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Integrating cell segmentation with tracking is essential for a detailed and dynamic understanding of cellular
behavior. This combination enhances the study and quantification of cell morphology, movement, and interac-
tions, providing valuable insights into various biological processes and diseases. Traditional methods require
full masks or bounding boxes for each cell, which is labor-intensive and expensive. To address this challenge,
SAT: Segment and Track Anything for Microscopy is presented. This method requires only a few point an-
notations per cell in the first frame of each sequence and then automatically performs cell segmentation and
tracking for all subsequent frames. This approach reduces annotation time and effort, making it practical for
large-scale studies. The method was evaluated on two diverse datasets, achieving over 80% Multiple Object
Tracking Accuracy (MOTA), demonstrating its robustness and effectiveness in various cell tracking scenarios.

1 INTRODUCTION

Cell tracking is essential in biology and medicine, of-
fering insights into cellular behavior and responses to
stimuli (Newman et al., 2011). In cancer research,
cell tracking aids in studying tumor growth, metas-
tasis, and the efficacy of anti-cancer drugs, while in
stem cell research, it helps observe differentiation and
regenerative potential (Aramini et al., 2022). This
technique is vital in drug development for assessing
drug impact and efficacy and in immunology for un-
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derstanding immune cell interactions and responses
(Yazdi and Khotanlou, 2024). Accurate cell segmen-
tation is essential for tracking, providing data to mon-
itor cell movement and behavior over time (Chou
et al., 2023). Without precise segmentation, tracking
algorithms may misidentify cells, leading to errors.
The importance of cell segmentation lies in its abil-
ity to quantify cell morphology, analyze cellular in-
teractions, and support high-throughput screening in
drug development (Durkee et al., 2021). Addition-
ally, it aids in understanding developmental processes
and immune responses by characterizing specific cell
populations (Padovani et al., 2022).

In the past decade, many deep-learning-based ap-
proaches (Khalid et al., 2021a} Stringer et al., 2020;
Edlund et al., 2021}; [Khalid et al., 2022a}; |Schwendy
et al., 2020; Khalid et al., 2021b) have been developed
for cell segmentation. However, these approaches re-
quire fully labeled datasets for training, where each
cell boundary is delineated by experts, which is both



Table 1: Comparison of supervision time between Full Mask and Tracking, and the SAT method. The SAT method involves
point annotation only in the first frame. SAT (5 points per cell) saves significant time compared to full mask tracking, making

it approximately 206 times faster.

Method Time per Cell per Frame (s) Total Time (A+T)|[ Times Faster than
Segmentation/Poinf  Tracking (T) for 100 Frames Full Mask (x)
Annotation (A) (min)
Full Mask and 46 0.438 77.40 -

Tracking

SAT (N=3) 3x09=27 0 0.225 ~ 344

SAT (N=5) 5x09=45 0 0.375 =~ 206

SAT (N=10) 10 x 09=9 0 0.75 ~ 103

time-consuming and expensive. On the LIVECell
dataset (Edlund et al., 2021), the largest publicly
available dataset in the cell segmentation domain, it
takes approximately 46 seconds to draw a segmenta-
tion mask for each cell. Given that the dataset com-
prises over 1.6 million cells, this process is extremely
time-consuming and costly. Additionally, when cell
tracking is added, annotators face further challenges.
In simple scenarios, tracking each cell across 100
frames takes around 43.8 seconds. However, in more
complex scenarios, this can take up to 98 seconds
per cell (Phasefocus, nd). To address these signif-
icant time and resource demands, this study intro-
duces an automated pipeline called SAT (Segment
and Track Anything) for microscopy, which is specif-
ically designed for cell segmentation and tracking
in sequences of microscopic images. The proposed
method uses point annotations in the first frame, then
automatically segments and tracks cells across the se-
quence. This approach significantly reduces annota-
tion time and minimizes the need for expert knowl-
edge. By removing the need for detailed masks and
manual tracking, this method streamlines the work-
flow. The reliance on simple point annotations makes
it more accessible for researchers with varying lev-
els of expertise, thereby democratizing the use of ad-
vanced cell tracking and segmentation techniques in
the field of microscopy. This efficiency enables faster
experimental turnaround and large-scale studies, re-
ducing labor costs. Table[I|compares the supervision
time required for cell segmentation and tracking using
the traditional Full Mask and Tracking method ver-
sus the SAT method with different numbers of points
per cell. The Full Mask and Tracking method takes
46 seconds per cell per frame for segmentation and
0.438 seconds for tracking, totaling 77.40 minutes for
100 frames. In contrast, the SAT method reduces ini-
tial annotation time by using point annotations in the
first frame. For example, SAT (N=5) takes 4.5 sec-
onds per cell per frame, totaling 0.375 minutes over
100 frames, making it about 206 times faster than
the Full Mask and Tracking method. SAT (N=3) and

