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Abstract

Self-confidence is a pivotal trait that profoundly impacts performance
across various life domains. It fosters positive outcomes by facilitating
quick decision-making and timely actions. In the context of video-based
learning, accurate detection of self-confidence is critical as it enables the
provision of personalized feedback, thereby enhancing learners’ experi-
ences and improving their confidence levels. This study addresses the
challenge of self-confidence detection by evaluating and comparing tra-
ditional machine-learning methods with an advanced deep-learning ap-
proach using eye-tracking data collected through two distinct modalities:
an eye-tracker and an appearance-based model. Our experimental setup
involved fourteen participants, each of whom viewed eight distinct videos
and provided corresponding responses. To analyze and assess the collected
data, we implemented and compared five different algorithms: Support
Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF),
Extreme Gradient Boosting (XGBoost), and a deep-learning based 1D
Convolutional Neural Network (1D CNN) and Transformer models. The
1D CNN model achieved the highest macro F1-scores using leave-one-
participant-out cross-validation (LOPOCV), with performances of 0.662
on eye-tracking data and 0.635 on appearance-based data. In contrast,
under leave-one-question-out cross-validation (LOQOCV), Logistic Re-
gression demonstrated superior performance for eye-tracking data (F1-
score: 0.560), while Transformer-based models yielded the highest F1-
score (0.616) for appearance-based data. These findings underscore the
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effectiveness of deep learning in capturing complex gaze behavior pat-
terns, thereby providing a robust framework for estimating self-confidence
in video-based learning environments.

1 Introduction

In the era of digital education, quantified learning has emerged as a
promising solution to address the challenges of online learning environ-
ments. By monitoring learning behaviors, quantified learning provides
actionable feedback to students and educators. Smart sensors integrated
into devices such as computers, smartphones [1], chairs [2], and eye-
glasses [3] capture insights into students’ physical and cognitive states
during learning activities. Physical states are reflected in non-verbal cues
like utterance rates [4, 5], nodding [6, 7], and smiling [8–10], while cogni-
tive states include processes such as engagement [11, 12], boredom [13, 14],
and self-confidence [15–17].

Self-confidence is a critical factor in academic success, with studies
showing its strong connection to learning outcomes [18, 19]. Enhancing
self-confidence has been shown to improve academic performance [20] sig-
nificantly. Quantified learning bridges traditional and online education
gaps by enabling personalized interventions to boost confidence through
tailored feedback. However, the relationship between non-verbal cues,
such as eye movements, and self-confidence levels in digital education re-
mains underexplored, particularly as telepresence technologies continue to
grow.

Eye gaze provides critical insights into human attention and cognitive
states. By analyzing gaze patterns, researchers can infer intentions [21]
and better understand social interactions [22]. Gaze behavior—comprising
fixation patterns, saccadic movements, and gaze aversion—offers valuable
data about learners’ attention, focus, and self-confidence. Eye-tracking
has thus emerged as a non-invasive tool for analyzing these states. Two
primary methods for eye-tracking are hardware-based systems, which offer
high precision but rely on costly equipment, and software-based solutions,
which use webcams to provide a scalable and cost-effective alternative for
educational applications.

Over the years, gaze estimation methods have been categorized into
three main approaches [23]:

1. Appearance-Based Methods: Rely on visual cues, such as the
appearance of eyes, to estimate gaze direction. They are hardware-
independent and use webcams, which makes them scalable.

2. 2D Eye Feature Regression Methods: Use geometric features,
such as pupil center location, to predict the point of gaze (PoG)
without requiring calibration. However, they often depend on spe-
cialized equipment.

3. 3D Eye Model Recovery Methods: Involve creating geomet-
ric models of the eye to estimate gaze direction, typically requiring
person-specific calibration and specialized tools like infrared cam-
eras, limiting scalability.
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Our findings demonstrate the advantages of deep learning over tra-
ditional feature extraction-based, with the 1D CNN outperforming other
models in classifying self-confidence. This research bridges a critical gap
in practical computing and learning analytics by systematically compar-
ing hardware-based and software-based methods. Through this analysis,
we aim to design more sophisticated educational systems that provide tai-
lored feedback and enhance learning outcomes. The contributions of the
research are listed as follows:

C1 We propose a novel framework for estimating self-confidence in video-
based learning using gaze data from both hardware-based (eye-tracker)
and software-based (appearance-based) modalities.

C2 We systematically compare hand-crafted feature-based with deep
learning methods.

C3 We highlight the feasibility of webcam-based gaze estimation for
scalable and cost-effective confidence assessment, bridging the gap
between quantified learning and adaptive feedback in education.

2 Related Work

In this section, we focus on introducing existing related work on self-
confidence estimation, eye-tracking methods, and appearance-based gaze
estimation.

2.1 Self-Confidence Estimation

The critical role of confidence in influencing neurocognitive states has
been extensively studied across domains, including standardized learning
environments [24], cognitive assessments [25], and skill acquisition in fields
like culinary arts [26]. Forbes-Riley and Litman [27] demonstrated that
integrating confidence into tutoring systems enhances learning pace and
user satisfaction. Similarly, individuals who advocate for themselves often
achieve greater success, as positive reinforcement and acknowledgment of
their performance bolster confidence.

