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MV3D: Multi-View 3D Reconstruction of Objects
using Forward-looking Sonar

Nael Jaber!, Bilal Wehbe!, Leif Christensen!, and Frank Kirchner!

Abstract—This work proposes a method for learning features
from a batch of 2D sonar images to predict a multi-view point-
cloud for achieving a dense 3D-reconstruction. In comparison to
vision-based sensors, acoustics are considered a reliable sensing
modality in underwater environments. The output of sonars is a
2D image which is unable to represent the scanned scene in all
three dimensions. Estimation of this missing information, known
as the elevation angle, is the key to performing 3d-reconstruction
from acoustic images. One of the approaches is to predict a depth-
map from the 2D sonar image, and transforming it into a point-
cloud. In this paper, this idea is further improved into learning
features from a batch of 2D acoustic images and predicting
multiple depthmaps of the scanned object which covers it from
different viewpoints. For training the deep learning model, and
due to the lack of datasets from real environments, data was
generated synthetically. For reducing the simulation-to-real gap,
a Cycle-GAN was trained on real images for transferring the real-
istic style into the synthetically generated images. The conducted
experiments in simulation showed that the proposed method is
able to perform dense 3D reconstruction. The approach was then
further tested in a real environment using an underwater vehicle,
which accurately 3d-reconstructed the scanned objects achieving
an average chamfer distance error of 0.06 meters when compared
to a laser-scanned ground-truth.

Index Terms—Marine Robotics; Deep Learning Methods; Deep
Learning for Visual Perception

I. INTRODUCTION

NDERWATER exploration has always been a challeng-

ing task for humans, whether it is a search and rescue
mission, investigation of a new area, marine-life monitoring,
and many others. AUVs being able to operate for long periods
of time, help in covering large areas and in reaching inaccessi-
ble spots. They have different designs, and could have several
sensors mounted onto them. This makes these vehicles suitable
for various underwater applications such as seabed mapping
and exploration, maintaining offshore infrastructure, marine
life monitoring, and many others. Despite the aforementioned
advantages, the underwater domain is still very challenging
even for AUVs. Low visibility conditions and turbid currents
limit the use of visual cameras to very short ranges, and even
eliminates the use of them in some cases [|]. Furthermore,
high attenuation of signals underwater obstruct the use of
regular global positioning systems (GPS) and requires an
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acoustic-based positioning alternative sensors such as long-
baseline (LBL) and ultra-short-baseline (USBL).

Sonars are often considered the most suitable sensing
modality for underwater domains [2]. Sonars are the reflection
of acoustic signals bouncing back from scanned objects. Re-
lying on acoustics, sonars are able to operate in turbid waters,
in deep and dark areas, and to provide accurate measurements
(up to millimeter-level for close-ranged sonars). Although it is
recognized among the best sources of information underwater,
their output is a 2D-acoustic image which retrieves the azimuth
angle and the measured range of a each emitted beam. The
third dimension, known as the elevation angle, is lost which
makes the use of 2D sonars for mapping and 3D reconstruction
a very challenging task.

Performing 3D reconstruction from a 2D sonar is double-
sided challenge. First, sonars retrieve only range and beam
angle, while the elevation angle is lost. The second challenge
is represented by the non-bijective 2D-3D correspondence,
which means that a point in a sonar image could correspond
to multiple points in the 3D world. Thus, research in this
area was clearly focused on solving these tasks. Some of the
approaches trying to estimate/recover this elevation angle are
physics-based, others are geometry-based, and recently some
learning-based methods are emerging [3]-[5].

In this work, a machine learning model is set to learn
features from a batch of 2D-sonar images. The output of
the model are several depthmaps generated from different
viewpoints, which are then transformed into the world frame
creating a complete 3D-reconstruction of the scanned object.
The contributions of this paper are as follows:

o We propose the learning of features from a batch of 2D

sonar images.

e A multi-view output is introduced to predict a more
complete shape of the scanned object.

« A dataset which consists of various geometric objects was
generated synthetically to train the proposed system.

o Results of the proposed model on real data showed ac-
curate 3D reconstruction, being trained on synthetic data
solely. The implementation of the network and sample
from the generated dataset are publicly available: MV3D
(https://zenodo.org/records/15797936).

