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Abstract
This paper presents InFL-UX, an interactive, proof-of-concept browser-
based Federated Learning (FL) toolkit designed to integrate user
contributions into the machine learning (ML) workflow. InFL-UX
enables users across multiple devices to upload datasets, define
classes, and collaboratively train classification models directly in
the browser using modern web technologies. Unlike traditional FL
toolkits, which often focus on backend simulations, InFL-UX pro-
vides a simple user interface for researchers to explore how users
interact with and contribute to FL systems in real-world, interactive
settings. InFL-UX bridges the gap between FL and interactive ML
by prioritising usability and decentralised model training, empow-
ering non-technical users to actively participate in ML classification
tasks.

CCS Concepts
• Computing methodologies→ Distributed artificial intelli-
gence; Supervised learning; • Human-centered computing →
Web-based interaction; User interface toolkits.
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1 Introduction and Related Work
Traditional machine learning (ML) is often constrained by limited
data, particularly in specialised domains where data acquisition is
expensive or labour-intensive [12]. Moreover, technical barriers hin-
der direct input from domain experts, further delaying new data col-
lection [7]. To overcome these issues, Fails and Olsen [6] introduced
interactive machine learning (IML), which enables non-technical
users to train ML models by manually classifying data or correcting
outputs. Unlike conventional ML, IML supports real-time updates
based on user input, permitting focused, incremental refinements
[2, 5, 18]. Extending this work, Tseng et al. [17] developed Co-ML, a
tablet-based application for collaboratively constructing ML image
classification models that emphasises shared dataset design. In this
paper, we build on these concepts by proposing a browser-based
tool that facilitates collaborative IML using federated learning (FL).

MLmodels are traditionally trained on centralised datasets. How-
ever, in fields such as healthcare, data are distributed across multiple
devices and cannot be shared due to privacy constraints. FL mit-
igates this issue by enabling decentralised training of a shared
model while retaining data on client devices [10]. FL aggregates
local updates on a central server and comes in two main forms:
synchronous and asynchronous. Synchronous FL [10] requires all
clients to train concurrently with the latest global model and submit
updates together. In contrast, asynchronous FL [19] allows clients
to train and submit updates independently, with the server updat-
ing the global model upon each submission. Due to its flexibility,
asynchronous FL is more suited to our application. Recent advances
in JavaScript-based deep learning frameworks, such as TensorFlow.js
[9, 16], have made browser-based deep learning (DL) feasible. For
example, Google’s Teachable Machine offers a no-code interface for
local model training; however, it is limited to local training and
does not incorporate FL. In contrast, browser-based FL frameworks
proposed by Lian et al. [8] and Ángel Morell and Alba [20] support
FL but lack interactive elements, requiring users to supply data in
predefined folders.
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Figure 1: The system architecture overview.

In this work, we introduce InFL-UX1, an interactive, browser-
based FL toolkit that demonstrates a proof-of-concept (POC) imple-
mentation using contemporary web technologies. The application
employs asynchronous FL via FedAsync [19], chosen for its sim-
plicity and single-hyperparameter configuration, to enable collab-
orative model training. Users can upload datasets, define custom
classes, and train models for various classification tasks. While
much FL research relies on simulations, InFL-UX integrates FL
with IML to prioritise user engagement and address FL challenges
from a user-centric perspective. We aim to assist FL practitioners
in embedding FL into intelligent user interfaces (UIs) and evaluate
these setups through user studies. Future enhancements will incor-
porate advanced FL aggregation methods and additional ML tasks,
such as data annotation, to broaden applicability.