Confidence is particularly crucial in addressing misconceptions during
learning. Sun and Yeh [28] emphasized that fostering self-confidence en-
ables students to identify and correct misunderstandings, promoting more
accurate self-assessment. Additionally, Roderer and Roebers [29] noted
age-related differences in confidence, with younger individuals typically
exhibiting higher levels than older counterparts.

In neuroscience, the link between physiological measures, such as elec-
troencephalography (EEG), and self-efficacy—the belief in one’s ability to
perform tasks—is well-documented [28, 30]. However, traditional EEG-
based methods are often intrusive, causing discomfort and reduced engage-
ment. In contrast, eye-tracking offers a non-intrusive, naturalistic alterna-
tive for monitoring cognitive and emotional states. For example, Maruichi
et al. [31] proposed estimating self-confidence through stroke-level hand-
writing behavior, providing personalized feedback to help learners address
knowledge gaps and improve outcomes efficiently.
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Building on this, Bruhin et al. [32] conducted a laboratory experiment
examining self-confidence’s influence on teamwork. Their study manipu-
lated participants’ confidence through general knowledge quizzes of vary-
ing difficulty and revealed that overconfidence increased individual effort,
reduced free-riding, and boosted team performance and revenue. These
findings highlight the synergistic effects of self-confidence in collaborative
settings, where balancing ability and effort drives collective success.

2.2 Eye-tracking in Action

Eye behaviors and body language are key indicators of self-confidence.
Individuals with low self-confidence often exhibit prolonged revisiting and
re-evaluating of questions or choices, reflecting indecisiveness and uncer-
tainty [33]. Eye-tracking has proven to be a valuable tool for understand-
ing these behaviors and enhancing the learning experience. For instance,
Okoso et al. [34] demonstrated how eye-tracking can identify specific sec-
tions of a text that learners struggle to comprehend, enabling targeted
attention to those areas.

Eye-tracking has shown broader applications in educational contexts.
Lee et al. [35] found a positive correlation between sustained eye con-
tact with virtual tutors and improved learning outcomes, highlighting the
role of gaze in fostering engagement. Similarly, Augereau et al. [36] used
eye movement patterns to estimate English language proficiency during
testing, achieving high accuracy and minimal errors. In problem-solving
tasks, Yamada et al. [17] pioneered the use of eye-tracking to automati-
cally assess self-confidence levels through eye movement analysis. Yamada
et al. proposed a confidence-aware system that utilizes eye-tracking data
to analyze reading and answering behaviors, extract gaze-based features,
and predict confidence levels [37].

Expanding on these concepts, Ishimaru et al. [16] introduced a confidence-
aware learning assistant that uses eye-tracking to detect students’ self-
confidence while answering multiple-choice questions. The findings demon-
strated that gaze behavior is closely linked to self-confidence and can be
effectively used for real-time confidence estimation in educational settings.
By building on these outcomes, we have further validated the feasibility of
gaze as a metric for confidence detection in our study. The system adapts
the review process based on the estimated confidence levels, providing
personalized feedback and targeted interventions to enhance learning.

These studies collectively highlight the potential of eye-tracking to pro-
vide insights into learners’ cognitive processes, enabling tailored feedback
and reinforcement strategies to support individual learning needs.

2.3 Appearance-based Gaze Estimation

Numerous techniques have been developed to enhance accuracy in gaze
estimation, utilizing both traditional machine learning and deep-learning
approaches. For example, Lu et al. proposed dividing eye images into
15 subregions and using the summed pixel intensities as features [38].
However, traditional appearance-based methods often require manual cal-
ibration, which is time-consuming and complicates the collection of user-
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specific training samples under controlled settings. To address this, Williams
et al. [39] introduced a semi-supervised Gaussian process regression ap-
proach, reducing the necessary training samples. Although such tech-
niques improve efficiency, they are limited to controlled environments
(e.g., fixed headgear or specific users) and struggle in more challenging
scenarios. Deep-learning-based methods have emerged as a robust alter-
native. They automatically extract features from eye images and overcome
the limitations of traditional approaches. These methods are trained using
various paradigms, including supervised, semi-supervised, self-supervised,
and unsupervised learning.

Supervised learning has driven significant advancements in gaze esti-
mation. Zhang et al. [40] introduced one of the first methods using a Con-
volutional Neural Network (CNN) to compute gaze directions, surpassing
many traditional appearance-based approaches. Krafka et al. [41] devel-
oped a gaze estimation architecture leveraging face images. The iTracker
model proposed by Krafka et al. [42] combines left and right eye images,
face images, and face grid information to infer gaze location. This model
uses inputs such as the face image, its location in the frame (face grid),
and eye images, estimating head pose relative to the camera and eye pose
relative to the head. Its architecture is based on AlexNet [43]. Similarly,
Bao et al. [44] proposed AFF-Net, which extracts features from both the
face and rectangular regions using convolutional and fully connected lay-
ers. This architecture integrates left and horizontally flipped right eye
images through a novel stacking mechanism and Squeeze-and-Excitation
(SE) layers, with Adaptive Group Normalization (AdaGN) recalibrating
eye features based on facial appearance characteristics, while Bhatt et al.
[45] employed two methods: one with a single feature extractor and an-
other with four, processing different inputs (e.g., original frame, face, left
eye, and right eye) using backbones like VGG16, ResNet50, and Efficient-
NetB7.