SAT (N=10) are 344 and 103 times faster, respec-
tively, demonstrating the efficiency of SAT compared
to traditional full segmentation methods. The SAT
pipeline mitigates this issue by requiring only point
annotations per cell in the first frame to perform seg-
mentation and tracking automatically for the entire se-
quence. This makes the SAT method highly practical
for large-scale datasets, where traditional manual an-
notation would be extremely time-consuming and ex-
pensive. The main contributions of this study are as
follows:

¢ Introduction of the SAT (Segment and Track Any-
thing for Microscopy) pipeline, which leverages
point annotations in the first frame to automate
cell segmentation and tracking, significantly re-
ducing the time and effort required compared to
traditional methods.

Comprehensive evaluation of the SAT pipeline on
subsets of two extensive and diverse cell track-
ing datasets: the Cell Tracking Challenge (CTC)
(Maska et al., 2023)) and the Cell Tracking with
Mitosis Detection Challenge (CTMC) (Anjum
and Gurari, 2020) datasets, demonstrating the
method’s robustness and generalization capabil-
ity.

Achieving high tracking accuracy, with Multi-
ple Object Tracking Accuracy (MOTA) exceeding
80%, and demonstrating time savings of over 100
times compared to full mask annotation methods.

2 LITERATURE REVIEW

2.1 Existing Cell Segmentation and
Tracking Approaches

There are numerous studies on cell segmentation and
tracking (Edlund et al., 2021; [Stringer et al., 2020;
Jelli et al., 2023; |[Khalid et al., 2023; Maska et al.,
2023)) which require full masks for training or some



form of weak supervision. Khalid et al. (Khalid et al.,
2022b) introduced a cell segmentation method using
only bounding boxes and point annotations, reducing
annotation time and resources, though manual input is
still required. Segmentation-first approaches focus on
segmentation before linking detections across frames
(Malin-Mayor et al., 2023), and unsupervised track-
ing methods aim to reduce reliance on labeled data
(Maska et al., 2023).

2.2 Challenges in Microscopy
Applications

Microscopy images often have noisy, low-contrast en-
vironments, making it difficult for models trained on
natural image datasets to generalize effectively (Wang
et al., 2023)). Traditional segmentation methods strug-
gle to handle different imaging modalities, such as
phase contrast or fluorescence microscopy, which
vary in contrast and clarity (Stringer et al., 2020). Ad-
ditionally, variations in cell shapes and appearances
require extensive retraining, limiting the scalability of
these models across microscopy domains (Yazdi and
Khotanlou, 2024)).

2.3 Limitations of the Segment
Anything Model (SAM)

The Segment Anything Model (SAM) (Kirillov et al.,
2023) by MetaAl performs exceptionally well on nat-
ural scenes but struggles with microscopic images due
to their complexity, low contrast, and noise (Archit
et al., 2023). Domain-specific training and advanced
pre-processing are needed to enhance SAM’s applica-
bility in microscopy.

