learn instantly during interaction by making
use of episodic or case-based learning techniques (one-shot
learning), and (2) the combination of the state-of-the-art lan-
guage models with a conceptual framework/ontology that
is grounded in the given domain of cognitive behavior. M-
Hubo [26] is a humanoid butler with a wheeled base, it could
perform tasks like fetching and serving drinks, but it lacks
user interaction features and thus cannot learn from users. E-
Butler [27] is amobile robot without amanipulator that could
only deliver amenities in hotels, it was connected to a local
database from which it received new delivery orders from
users. The users could only give orders to E-Butler using a
smartphone application designed to communicate with the
database, so there is no direct interaction with the user.

With the advent of big data and deep learning, purely deep
learning based approaches have shown promise in language
understanding and robotic task execution like in SayCan [28].
But, they can face limitations in real-world robotics applica-
tions. Deep learning models often lack interpretability and

Fig. 24 The Left image shows the inference on the letter "W" from
the dataset, and the right image shows inference on real camera feed
showing a good detection of the "W" letter

reasoning capabilities, making it difficult to understand their
decision-making process and ensure safety in dynamic envi-
ronments. Additionally, their reliance on large datasets can
lead to data dependency and the potential for hallucinations.

Our proposed system addresses these concerns by com-
bining symbolic AI techniques with deep learning. The
knowledge base provides context and allows for explicit rea-
soning about actions, improving interpretability and safety.
This also helps reduce hallucinations by grounding the
robot’s outputs in the real world. Furthermore, our approach
facilitates user interaction for robot skill acquisition, some-
thing not directly addressed by these approaches as they lack
flexibility and require large amounts of data to accommodate
changes.

5.1 FromNatural Language to Knowledge Base and
Vice Versa

Language models can act as an open knowledge base using
their implicit knowledge gained from pre-training on tril-
lions of words [29]. As it was shown by Floridi and Chiriatti
[30], GPT-3 can be unreliable when trying to answer logi-
cal questions, thus users cannot depend on it when it comes
to safety-critical applications like physical actions performed
by robots.However, this issue can be overcomewhen relevant
context and examples are used in its prompt. Thus UJI-Butler
combinesKnowRob [9]withGPT-3 [10] to offer reliable, and
in-context results.

A similar approach was recently carried out by Li et al.
[31] which used general examples in GPT-3 prompt for the
model to learn from, in contrast to UJI-Butler framework,
which performs an extra similarity search on the ontology
knowledge to choose the most relevant activities to that
requested by the user. For example, if the request is a drink,
UJI-Butler framework adds other activities related to prepar-
ing drinks, and thus the context is richer than adding only
generic activities.
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In UJI-Butler, knowledge of new activities is added to
the knowledge base only after correct execution and human
verification which is not present in any of the works found in
the literature.Moreover, the use of LLMs in UJI-Butler is not
limited to the creation of knowledge, but they are combined
with the knowledge base to offer a new combined system that
benefits from the advantages of both, similarly to the concept
described in [32], while adding logical reasoning and human
in the loop to ensure reliability and safety.

5.2 Human included in the learning Loop

Adding the human in the loop increases the reliability of the
learning process and adds trust and transparency to the usage
of statistical models in real life. The survey by Wu et al. [33]
shows human-in-the-loop approaches for different domains
in machine learning –including natural language processing
and computer vision– by training prediction models like a
neural network. Similarly, facts are added to the knowledge
base at UJI-Butler, which can be used instantly after being
learned. As it was successfully shown before by Liu et al.
[34], UJI-Butler stores data for off-line machine learning
and fine-tuning learningmodels, which allows further testing
without the need for hardware.

UJI-Butler guarantees the relevance of the new informa-
tion added to its knowledge base by asking a human to
confirm or correct the instructions generated by GPT-3 to
perform the task, given the partial state of the environment
retrieved from the robot sensors and perception models. This
new information enlarges the robot knowledge base, enables
GPT-3 to produce better prompts, and add the possibility to
do offline fine-tuning on newly collected data.

5.3 HRI using Hand gestures

To increase the inclusivity and accessibility of our UJI-
Butler, the use of hand gestures in human-robot interaction
was included. Hand gestures have been used in robotics
in different applications, such as to allow non-expert users
to interact with the robots[35], to teach sign language to
hearing-impaired children [36], to instruct and control robots
[37], in underwater scenarios when a diver needs to commu-
nicate with an underwater robot [38, 39], etc. Hand gestures
provide a flexible and reliable method of communicating
especially if conventional speaking methods are impossible.

