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Summary
Syclops is an open-source, modular pipeline for generating large-scale, photorealistic synthetic
datasets with pixel-perfect ground truth annotations. Built on Blender’s Cycles engine (Com-
munity, 2019), it offers a flexible framework for researchers in computer vision, robotics, and
related fields. Key features include:

• Plugin-based architecture for easy extensibility
• Procedural generation of diverse, large-scale environments
• Photorealistic rendering
• Multi-modal sensor simulation (RGB cameras, depth sensors, stereo cameras)
• Comprehensive ground truth annotations
• Dynamic scene configuration using YAML
• Scalability for millions of objects

Syclops is especially useful when collecting real-world data is impractical due to cost or difficulty,
making it a valuable tool for generating high-quality synthetic data.

Statement of Need
Machine learning models, particularly in computer vision and robotics, depend on the diversity
and quality of training data. Real-world data collection is often expensive and challenging,
especially for rare events (Tabkhi, 2022). Synthetic data generation offers an efficient alternative,
producing large, annotated datasets (Mumuni et al., 2024).

Syclops addresses this need with its focus on large-scale, procedural scene creation—particularly
for outdoor and agricultural scenarios. Compared to tools like Kubric (Greff et al., 2022),
Blenderproc2 (Denninger et al., 2023), NViSII, NDDS, and iGibson, Syclops offers a YAML-
based scene description that simplifies customization and reproducibility. The following table
(Table 1) highlights key differences.

Table 1: Comparison of synthetic data tools with abbreviations: SS=Semantic Segmentation, IS=In-
stance Segmentation, D=Depth, OF=Optical Flow, SN=Surface Normals, OC=Object Coordinates,
BB=Bounding Box, OP=Object Pose, V=Volume, KP=Keypoints, PS=Python Script, C=Camera,
SC=Stereo Camera, L=Lidar

Tool
Rendering
Engine

Scene
Creation Output Annotations

Sen-
sors

Syclops Blender Cycles YAML SS, IS, D, OF, SN, OC, BB, OP,
KP, V

C, SC

Kubric Blender Cycles PS SS, IS, D, OF, SN, OC, BB, OP C
Blender-
proc2

Blender Cycles PS SS, IS, D, OF, SN, OC, BB, OP C, SC
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Tool
Rendering
Engine

Scene
Creation Output Annotations

Sen-
sors

NViSII Nvidia Optix PS SS, D, OF, SN, OC, BB, OP C
NDDS Unreal Engine

4
UE4 GUI SS, D, BB, OP, KP C

iGibson PBR Rastering PS SS, IS, D, OF, BB C, L

Key Features
1. Large-scale Procedural Generation:

Efficiently create vast environments with millions of objects, ideal for outdoor settings
such as agricultural fields.

2. YAML-based Configuration:
Define and customize scenes easily with YAML syntax, enhancing reproducibility.

3. Modular Architecture:
Extend functionality with plugins for custom scene elements, sensors, and outputs.

4. Multi-modal Sensor Simulation:
Simulate various sensors (e.g., RGB and stereo cameras with projected light) for versatile
data generation.

5. Comprehensive Annotations:
Generate detailed ground truth data including segmentation, depth maps, object coordi-
nates, bounding boxes, poses, keypoints, and volumes.

6. Off-Highway Focus:
Special emphasis on agricultural and off-highway scenarios fills a niche in current synthetic
data tools.

Architecture and Implementation
Syclops is implemented in Python and leverages Blender’s Python API for scene creation and
rendering (Figure 1 for an overview). Its architecture comprises:

• Job Configuration:
YAML-based files define scene composition, sensor properties, and outputs.

• Asset Management:
A module for organizing and accessing 3D models, textures, and materials.

• Scene Generation:
Plugins efficiently place and manipulate large numbers of objects using Blender’s Geometry
nodes and object instancing.

• Sensor Simulation:
Modules replicate various sensor modalities.

• Output Generation:
Plugins produce sensor outputs and ground truth annotations.

• Postprocessing:
Tools refine and process the generated data, enabling additional annotations and data
augmentation.

For instance, Syclops can use convex decomposition for efficient rigid body simulation, allowing
for dynamic scene interactions.
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Figure 1: Architecture overview showing Syclops’ components and their relationships.

Example Usage
A simple YAML configuration below demonstrates how to generate a synthetic dataset of RGB
and depth images of trees scattered on a flat ground:

# job_config.yaml

general:

steps: 100

seeds:

numpy: 42

cycles: 42

scene:

syclops_plugin_ground:

- name: "Ground"

size: 50

texture: "Example Assets/Muddy Dry Ground"

class_id: 1

syclops_plugin_scatter:

- name: "Trees"

models: "Example Assets/Trees"

floor_object: "Ground"

density_max: 0.1

class_id: 2

sensor:

syclops_sensor_camera:

- name: "main_camera"

frame_id: "camera_link"

resolution: [1280, 720]

focal_length: 35

outputs:

syclops_output_rgb:

- id: "main_rgb"

samples: 256

syclops_output_pixel_annotation:

- semantic_segmentation:

id: "main_semantic"

- depth:

id: "main_depth"
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Run the dataset generation with:

syclops -j job_config.yaml

The graphical assets included in the repository demonstrate the tool’s capabilities.

Use Cases
Syclops has been applied in various real-world scenarios (see Figure 2 for an example). It has
generated datasets for:

• Semantic segmentation of crop and weed plants in agricultural fields, achieving a mIoU
of 80.7 on the Phenobench Benchmark (Weyler et al., 2024) compared to 85.97 with
real images.

• Volume estimation of vegetables on a conveyor belt with physics simulation, showcasing
its industrial automation potential.

These applications underline Syclops’ versatility across outdoor and indoor settings, simulating
complex object interactions.

Figure 2: Data synthesized by Syclops for selective weeding in sugarbeets. Left to right: RGB image,
instance segmentation, semantic segmentation, depth.

Limitations and Future Work
Syclops currently does not support the procedural generation of individual graphical assets.
High-quality assets are essential for realistic data synthesis, and future work will address this
limitation. Planned enhancements include:

• Developing tools for procedural asset generation.
• Expanding sensor simulation capabilities.
• Improving rendering realism and scene generation efficiency.

Conclusion
Syclops is a powerful tool for generating high-quality synthetic datasets in computer vision and
robotics. Its modular, YAML-based architecture and focus on large-scale procedural generation
make it especially suitable for off-highway applications such as agriculture. By providing
extensive annotations and flexible configuration, Syclops supports accelerated research and
development in challenging data collection scenarios.
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