II. RELATED WORK

The loss of elevation angle by the acoustic sensors have
pushed researchers to estimate this missing information using
various approaches. A line of work performed sensor fusion
of two sensors in a stereo-acoustic configuration [6]-[9], or
an imaging and a profiling sensor [10]-[13] as a way of
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Fig. 1. A schematic showing the proposed deep learning model. The input of the encoder-decoder network are batches of 24 acoustic images, and the outputs
are eight depthmaps. Transformation of the outputted depthmaps into the world frame creates a complete pointcloud.

retrieving the elevation angle. In this work, only one forward-
looking sonar (FLS) is utilized. Westman et al. [14] aimed
to reconstruct particular 3D surface points observed by an
imaging sonar. However, this method restricts the vehicle’s
motion in a way that it needs a view ray perpendicular to the
surface at each surface point, which means that this method
needs numerous images to be collected from certain view
points.

In their work, Aykin et al. [15], [16] rely on object edges
and casted shadows in order to estimate the elevation angle
of each pixel. Despite the assumptions, this method requires
objects to be lying on the seabed. Westman et al. [17] later
improved the idea and was able to eliminate the seafloor
assumption. However, These methods ignore the non-bijective
2D-3D correspondence problem in sonars by estimate an
elevation angle for each pixel.

Another line of work have proposed several volumetric
methods [18], [19]. Wang et al. [20] proposed the idea of
updating the occupancy in a voxel grid by introducing an
inverse sonar sensor model. Later they used graph optimization
as a way for aligning local sub-maps in order to minimize
errors in pose estimates [21]. In comparison to space carving
methods, these approaches can be more robust [15], [22], as
they consider each voxel solely. The most recent volumetric
method is the work done by [23], which addressed the el-
evation angle problem by refining an an occupancy grid by
rendering echo probabilities. Although the proposed method
showed promising results in simulation, real experiments were
conducted in a controlled environment.

More recently, learning-based methods were proposed to
resolve the elevation ambiguity. Arnold et al. [24] propose
training a CNN to predict the signed distance and direction to
the nearest surface for each cell in a 3D grid. However, the
method requires ground truth Truncated Signed Distance Field
(TSDF) information which can be difficult to obtain. DeBortoli
et al. [3] proposed a self-supervised training procedure to
fine-tune a Convolutional Neural Network (CNN) trained on
simulated data with ground truth elevation information. Wang
et al. [4] proposed a deep network (A2FNet) to transfer the
acoustic view to a pseudo frontal view which was shown
to help with estimating the elevation angle. However, these
methods are limited to simple geometries or require collecting
a larger dataset of real elevation data. In further work, Wang
et al. [5] proposed the learning of pseudo front depth from 2-3
multi-acoustic-viewpoints following an elevation plane sweep-

ing method. This method relies on the rotation of the FLS in
the roll direction which requires the sensor to be stationary.
Their work was tested in a real experiment after collecting
and training their model on real data. In previous work [25],
the use of conditional-GANs was proposed for transforming
acoustic images into depth images for 3D reconstruction. This
approach achieved accurate reconstruction results when tested
in real experiments after being solely trained on simulated
data. However, this method learns features from single acoustic
images and predicts only one corresponding depthmap. One
of the most recent methods is the work done by [26] which
performs surface reconstruction from acoustic images, and
their approach is to model the object geometry as a neural
implicit function. This method requires capturing a lot of
acoustic images of the target object by scanning it from several
views to be able to reconstruct, unlike this work which learns
features from only a small batch of images captured from a
linear scan.

Overall, the work proposed in this paper builds on existing
research adopting the methodology of predicting a depthmap
from an acoustic image as a way of estimating the elevation
angle, with an improvement in both feature learning and
depthmap prediction. This approach is different from the
existing line of work relying solely on shadow analysis for
the estimation of the missing elevation angle. These methods
require various predefined factors and field assumptions, and
of course prominent shadow highlights to work; while this
work utilizes shadow variation as an extra feature for re-
construction and requires considerably less field assumptions.
Volumetric methods relying on filling volumetric grids with
possible elevation angles using different approaches are also
different than the proposed method of this paper, as most of
them require scanning objects from all sides (considerably
more viewpoints) with respect to straightforward linear scan
in this paper, which makes the proposed method easier to
implement in real-world scenarios.

