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Abstract. Accurate cell tracking in microscopy is essential for studying
biological dynamics like proliferation and migration. Traditional fully su-
pervised methods demand dense pixel-wise masks for every frame, mak-
ing them impractical for large-scale use. Recent methods like SAT re-
duce annotation effort by using sparse point-based supervision, but still
require multiple positive and negative points per cell, which remains
labor-intensive. BoxTrack offers a lightweight and annotation-efficient
alternative, requiring only a single bounding box per cell in the first
frame. Without relying on any point-level annotations, it performs end-
to-end instance segmentation and tracking over entire sequences. This
simplification leads to a substantial reduction in annotation cost while
improving performance over SAT. On the CTMC dataset, BoxTrack im-
proves Multiple Object Tracking Accuracy (MOTA) by +15.96% over
SAT. For the CTC dataset, it yields a +8.86% MOTA gain. Code is
available at https://github.com/nabeelkhalid92 /Box-it- Track-it.

Keywords: Microscopy, Cell Tracking, Segment Anything, Weak Su-

pervision, Temporal Downsampling, Deep Learning

1 Introduction

Accurate cell tracking in microscopy is essential for understanding dynamic bi-
ological processes such as proliferation, migration, and cell-cell interactions |19]

* These authors contributed equally to this work.
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. It enables researchers to quantify cellular behaviors over time and plays
a central role in studying wound healing, cancer metastasis, immune response,
and drug screening . Traditional cell tracking pipelines are heavily based
on fully supervised instance segmentation frameworks , requiring
dense pixel-wise annotations for every frame in a sequence. However, generating
such exhaustive labels is prohibitively expensive, especially for high-throughput
imaging settings where manual annotation becomes the bottleneck. This has
motivated the emergence of weakly supervised approaches that aim to
reduce annotation costs without sacrificing tracking performance.

SAT Input BoxTrack Input

Fig. 1. Comparison of annotation inputs required by SAT and BoxTrack on the first
frame of sequences from the CTMC and CTC datasets. SAT relies on dense point-level
supervision: 30 positive points () and 3 negative points (x) per cell for CTMC, and 6
positive () and 3 negative (Xx) per cell for CTC. In contrast, BoxTrack requires only a
single bounding box per cell in the first frame. Despite this drastic reduction in manual
effort, BoxTrack achieves 4+15.96 MOTA improvement on CTMC and +8.86 on CTC
over SAT.

One such method is SAT (Segment and Track Anything) [10], which proposes
an efficient pipeline using sparse point-based supervision in only the first frame.
Specifically, SAT requires annotating both positive points (inside each cell) and
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negative points (background) to guide segmentation and tracking. Despite its
annotation efficiency compared to fully supervised pipelines, SAT still involves
considerable manual effort, particularly for dense or large-scale datasets where
each cell demands multiple annotated points.

This work introduces BoxTrack, a simplified yet highly effective tracking frame-
work that eliminates the need for point-based supervision. BoxTrack relies solely
on bounding box annotations in the first frame of each sequence—one box per
cell—and leverages modern segmentation and tracking mechanisms to propagate
this minimal supervision across the full sequence. This approach significantly re-
duces annotation overhead, making it highly scalable and well-suited for large
microscopy datasets.

Fig. |l compares the annotation burden of SAT and BoxTrack on CTMC [1] and
CTC |28]. SAT requires 30 positive (o) and 3 negative (x) points per cell for
CTMC, and 6 positive plus 3 negative points for CTC. BoxTrack, in contrast,
uses only one bounding box per cell in the first frame. Despite this simplification,
it achieves a MOTA improvement of 15.96% on CTMC and 8.86% on CTC,
highlighting box-level supervision as an efficient and scalable alternative for cell
tracking in microscopy. Removing the need for point-level labels enables broader
applicability in biomedical workflows and large-scale screening. The main con-
tributions of this work are as follows:

— BoxTrack: a weakly supervised cell tracking framework using only one
bounding box per cell in the first frame.

— Achieves over 6x annotation savings compared to SAT [10], with improved

tracking accuracy.