Video-based gaze estimation has also gained attention, leveraging the
additional information in video sequences compared to static images [46].
In these methods, static features are extracted from individual frames
using a CNN, and temporal dependencies are captured using a Recurrent
Neural Network (RNN), enhancing gaze estimation accuracy.

Beyond supervised learning, other training paradigms have been ex-
plored. In the semi-supervised domain, Wang et al. [47] introduced an
adversarial learning approach to improve model performance for target
subjects or datasets. For self-supervised methods, Cheng et al. [48] pro-
posed an asymmetry regression network comprising a regression compo-
nent to estimate gaze directions and an evaluation component to assess
prediction reliability for both eyes. In unsupervised learning, Yu and
Odobez [49] employed a CNN to extract 2D features from eye images. A
gaze redirection network generates the corresponding image for the other
eye by analyzing the feature differences between paired images, enabling
gaze estimation without labeled data.

These diverse methods showcase the evolution of gaze estimation tech-
niques from traditional and supervised learning to more innovative ap-
proaches like self-supervised and unsupervised learning, pushing the bound-
aries of accuracy and adaptability in real-world applications.
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Figure 1: Overview of our proposed method.

3 Methodology

This section provides an overview of the entire process, starting with the
data collection procedure, data preprocessing, feature extraction, model
architecture, and evaluation strategy. Figure 1 shows the overall flow of
our approach. First, we detail the dataset’s preparation process, including
the steps to ensure the data was suitable for analysis. This is followed
by a description of the feature extraction methodology, where we outline
how meaningful features were derived from the raw data to feed into
the models. Next, we discuss the machine-learning and deep-learning
models utilized in this study, explaining their structure and how they
were trained. Finally, we present the evaluation protocol, which includes
cross-validation techniques used to assess the effectiveness of the models.

3.1 Data Preprocessing

Facial videos were collected through a webcam during the experiment. In
this study, the model introduced by Bhatt et al. was employed to generate
2D gaze points [45] to extract gaze information from these videos. This
method enabled the tracking of gaze behavior, which was essential for
analyzing confidence-related variations in eye movement patterns. Eye-
tracking data, however, can be influenced by various noise sources, such as
blinks and head movements. To mitigate these challenges, noise-reduction
techniques were applied to eliminate distortions and enhance the reliabil-
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(a) Confident Participant
(Eye-Tracker)

(b) Confident Participant
(Appearance-based model)

(c) Not Confident Participant
(Eye-Tracker)

(d) Not Confident Participant
(Appearance-based model)

Figure 2: Comparison of eye gaze patterns for confident and non-confident
participants captured using an eye-tracker and appearance-based model during
question responses.

ity of the eye movement measurements. These techniques allowed for a
more precise examination of eye movement metrics, including fixations
(sustained gazes at a specific location) and saccades (rapid transitions be-
tween fixations). The method introduced by Buscher et al. was used to
analyze the proposed model to detect fixations and saccades [50]. This
approach is particularly effective in mitigating noise caused by factors
such as blinks, head movements, and other distortions that may impact
the accuracy of gaze measurement. In this context, a fixation is defined
as maintaining a gaze on a specific location for a brief period (typically
less than one second), while a saccade refers to a rapid eye movement be-
tween fixation points. Rather than exporting the absolute coordinates of
fixations, the differential coordinates were extracted to capture positional
changes between consecutive fixations. These differential eye gaze pat-
terns highlight variations in gaze behavior when answering questions with
and without confidence, as depicted in Figure 2 illustrates the differences
in eye gaze patterns observed when solving questions with and without
confidence, using two distinct eye-tracking methods: hardware-based eye
trackers and appearance-based approaches.

3.2 Features Extraction

Table 1 shows a list of features used in this study. Our methodology
integrates traditional feature engineering techniques with state-of-the-art
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Table 1: The list of features

No Feature

1-2 Fixation duration {mean, std}
3-4 Saccade length {mean, std}
5-6 Saccade angle {mean, std}
7-8 Saccade speeds {mean, std}

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 3: Comparison of fixation counts for confident and not-confident labels
using the Eye-Tracker and Appearance-Based model across participants.

deep-learning approaches to achieve a robust evaluation of self-confidence
estimation. We derived a comprehensive set of handcrafted features from
the gaze data from the eye-tracker and appearance-based model, including
fixation duration, saccade length, angle, and velocity. By transforming
the raw data into these high-level descriptors, we ensure a precise and
contextually relevant representation of how audiovisual stimuli modulate
eye movement patterns and cognitive engagement. This fusion of hand-
crafted and learned features enables a more nuanced understanding of
participants’ self-confidence dynamics. Figure 3 illustrates a comparative
analysis of fixation counts for confident and non-confident responses across
participants using the Eye-Tracker and the Appearance-Based model.

3.3 Model Architecture

This study investigates the efficacy of combining conventional hand-crafted
feature extraction techniques with advanced machine learning and deep-
learning models for predicting self-confidence in video-based learning en-
vironments. Our approach adopts a dual strategy:

1. We explored traditional machine learning methods by utilizing hand-
crafted features derived from eye-tracking data. These features were
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Figure 4: Proposed deep-learning based 1D CNN architecture.

input into a suite of machine learning algorithms, including Support
Vector Machines (SVM), Random Forest (RF), Logistic Regression
(LR), and Extreme Gradient Boosting (XGBoost).

2. We employed a one-dimensional Convolutional Neural Network (1D-
CNN) and Transformer network, deep-learning models particularly
adept at capturing intricate temporal dependencies and patterns in
sequential data.