III. PROPOSED METHOD

In this work, we propose a machine learning model which
learns features from a batch of acoustic images and predicts
multi-view depth images. Extracting features from sonar im-
ages has always been a challenge for the traditional computer
vision methods, as objects appear very different than in RGB
images. Basic features such as edges, corners, contours, etc.
are in many cases very hard to identify and extract [27].
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However, one of the main features to detect in acoustic images
are the shadows cast behind the scanned objects generated
from the blockage of the acoustic beams.

After learning the features of the scanned objects from
the batch of images, the model predicts depth images from
different views. The aim of this multi-view output is to
reconstruct a more dense and complete shape of the scanned
object. Figure 1 shows a schematic of the proposed system.

Auv Sonar Scans Depth Cameras
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Fig. 2. Schematic illustrating the data capturing process. (a) corresponds to
a top view showing the AUV approaching the object over a distance while
capturing a batch of acoustic images. At the end of this displacement, eight
depth cameras evenly distributed over the span of 180 degrees around the
object are placed. (b) shows the capturing process from a side view for better
visualization. (c) shows the chosen approach trajectories for capturing data
for each object from all sides.
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Fig. 3. 3D models of the dataset objects. The first row shows four different
edged objects: cube, rectangle, trapezoidal prism, and a triangular prism. The
second row shows the four curved objects: sphere, semi-sphere, cylinder, and
a pipe. The third row shows objects of more compelx geometries: a U-shape,
L-shape, stairs, tire, and a boat.

In this work, Stonefish [28], which is an underwater simula-
tor made for marine community, was used. It has the ability to
simulate underwater sensor and actuators with real parameters,
and render realistic environments by giving the user control
in defining various environment and object characteristics. For
simulating the multi-beam acoustic images, Stonefish embeds
a GPU-based sonar simulator which is described in [28]. The
use of Stonefish was maintained primarily due to the foun-
dation built on prior work [25], which ensured compatibility
and consistency in our simulation pipeline. However, other
sonar simulation engines, such as HoloOcean [29], are actively
emerging and offer promising capabilities in rendering realistic
sonar images.

The simulation environment consists of a forward-looking
sonar (FLS) tilted at an angle of 30 degrees, and eight depth
cameras evenly distributed to cover a span of 180 degrees
of the object being scanned. For each run, 24 sonar images

are captured by linearly approaching the scanned object by a
distance of one meter, which given the chosen sonar configu-
ration it could cover the scanned object. This linear trajectory
scan was chosen due to its ease of implementation and its
practicality for later mitigation in real-world experiments.
Figure 2 illustrates the data capturing process. The FLS was
defined in the simulation with the same specifications as a real
Oculus Md1200d when operating in its high frequency mode.
Its minimum and maximum ranges are set to 0.1 and 10 meters
respectively, its horizontal aperture is set to 60 degrees, vertical
aperture to 12 degrees, and the number of beams is set to 512.

Data was captured for 13 different geometric objects:
cube, rectangle, trapezoidal prism, triangular prism, sphere,
semi-sphere, cylinder, pipe, U-shaped block, L-shaped block,
stairs, tire, and a boat. As shown in Figure 3, these objects
were categorized into three datasets based on their geometric
properties: edged objects, curved objects, and objects with
complex geometries. These three datasets are denoted by
Dedges Deurves and Deomples TESpectively.

This categorization is used to assess the model’s ability to
learn geometric features from sonar images, which can appear
very different depending on the viewing angle. To address
this challenge, we opted for a data split based on edge and
curve characteristics, enabling the model to learn more robust
and generalizable features. The captured datasets consist of
batches of 24 sonar images of each specific object, along with
its corresponding eight-view depth maps.

TABLE I
ARCHITECTURE DETAILS

Latent
vector

Number of filters

depth generator
linear: 1024, 2048, 4096
deconv: 192, 128, 96, 64, 48

Input
size

128 x 128 ‘ 512-D

image encoder
conv: 96,128,192,256
linear: 2048, 1024, 512

B. Deep Learning Model

The deep-learning model utilized is an encoder-decoder
network [30]. As mentioned earlier, the input of the network is
a batch of 24 images. The input goes through 2D convolutions
to predict at the end eight depth images embedding the x,y,z
characteristics. Table I shows the network’s architecture in
details. Trained on a fixed configuration, and by applying
the transformation matrix (R,,t,)”! to each of the output
depthmaps, eight point-clouds are generated which create a
3D shape of the scanned object.