Outperforms SAT with MOTA gains of 15.96% (CTMC) and 8.86% (CTC).

— Generalizes across imaging modalities and cell types (DeepCell results).

— Maintains strong performance under reduced scan frequency, supporting
long-term imaging up to 60-minute intervals.

The remainder of the paper is organized as follows: Section 2 reviews re-
lated work with a focus on weakly supervised cell tracking. Section 3 details
the BoxTrack framework. Section 4 describes the evaluation datasets (CTMC,
CTC, DeepCell), and Section 5 outlines the experimental setup. Section 6 re-
ports the results and analysis. Section 7 concludes with key takeaways and future
directions for scalable tracking.

2 Related Work

2.1 Cell Tracking and Segmentation

Cell tracking is vital for analyzing proliferation, migration, and interactions |5,
28|. Traditional segmentation-first methods [8|11H13,/24,/26] require dense labels
and struggle to generalize without retraining. Recent models like Trackastra [6],
CellTrack R-CNN [3], and SC-Track [17] integrate tracking and segmentation,
improving lineage accuracy but still demand high supervision. This highlights
the need for scalable, annotation-efficient tracking approaches.
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2.2 Weakly Supervised Approaches

Weakly supervised methods have emerged to reduce the annotation burden while
preserving accuracy. Point-supervised models |9,14] and box-based techniques |7|
offer lighter alternatives to full masks. However, they often depend on pre-trained
backbones or complex post-processing, limiting adaptability. Segment and Track
Anything (SAT) [10] reduces the labeling per frame by using positive and neg-
ative points in the first frame to track cells over time. While efficient, SAT still
requires around 30 clicks per cell and can struggle in crowded or noisy settings,
where point placement and boundary precision become critical.

2.3 Challenges in Microscopy

Microscopy data presents unique challenges not seen in natural images, includ-
ing low contrast, diverse modalities (e.g., fluorescence, phase contrast), and
densely packed or overlapping cells [25,|30}[32]. General-purpose models such
as YOLO [29] and SAM [15] require significant adaptation to perform reliably in
biomedical settings. In addition, long sequences with cell division or morpholog-
ical changes complicate the tracking. Although domain-specific models such as
Trackastra [6] improve performance through customized designs, they still rely
on dense supervision and often lack generalizability across modalities.

2.4 Need for BoxTrack

While weak supervision has reduced annotation costs, existing approaches often
trade off accuracy or require dense point-level input, which becomes impractical
in crowded cell environments. To address this, we introduce BozxTrack—a sim-
ple yet effective tracking framework that requires only a single bounding box
per cell in the first frame. It avoids reliance on point annotations, segmentation
masks, or modality-specific tuning, instead leveraging a unified detection-based
strategy to track cells across time.

As shown in Fig. [I} BoxTrack drastically lowers annotation effort while out-
performing SAT on CTMC and CTC benchmarks, demonstrating that minimal
supervision can achieve both accuracy and cross-modal generalizability.

3 BoxTrack: The Proposed Approach

BoxTrack is a zero-shot, inference-only framework for cell segmentation and
tracking in microscopy sequences. It requires a single bounding-box prompt per
cell in the first frame and generalizes effectively across diverse cell cultures and
imaging conditions without retraining. BoxTrack consists of two main modules,
as visualized in Fig. [2} the Segmentation Module (purple), responsible for
generating per-frame mask proposals, and the Tracking Module (green), which
links these proposals across frames to form consistent trajectories.
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Fig. 2. Overview of the BoxTrack pipeline. Given a video and bounding-box
prompts per cell in the first frame only, the Segmentation Module (purple) uses a
frozen SAM2 backbone to produce object tokens and mask proposals. These feed
into the Tracking Module (green), where Motion Modeling with a Kalman filter
predicts spatial movement, and a memory-aware scoring mechanism selects the final
ID-annotated masks and trajectories .