Based on these limitations, the proposed work seeks
to overcome the challenges faced by traditional meth-
ods. By utilizing point annotations in the first frame
of microscopy sequences, the approach substantially
reduces the need for fully labeled datasets and auto-
mates the segmentation and tracking of cells through-
out all frames.

3 SAT: SEGMENT AND TRACK
ANYTHING PIPELINE

The key technical component of the proposed pipeline
is the Segment Anything Model (SAM). SAM was
pre-trained on diverse images and fine-tuned using
the LIVECell dataset for microscopy. It includes an
image encoder, prompt encoder, and mask decoder,

which work together to produce accurate segmen-
tation masks from point prompts. The SAT (Seg-
ment and Track Anything for Microscopy) pipeline
is divided into four main components: Query Points
Selection, Point Tracking, Segmentation, and Point
Tracking Reinitialization (Rajic et al., 2023)). Below
is a detailed explanation of each module, referring to

Figure
3.1 Query Points Selection

In the first step of SAT, query points are selected in the
first video frame to denote the target object (positive
points) and non-target regions (negative points). The
user can provide these points interactively or derive
them from a ground truth mask using various sam-
pling techniques, including Random Sampling, K-
Medoids Sampling, Shi-Tomasi Sampling (Shi et al.,
1994), and Mixed Sampling. Each method ensures
good coverage and robustness, significantly affecting
the model’s performance.

P:{p17p23"'7pn} (l)

For K-Medoids, let C represent the set of clusters, and
P,, be the medoid points:

P, = {medoid(c;) | ¢; € C} )

The objective function to minimize K-Medoids clus-
tering is:

k
minimize Z Z || p — medoid(c;)|| 3)

i=1peEc;
3.2 Point Tracking

This module propagates the selected query points
across all video frames using point trackers. This
propagation generates point trajectories and occlusion
scores, ensuring that the points follow the objects
throughout the video. Point tracker, PIPS (Harley
et al., 2022) is employed due to its robustness in han-
dling long-term tracking challenges such as occlusion
and reappearance of objects.

Pt:{PtAbpt,L--th?n} (4)

The tracking function T predicts the position of points
in the next frame:

P =T(P) &)
3.3 Segmentation

Using the point trajectories obtained from the track-
ing module, the Segment Anything Model (SAM)
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Figure 1: SAT (Segment and Track Anything for Microscopy) Pipeline. The SAT pipeline extends image segmentation models
to microscopy videos through four steps: A. Query Points Selection, where positive and negative points are defined by the
user or a ground truth mask; B. Point Tracking, which propagates points across video frames using point trackers, predicting
trajectories and occlusion scores; C. Segmentation, where the Segment Anything Model (SAM) uses these trajectories to
generate per-frame mask predictions; and D. Point Tracking Reinitialization, an optional step to reinitialize query points,
improving tracking reliability and addressing newly visible cell segments.

(Kirillov et al., 2023), which is finetuned on the
LIVECell dataset, generates per-frame segmentation
masks. The SAM model, which comprises an image
encoder, a prompt encoder, and a mask decoder, uti-
lizes the non-occluded points as prompts to segment
the object of interest in each frame accurately.

M, = SAM(I,,P,) (6)

where [, is the input image at frame ¢, and P is the set
of propagated points.

3.4 Point Tracking Reinitialization

This step involves reinitializing the query points pe-
riodically using the predicted masks. Reinitialization
helps to remove unreliable points and add new points
to object segments that become visible in later frames,
thereby improving the accuracy and robustness of the
segmentation over time.

P, = Reinitialize(M;) (7

Reinitialization occurs at intervals defined by the pre-
diction horizon h:

P,.;, = Reinitialize(M; ) ®)

While SAT integrates existing modules like SAM for
segmentation and PIPS for point tracking, its novelty
lies in optimizing these components specifically for
microscopy images. By minimizing the manual effort
with point annotations in the first frame and automat-
ing the rest of the segmentation and tracking process,

Table 2: Statistics of the LIVECell dataset used for fine-
tuning the Segment Anything Model.