The total loss function of this network relies on three
optimizing losses. The first one is the Lgep,, which is an L1-
loss represented by the following equation:

(D

N
Ldepth = E HZn — Zn
n=1

where Z is the predicted depth-map and Z is the ground-truth.
N is the total number of view-points which is equal 8.

For more optimization, a cross entropy loss is introduced
into the equation in the aim of reducing errors in predictions.
This error would be calculated by generating binary masks
out of the predicted depthmaps and their ground-truths. The
generated masks are generated after setting a maximum depth
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equal to the maximum range of the sonar, which is equal 10
meters. This helps in isolating the object and predicting more
accurate results. Following is the corresponding equation:
N —~ —
Livask = Y _ —Mylog My, — (1 — M) log (1 — M) (2)

n=1

where ]\/fn and M,, are the masks from prediction and
ground-truth respectively. The overall loss function would then
be defined as Ltotal = Ldepth + Lmask

C. Cycle-GAN

As a way of minimizing the simulation-to-real gap, a Cycle-
GAN network was adopted from the work of Isola P. et al. [31],
and using the defined set of parameters in this implementation
[32] . Cycle-GANs are style-transfer models which could
learn a specific style from a set of images, and transfers this
style into another set. This functionality fits perfectly for this
application as we aim to transfer the realistic style into the
generated synthetic images. The Cycle-GAN was trained in
an unpaired manner on 1400 images, where 700 of them are
synthetic and 700 real acoustic images are collected using
the Oculus Md1200. Prior to the real-world experimentation,
the learned style from this training was applied to initially
captured dataset before training the network again on these
style-transferred images. Figure 4 shows a sample of the
synthetically generated acoustic image of a stairs model, a
real image captured by the real Oculus Md1200 FLS, and
the output of the cycle-GAN. As shown in the figure, the
Cycle-Gan learned the style of the real FLS while keeping
the simulated geometric features the same, which is crucial in
such applications.

Synthtic Image Style-transferred Real Image

Fig. 4. The left image corresponds to a synthetically generated image for the
stairs, the middle image is the style-transferred which is an output from the
Cycle-GAN network, and the right image is the target real image.

IV. SIMULATION EXPERIMENTS

The proposed network was evaluated after training and
testing on the synthetically generated datasets. Results are
interpreted at the end of this chapter.

A. Object Dataset

As mentioned in section III-A, data was captured for thirteen
different objects and categorized into three datasets. As shown
in Figure 2, data was generated by tilting the object and
approaching it from eight different angles/sides. For this
reason, the number of images captured for each object is 192
sonar images (8x24- sonar images batch). Thus, D.44. and
D yrve consist of 768 sonar images, and Dcompieqs cONSists
of 960 images. The size of the chosen objects vary between

0.3 and 3 meters in length, 0.3 and 1.76 meters in width, and
0.2 and 1 meter in height. The biggest object in width is the
pipe (3 meters), the biggest in terms of length is the boat
(1.76 meters). The rest of the objects have average sizes of
0.5 meters in all dimensions.

B. Metrics

In order to evaluate the performance of the network in the
most credible manner, four different metrics were used on two
different stages of the workflow. Since the initial output of
the network is depthmaps, evaluation of these results should
take place before transforming them into point-clouds. For this
stage, the mean average error (MAE) and the structural sim-
ilarity index measure (SSIM) are applied. These two metrics
are commonly used in literature for depthmap comparison. The
MAE and SSIM formulas are as follow:

D
MAE =" |z; — il 3)
=1

(2/%#7; +C1) + (Qny + Cs)
(B2 + 42 + C1)(02 + 02 + Cy)

SSIM (z,y) = )

After transforming the depthmaps into point-clouds, statis-
tical filtering is applied. This filtering process outputs cleaner
results as it eliminates all outlier points from the final point-
clouds. For evaluating the accuracy of these clouds, two of
the most commonly used metrics: chamfer distance (CD) and
hausdorff distance (HD), are used. For each point in each
cloud, CD finds the nearest point in the other point set,
and sums the square of distance up. The chamfer loss is
represented by:

N
— i : _ 2 i . . 2
b= ; (5 2_ minflz —ylz+ & > minfe —yl3) )

= 1 zeSy yeSa
where \ was set to 1.

