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ABSTRACT 

Accurate reconstruction of photosynthetically active 
radiation (PAR) in aquatic environments is critical for 
understanding primary production and ecosystem 
dynamics. This study evaluates the generalisation 
abilities of artificial neural networks (ANNs) for 
location-independent PAR reconstruction using data 
from BGC-Argo floats. The proposed ANN model is 
trained on datasets from multiple geographic regions and 
validated against independent test data from diverse 
oceanic locations. Comparisons with multiple linear 
regression (MLR) and regression tree (RT) models 
demonstrate that the ANN consistently achieves superior 
predictive accuracy, with R² values exceeding 0.97 in 
most test cases. The results indicate that neural networks 
can effectively generalise across different marine 
environments, even in regions with distinct optical 
properties. Notably, the ANN outperforms alternative 
models except in one test case, highlighting the potential 
influence of regional environmental factors. This study 
underscores the potential of machine learning techniques 
to enhance bio-optical sensor configurations and reduce 
the necessity for dedicated PAR sensors.  
 
INTRODUCTION 

The dramatic increase in environmental challenges, 
ranging from climate change and sea level rise to 
pollution, deoxygenation, and ocean warming, has driven 
the development of innovative methods for monitoring 
critical environmental parameters (Lotze, et al., 2019; 
Wollschläger, et al., 2021). Modern operational 
oceanography now relies on an array of autonomous 
platforms, among which Argo floats have emerged as a 
cornerstone (Roemmich, et al., 2019). There are over 
4,000 floats deployed globally and more than 1,600 
specialised biogeochemical (BGC-Argo) floats in 
operation since 2012. To date, over 50,000 multispectral 

profiles have been collected using this configuration of 
bands, and these profiles have been evaluated in terms of 
data quality (Jutard, et al., 2021; Organelli, et al., 2016; 
Stoer, et al., 2023). These platforms continuously collect 
high-resolution vertical profiles from the ocean’s surface 
to depths of approximately 2,000 meters. Data 
transmission via Iridium or Argos satellite systems 
ensure that information is publicly and freely available 
through two global data assembly centers (GDAC). Data 
is typically available within 24 hours (see Argo website 
https://argo.ucsd.edu). 
Initially designed with a three-sensor configuration to 
capture fundamental physical oceanographic properties, 
Argo floats have evolved with the BGC-Argo initiative 
to include a suite of additional physical, chemical, and 
bio-optical sensors (Johnson, et al., 2017; Claustre, et al., 
2011). A key instrument in this expanded sensor package 
is the Ocean Colour Radiometer (OCR), such as the 
OCR-504 from SATLANTIC Inc./Sea-Bird Scientific, 
which measures radiometric observations at four 
channels. Three of these channels,380 nm, 412 nm, and 
490 nm, were selected in this study for their sensitivity to 
variations in the underwater light field, while the fourth 
channel is dedicated to recording Photosynthetically 
Active Radiation (PAR). PAR, which integrates 
downward irradiance between 400 nm and 700 nm, is 
essential for assessing the light available for primary 
production in natural waters (Behrenfeld & Falkowski, 
1997; Morel & André, 1991). 
In parallel with these technological advancements, the 
rapid expansion in sensor diversity has necessitated more 
sophisticated data management, quality control, and 
analysis methods, with machine learning emerging as a 
particularly promising tool (Claustre, et al., 2011; Jiang, 
et al., 2017). Recognizing the potential for streamlining 
sensor configurations, the BGC-Argo community has 
suggested reconfiguring the OCR by omitting the 
dedicated PAR channel. This proposal is based on the 
observation that PAR measurements can be reliably 
reconstructed from the three remaining spectral channels 
380 nm, 412 nm, and 490 nm, and pressure.  Previous 
studies have demonstrated that techniques such as 
Multiple Linear Regression (MLR) (Stahl, et al., 2021), 
Regression Trees (RT) (Stahl, et al., 2021) and Artificial 
Neural Networks (ANN) (Kumm, et al., 2022; Pitarch, et 



 

al., 2025) can successfully predict PAR sensor readings. 
However, most recent research has shown an 
unsatisfactory accuracy of the models relaying on the 
three wavelengths 400 nm, 412 nm and 490 nm for the 
Freefall Profiler dataset, which covers more geolocations 
and is therefore more complex (Tholen, et al., 2024). 
Building on these findings, the present study evaluates an 
ANN model with datasets from different geolocations to 
demonstrate the ability of generalisation of the ANN to 
reconstruct the PAR values and this work improves the 
architecture of the ANN. An MLR and an RT were also 
trained as a comparison to the ANN. 
 