3.1 Segmentation Module

The Segmentation Module leverages a frozen backbone derived from SAM2 ,
pretrained on the extensive SA-V dataset. For architectural details of SAM2,
including its Image Encoder and prompt fusion design, we refer the reader to
the original paper. This module produces object tokens, intermediate masks, and
bounding boxes in each frame. As shown in Fig. [2| it comprises the Prompt
Encoder, Image Encoder, Memory Attention block, and Mask Decoder,
which operate sequentially to extract and refine segmentation features.

In the first frame I; of a microscopy sequence V = {I;,I5,...,Ir}, bounding
boxes {b}}¥ | are annotated to initialize tracking. These provide explicit spatial
cues for each cell. A lightweight Prompt Encoder converts the bounding boxes
into sparse object-specific embeddings P:

Py = PromptEncoder(b},...,bk). (1)

These embeddings encapsulate positional and visual context and guide the seg-
mentation process.

Each frame I; is processed by the frozen Image Encoder to extract spatial
visual features:

F, = ImageEncoder(I;), F, e RTXWxC (2)

where H and W denote spatial resolution and C' the number of feature channels.
The extracted features F; are fused with prompt embeddings Py and memory
tokens from the previous frame, selected by the Tracking Module via the Mem-
ory Attention block. This fusion incorporates temporal context for refinement.
The result is passed to the Mask Decoder to generate object tokens z! and

%
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corresponding segmentation masks M}:

M}, zt = MaskDecoder(Pg, F;, MemoryAttention). (3)

17

Bounding boxes l;f are derived from these masks and forwarded to the tracking
stage.

3.2 Tracking Module

The Tracking Module links segmentation proposals across frames to ensure tem-
poral consistency, especially in the presence of occlusions and densely packed
cells [31]. It consists of two main components: a Motion Modeling block, im-
plemented using a Kalman Filter, and a Memory-Aware Mask Selection
block. The Motion Modeling block predicts the expected position of each cell
in the next frame using the bounding box I;Zt-_l from the previous frame:

bt = KalmanPredict(l;f_l). (4)

This prediction serves as a motion prior to reduce association ambiguity by con-
straining the search space.
Unlike SAM2 |22], which maintains memory internally within the segmentation
stream using a fixed-size window (typically 7 frames) and a First-In, First-Out
(FIFO) policy that discards the oldest frame regardless of quality, BoxTrack
separates memory handling into the Tracking Module. This decoupling enables
more flexible and robust memory management. Specifically, when a high-quality
candidate is identified, it is added to the memory bank if space is available.
If the memory is full, the stored frame with the lowest combined confidence
score—recorded at the time of insertion—is evicted and replaced. This score-
based replacement strategy actively curates memory content and improves re-
silience to appearance changes and occlusions, offering a key advantage over
FIFO-based approaches.
The memory tokens selected by this process are fed into the Segmentation Mod-
ule’s Memory Attention block, enriching it with temporally relevant informa-
tion for the next frame’s prediction.
To determine which mask proposals to retain, the Memory-Aware Mask Se-
lection block computes a confidence score st for each candidate by combining
three components:

the Affinity Score, measuring token similarity across frames:

t

S

wi= cos(z! z'?_l), (5)

i) 44
the Motion Score, evaluating mask overlap between consecutive frames:
st =ToU(M}, M), (6)

and the Objectness Score, estimated from the current object token via a
small multi-layer perceptron (MLP) followed by sigmoid activation:

Soi = 0(MLP(z;)). (7)
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These are aggregated into a final score:
St = AaShi + AmSh, i+ Aosh i Where Ag + Ap + Ao = 1. (8)

The proposal with the highest s! is retained, and its object token is stored
in memory for use in the next frame. For each time step, the selected segmenta-
tion masks Mf are assigned persistent track IDs, yielding the final output of
BoxTrack: a temporally linked sequence of instance segmentation masks across
the video.

4 Datasets

BoxTrack builds on a segmentation backbone derived from SAM2 [22], trained
on the SA-V dataset comprising 50.9K videos and 35.5M instance masks across
642K masklets.