Feature-extraction based Model

Our hand-crafted feature-based methodology utilizes four well-established
machine learning algorithms for self-confidence estimation: Support Vec-
tor Machine (SVM), Random Forest (RF), Logistic Regression (LR), and
Extreme Gradient Boosting (XGBoost). We employed the Radial Basis
Function (RBF) kernel for SVM, which is particularly effective in captur-
ing non-linear relationships in the feature space. Using a grid search, we
optimized the hyperparameters, identifying the best values as C = 1 and
γ = 0.125. The RF algorithm was configured with n estimators = 100

and criterion = gini leveraging the ensemble of decision trees to pro-
vide robust and accurate predictions. For LR, we applied class weight

= balanced to handle class imbalance and set max iter = 1000 to ensure
convergence during training. This algorithm provided a strong baseline
for binary classification tasks, relying on the probabilistic interpretation
of feature contributions. To address the class imbalance, the XGBoost
model incorporated scale pos weight calculated as the ratio of negative
to positive samples. Additionally, we used eval metric = logloss for
evaluation and fine-tuned its parameters to maximize performance. These
settings allowed XGBoost to model complex feature interactions and im-
prove predictive accuracy efficiently.
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Figure 5: Proposed Transformer architecture.

Deep-Learning based Model

Our deep-learning model utilized a 1D CNN architecture, as illustrated in
Figure 5. We applied padding to preprocess the input data to ensure con-
sistent sequence lengths across all samples, allowing the model to handle
varying input sizes. The input data consisted of sequences with a maxi-
mum length of 308 and 297 data points generated through an eye-tracker
and an appearance-based model, respectively. The 1D CNN architec-
ture featured three convolutional layers, each with filters = 64 and a
kernel size = 3, followed by batch normalization and dropout with a
rate of 0.1 to regularize the network and mitigate overfitting. After the
convolutional layers, a global average pooling layer was used to reduce
the sequence dimensions, yielding a fixed-length feature vector of size 64.
This feature vector was then passed through a fully connected layer for
binary classification. The model was optimized using the Adam optimizer
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with an initial learning rate of 0.001, and the Binary Cross-Entropy loss
function was used as the objective function for training. Class weights
were incorporated into the loss function to address the class imbalance,
ensuring that the model appropriately emphasized the minority class.

On the other hand, the Transformer model architecture consisted of
an input embedding layer, which mapped the input features of size 8 to
a hidden dimension of 128 through a linear transformation. Positional
embeddings were added to the input embeddings to encode positional in-
formation in the sequences. These positional embeddings were initialized
using Xavier uniform initialization to ensure stable convergence. The core
of the architecture featured a Transformer encoder comprising 2 layers.
Each encoder layer included a multi-head self-attention mechanism with
4 attention heads and a feedforward layer with a hidden size of 512 (4
times the hidden dimension). Dropout with a rate of 0.1 was applied to
the encoder layers for regularization to mitigate overfitting. The final en-
coded sequence representation was aggregated using mean pooling along
the sequence dimension to generate a fixed-length feature vector. This
vector was passed through a fully connected layer for binary classifica-
tion. The Adam optimizer optimized the model with an initial learning
rate of 0.0001 and weight decay set to 0.0001. The Binary Cross-Entropy
with Logits Loss (BCEWithLogitsLoss) function was employed as the ob-
jective function. Class weights were incorporated into the loss function to
address the class imbalance, ensuring the model appropriately emphasized
the minority class during training. A learning rate scheduler, StepLR, was
applied with a step size of 10 and a γ = 0.1 to reduce the learning rate
during training, helping in convergence.

3.4 Evaluation Strategy

Leave-One-Participant-Out-Cross-Validation (LOPOCV)

The LOPOCV method assessed the model’s generalizability in predicting
self-confidence for unseen participants. In this approach, data from one
participant were excluded from the training set during each iteration and
used solely for testing. This process was repeated until data from every
participant had been excluded and tested.

Leave-One-Question-Out Cross-Validation (LOQOCV)

The LOQOCV approach evaluated the model’s performance by consid-
ering “solving” activities together. In each iteration of LOQOCV, one
question was excluded from the training dataset and used as the test set.
The model was trained on the remaining categories, and this process was
repeated until each category had been excluded and tested once. This ap-
proach allowed us to assess the model’s ability to predict self-confidence
across different activity categories. The model’s overall accuracy was cal-
culated by averaging the accuracy scores obtained from all iterations, pro-
viding a comprehensive performance metric across categories.

The importance of evaluating model performance using standard training-
testing splits is well-recognized in deep learning research. While LOPOCV
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and LOQOCV were chosen to ensure robust generalizability across unseen
participants and questions, incorporating standard training- testing splits
could provide additional insights into model performance under more con-
ventional evaluation settings.

4 Data Collection

This section details the gaze data collection process, including an exper-
imental setup and workflow overview. The following subsections provide
further information about participant demographics and the data collec-
tion protocol.

4.1 Participants

The participant pool consisted of 14 university students with diverse aca-
demic and cultural backgrounds. Among them, ten were male, and four
were female. The participants were recruited from Computer Science,
Cognitive Science, Architecture, and Mechanical Engineering, ensuring a
representative sample for evaluating the proposed framework. The group
included twelve master’s students and two bachelor’s students, aged 23
to 30 years. Participants were from India, Russia, Iran, and Germany,
reflecting an international cohort. Additionally, 53% of the participants
reported consuming caffeine before the experiment.