The HD is widely used for such task as it measures how far
two subsets are from each other by calculating the greatest of
all distances from a point in one cloud to the closest point in
the other cloud. It is defined as follows:

HD(A, B) = max (sup inf d(a,b),sup inf d(a, b)) (6)
acAbeB beBacA

where Dy (A, B) represents the Hausdorff distance between

sets A and B. d(a, b) is the distance function used to measure

the distance between elements a and b in the underlying metric

space. sup denotes the supremum (least upper bound) of a set,

and inf denotes the infimum (greatest lower bound) of a set.

C. Results

1) Training and Testing on Basic Objects: The proposed
network is implemented using the PyTorch framework [38].
Training was first done on the datasets which consist of objects
with basic geometries: D.qge and Dcy,y.. Each dataset was
split into 70% training, 10 % validation, and 20% testing. A
Nvidia Titan-XP (12GB) GPU was utilized for training the
network, starting with a learning rate of 0.001 which decays



JABER et al.: MULTI-VIEW 3D RECONSTRUCTION OF OBJECTS USING FORWARD-LOOKING SONAR 5

Trianglar
prism

Trapezoidal

- Cylinder
prism

Semi-sphere

Prediction

Ground
Truth

Fig. 5. Sample reconstruction results from the training and testing on D g4,
and Decyrve. The upper row shows the network’s prediction and the lower
one shows the ground-truth. Columns 1 through 4 correspond to the triangular
prism, trapezoidal prism, semi-sphere, and cylinder respectively.

over epochs. The average inference time per sample is 309
milliseconds, with a standard deviation of 47.44 milliseconds.
The results of the these simulation experiments are pre-
sented in this section. Table II shows the average error
achieved for each object, providing an in depth evaluation of
the network’s performance at both early and final stages of
operation. Average MAE and SSIM values reflect the accuracy
of the network in predicting the depthmaps, while the chamfer
and hausdorff distances evaluate the final outputted point-
clouds after outlier filtering. For the depthmaps’ prediction,
the model trained on D44, achieved an average MAE of 0.07
m and a similarity index of around 96%. The model trained
on D.yrve achieved an average MAE of 0.17 meters and an
average SSIM of 92%. Transforming the predicted depthmaps
into pointclouds, and after filtering outliers out, the chamfer
and hausdorff distances were calculated. The model trained
on edged objects achieved an average CD of 0.018 and a HD
of 0.59, while the model trained on curved objects achieved
CD of 0.02 and HD of 0.14 meters. Figure 5 shows sample
reconstruction results from testing on basic objects.

TABLE I
MODEL’S PERFORMANCE ON Dggge AND Doyrye

Dataset Object MAE SSIM CD HD
Cube 0.05 0.96 0.026 0.057

Dy Rectangle 0.07 0.97 0.0145 0.041
9¢ | Trapezoidal prism | 0.08 0.96 | 0.0212 | 0.092
Triangular prism 0.09 0.94 0.0148 0.048
Avg. Dggge 0.0725 | 0.9575 | 0.0188 | 0.0592

Cylinder 0.14 0.94 0.018 0.11

Semi-sphere 0.11 0.96 0.013 0.13

DCurve

Sphere 0.10 0.96 0.0178 0.07

Pipe 0.36 0.83 0.06 0.251
AvVg. Dcyrve 0.1775 | 0.9225 | 0.0272 | 0.1402

Analysis of the MAE and SSIM metrics indicates that
the model achieved a better performance in predicting depth
maps from sonar images containing edge features. However,
following transformation and filtering processes, the CD and
HD metrics reveal a more comparable performance across
both datasets, reflecting accurate reconstruction of object ge-
ometries. Visual inspection further confirmed that the higher
MAE value observed in the dataset with curved objects is
primarily attributed to inaccuracies in the background regions
of the depth map predictions. Outlier points with distances

Prediction

Fig. 6. Sampled reconstruction results from the evaluation on unseen objects
from D.ompier- Column 1 shows the 3D model of the evaluated object,
column 2 shows the predicted pointcloud, and the final column shows the
corresponding ground-truth pointcloud. The results of the inverted U-shape
and stairs are shown in rows one and two respectively.

larger than the average distance to their neighbors plus 2 times
standard deviation are filtered out.