Evaluation is performed on three microscopy benchmarks. The CTMC dataset [1]
includes 86 videos from 14 cell lines; 22 sequences are selected to represent diverse
imaging conditions. The CTC dataset 18] provides 2D /3D time-lapse sequences
acquired using Bright Field, Phase Contrast, and DIC microscopy. Four 2D se-
quences are used, totaling 8,017 frames with an average of 33.12 cells per frame.
The DeepCell dataset [21] offers 12 test sequences comprising 617 frames and
99,550 annotated cells, enabling evaluation across dense nuclear environments.
In contrast to prior SAM-based methods such as SAT [10], which require super-
vised training on microscopy data (e.g., LIVECell [5]), BoxTrack operates in a
training-free manner using only a single bounding box per cell—demonstrating
high generalization with minimal supervision.

5 EXPERIMENTAL SETUP

BoxTrack is evaluated under four experimental settings. The Wide-Ranging Cell
Types (CTMC) setting uses 22 sequences from the CTMC dataset |1] to bench-
mark BoxTrack against SAT across diverse cell morphologies and motion behav-
iors. BoxTrack achieves higher tracking accuracy while requiring significantly
fewer annotations. The Multi-Modality Imaging (CTC) setting includes 2D se-
quences from the CTC dataset |18|, spanning Phase Contrast, Bright Field, and
Fluorescent modalities. Here too, BoxTrack consistently outperforms SAT un-
der varying imaging conditions. The Fluorescent Nuclear Tracking (DeepCell)
setting involves 12 sequences (617 frames, 99,550 annotated cells) from the
DeepCell test set [21], testing generalization across acquisition protocols and
nuclear appearances. The Temporal Downsampling setting subsamples CTMC
sequences at intervals up to 60 minutes to evaluate performance with sparse
temporal input. Unlike SAT, which is fine-tuned on LIVECell [5], BoxTrack op-
erates without retraining and uses only a single bounding box per cell in the
first frame. Performance is evaluated using standard MOT metrics [2}16}[23],
including MOTA (Multi-Object Tracking Accuracy), IDF1 (ID-based F1 score),
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IDS (identity switches), MT (mostly tracked), and ML (mostly lost). For MOTA
and related formulas, please refer to [2|. For mathematical definitions, including
the MOTA formula, we refer readers to the original CLEAR MOT paper |2].
All experiments were carried out with Python 3.10, PyTorch 2.3.1, and TorchVi-
sion 0.18.1. The segmentation backbone (SAM2.1-hiera-large) is used in inference-
only mode.

5.1 Multi-Cell Type Tracking (CTMC)

The CTMC dataset |1] comprises 22 sequences from diverse cell lines exhibit-

ing diverse morphologies, densities, and motion patterns. This setting assesses
generalization across varied biological conditions. As shown in Table [I] Box-

Track consistently outperforms SAT in both MOTA and IDF1, with substantial

gains observed in sequences like BPAE-run05 (+56.13% MOTA) and A-10-run05
(+19.74% MOTA). While SAT occasionally reports higher IDF1 (e.g., CRE-BAG2-run03),
BoxTrack demonstrates more stable overall tracking performance.

Table 1. Comparison of BoxTrack and SAT across CTMC dataset. Bold indicates
better performance per metric. BoxTrack uses bounding box annotations denoted by
8, while SAT uses point supervision denoted by P(X), where X is the number of
annotated points per cell.