4.2 Experimental Protocol

The study took place in a controlled lab setting using a Tobii 4C remote
eye-tracker with a pro license and a web camera to reduce distractions
and significantly influence the results. The videos used to track eye move-
ments, and focus spanned subjects like logic, literature, computer science,
and medicine to cover a range of themes effectively. These specific top-
ics were chosen thoughtfully to guarantee representation and significance.
The data collection process involved well-defined steps to ensure consis-
tency and reliability. These steps are detailed below:

1. Each participant received a detailed briefing from the experiment
conductor about the purpose of the study, the data collection pro-
cess, and the overall expectations for their participation.

2. Participants reviewed and signed an informed consent form, confirm-
ing their understanding and voluntary agreement to participate in
the study.

3. Participants completed a demographic questionnaire to provide rel-
evant background information.

4. Participants were seated in front of a computer screen and instructed
to attentively watch a series of video stimuli lasting approximately
one to two minutes each. They were explicitly asked to follow the
experimental guidelines of carefully watching the videos.
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5. While participants viewed each task video, their facial expressions
were recorded using a webcam to capture their gaze movements, and
eye movements were recorded using a remote eye tracker.

6. As participants responded to the questionnaire, their facial expres-
sions and eye movements were continuously recorded using the same
equipment.

7. After answering each question, participants were asked to indicate
their confidence level in their responses by selecting “Yes” or “No”.
This self-reported confidence served as a benchmark to evaluate the
system’s performance in assessing participant self-assurance.

8. Upon completing the confidence assessment for each question, the
following video was automatically played, and the process (Steps
5–8) was repeated for all videos in the series.

9. After the experiment, participants were thanked for their time and
effort and received a 10 Euro gift card as a token of appreciation.

The experiment lasted 30 minutes. During the trial, the desktop used
for the study was stabilized to prevent movement or shaking. The experi-
mental environment was carefully arranged to eliminate potential sources
of interference, such as debris or exposure to other devices, ensuring opti-
mal conditions for gaze data recording. Additionally, the system’s volume
was standardized across all participants, and the screen brightness was
uniformly set for all trials. These measures were implemented to create a
controlled and standardized environment, minimizing external influences
that could negatively impact data collection or compromise the reliability
of the results.

5 Results and Discussion

This section presents the results of a comprehensive comparison between
hand-crafted feature-based methods and a deep-learning-based approach
for estimating self-confidence from eye movements. The objective is to
provide an in-depth analysis of each methodology’s strengths and limita-
tions within the study’s context.

Table 2 presents the performance metrics for various machine learning
and deep-learning models, including SVM, LR, RF, XGBoost, 1D CNN,
and Transformers, trained on eye-tracking data obtained from both an
eye-tracker and an appearance-based model under the LOPOCV frame-
work. Similarly, Table 3 provides the evaluation metrics for the same set
of models trained on the same data but evaluated using the LOQOCV
framework. The reported metrics include precision, recall, F1-score, and
macro averages for the classes: “Not Confident” and “Confident”. These
metrics enable a comprehensive comparison of model performance across
the two distinct validation strategies.

To ensure a comprehensive and objective assessment of model per-
formance, we employed standard classification metrics, including preci-
sion, recall, and F1-score, alongside macro F1-score for overall evaluation.
These metrics were chosen because self-confidence detection is inherently
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Table 2: Performance evaluation of machine learning and deep-learning models
using eye-tracking data and an appearance-based approach under the Leave-
One-Participant-Out Cross-Validation (LOPOCV) framework.

Device Model Class Weights Macro Class Precision Recall F1-score

Eye-tracker SVM – 0.525 Not Confident 0.370 0.455 0.408

Confident 0.684 0.605 0.642

LR – 0.557 Not Confident 0.406 0.549 0.467

Confident 0.719 0.590 0.648

RF – 0.465 Not Confident 0.307 0.142 0.194

Confident 0.655 0.835 0.735

XGBoost – 0.507 Not Confident 0.349 0.324 0.336

Confident 0.666 0.691 0.678

1D CNN No 0.662 Not Confident 0.687 0.354 0.468

Confident 0.789 0.937 0.857

Yes 0.559 Not Confident 0.392 0.677 0.471

Confident 0.811 0.537 0.646

Transformer No 0.418 Not Confident 0.000 0.000 0.000

Confident 0.720 1.000 0.837

Yes 0.418 Not Confident 0.000 0.000 0.000

Confident 0.720 1.000 0.837

Appearance-based SVM – 0.520 Not Confident 0.393 0.549 0.458

Confident 0.667 0.515 0.582

LR – 0.530 Not Confident 0.400 0.510 0.448

Confident 0.669 0.564 0.612

RF – 0.452 Not Confident 0.296 0.182 0.226

Confident 0.617 0.752 0.678

XGBoost – 0.468 Not Confident 0.322 0.312 0.317

Confident 0.614 0.624 0.619

1D CNN No 0.635 Not Confident 0.888 0.266 0.410

Confident 0.763 0.986 0.860

Yes 0.504 Not Confident 0.353 0.935 0.513

Confident 0.931 0.337 0.495

Transformer No 0.448 Not Confident 1.000 0.033 0.064

Confident 0.712 1.000 0.832

Yes 0.413 Not Confident 0.000 0.000 0.000

Confident 0.705 1.000 0.827

imbalanced, with a tendency for models to favor the majority class. Fur-
thermore, the macro F1-score was used to account for class imbalances
by averaging F1-scores across both confidence levels, ensuring that the
model’s performance is not disproportionately influenced by a dominant
class. By integrating these metrics, we aimed to capture the nuanced
trade-offs between different models and cross-validation strategies, offer-
ing a robust framework for evaluating self-confidence detection accuracy.
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Table 3: Baseline performance of machine learning and deep-learning models
using eye-tracking data and an appearance-based approach under the Leave-
One-Question-Out Cross-Validation (LOQOCV) framework.