Regarding the state-of-the-art inAmerican SignLanguage
(ASL)which is used in this paper: [40–42] have a better over-
all accuracy but depth images are utilized, which we don’t
use in our case. Also, the main reason for not using depth
cameras is that the framework is aimed at using webcams in
the future for better accessibility for most users. Koller et al.
used the iterative EM approach and achieved 62.8% overall

recognition accuracy for 3000 images dataset, while we are
using only 720 images [43].

6 Conclusion

This paper presents the UJI-Butler framework, a novel
multi-robot system that, unlike previous systems, integrates
large language models (LLM) with a knowledge base akin
to RAG-based systems, while imposing logical reasoning
on LLM-generated results. This framework allows con-
tinual online learning supported by intuitive human-robot
multi-modal interaction through verbal communication, sign
language, hand gestures, and physical interactivity. This
interaction yields new knowledge that is stored, enhancing
in this way the predictions of the LLM. The system can
successfully perform user-taught physical skills and gener-
alize them to varying object sizes and locations. Importantly,
this combination of symbolic and non-symbolic AI accel-
erates the learning process with experience, improving the
transparency and explicability of robot abilities and mis-
takes due to the explicit representation of knowledge. For
instance, UJI-Butler can ask the human user about missing
information, translating natural language into logical repre-
sentations, which can be used to carry out even new tasks that
are added to its knowledge base. Seamless transferability is
also enabled by the explicit nature of the acquired knowledge.

Through our investigation, we have identified several lim-
itations inherent in the current implementation of UJI-Butler,
which we outline below:

1. The matching method employed for activity retrieval
relies on string matching, without proper contextual
understanding. Although BERT embeddings offer con-
textualization, they suffer from nondeterminism and
higher false positives.

2. Current activity search queries in the knowledge base
focus on different aspects of the activity separately,
leading to not fully complete activity descriptions and
potentially reduced accuracy in matching.

3. The utilization of Lead-Through programming for task
learning,while effective for basic tasks, struggleswith the
complexity of tasks requiring detailed object perception.

4. Language interpretation accuracy is contingent upon the
efficacy of languagemodels, a field rapidly evolvingwith
the introduction of newer, more accurate models.

5. The perception module, reliant on CLIP for classifica-
tion and point-cloud processing for object segmentation,
faces challenges in accurately detecting small, distant, or
occluded objects, necessitating user notification to miti-
gate ambiguous situations.
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Despite these limitations, UJI-Butler represents a sig-
nificant step forward in interactive and learning robotic
systems, offering a flexible framework for further develop-
ment and improvement. Futureworkwill focus on addressing
these limitations through advancements in activity matching,
task learning, language interpretation, and integration with
perception capabilities, ultimately enhancing UJI-Butler’s
effectiveness and applicability in real-world scenarios. Fur-
thermore, possible future work would be to:

(i) develop a strongermerge ofKnowRoband its reasoning
with the outputs of LLMs like GPT-3 which will enhance the
robustness and trust in the outputs (i.e. improve and increase
usage of fact-checking capabilities); (ii) improve the activity
retrieval or search mechanism by finding a more context-
aware approach while keeping the results deterministic and
safe. (iii) test the P-tuning method for fine-tuning offline
learning after data collection to improve GPT-3 model [34];
(iv) test conversational language models like Chat-GPT; (v)
Extend the objects’ description in KnowRob (adding col-
ors and parts, for example) to enhance the ability of GPT-3
to predict new activity steps from just the components and
their descriptions; (vi) Add the ability to get data from the
internet (not just the knowledge base) would be very useful
in zero-shot predictions, and in cases when the UJI-Butler
framework cannot ask a human; (vii) include semantic map-
ping and spatial reasoning, that is, the robot will be given
directions such as “go to the delivery location near to the ele-
vator, where you will find a fire extinguisher and a trash can"
and the delivery robot will follow the instructions or will ask
for more features in case of multiple occurrences.

Appendix A GPT-3

Results of an example prompt are shown in Fig. 25 which
also shows the prediction for a new input given the prompt
with similar inputs.

Videos

Turtlebot2 Autonomous docking
Exploring navigation capabilities with Nav2 on ROS2 and
Turtlebot3 at the UJI Multi-Robots Lab
Teaching The Robot Tomato Juice Making
After Teaching the Robot Tomato Juice
Full Demo of UJI-Butler
UJI-Butler Playlist

Github Repos

Github Code Link

Fig. 25 GPT-3 ontology data to commands
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