2 System Design
InFL-UX utilises ONNX Runtime2, a cross-platform ML library
that supports fast on-device inference and training in web browsers.
It leverages modern browser APIs, including WebAssembly [13]—a
low-level language offering near-native performance—and We-
bGPU [11], which facilitates high-performance GPU computations
and supersedes WebGL3. This browser-based approach, which cap-
italises on the ubiquity of web browsers, ensures seamless compati-
bilitywithmodels from prevalentML frameworks via the ONNX for-
mat. Developed in Python using Flask4, the application integrates
ONNXRuntime through JavaScript and employsWeb Components5
for UI modularity, thereby avoiding dependence on specific UI
frameworks. Persistent storage is managed through IndexedDB [3],
allowing user data, such as uploaded files and inference results,
to be retained across sessions. The code for InFL-UX is publicly
available at https://github.com/tmaurer42/interactive-fl-poc.

2.1 System and Application Design
The architecture (Figure 1) comprises two main components: the
FL Server and the FL Web Server. The FL Web Server hosts the
web application and delivers required files to client devices, while
the FL Server manages client updates, maintains the global model,
and provides the latest model version and training instructions
on demand. This structure underpins the POC, which primarily
addresses image classification; it can also accommodate tasks such
as object detection and image segmentation through abstract classes
1The name is a combination of Interactive Machine Learning, Federated Learning, and
User Experience.
2https://onnxruntime.ai/ (Accessed January 03, 2025)
3https://www.khronos.org/webgl/ (Accessed January 03, 2025)
4https://flask.palletsprojects.com/en/stable/ (Accessed January 03, 2025)
5https://www.webcomponents.org/ (Accessed January 03, 2025)

and supports the simulation of multiple independent clients. An
administrator client configures the system via the configuration
page (Figure 2a) by specifying the use case, selecting the aggregator
and ML model, and setting training parameters. Clients then upload
images, receive model-generated label suggestions, and may accept
or adjust these labels (Figure 2b). Once reviewed, a training session
is initiated locally, and upon completion, updates are automatically
forwarded to the central server for aggregation. Clients can evaluate
the global model using separate testing datasets (Figure 2c).

Currently, the system implements a single FL aggregation strat-
egy, i.e., FedAsync, and one ML model, i.e., MobileNetV2 [14].
Adding new aggregation strategies or ML models is straightfor-
ward, requiring only minimal code modifications: a new aggrega-
tion strategy is defined as a Python function with corresponding
configurable parameters added to the administrator interface, and
additional ML models are integrated via an expanded dropdown
menu featuring extra PyTorch models6. The system is deployed
using Docker7. Although designed for extensibility, InFL-UX does
not support simulation tasks, which are handled by established
frameworks such as Flower [4]; instead, it focuses on validating
aggregation methods in real-world settings.

2.2 Limitations
Several limitations emerged during development. The relatively
new ONNX Runtime integration for the web offers incomplete
training functionalities; for example, the optimiser’s learning rate
is fixed at 0.001, and only a limited set of loss functions is available.
Furthermore, while WebGPU currently supports inference, train-
ing is restricted to the WebAssembly backend. Browser-specific
constraints also affect the application: the local dataset stored in
IndexedDB is limited in size (varying by browser and available
disk space), and the WebGPU API is presently available only in
developer builds of modern browsers, which may be restricted by
security policies.

3 Conclusion and Future Work
InFL-UX, demonstrated the feasibility of an interactive, browser-
based FL system that integrates state-of-the-art technologies from
the UI to the server-side aggregation process. This approach al-
lows embedding FL capabilities into IML systems, particularly in
privacy-sensitive domains. Despite its limitations, the application
effectively utilises ONNX Runtime and modern browser features
(WebAssembly and WebGPU) to support client-side FL training,
enabling collaborative training across devices while ensuring com-
patibility and encouraging user adoption.

Future work should involve user studies to assess real-world
adoption, performance, and scalability and extend the application
to additional computer vision tasks, such as image segmentation
and object detection. Moreover, incorporating explainable AI tech-
niques (e.g. class activation maps [15], and concept-based modelling
[1]) could improve transparency and trust. Finally, enabling admin-
istrators to deploy new training tasks and allowing clients to par-
ticipate in multiple tasks with distinct datasets would significantly
enhance the system’s utility.