Sequence Supervision | MOTA (%) 1| IDF1 (%) 1 IDS | MT (%) 1t ML (%) L
BoxTrack SAT |BoxTrack SAT |BoxTrack SAT |BoxTrack SAT|BoxTrack SAT |BoxTrack SAT
3T3-run03 $ P(18)] 93.01 61.49| 88.72 87.50 2.00 0.00| 100.00 100.00{ 0.00 0.00
A-10-run01 13 P(23)| 83.67 80.78| 91.82 90.56| 0.00 0.00| 80.00 80.00| 0.00 0.00
A-10-run05 $ P(33)| 99.70 79.96| 99.85 95.56 0.00 0.00| 100.00 100.00{ 0.00 0.00
A-10-run07 $ P(23)| 93.87 77.81| 96.94 91.25 0.00 0.00| 85.71 85.71 0.00  0.00
A-549-run03 $ P(28)| 89.13 57.51| 79.39 82.00 2.00 0.00| 83.89 88.89 0.00  0.00
BPAE-run05 $ P(33)| 82.50 26.37| 81.16 77.14 3.00 0.00| 100.00 100.00{ 0.00 0.00
CRE-BAG2-run03 $ P(23)| 46.22 36.62| 62.45 72.41] 1.00 0.00, 60.00 60.00| 6.67 6.67
LLC-MK2-run01 i P(33)| 76.49 54.28| 68.67 80.65 1.00 0.00| 75.00 75.00 0.00  0.00
LLC-MK2-run02a $ P(33)| 92.61 60.06| 95.46 83.87 1.00  0.00| 100.00 100.00| 0.00 0.00
LLC-MK2-run03 $ P(28)| 96.40 96.18| 98.20 98.11 0.00 0.00| 100.00 100.00| 0.00  0.00
APM-run05 $ P(28)| 43.79 61.85| 69.59 82.38 1.00 0.00| 50.00 75.00 0.00 0.00
LLC-MK2-run07 $ P(18)| 77.32 73.72| 88.66 88.65 0.00 0.00| 77.78 T77.78 0.00  0.00
MDBK-run03 i P(28)| 87.11 69.76| 93.68 86.00 0.00 0.00| 8235 82.35 0.00  0.00
MDBK-run09 $ P(23)| 79.77 53.28| 89.89 85.88 2.00 0.00f 80.00 80.00 0.00  0.00
MDOK-run07 13 P(18)| 100.00 99.80| 100.00 99.80| 0.00 0.00| 100.00 100.00| 0.00 0.00
OK-run01 £ P(18)| 81.52 60.94| 90.68 85.39 0.00 0.00| 80.00 80.00 0.00  0.00
OK-run05 $ P(33)] 87.11 65.11| 93.56 91.30 0.00 0.00| 100.00 100.00{ 0.00 0.00
OK-run07 $ P(18)| 70.78 19.52| 85.39 72.22 0.00 0.00| 68.75 68.75 0.00  0.00
PL1Ut-run05 $ P(33)| 99.46 93.13| 99.73 96.55 0.00 0.00| 100.00 100.00{ 0.00 0.00
RK-13-run03 13 P(33)| 85.83 65.11| 85.67 85.67| 2.00 0.00| 85.71 85.71 0.00  0.00
U20-S-run03 i P(28)| 81.55 76.58| 90.77 85.00 0.00 0.00| 75.00 75.00 0.00  0.00
U20-S-run05 $ P(33)| 57.74 54.44| 7887 84.62| 0.00 0.00| 62.50 62.50 0.00 0.00
Average - - 82.79 66.83| 87.91 86.36 0.61 0.00| 86.28 86.79 0.29  0.29

5.2 Multi-Modality Imaging (CTC)

This setting uses 2D sequences from the CTC dataset |18], spanning Phase Con-
trast, Bright Field, and Fluorescent microscopy. It evaluates robustness across
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distinct imaging modalities. Table [2] shows that BoxTrack outperforms SAT
across all sequences in MOTA and IDF1. Notable gains are seen in PhC-C2DH-U373
(01) and Fluo-N2DH-GOWT1, with reduced Mostly Lost rates further indicating
improved temporal consistency under modality shifts.

Table 2. Comparison of BoxTrack and SAT across CTC dataset. Bold indicates better
performance per metric. BoxTrack uses bounding box annotations denoted by f5, while
SAT uses point supervision denoted by P(X), where X is the number of annotated
points per cell.