Train Val Test
Dataset

Img Cells Img Cells Img Cells

LIVECell 3253 1,018,576 570 181,609 1564 462,261

SAT improves both accuracy and efficiency. Addi-
tionally, the reinitialization step enhances robustness
in tracking, and addressing occlusions and the appear-
ance of new cells over time.

4 DATASET

For fine-tuning the Segment Anything Model (SAM)
(Kirillov et al., 2023), the LIVECell dataset
[[und et al., 2021) (Table [2) was exclusively used.
LIVECell is a comprehensive dataset with label-free
live-cell images and detailed annotations, making it
ideal for refining SAM’s segmentation capabilities.
Leveraging LIVECell for fine-tuning enhances the
model’s performance and applicability to real-world
microscopy images by providing high-quality anno-
tations and diverse cell types. This approach equips
the model to handle unique challenges posed by mi-
croscopic images, such as low contrast, high noise,
various modalities, and complex cell structures.

Two datasets are used to evaluate the generalization
of the proposed methodology for cell segmentation
and tracking. The first is the Cell Tracking Chal-
lenge (CTC) dataset (Maska et al., 2023), which in-
cludes 2D and 3D time-lapse sequences of various mi-




croscopy videos, including Bright Field, Phase Con-
trast, and Differential Interference Contrast (DIC). It
contains 20 sequences, 10 of which are 2D, with a
total of 8,017 frames and an average cell density of
33.12 cells per image. The second is the Cell Tracking
with Mitosis Detection Challenge (CTMC) dataset
(Anjum and Gurari, 2020), comprising over 1.5 mil-
lion images across 86 videos of 14 different cell lines,
annotated with bounding boxes. Unlike CTC, CTMC
does not provide segmentation masks, posing addi-
tional challenges for segmentation. To evaluate the
method across diverse conditions, 4 sequences from
the CTC dataset and 6 from the CTMC dataset were
randomly selected. These subsets represent various
imaging modalities, cell types, and capture intervals,
providing a robust basis for testing the method’s gen-
eralization.

S EVALUATION METRICS

To assess the performance of the proposed pipeline
for cell tracking, five distinct evaluation metrics are
used, each providing a unique perspective on the re-
sults.

5.1 Multiple Object Tracking Accuracy

Multiple Object Tracking Accuracy (MOTA)
(Bernardin and Stiefelhagen, 2008)) measures the
overall accuracy of the tracker and the detection.

_ Li(m + fp +mme;)
Y8

Here, m; represents the total number of misses, fp;
the total number of false positives, and mme;, the total
number of mismatches. Misses occur when a cell in
the ground truth is not detected. False positives occur
when a cell is detected but not present in the ground
truth. Mismatches occur when a cell is incorrectly
related to another cell.

MOTA =1

5.2 Identification F1 Score

Identification F1 (IDF1) (Ristani et al., 2016) calcu-
lates a one-to-one mapping between ground truth tra-
jectories and prediction trajectories.

2.-1IDTP
2-IDTP + IDFP + IDFN

IDTP (Identity True Positives) is the number of true
positive ID matches. IDFP (Identity False Positives)
denotes the false positive IDs. IDFN (Identity False
Negatives) is the number of false negative IDs.

IDF1 =

5.3 Identity Switches

Identity Switches (IDs) (Bernardin and Stiefelhagen,
2008)), also known as Mismatches, refer to the num-
ber of times a trajectory incorrectly changes from one
ground truth object to another. A lower number of
identity switches indicates a more reliable tracking
system.

5.4 Mostly Tracked

If an object is successfully tracked for at least 80%
of its lifespan, it is considered Mostly Tracked (MT)
(Leal-Taixé et al., 2015). This metric evaluates the
robustness of a tracking algorithm in maintaining the
continuity of an object’s identity.