2) Evaluating on Unseen Objects: To further investigate
the model’s ability to extract meaningful features from sonar
images, the model trained exclusively on the Dcqq. dataset
was directly evaluated on objects from the Dgompier dataset.
This experimental setup aimed to assess the model’s capacity
to reconstruct the overall geometric shape of objects it had not
encountered during training. The two chosen objects were an
inverted U-shape and the stairs. The evaluation results, sum-
marized in Table III, are presented using the chosen metrics.
Additionally, Figure 6 visually illustrates the reconstruction
results of the tested objects.

The network’s ability to approximate the shape of unseen
objects, represented by the low CD and HD values achieved,
and as further illustrated in Figure 6, highlights its capacity to
capture both object scale and features from the sonar images.
Based on the training data, the model successfully predicted
the most similar shape in terms of scale and common features.
For instance, the inverted U-shape was approximated by a box,
and the stairs by a rectangle, both with proper scales. While
the model cannot generalize to random unseen objects, the
promising results encourage using the calculated weights for
fine-tuning later over new complex objects.

TABLE III
EVALUATION ON UNSEEN OBJECTS

Metric (m) MAE | SSIM CD HD
Inverted U-shape 0.09 96 % 0.06 0.112
Stairs 0.127 | 93% | 0.108 | 0.178

3) Fine Tuning on Complex Objects: For reconstruction
of objects having complex geometries, we utilized transfer
learning to leverage the feature representations learned by our
pre-trained models: Wp,_, . and Wp By initializing new
networks with these pre-trained weights, training was done on
each object of the D opmpie, dataset, using the weights which
better fit the trained object.

The results of these experiments are presented numerically
through Table IV. For the depthmaps’ prediction, the network
achieved the lowest MAE value of 0.0012 m and the highest
similarity index of 99.8% for the tire. This was probably
the easiest to predict its depth-map due to its symmetrical

curve®
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Fig. 7. Sample results of a boat. The first row shows samples from the batch of 24 acoustic images. The second row shows the corresponding eight ground-truth

depthmaps. The third row shows the depthmaps predicted by the network.
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Fig. 8. 3D reconstruction results of the D.ompier Objects. The first row shows the ground-truth pointclouds, the second shows the prediction results of
A2FNet [4], the third shows the prediction results of Sonar2Depth [25],and the final row shows the predicted results of our proposed model. Columns 1
through 5 correspond to the U-shape, L-shape, boat, stairs, and tire respectively.

geometry. However, the system further achieved very good
results even for the other complex objects such as the U-shape,
stairs, and boat with MAE value ranging between 0.013 and
0.015 meters and very high SSIM values of around 98% .
The hardest to predict was the L-shape geometry which the
system achieved a MAE of 0.13 and an SSIM of 93.9%.
The networks proposed in Sonar2Depth [25] and A2FNet [4]
were trained and tested on Dgompies. Since they predict a
single depthmap compared to eight in this paper, evaluating
a comparing performances using MAE and SSIM was not
feasible. Consequently, only CD and HD were applied to
assess their performance.

Figure 7 shows sample of the simulation results for the boat.
The first row shows some of the acoustic images as a sample
from the complete input batch (24 images). The second and
third rows show the ground-truth and the predicted depthmaps
respectively. For better visualization, Figure 8 shows sample
3D reconstruction results for all D;opmpiee Objects. Looking
at the reconstruction results, the predictions from MV-3D on

all objects outperform state-of-the-art methods: Sonar2Depth
[25] and A2FNet [4]. This can be attributed to the series
of input sonar images and the multi-view output in MV-3D
predicting eight depth images, in comparison to the single
output from Sonar2Depth and A2FNet, which can output a
prediction in 3.5 ms and 2.9 ms respectively. This resulted
in denser representations of objects, and in predicting finer
geometrical details, giving a more detailed and complete 3D
shape.