Sequence Supervision [MOTA (%) 1| IDF1 (%) T IDS | MT (%) T ML (%) 1
BoxTrack SAT |BoxTrack SAT |BoxTrack SAT |BoxTrack SAT|BoxTrack SAT |BoxTrack SAT
PhC-C2DH-U373 (01) i P(9)| 100.00 79.82| 100.00 89.00| 0.00 0.00| 100.00 71.43 0.00 0.00

PhC-C2DH-U373 (02) ® P(9)| 85.71 82.75| 93.33 91.94| 0.00 0.00| 100.00 100.00{ 0.00 0.00
Fluo-N2DH-GOWT1 B P(6)] 97.81 88.24| 98.91 91.20, 0.00 0.00| 91.67 79.17| 0.00 8.34
Fluo-N2DH-SIM+ 13 P(6)| 85.79 83.03] 90.44 88.73| 0.00 0.00| 83.84 83.34 0.00  0.00
Average - - 92.32 83.46] 95.67 90.22| 0.00 0.00) 93.87 83.45 0.00 2.08

Table 3. Overall performance of BoxTrack-SAT on the DeepCell tracking dataset.

Method MOTA (%) 1 IDF1 (%) 1 IDS | MT (%) t ML (%) |
BoxTrack-SAT 82.95 87.17  15.67  68.67 19.13

5.3 Multi-Culture Nuclear Imaging (DeepCell)

The DeepCell DynamicNuclearNet dataset [21] contains fluorescent nuclear im-
ages from multiple mammalian cell cultures, introducing variation in nuclear
density, shape, and arrangement. This setting tests generalization to unseen vi-
sual and biological characteristics. BoxTrack achieves a MOTA of 82.95 and
IDF1 of 87.17 without retraining (Table , highlighting its robustness in dense
nuclear tracking tasks.

5.4 Temporal Resolution Sensitivity (CTMC-Frequency)

This setting evaluates the impact of scan interval length using sub-sampled
CTMC sequences. The original acquisition rate of one frame every 30 seconds
is progressively reduced up to one frame every 60 minutes. As shown in Fig. [3]
MOTA gradually declines from 72.01% at 1-minute intervals to 55.93% at 60
minutes. Despite the drop in temporal density, BoxTrack maintains strong per-
formance, demonstrating resilience in low-frequency or long-term imaging con-
ditions.
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Fig. 3. Tracking performance (MOTA) of BoxTrack across different temporal intervals
on CTMC.

6 Analysis and Discussion

This section evaluates the effectiveness of BoxTrack across four experimental
settings, each reflecting distinct challenges in microscopy-based cell tracking.

6.1 CTMUC: Cell Line Diversity and Tracking Generalization

The Multi-Cell Type Tracking setting used 22 sequences from diverse cell lines in
the CTMC dataset. BoxTrack consistently outperformed SAT with an average
MOTA improvement of +15.96%. For example, in the 0K-run07 sequence (shown
in Fig. [4] top), BoxTrack achieved a MOTA of 70.78%, significantly higher than
SAT’s 19.52. At ¢+ 790 minutes, SAT failed to detect and track cell ID 10, which
was correctly identified by BoxTrack. By t 4+ 975, SAT missed cells 10, 6, 11, 1,
and 5—all of which were successfully tracked by BoxTrack. Additional missed
detections and less precise boundaries were observed in SAT.

These results highlight BoxTrack’s scalability across biologically diverse condi-
tions without the need for retraining or dataset-specific adaptation. Such ca-
pabilities are particularly useful in large-scale experiments and high-throughput
time-lapse studies, where annotation and tuning overheads are often prohibitive.

6.2 CTC: Robustness Across Imaging Modalities

The Multi-Modality Imaging setting assessed performance across Phase Con-
trast, Bright Field, and Fluorescent microscopy using sequences from the CTC
dataset. BoxTrack maintained modality-agnostic performance, achieving average
MOTA and IDF1 scores of 92.32% and 95.67% respectively, compared to SAT’s
83.46 and 90.22. In the PhC-C2DH-U373 sequence (Fig. |4 bottom), SAT achieved
a MOTA of 79.82%, whereas BoxTrack reached 100.00%. At ¢ + 495 minutes,
SAT inaccurately delineated the boundary of cell ID 4, and this error persisted
through ¢+ 690. In contrast, BoxTrack preserved precise and consistent tracking
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Fig. 4. Qualitative comparison for the first two experimental settings: CTMC (Top)
and CTC (Bottom). Each row shows Ground Truth, SAT, and BoxTrack predictions
over time. Tracking metrics are listed above SAT and BoxTrack rows. BoxTrack con-
sistently outperforms SAT across diverse cell types and imaging modalities.

throughout the sequence.