Device Model Class Weights Macro Class Precision Recall F1-score

Eye-tracker SVM – 0.529 Not Confident 0.377 0.534 0.442

Confident 0.697 0.549 0.614

LR – 0.560 Not Confident 0.409 0.579 0.48

Confident 0.727 0.573 0.641

RF – 0.473 Not Confident 0.308 0.189 0.234

Confident 0.653 0.782 0.712

XGBoost – 0.536 Not Confident 0.389 0.385 0.387

Confident 0.683 0.687 0.685

1D CNN No 0.492 Not Confident 0.428 0.096 0.157

Confident 0.730 0.950 0.826

Yes 0.504 Not Confident 0.353 0.935 0.513

Confident 0.931 0.337 0.495

Transformer No 0.514 Not Confident 0.300 0.290 0.295

Confident 0.728 0.737 0.732

Yes 0.559 Not Confident 0.358 0.612 0.452

Confident 0.793 0.575 0.666

Appearance-based SVM – 0.509 Not Confident 0.379 0.497 0.430

Confident 0.651 0.535 0.588

LR – 0.538 Not Confident 0.408 0.511 0.454

Confident 0.674 0.577 0.622

RF – 0.436 Not Confident 0.266 0.161 0.200

Confident 0.609 0.746 0.671

XGBoost – 0.536 Not Confident 0.389 0.385 0.387

Confident 0.683 0.687 0.685

1D CNN No 0.520 Not Confident 0.416 0.166 0.238

Confident 0.722 0.902 0.802

Yes 0.431 Not Confident 0.31 0.766 0.442

Confident 0.750 0.291 0.420

Transformer No 0.616 Not Confident 0.435 0.566 0.492

Confident 0.793 0.694 0.740

Yes 0.445 Not Confident 0.290 0.600 0.391

Confident 0.700 0.388 0.500

5.1 LOPOCV Analysis

Table 2 presents the results for Leave-One-Participant-Out Cross-Validation
(LOPOCV) across different models. For eye-tracker-based models, the
SVM achieved a macro F1-score of 0.525, demonstrating moderate per-
formance. It excelled in recall for the “Confident” class but struggled
with “Not Confident” predictions due to lower precision and recall for
that class. Logistic Regression (LR) slightly outperformed the SVM with
a macro F1-score of 0.557, exhibiting similar behavior by favoring the
“Confident” class.

The Random Forest (RF) model performs lowest with a macro F1-
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score of 0.465, highlighting its difficulty handling class imbalance, es-
pecially for “Not Confident” predictions. XGBoost improved over RF,
achieving a macro F1-score of 0.507, but it remained less effective than
SVM and LR.

The 1D CNN, trained without class weights, achieved the best per-
formance for eye-tracker data with a macro F1-score of 0.662. It bal-
anced predictions well across both classes, demonstrating high precision
for “Confident” and reasonable performance for “Not Confident”. How-
ever, when class weights were introduced, its performance dropped to
0.559 due to a trade-off: recall for “Not Confident” improved significantly
(from 0.354 to 0.677), but precision for the same class fell sharply (from
0.687 to 0.392), reducing overall effectiveness.

The Transformer model performed the worst among all eye-tracker-
based models, with a macro F1-score of 0.418. It consistently struggled
with “Not Confident” predictions, and adding class weights failed to im-
prove its performance, underscoring its difficulty with imbalanced data.

The SVM achieved a macro F1-score of 0.520 for appearance-based
models, showing moderate and balanced performance across classes, sim-
ilar to its performance on eye-tracker data. LR slightly surpassed SVM
with a macro F1-score of 0.530, improving recall for “Confident.”. RF
underperformed with a macro F1-score of 0.452, reflecting its inability to
effectively classify “Not Confident” instances. XGBoost slightly outper-
formed RF with a macro F1-score of 0.468 but still lagged behind SVM
and LR.

The 1D CNN, without weights, also achieved the best performance for
appearance-based models, with a macro F1-score of 0.635. It performed
well for both classes, excelling in identifying “Confident” instances. How-
ever, introducing class weights reduced its macro F1-score to 0.504. Like
the eye-tracker results, weights improved recall for “Not Confident” (from
0.266 to 0.935) but caused a significant drop in precision (from 0.888 to
0.353), leading to an overall decline. The Transformer model again per-
formed the worst, achieving a macro F1-score of 0.448 without weights
and 0.413 with weights, struggling consistently with imbalanced data and
showing minimal improvement.