5.5 Mostly Lost

If an object is tracked for 20% or less of its lifespan,
it is considered Mostly Lost (ML) (Leal-Taixé et al.,
2015). High ML scores suggest the tracker struggles
with challenges, leading to frequent identity losses.
This metric helps identify and address the limitations
of tracking algorithms.

6 EXPERIMENTAL SETUP

Two different experimental settings are designed to
evaluate the performance of the proposed pipeline
for cell tracking from various aspects. The first set-
ting, namely SAT Evaluation on Diverse Modali-
ties and Intervals Using the CTC Dataset, assesses
the performance of the SAT pipeline across various
imaging modalities and time intervals, using anno-
tated 2D and 3D sequences from the Cell Tracking
Challenge dataset to determine its effectiveness in di-
verse cell tracking scenarios. In the second experi-
mental setting, namely SAT Generalization Analysis
Using CTMC’s Wide-Ranging Cell Types, the SAT
pipeline’s ability to generalize is evaluated using the
diverse cell lines and extensive imaging conditions
provided by the CTMC dataset.

To fine-tune the Segment Anything Model (SAM)
(Kirillov et al., 2023) on LIVECell data, an iterative
training scheme was used (Archit et al., 2023)). Mini-
batches of input images and ground-truth segmenta-
tions were sampled with annotations using random
positive points or bounding boxes. Key hyperparame-
ters included a batch size of two, dice loss for masks,
L2 loss for IOU, and the ADAM optimizer (Kingma
and Ba, 2014)) with a learning rate of 1073, adjusted
using ReduceLROnPlateau. Models were trained for



100,000 iterations, with partial updates for 25,000 and
fine-tuning for 10k iterations. Training was conducted
on an A100 GPU with 80 GB of VRAM, using the
Vision Transformer (ViT-h) (Dosovitskiy et al., 2020)
for robust image segmentation. The implementation
utilized PyTorch (Paszke et al., 2019) and the torch-
em library (Pape, 2023).

6.1 Experimental Setting 1: SAT
Evaluation on Diverse Modalities
and Intervals Using the CTC
Dataset

In this experimental setting, the performance of the
SAT pipeline is assessed across various imaging
modalities and time intervals using the Cell Track-
ing Challenge (CTC) dataset. The CTC dataset in-
cludes annotated 2D and 3D time-lapse video se-
quences of fluorescent counterstained nuclei, as well
as 2D Bright Field, Phase Contrast, and Differential
Interference Contrast (DIC) microscopy videos. This
diverse dataset provides a comprehensive evaluation
of the SAT pipeline’s effectiveness in different cell-
tracking scenarios. The table [3| shows the results for
this setting. The sequences evaluated include:

* PhC-C2DH-U373 (01): This sequence contains
61 frames and is a Phase Contrast microscopy
video of U373 cells, captured at 10-minute in-
tervals. MOTA is 79.82%, indicating high track-
ing accuracy. IDFI is 89.00%, reflecting excel-
lent identity preservation. There are no identity
switches (IDS 0.0). MT is 71.43% and ML is
0.0%.

* PhC-C2DH-U373 (02): This sequence contains
12 frames and is a Phase Contrast microscopy
video of U373 cells, captured at 10-minute inter-
vals. MOTA is 82.75%, indicating improved ac-
curacy. IDF1 is 91.94%, reflecting excellent iden-
tity preservation. There are no identity switches
(IDS 0.0). MT is 100.0%, indicating perfect track-
ing, and ML is 0.0%.

* Fluo-N2DH-GOWT1: This sequence contains
38 frames and is a fluorescence microscopy video
of GOWTT1 cells, captured at 30-minute intervals.
MOTA is 88.24%, demonstrating very high accu-
racy. IDFI is 91.20%, indicating excellent iden-
tity preservation. There are no identity switches
(IDS 0.0). MT is 79.17% and ML is 8.34%.