V. REAL-WORLD EXPERIMENT
A. Setup

The real-world experiment was conducted in a big water
tank which is 8 meters deep. The FLS used for in this
experiment is the Oculus Md1200. The FLS was mounted
to the FlatFish AUV [33] which was operated manually for
scanning the desired objects. Figure 9 shows the experimental
setup.
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TABLE IV
SIMULATION RESULTS

Method MV-3D Sonar2Depth [25] A2FNet [4]
Metric(m) | MAE | SSIM(%) CD HD CD HD CD HD
Tire 0.001 99.8 0.03 | 0.13 0.1 0.13 0.1 0.16
U-shape 0.013 97.9 0.07 | 0.19 | 0.096 0.227 0.118 | 0.29
L-shape 0.13 93.9 0.069 | 0.2 | 0.084 0.37 0.29 0.41
Stairs 0.015 97.7 0.05 0.3 0.08 0.55 0.11 0.50
Boat 0.013 97.2 009 | 034 | 0.11 0.26 0.15 0.39

The sonar was operating in its high frequency mode of 2.1
MHz, with a minimum and maximum ranges of 0.1 and 10
meters respectively and an angular resolution of 0.4 degrees.
In order to show that the proposed system works in real
experiment, three concrete objects identical in shape to the
ones trained and tested on in simulation were placed on the
ground of the water tank for scanning. The chosen objects
are the U-shape block, L-shape block, and the stairs. As a
ground-truth, the SeaVision Laser imaging-scanner system was
installed at the area of operation as it delivers dense 3D point-
clouds in sub-millimeter resolution.

FlatFish AUV
s = S

Oculus
Md1200
mul‘nted

Fig. 9. The real experimental setup in the water tank showing the u-shape,
I-shape, and stairs placed at the basin ground and the FlatFish AUV scanning
with the Oculus Md1200 mounted to its bottom chassis.

B. Results

Evaluation of the system’s performance was done after
training on the style-transferred synthetic images only, and
testing on real acoustic images. The batches of 24 real images
were chosen from approaching each object linearly, following
same setup as for the simulation. The two metrics used for
evaluation are the CD and HD, as described in section I1V-B.
since the laser scanner position was fixed, only a frontal view
of the objects was captured. Hence, the predicted 8-view point-
cloud by the network could not be directly compared to the
laser’s data but was instead compared to the synthetically
generated ground truth. In lieu, the front-view predicted depth-
map (the fourth of the eight predicted views) was compared to
the laser’s output point-cloud. Results are shown in Table V.
The low CD and HD achieved for all tested objects reflected
accurate 3D reconstruction of the scanned objects’ geometrical
shape and scale, as shown in Figure 10. The low average error
values of CD and HD reflect accurate depthmap prediction for
each of the eight predicted views. This is further supported
by the low CD and HD values observed when comparing the
predicted front-view depthmap to the ground-truth single-view
laser scan. Despite the real experiment using the same objects
as in the simulation, the model demonstrated the capability of
reconstructing objects without requiring real data.

TABLE V
REAL EXPERIMENTS RESULTS

Simulation GT Laser GT

Metric (m) CD HD CD HD
U-shape 0.04 0.11 0.07  0.146
L-shape 0.048 0.2 0.068  0.275

Stairs 0.0538  0.158 | 0.06 0.2

VI. CONCLUSION

The idea of predicting multi-view depthmaps from an acous-
tically scanned object is proposed in this work. Taking the idea
of depth-map prediction from a single image into inputting a
batch enhanced the feature extraction process, learning not
only objects’ geometrical features, but also scene variables
such as casted shadows. Our method improves upon existing
approaches by predicting multiple depthmaps, reconstructing
more complete and detailed shapes of scanned objects. Data
for training and testing this network was generated synthet-
ically for different objects and a Cycle-GAN network was
trained in the purpose of transferring the realistic style into the
generated images. Trained on the style-transferred synthetic
images only, a real experiment was conducted for evaluation of
the network’s performance. Results were compared to a laser
generated ground-truth, and an average chamfer distance of
0.06 was achieved indicating a high accuracy in reconstruction
relative to objects’ sizes. Future work includes training on
more objects and varying terrains, improving the multi-view
depth prediction network to accommodate more generalizable
features, and testing on a broader range of real-world data.
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