In conclusion, the 1D CNN without class weights achieved the high-
est macro F1-score across both device types, with 0.662 for eye-tracker
data and 0.635 for appearance-based data, making it the most robust
model. While class weights improved recall for the minority class (“Not
Confident”), the precision and overall performance trade-offs limited gen-
eralization. These results highlight the ability of deep-learning models,
particularly the 1D CNN, to effectively learn complex patterns in the data,
even without explicit adjustments for class imbalance. Therefore, the 1D
CNN without weights is recommended as the best-performing model.

5.2 LOQOCV Analysis

Table 3 summarizes the performance of various models under the Leave-
One-Question-Out Cross-Validation (LOQOCV) framework. For eye-tracker-
based models under the Leave-One-Question-Out Cross-Validation (LO-
QOCV) framework, the SVM achieved a macro F1-score of 0.529, show-
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ing moderate performance with strong recall for the “Confident” class but
limited precision for the “Not Confident” class, indicating an imbalance.
Logistic Regression (LR) slightly outperformed SVM with a macro F1-
score of 0.560, providing better overall performance while still favoring
recall for the class “Confident” over precision “Not Confident”. Random
Forest (RF) scored lower, with a macro F1-score of 0.473, reflecting poor
handling of the imbalance, particularly for the class “Not Confident”. XG-
Boost achieved a macro F1-score of 0.536, performing better than RF but
less effectively than LR. The 1D CNN, without class weights, reached a
macro F1-score of 0.492, with acceptable performance for the class “Con-
fident” but poor recall for class “Not Confident” (0.096), lowering overall
effectiveness. Adding class weights improved the 1D CNN’s score to 0.504
by significantly increasing recall for class “Not Confident” (0.935) but
reducing its precision. The Transformer model achieved 0.514 without
weights, showing modestly balanced results. With class weights, its score
improved to 0.559, achieving a strong balance between recall and precision
for both classes.

For appearance-based models, the SVM achieved a macro F1-score of
0.509, showing moderate performance with a slight bias toward the class
“Confident”. LR performed better, with a Macro F1-score of 0.538, im-
proving recall for the class “Confident” but struggling with precision for
the class “Not Confident”. RF had the lowest score (0.436), indicating
poor handling of class imbalance. XGBoost matched SVM with a macro
F1-score of 0.537, showing moderate improvements over RF but no signif-
icant edge. The 1D CNN, without class weights, achieved 0.520, with high
recall for class “Confident” (0.902) but low precision for class “Not Con-
fident” (0.417), impacting the overall balance. Introducing class weights
reduced its performance to 0.431, as precision for the class “Not Confi-
dent” dropped sharply (0.310) despite improved recall. The Transformer
model achieved the highest macro F1-score (0.616) without weights, bal-
ancing recall, and precision effectively for both classes. Applying weights
reduced its performance to 0.445, as focusing on improving recall for the
class “Not Confident” negatively affected precision.

In conclusion, the Transformer model without weights achieved the
best performance for appearance-based data with a macro F1-score of
0.616, while Logistic Regression performed best for eye-tracker data with a
macro F1-score of 0.560 across all models under the LOQOCV framework.

The 1D CNN without class weights emerged as the most effective
model in our case due to its ability to capture temporal dependencies in
gaze behavior, such as fixation durations and saccade transitions, through
its convolutional layers. The local receptive fields of CNNs enable the
model to extract meaningful gaze movement patterns while maintaining
robustness to noise. Moreover, techniques like batch normalization and
dropout help to mitigate overfitting, allowing the model to generalize ef-
fectively despite the relatively small size of the dataset. In contrast, the
Transformer model, which relies on self-attention mechanisms to learn
global dependencies, did not perform as well. A significant factor in
this is the dataset size—Transformers typically require larger datasets
to accurately learn attention distributions. Given the limited size of our
dataset, the model faced challenges in effectively capturing relevant gaze-

ABCDE: Appearance-Based Confidence Detection by Evaluating Gaze
Behavior Using Deep Learning



IJABC: International Journal of Activity and Behavior Computing 18

based confidence patterns. Additionally, the class imbalance present in
the dataset led the Transformer to overfit to the majority class (“Con-
fident”), which impacted its ability to generalize to the minority class
(“Not Confident”). Even when class weights were introduced, the model
prioritized recall, sometimes at the expense of precision, which limited its
overall performance. Therefore, in our specific case, the 1D CNN’s ability
to learn local temporal features with fewer parameters and regularization
techniques proved to be more suitable for gaze-based confidence estima-
tion. On the other hand, the Transformer’s reliance on large datasets
and global attention mechanisms presented challenges when applied to
our dataset.

6 Limitations and Future Work

This study on self-confidence estimation using machine learning and deep
learning provides valuable insights. However, it also highlights several
limitations and challenges that need to be addressed. A key limitation is
the potential for data collection bias, as the model’s performance is highly
dependent on the quality, size, and diversity of the gaze datasets used for
training. Insufficient demographic representation and limited contextual
variability in the dataset may constrain the model’s ability to generalize
its findings to broader populations.

Another critical issue is gaze noise, which arises from head pose vari-
ations, inaccuracies in eye-tracking devices, and fluctuations in environ-
mental lighting. These factors introduce significant variability in the raw
gaze data, potentially undermining the precision of confidence detection.

Moreover, generalization across individuals presents a substantial chal-
lenge due to the inherently subjective nature of gaze patterns, which can
vary widely based on personal habits, cognitive styles, and task-specific
influences. Such individual variability complicates the model’s ability to
identify universal patterns for confidence estimation.