* Fluo-N2DH-SIM+: This sequence contains 10
frames and is a fluorescence microscopy video
of SIM+ cells, captured at 30-minute intervals.
MOTA is 83.03%, showing high accuracy. IDF1

is 88.73%, reflecting excellent identity preserva-
tion. There are no identity switches (IDS 0.0).
MT is 83.34% and ML is 0.0%.

Overall, the average metrics across sequences are
MOTA of 83.46, IDF1 of 90.22, IDS of 0.0, MT of
83.45%, and ML of 2.08%, demonstrating high track-
ing accuracy, excellent identity preservation, no iden-
tity switches, most trajectories being well tracked, and
very few trajectories being mostly lost.

6.2 Experimental Setting 2: SAT
Generalization Analysis Using
CTMC’s Wide-Ranging Cell Types

In this experimental setting, the performance of the
SAT pipeline is evaluated using the diverse cell
lines and extensive imaging conditions provided by
the Cell Tracking with Mitosis Detection Challenge
(CTMC) dataset. The table [] shows the results for
this setting. The sequences evaluated include:

e PL1Ut-run05: This sequence contains 371
frames. It consists of phase-contrast images of
PL1Ut cells, a rat hepatoma cell line. MOTA is
93.12%, IDF1 is 96.56%, with IDS 0.0%. MT is
100.0% and ML is 0.0%.

* A-10-run01: This sequence contains 305 frames.
It consists of phase-contrast images of A-10 cells,
a rat smooth muscle cell line. MOTA is 80.79%,
IDF1 is 90.03%, with IDS 0.0. MT is 80.0% and
ML is 0.0%.

e LLC-MK2-run03: This sequence contains 89
frames. It consists of phase-contrast images of
LLC-MK?2 cells, a monkey kidney epithelial cell
line. MOTA is 96.18%, IDF1 is 98.08%, with IDS
0.0. MT is 100.0% and ML is 0.0%.

¢ APM-run05: This sequence contains 130 frames.
It consists of phase-contrast images of APM cells,
a human peripheral blood mononuclear cell line.
MOTA is 61.85%, IDF1 is 82.38%, with IDS 0.0.
MT is 75.0% and ML is 0.0%.

¢ U20-S-run03: This sequence contains 100
frames. It consists of phase-contrast images of
U20-S cells, a human osteosarcoma cell line.
MOTA is 68.93%, IDF1 is 84.17%, with IDS 0.0.
MT is 75.0% and ML is 0.0%.

* OK-run01: This sequence contains 57 frames.
It consists of phase-contrast images of OK cells,
an opossum kidney epithelial cell line. MOTA is
57.77%, IDF1 is 78.11%, with IDS 0.0. MT is
60.0% and ML is 6.67%.

Overall, the average metrics across sequences are
MOTA of 76.44%, IDF1 of 88.22%, IDS of 0.0%, MT



Table 3: Results for the SAT Evaluation on Diverse Modalities and Intervals Using the CTC Dataset. Higher values are better
for MOTA, IDF1, and MT, indicated by upward arrows (7). Lower values are better for IDS and ML, indicated by downward

arrows (J).

Sequence Modality Images | Cells | Points (N) | MOTA 1 | IDF11 | IDS| | MT 1 | ML |
PhC-C2DH-U373 (01) | Phase Contrast 61 427 6P - 3N 79.82 89.00 0.0 71.43 0.0
PhC-C2DH-U373 (02) | Phase Contrast 12 58 6P - 3N 82.75 91.94 0.0 100.0 0.0
Fluo-N2DH-GOWT1 Fluorescence 38 799 3P-3N 88.24 91.20 0.0 79.17 | 8.34

Fluo-N2DH-SIM+ Fluorescence 10 271 3P- 3N 83.03 88.73 0.0 83.34 0.0
Average/Total - 121 1,555 - 83.46 90.22 0.0 83.45 | 2.08