VARTICAL RADIOMETRIC MEASURMENT OF 
THE WATER COLUMN 

Among the six essential variables measured by BGC-
Argo floats, the underwater light field is a key parameter 
(Claustre, et al., 2019). To capture this, OCR-504 from 
SATLANTIC Inc./Sea-Bird Scientific is utilised, 
measuring downward irradiance at three specific 
wavelengths, 380 nm, 412 nm, and 490 nm, along with 
PAR, which is integrated across the 400–700 nm range 
(Satlinc, 2013). The arrangement of these four sensors is 
depicted on the right hand side of Figure 1. These three 
specific wavelengths were chosen due to their strong 
correlation with the primary variations in underwater 
optical properties (Xing, et al., 2012; Organelli, et al., 
2016). The PAR sensor data is commonly used to 
estimate the amount of light available for primary 
production in aquatic environments (Mignot, et al., 
2018).  
To ensure a fair comparison of the methods, this study 
utilised a similar dataset for training as in (Kumm, et al., 
2022; Stahl, et al., 2021). The float data was collected and 
made publicly available by the International Argo 
Program, along with contributions from national 
initiatives (http://www.argo.ucsd.edu and 
http://argo.jcommops.org).  
 

 
Figure 1: OCR-504 mounted on the BGC-Argo float 

TRAINING AND TEST DATA 

For training our model, similar BGC-Argo floats as used 
by Kumm, et al. (2022) were employed. However, the 
dataset was larger since new data has been acquired since 
the original publication. All samples collected above 100 
dbar were removed, as no light reaches those depths. To 
prevent an unbalanced dataset, an equal number of 
samples from each dataset was used for training. 
Specifically, the number of samples from the smallest 

dataset, the North Atlantic dataset with 2,124 samples, 
served as the reference. For the other datasets, 2,124 
samples were randomly selected, resulting in a balanced 
training dataset. For each set, an 80/20 train-test split was 
applied individually, with 10% of the training data 
further reserved for validation, before merging them into 
training, test, and validation sets.  
The aim of the publication was to demonstrate the ability 
of generalisation of the developed ANN with respect to 
geolocations. Therefore, the ANN was subsequently 
tested with data from eight additional floats, located at 
different regions of the world. Table 1 shows the different 
datasets from the different sites used in this work. 
 

Table 1: Training and test data 

Identifier Location Samples 
Training 

WMO 7900561 North Atlantic 2,124 
WMO 7900562 Mediterranean 

Sea 
2,124 

WMO 7900579 Baltic Sea 2,124 
WMO 7900580 Baltic Sea 2,124 

Test 
WMO 7900585 North Atlantic 4,116 
WMO 7900583 Tasmania Sea 1,843 
WMO 4903711 Caspian Sea 544 
WMO 5905505 Tasmanian Sea 700 
WMO 5906661 Indian Ocean 1,471 
WMO 6902906 South Pacific 10,042 
WMO 6990638 North Atlantic 770 
WMO 7902198 North Pacific 230 

 
Figure 2 depicts the locations of the floats. It can be seen 
that we deliberately tested the ANN with data, which 
were not included in the training process. 
 
ARCHITECTURE OF THE ANN 

In this study, the architecture proposed by Kumm et al. 
(2022) was largely followed. The ANN is implemented 
as a feed-forward neural network consisting of three main 
components: an input layer, a hidden layer, and an output 
layer. The input layer receives the four sensor data inputs 
Pressure, Ed380, Ed412, and Ed490, while the output 
layer provides the value for PAR. 
The ReLU function was used as the activation function 
to capture the non-linearities in the model. Based on 
Kumm et al. (2022), the Root Mean Squared Propagation 
algorithm was employed for training with a learning rate 
of 0.01, and the Mean Absolute Error (MAE) was chosen 
as the loss function. 
To determine the optimal number of nodes in the hidden 
layer, ANNs with varying node counts from 1 to 50 were 
trained. For each node count, the ANN was trained 20 
times to calculate the mean and standard deviation of 
performance. A batch size of 32 was used during training. 
Figure 3 depicts the development of the mean value and 