Future work should focus on improving the robustness of appearance-
based eye-tracking models. These models are currently sensitive to head
movements, changing lighting conditions, and diverse user postures, which
can affect the accuracy of point-of-gaze estimation. Developing more ad-
vanced architectures that incorporate pose-invariant gaze estimation tech-
niques and domain adaptation strategies can help ensure reliable perfor-
mance across dynamic and uncontrolled environments.

Additionally, expanding data collection to include multimodal inputs—such
as speech cues, facial expressions, and physiological signals—could signif-
icantly enhance the accuracy of self-confidence detection. A multimodal
approach would enable the model to capture richer contextual informa-
tion, facilitating a more comprehensive assessment of learner confidence.
This approach would also improve generalization, making the system ap-
plicable to diverse educational settings and learner profiles.

Finally, future efforts should aim at developing personalized self-confidence
estimation frameworks that account for individual differences in gaze be-
havior. By integrating user-specific calibration or adaptive learning mech-
anisms, models could better capture subjective variations in confidence
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expression. Such a personalized approach would enhance the accuracy
and reliability of confidence estimation, further advancing adaptive learn-
ing systems in education.

7 Conclusion

We propose a novel method for estimating self-confidence using eye-tracking
data obtained through eye-tracker-based and appearance-based approaches.
The method integrates both hand-crafted machine-learning techniques
and a deep-learning framework. In an experimental setup, participants
watched videos and answered questions based on the content while their
eye movement behavior was recorded and analyzed. The comparison of
methods reveals that the deep-learning-based 1D CNN model outper-
forms the Transformer and traditional machine learning approaches in
confidence estimation under the leave-one-participant-out cross-validation
framework. In contrast, under the leave-one-question-out cross-validation
framework, Logistic Regression demonstrated the best performance for
eye-tracker data, with a macro F1-score of 0.560, while the Transformer
excelled for appearance-based data, achieving a macro F1-score of 0.622.
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self-confidence in teamwork: Experimental evidence. Experimental
Economics, pages 1–26, 2024.

[33] Kazuaki Kojima, Keiich Muramatsu, and Tatsunori Matsui. Exper-
imental study toward estimation of a learner mental state from pro-
cesses of solving multiple choice problems based on eye movements.
In 20th International Conference on Computers in Education, ICCE
2012, 2012.

[34] Ayano Okoso, Takumi Toyama, Kai Kunze, Joachim Folz, Marcus
Liwicki, and Koichi Kise. Towards extraction of subjective reading
incomprehension: Analysis of eye gaze features. In Proceedings of the
33rd annual acm conference extended abstracts on human factors in
computing systems, pages 1325–1330, 2015.

[35] Hanju Lee, Yasuhiro Kanakogi, and Kazuo Hiraki. Building a respon-
sive teacher: how temporal contingency of gaze interaction influences
word learning with virtual tutors. Royal Society open science, 2(1):
140361, 2015.

ABCDE: Appearance-Based Confidence Detection by Evaluating Gaze
Behavior Using Deep Learning



IJABC: International Journal of Activity and Behavior Computing 23

[36] Olivier Augereau, Hiroki Fujiyoshi, and Koichi Kise. Towards an au-
tomated estimation of english skill via toeic score based on reading
analysis. In 2016 23rd International Conference on Pattern Recogni-
tion (ICPR), pages 1285–1290. IEEE, 2016.

[37] Kento Yamada, Koichi Kise, and Olivier Augereau. Estimation of
confidence based on eye gaze: an application to multiple-choice ques-
tions. In Proceedings of the 2017 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing and Proceedings of the
2017 ACM International Symposium on Wearable Computers, pages
217–220, 2017.

[38] Feng Lu, Yusuke Sugano, Takahiro Okabe, and Yoichi Sato. Adap-
tive linear regression for appearance-based gaze estimation. IEEE
transactions on pattern analysis and machine intelligence, 36(10):
2033–2046, 2014.

[39] Oliver Williams, Andrew Blake, and Roberto Cipolla. Sparse and
semi-supervised visual mapping with the sˆ 3gp. In 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’06), volume 1, pages 230–237. IEEE, 2006.

[40] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling.
Appearance-based gaze estimation in the wild. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
4511–4520, 2015. doi: 10.1109/CVPR.2015.7299081.

[41] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan,
Suchendra M. Bhandarkar, Wojciech Matusik, and Antonio Tor-
ralba. Eye tracking for everyone. CoRR, abs/1606.05814, 2016. URL
http://arxiv.org/abs/1606.05814.

[42] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan,
Suchendra Bhandarkar, Wojciech Matusik, and Antonio Torralba.
Eye tracking for everyone, 2016.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks. Com-
mun. ACM, 60(6):84–90, may 2017. ISSN 0001-0782. doi: 10.1145/
3065386. URL https://doi.org/10.1145/3065386.

[44] Yiwei Bao, Yihua Cheng, Yunfei Liu, and Feng Lu. Adaptive feature
fusion network for gaze tracking in mobile tablets, 2021.

[45] Ankur Bhatt, Ko Watanabe, Andreas Dengel, and Shoya Ishimaru.
Appearance-based gaze estimation with deep neural networks: From
data collection to evaluation. International Journal of Activity and
Behavior Computing, 2024(1):1–15, 2024.
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