Table 4: Results for the SAT Generalization Analysis Using CTMC’s Wide-Ranging Cell Types. Higher values are better for
MOTA, IDF1, and MT, indicated by upward arrows (7). Lower values are better for IDS and ML, indicated by downward

arrows (J).
Sequence Modality Images | Cells | Points (N) | MOTA 1 | IDF11{ | IDS| | MT 1 | ML |
PL1Ut-run05 Phase Contrast 371 742 30P - 3N 93.12 96.56 0.0 100.0 0.0
A-10-run01 Phase Contrast 305 1,525 | 20P-3N 80.79 90.03 0.0 80.00 0.0
LLC-MK2-run03 | Phase Contrast 89 445 25P - 3N 96.18 98.08 0.0 100.0 0.0
APM-run05 Phase Contrast 130 443 25P - 3N 61.85 82.38 0.0 75.00 0.0
U20-S-run03 Phase Contrast 100 396 15P - 3N 68.93 84.17 0.0 75.00 0.0
OK-run(1 Phase Contrast 57 841 30P - 3N 57.77 78.11 0.0 60.00 | 6.67
Average/Total - 1,173 | 5,447 - 76.44 88.22 0.0 81.67 | 1.12

of 81.67%, and ML of 1.12%, demonstrating good
tracking accuracy, identity preservation, no identity
switches, most trajectories being well tracked, and
very few trajectories being mostly lost.

7 ANALYSIS AND DISCUSSION

This section explains the results of the two experi-
mental settings, highlighting the SAT pipeline’s abil-
ity to generalize across different modalities and cell
lines. In the first setting, SAT Evaluation on Diverse
Modalities and Intervals Using the CTC Dataset,
the pipeline was tested on the Cell Tracking Chal-
lenge (CTC) dataset, which includes diverse imaging
modalities. Table [3]shows the SAT pipeline achieves
83.46% MOTA, 90.22% IDF1, and zero Identity
Switches (IDS), demonstrating consistent tracking
across modalities. In the second setting, SAT Gen-
eralization Analysis Using CTMC’s Wide-Ranging
Cell Types, the pipeline was evaluated using the Cell
Tracking with Mitosis Detection Challenge (CTMC)
dataset, featuring diverse cell lines and extensive
imaging conditions. The results, shown in Table [4]
reveal that the SAT pipeline maintains good tracking
accuracy with an average MOTA of 76.44% and an
IDF1 of 88.22%, indicating effective generalization
to different cell types and high identity preservation.
The variation in MOTA across different cell types can
be attributed to the challenges presented by different
imaging modalities and cell cultures. For instance, the
PhC-C2DH-U373 cell culture, imaged with phase-
contrast microscopy, poses difficulties due to low con-

trast, causing cells to merge with the background as
they grow. In contrast, the Fluo-N2DH-GOWT1 cul-
ture, captured with fluorescence microscopy, offers
higher contrast, making segmentation and tracking
significantly easier. These factors contribute to the
variation in MOTA and are reflected in the observed
performance across different datasets.
Figure2]illustrates tracking results for the first setting
with sequences PhC-C2DH-U373 and Fluo-N2DH-
SIM+. The top row shows the ground truth, while the
bottom row shows the SAT pipeline predictions. For
PhC-C2DH-U373, all 7 cells are correctly segmented
initially, with one cell missed at t + 300 minutes but
recovered at t + 600 minutes and tracked till the last
frame at t + 885 minutes. The SAT pipeline achieves
a MOTA of 78.2%, IDF1 of 89.0%, 0 IDS, 71.4%
MT, and 0.0% ML. For Fluo-N2DH-SIM+, all cells
are correctly segmented initially, with one cell missed
at t + 58 minutes and another at t + 116 minutes, both
recovered at t + 174 minutes. The pipeline achieves a
MOTA of 83.0%, IDF1 of 88.7%, 0 IDS, 83.3% MT,
and 0.0% ML.

