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Abstract

Assessing the accuracy of the output of causal
discovery algorithms is crucial in develop-
ing and comparing novel methods. Com-
mon evaluation metrics such as the struc-
tural Hamming distance are useful for assess-
ing individual links of causal graphs. How-
ever, many state-of-the-art causal discovery
methods do not output single causal graphs,
but rather their Markov equivalence classes
(MECs) which encode all of the graph’s separa-
tion and connection statements. In this work,
we propose additional measures of distance
that capture the difference in separations of
two causal graphs which link-based distances
are not fit to assess. The proposed distances
have low polynomial time complexity and are
applicable to directed acyclic graphs (DAGs)
as well as to maximal ancestral graph (MAGs)
that may contain bidirected edges. We com-
plement our theoretical analysis with toy ex-
amples and empirical experiments that high-
light the differences to existing comparison
metrics.

1 INTRODUCTION

Inferring causal relations from observational data in the
form of a causal graph is a highly challenging task for
which causality researchers have proposed numerous
algorithms. While the assumptions on which these algo-
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rithms rely differ widely, many existing approaches, in-
cluding the PC algorithm (Spirtes et al., 1993), and its
descendants stablePC (Colombo and Maathuis, 2014),
consistentPC (Li et al., 2019), PCMCI+ (Runge, 2020),
LPMCI (Gerhardus and Runge, 2020), FCI (Spirtes
et al., 1995), as well as GES (Chickering, 2003) have
in common that they are provably able to infer the
correct causal graph up to Markov equivalence in the
infinite sample limit if their respective assumptions
are fulfilled. More precisely, each of these methods
assumes that the process that generated the data un-
der investigation can be represented by a causal graph
that belongs to a predefined class G, most commonly
the class of directed acyclic graphs (DAGs) for the
PC algorithm, GES, and many others. The class of
graphs G is equipped with a notion of separation, for
instance, d-separation for DAGs. Separation is a graph-
ical criterion that specifies whether two nodes X,Y in
a graph are either separated or connected by another
subset of nodes S. In practice, separation is used to
translate conditional independence statements regard-
ing the node variables of causal graphs into graphical
language. Two graphs belonging to the same class G
are called Markov equivalent if they share exactly the
same separation/connection statements.

Even if their inferences are correct, the methods men-
tioned above do not output the full ‘ground truth’ graph
underlying the data-generating process but only its
Markov equivalence class (MEC), or in other words, the
totality of separation/connection statements implied
by the ‘true’ graph. Some methods such as LiNGaM
(Shimizu et al., 2006)) utilize further assumptions about
functional dependencies and noise distributions to go
beyond the MEC, but without such more restrictive
assumptions, the MEC is all one can infer.

Newly developed causal discovery algorithms are typ-
ically validated empirically through a range of sim-
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ulations and experiments that compare their output
graphs to a known ground truth. The difference of the
output and the true graph is most commonly measured
with the structural Hamming distance (SHD) (Acid
and Campos, 2003; Tsamardinos et al., 2006), or false
positive/negative edge detection rates. Such metrics
can be used to assess the correctness of the presence
and absence of individual adjacencies and their orien-
tations which represent direct causal relationships. To
assess the quality of an output graph with respect to
the downstream task of quantifying total causal effects,
further comparison metrics have been developed. The
most notable example is the structural intervention
distance (SID) (Peters and Bühlmann, 2015), which
was recently reframed by Henckel et al. (2024) as a
special case of a so-called adjustment identification
distance (AID) alongside a sped-up algorithm for its
computation and numerous other improvements and
generalizations. Measures of predictive performance
that have been fine-tuned to causal graphs exist as
well, see e.g. (Liu et al., 2010; Biza et al., 2020), but so
far, causal discovery researchers do not seem to have
incorporated them into their performance analyses on
a broad scale.