The results underline the robustness of BoxTrack under modality shifts and sug-
gest that the approach can be applied across varying acquisition setups without
handcrafted modifications. This simplifies its use in multi-institutional studies
or labs employing diverse imaging technologies.
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6.3 DeepCell: Scalability in Dense Nuclear Tracking

DeepCell

t + 100 minutes — t + 125 minutes t + 210 minutes

GroundTruth

2
2
=
=
3
A

Fig. 5. Qualitative comparison for the third experimental setting: DeepCell. Each
row shows Ground Truth and BoxTrack predictions over time. Tracking metrics are
reported above BoxTrack row. BoxTrack shows strong performance in densely popu-
lated, morphologically varied nuclear cultures.

The Multi-Culture Nuclear Imaging setting focused on nuclear tracking under

fluorescence microscopy across multiple cell cultures. Despite consistent modal-
ity, variations in nuclear shape, density, and distribution introduced additional
complexity. BoxTrack achieved strong performance with a MOTA of 82.95% and
IDF1 of 87.17% across 12 sequences. As shown in Fig. [5] BoxTrack maintained
robust accuracy despite contrast changes between t 4+ 100 and t 4+ 125 minutes.
However, at ¢ + 210 minutes, the model failed to detect a mitotic event where
cell ID 2 divided into cells 17 and 18.
These findings suggest that BoxTrack is well-suited for large-scale nuclear studies
in areas such as drug screening or cancer biology, where high-density and mor-
phologically varied samples are common. Future integration of division-aware
tracking could enhance its applicability in proliferative assays.

6.4 Temporal Downsampling: Robustness to Reduced Scan
Frequency

The Temporal Resolution Sensitivity setting tested BoxTrack under lower scan
frequencies by subsampling CTMC sequences from 30 seconds up to 60-minute
intervals. As expected, MOTA gradually declined with reduced temporal res-
olution—from 82.79% at 30 seconds to 55.93% at 60 minutes. Despite fewer
temporal cues, BoxTrack preserved a MOTA of 60.92% even at 30-minute inter-
vals and remained above 55% at 60 minutes.

These results indicate that BoxTrack remains effective in temporally sparse con-
ditions, making it suitable for long-term imaging studies where frequent scanning
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is impractical due to phototoxicity, memory constraints, or biological limitations.
Across all experiments, BoxTrack consistently delivered strong tracking with
minimal supervision—only one bounding box per cell—unlike SAT, which re-
quires dense points and backbone tuning. Its zero-shot capability, scalability,
and low annotation effort make BoxTrack well-suited for real-world scenarios,
including live-cell imaging, large datasets, varied conditions, and low-frequency
acquisitions.

7 Conclusion

This work introduced BoxTrack, a training-free, annotation-efficient framework
for cell tracking in microscopy images that relies solely on a single bounding box
per cell in the first frame. Through extensive experiments across three diverse
settings—cell line diversity (CTMC), modality variation (CTC), and nuclear
culture dynamics (DeepCell)—BoxTrack consistently outperformed the perfor-
mance of SAT, a recent state-of-the-art weakly supervised baseline. The results
demonstrate that BoxTrack not only reduces manual annotation time by a sub-
stantial margin but also generalizes robustly across different cell types, densities,
and imaging conditions without retraining or fine-tuning. This highlights the po-
tential of BoxTrack as a universal tracking pipeline for microscopy, bridging the
gap between usability and performance. By offering a lightweight yet accurate
alternative to heavily supervised or fine-tuned systems, BoxTrack paves the way
for broader accessibility in live-cell imaging studies, high-throughput screens,
and biomedical applications where resource constraints or annotation budgets
are critical bottlenecks. Future work may further explore integration with cell
lineage tracing, event detection (e.g., mitosis), and real-time deployment in au-
tomated microscopy workflows.
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