6https://pytorch.org/ (Accessed January 03, 2025)
7https://www.docker.com/ (Accessed January 03, 2025)
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(a) Configuration of training parameters. (b) Label review process for the training images; users
can accept or correct suggested labels.

(c) Interface for testing the performance of the current
model.

Figure 2: Screenshots from InFL-UX showing (a) the configuration page, (b) the label review process, and (c) the model
testing interface. The images used in the demo were taken from the Cats and Dogs Classification Dataset © Bhavik Jikadara:
https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset, which is licensed under Apache 2.0.

Acknowledgments
This work was funded, in part, by the German Federal Ministry of
Education and Research (BMBF) under grant number 01IW23002
(No-IDLE) and grant number 01IW24006 (NoIDLEChatGPT), by
the Lower Saxony Ministry of Science and Culture (MWK) in the
zukunft.niedersachsen program, and by the Endowed Chair of Ap-
plied AI at the University of Oldenburg.

References
[1] Hasan Md Tusfiqur Alam, Devansh Srivastav, Md Abdul Kadir, and Daniel Son-

ntag. 2025. Towards Interpretable Radiology Report Generation via Concept
Bottlenecks Using a Multi-agentic RAG. In Advances in Information Retrieval -
47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April
6-10, 2025, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 15574),
Claudia Hauff, Craig Macdonald, Dietmar Jannach, Gabriella Kazai, Franco Maria
Nardini, Fabio Pinelli, Fabrizio Silvestri, and Nicola Tonellotto (Eds.). Springer,
201–209. https://doi.org/10.1007/978-3-031-88714-7_18

[2] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. AI
Magazine 35, 4 (Dec. 2014), 105–120. https://doi.org/10.1609/aimag.v35i4.2513

[3] Joshua Bell. 2024. Indexed Database API 3.0. Technical Report. W3C. https:
//www.w3.org/TR/IndexedDB/ Version Number: 3.0.

[4] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-
Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto
Buarque de Gusmão, and Nicholas D. Lane. 2022. Flower: A Friendly Feder-
ated Learning Research Framework. https://doi.org/10.48550/arXiv.2007.14390
arXiv:2007.14390 [cs].

[5] John J. Dudley and Per Ola Kristensson. 2018. A Review of User Interface Design
for Interactive Machine Learning. ACM Transactions on Interactive Intelligent
Systems 8, 2 (June 2018), 1–37. https://doi.org/10.1145/3185517

[6] Jerry Alan Fails and Dan R. Olsen. 2003. Interactive machine learning. In Pro-
ceedings of the 8th International Conference on Intelligent User Interfaces (Miami,
Florida, USA) (IUI ’03). Association for Computing Machinery, New York, NY,
USA, 39–45. https://doi.org/10.1145/604045.604056

[7] Joshua Holstein. 2024. Bridging Domain Expertise and AI through Data Un-
derstanding. In Companion Proceedings of the 29th International Conference on
Intelligent User Interfaces (IUI ’24 Companion). Association for Computing Ma-
chinery, New York, NY, USA, 163–165. https://doi.org/10.1145/3640544.3645248

[8] Zhuotao Lian, Qinglin Yang, Qingkui Zeng, and Chunhua Su. 2022. WebFed:
Cross-platform Federated Learning Framework Based on Web Browser with
Local Differential Privacy. In ICC 2022 - IEEE International Conference on Com-
munications. 2071–2076. https://doi.org/10.1109/ICC45855.2022.9838421

[9] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.
Moving Deep Learning into Web Browser: How Far Can We Go?. In The World
Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association for
Computing Machinery, New York, NY, USA, 1234–1244. https://doi.org/10.1145/
3308558.3313639

[10] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://doi.org/10.
48550/arXiv.1602.05629

[11] Kai Ninomiya, Jim Blandy, and Brandon Jones. 2024. WebGPU. W3C Working
Draft. W3C. https://www.w3.org/TR/webgpu/

[12] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2021. A Survey on Data Col-
lection for Machine Learning: A Big Data - AI Integration Perspective. IEEE
Transactions on Knowledge and Data Engineering 33, 4 (April 2021), 1328–1347.
https://doi.org/10.1109/TKDE.2019.2946162 Conference Name: IEEE Transactions
on Knowledge and Data Engineering.