 

the standard deviation from 13 to 50 nodes. Each ANN 
was trained for 1000 epochs. The R2 from the ANNs with 
less than 13 nodes in the hidden layer were below 0.9935. 
This systematic variation of the node count enabled a 
detailed investigation of the impact of ANN topology on 
model performance, thereby facilitating a well-founded 
decision regarding the optimal ANN structure. The best 

R2 of 0.9974 was reached with 48 nodes in the hidden 
layer. The standard deviation with this number of nodes 
was 0.0003.  
 
  
 

 

 
Figure 2: Location of the datasets 

 

 
Figure 3: Mean and standard deviation of the ANN 



 

 
Figure 4: MAE-history of the ANN during training 

EVALUATION OF THE ANN 

Figure 4 illustrates the error progression of the ANN for 
one training run for both the training and validation 
datasets over time. The graph indicates that after 1000 
epochs, no significant improvement in performance is 
observed, suggesting that the model has reached 
convergence. 
Furthermore, the results show no signs of overfitting. The 
validation error remains stable even after 1000 epochs, 
indicating that the model maintains its ability to 
generalise well to unseen data. This stability suggests that 
the ANN effectively learns the underlying patterns in the 
data. 
An MLR and an RT were also trained. The exact same 
training data as for the ANN was used for this. A 
comparison of the predictions for the test set can be seen 
in Figure 5. It can be observed, that the three methods are 
able to predict the PAR.  
To assess the generalisation capability of the trained 
ANN, the MLR and the RT, eight datasets from 
previously unseen locations were used for testing. The 
results, presented in Table 2, demonstrate that the ANN 
exhibits strong generalisation properties compared with 
MLR and RT due to his consistently higher R2 value. 
The coefficient of determination (R²) values for all 
datasets range between 0.97 and 0.99, indicating a high 
level of agreement between predicted and observed 
values. However, one dataset yielded a slightly lower R² 
value of 0.8955.  
 
 
 
 
 
 
 
 

 
Table 2: R2 from the different models 

Dataset  ANN MLR  RT  
Training 0.9974 0.9872 0.9923  
WMO 
7900585 

0.9739 0.9378  0.9130 

WMO 
7900583 

0.9944  0.9823 0.9864 

WMO 
4903711 

0.9910 0.8838 0.9318 

WMO 
5905505 

0.9975 0.9921 0.9944 

WMO 
5906661 

0.9983 0.9914 0.9823 

WMO 
6902906 

0.9773 0.9424 0.9701 

WMO 
6990638 

0.8955 0.9636 0.9513 

WMO 
7901106 

0.9823 0.9548 0.8867 

 



 

 
Figure 5: Prediction vs. observation for MLR, RT and 

ANN 

DISCUSSION AND FUTURE WORK  

 
Figure 6: Comparison of the models regarding their 

location 

As shown in Table 2 and Figure 6, the ANN outperforms 
the MLR and the RT on every tested site except for WMO 
6990638 with 0.8955. This Argo float is located to the 
east of Greenland. This deviation could be attributed to 
the unique environmental conditions at the data 
collection site. In this region, highly variable light 
conditions, influenced by factors such as sea ice, may 
have introduced additional complexities that were not 
fully captured by the model during training. This needs 
to be investigated in more detail in future studies. 
On the other hand, the results of the WMO 4903711 
should also be emphasised. This float is located in the 
Caspian Sea. The Caspian Sea has a different water 
composition due to its geographical location. 
Nevertheless, the PAR values are predicted with an 
accuracy of 0.9910. This is a further indication of the 
generalisation properties of the developed ANN. 
Future research should focus on further improving the 
predictive performance and robustness of the ANN. One 
potential avenue is the integration of additional spectral 
bands, which could enhance the model’s ability to 
capture complex underwater optical properties. Another 
important aspect is the extension of the dataset to include 
more diverse oceanic regions, particularly areas with 
extreme environmental conditions, such as polar waters. 
This would help assess the model’s adaptability to highly 
variable light conditions and improve its overall 
reliability. 
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