Figure [3|shows tracking results for the second setting
with sequences LLC-MK2-run03 and A-10-runOl.
The top row shows ground truth bounding boxes,
while the bottom row shows SAT pipeline predic-
tions with both bounding boxes and segmentation
masks. For LLC-MK2-run03, all cells are correctly
segmented across all frames, achieving a MOTA of
96.2%, IDF1 of 98.1%, 0 IDS, 100.0% MT, and 0.0%
ML. For A-10-run01, all cells are correctly segmented
initially, with cell number 2 missed at t + 119 min-
utes but recovered at t + 149 minutes. The pipeline
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Figure 2: Tracking results for experimental setting 1 with two sequences, PhC-C2DH-U373 and Fluo-N2DH-SIM+. The top
row shows ground truth, and the bottom row shows SAT pipeline predictions with evaluation scores above the prediction row.

achieves a MOTA of 80.8%, IDF1 of 90.0%, 0 IDS,
80.0% MT, and 0.0% ML.

While direct comparison with other tracking meth-
ods is not entirely feasible due to the unique nature
of the proposed approach, an additional experiment
with ByteTrack was conducted to offer some insights.
ByteTrack, trained on the same LIVECell dataset as
SAT, failed to detect any cells when applied to the
CTMC dataset. To investigate further, ByteTrack was
trained on a subset of the CTMC dataset (with no
overlap with the test set) and tested on the remain-
ing sequences. ByteTrack’s performance was lower
than SAT, with an average MOTA of 29.3 compared
to 76.4, and higher IDS and ML scores. These find-
ings emphasize the superior adaptability and robust-
ness of SAT, which can generalize effectively to un-

seen datasets without retraining, a limitation observed

in traditional methods like ByteTrack
2022).

Overall, the proposed SAT pipeline demonstrates
strong generalization across different modalities and
cell lines, achieving high tracking accuracy and iden-
tity preservation. This pipeline significantly impacts
the biological and biomedical research community by
automating cell segmentation and tracking, reducing
the need for expert knowledge and manual interven-
tion. It enhances accuracy, consistency, and speeds
up data annotation, benefiting cancer research, drug
development, and stem cell studies. SAT’s broad ap-
plicability with minimal retraining makes it a versa-
tile tool, driving new insights and improving research
efficiency.



Ground Truth

Prediction

t + 50 minutes

Ground Truth

LLC-MK2-run03

A-10-run01

t + 24 minutes t + 40 minutes

MOTA: 96.2, IDF1: 98.1, IDS: 0.0, MT: 100.0, ML:0.0

t + 119 minutes

t + 149 minutes

MOTA: 80.8, IDF1: 90.0, IDS: 0.0, MT: 80.0, ML:0.0

Prediction

Figure 3: Tracking results for experimental setting 2 with two sequences, LLC-MK2-run03 and A-10-run0O1. The top row
shows ground truth, and the bottom row shows SAT pipeline predictions with evaluation scores above the prediction row.

8 CONCLUSION

This study introduces a pipeline for Cell Segmenta-
tion and Tracking using only point annotations in the
first frame of the sequence. The SAT pipeline demon-
strates strong generalization and robustness across
diverse imaging modalities and cell types, achiev-
ing over 80% Multiple Object Tracking Accuracy
(MOTA) in evaluations on two diverse datasets. This
highlights its effectiveness in various cell-tracking
scenarios. The pipeline achieves high tracking ac-
curacy and identity preservation, effectively handling
different imaging conditions and extensive cell line
variations. By automating cell segmentation and
tracking, SAT reduces expert intervention and en-
hances research efficiency. This automation stream-
lines annotation, benefiting large-scale studies in can-
cer research, drug development, and stem cell studies.

With improved efficiency and accuracy in cell track-
ing, the SAT pipeline opens the door to new insights
and breakthroughs, facilitating scientific discoveries
and their application in clinical settings.
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