[13] Andreas Rossberg. 2022. WebAssembly Core Specification. Technical Report. W3C.
https://www.w3.org/TR/wasm-core-2/ Version Number: 2.0.

[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2019. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
https://doi.org/10.48550/arXiv.1801.04381 arXiv:1801.04381 [cs].

[15] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74
ISSN: 2380-7504.

[16] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles Nicholson, Nick Kreeger,
Ping Yu, Shanqing Cai, Eric Nielsen, David Soegel, Stan Bileschi, Michael Terry,
Ann Yuan, Kangyi Zhang, Sandeep Gupta, Sarah Sirajuddin, D Sculley, Rajat
Monga, Greg Corrado, Fernanda Viegas, and Martin MWattenberg. 2019. Tensor-
Flow.js: Machine Learning For The Web and Beyond. In Proceedings of Machine
Learning and Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.), Vol. 1. 309–
321. https://doi.org/10.48550/arXiv.1901.05350

[17] Tiffany Tseng, Jennifer King Chen, Mona Abdelrahman, Mary Beth Kery, Fred
Hohman, Adriana Hilliard, and R. Benjamin Shapiro. 2023. Collaborative Machine
Learning Model Building with Families Using Co-ML. In Proceedings of the 22nd
Annual ACM Interaction Design and Children Conference (Chicago, IL, USA) (IDC
’23). Association for Computing Machinery, New York, NY, USA, 40–51. https:
//doi.org/10.1145/3585088.3589356

[18] Hasan Md Tusfiqur, Duy MH Nguyen, Mai TN Truong, Triet A Nguyen, Binh T
Nguyen, Michael Barz, Hans-Juergen Profitlich, Ngoc TT Than, Ngan Le, Pengtao
Xie, et al. 2022. DRG-Net: interactive joint learning of multi-lesion segmentation
and classification for diabetic retinopathy grading. arXiv preprint arXiv:2212.14615
(2022).

[19] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous Federated
Optimization. arXiv e-prints, Article arXiv:1903.03934 (March 2019). https:
//doi.org/10.48550/arXiv.1903.03934 arXiv:1903.03934 [cs.DC]

[20] José Ángel Morell and Enrique Alba. 2022. Dynamic and adaptive fault-tolerant
asynchronous federated learning using volunteer edge devices. Future Generation
Computer Systems 133 (2022), 53–67. https://doi.org/10.1016/j.future.2022.02.024

https://www.kaggle.com/datasets/bhavikjikadara/dog-and-cat-classification-dataset
https://doi.org/10.1007/978-3-031-88714-7_18
https://doi.org/10.1609/aimag.v35i4.2513
https://www.w3.org/TR/IndexedDB/
https://www.w3.org/TR/IndexedDB/
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.1145/3185517
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/3640544.3645248
https://doi.org/10.1109/ICC45855.2022.9838421
https://doi.org/10.1145/3308558.3313639
https://doi.org/10.1145/3308558.3313639
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.48550/arXiv.1602.05629
https://www.w3.org/TR/webgpu/
https://doi.org/10.1109/TKDE.2019.2946162
https://www.w3.org/TR/wasm-core-2/
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.48550/arXiv.1901.05350
https://doi.org/10.1145/3585088.3589356
https://doi.org/10.1145/3585088.3589356
https://doi.org/10.48550/arXiv.1903.03934
https://doi.org/10.48550/arXiv.1903.03934
https://arxiv.org/abs/1903.03934
https://doi.org/10.1016/j.future.2022.02.024

	Abstract
	1 Introduction and Related Work
	2 System Design
	2.1 System and Application Design
	2.2 Limitations

	3 Conclusion and Future Work
	Acknowledgments
	References