Contributions In this work, we propose to add an-
other family of comparison metrics to the existing canon
that compares the implied separation/connection state-
ments of two graphs. Surprisingly, even though separa-
tion statements are what is actually being inferred by
many algorithms, they are rarely considered in evalu-
ations, with a few notable exceptions, e.g. (Hyttinen
et al., 2014). To fill this gap, we discuss two types of
separation-based graph distances:

• s/c-metrics formalize the simple idea to count all
possible separation statements, potentially with
a prescribed maximal size of the separating set,
and compare their validity in both graphs under
investigation. This type of comparison arguably
yields the most complete picture, and produces a
distance measure that is a proper metric in the
mathematical sense, no matter the type of sepa-
ration under discussion. However, it is of limited
practical applicability due to the exponential in-
crease of separation statements that need to be
checked when the graph size grows. Even though
this issue can be alleviated to a degree by working
with Monte-Carlo style random approximations of
the metric (see Appendix H), a heavy computa-
tional overhead remains. In summary, this type
of separation-based evaluation yields the arguably
most complete picture but lacks desirable scaling
properties.

• separation distances provide scalable alterna-

tives that transfer the logic of adjustment-based
distances (Henckel et al., 2024) to separations.
Instead of considering all possible separation state-
ments in two graphs G,H, separation distances
require the user to specify a separation strategy
that chooses a single separation set S for every
pair of separable nodes in H, and validate whether
S remains a separating set in the graph G. We
present different possible separation strategies for
DAGs as well as for maximal ancestral graphs
(MAGs) and their MECs represented by CPDAGs
and PAGs. Using the toolset developed in (Henckel
et al., 2024), we show that the computational com-
plexity of separation distances is of low polynomial
order in the number of nodes, making them em-
ployable even for large graphs. For MAGs, to our
knowledge, these are the first examples of causal
comparison metrics beyond the SHD.

We illustrate the differences between separation-based
and existing graph distances with a number of toy
examples and empirical simulations. We also discuss
potential pitfalls in the typical link-based evaluation of
causal discovery algorithms, by showing that adding or
changing the orientations of few edges on a graph can
lead to significant changes in the separations encoded
in its MEC. Our findings highlight the importance
of utilizing a broad range of evaluation metrics that
take into account different causal characteristics of the
output of causal discovery algorithms, from direct and
total effects to the separation statements we consider
here.

2 NOTATION

Throughout this work, we consider causal graphs, gener-
ically denoted by G orH, over a set V of N nodes. More
specifically, we will focus on directed acyclic graphs
(DAGs), maximal ancestral graphs (MAGs) and their
MECs which can be represented by complete partially
directed acyclic graphs (CPDAGs) for DAGs and by
partial ancestral graphs (PAGs) for MAGs. We recall
that a mixed graph (MG) is a graph that may contain
directed → or bidirected edges ↔ and that a path
π = (π(1), π(2), . . . , π(n)) in an MG is a sequence of
adjacent edges in which no non-endpoint appears twice.
A non-endpoint node C on a path π in a MG is a
collider if its preceding and succeeding edge both point
towards C, and a non-collider if it is not a collider.
A path π is m-blocked by a subset of nodes S if S
contains a non-collider on π or if there is a collider
on π that does not have any descendants in S. A set
S is said to m-separate1 two nodes (X,Y ) on G if it

1When G is a DAGs, it is more common to speak of
d-separation rather than m-separation.
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m-blocks all paths between them, and we denote this
by X ▷◁G Y |S. In this case, S will also be called a sep-
arator for (X,Y ). A path that is not m-blocked by the
empty set is called m-open. A mixed graph contains
an almost directed cycle if there are is a directed path
X → · · · → Y and a bidirected edge X ↔ Y . A MAG
is a mixed graph that (a) does not contain any directed
or almost directed cycle (ancestral) and (b) in which
any two non-adjacent nodes can be m-separated by
some set S (maximal). Other types of separation, such
as σ-separation for cyclic graphs (Bongers et al., 2021)
exist as well, and many results of this work, particu-
larly those pertaining to s/c-metrics, generalize to any
class of graphs equipped with a notion of separation.
The symbol G will be our generic symbol for a class
of graphs on the node set V, which we hide in the
notation because it stays fixed throughout this article.
For example, we just write G = {DAGs} for the set of
DAGs over V.

We also fix the following conventions:

• C denotes the set of all triples (X,Y,S) with
X,Y ∈ V, X ≠ Y and S ⊂ V\{X,Y }. We implic-
itly identify triples (X,Y,S) and (Y,X,S). Ck is
the set of triples (X,Y,S) ∈ C with |S| = k. In

particular, C =
⊔N−2

k=0 Ck.

• We write Ccon(G) = {(X,Y,S) ∈ C | X ▷̸◁ GY |S}
for the set of connection statements in a graph
G and Csep(G) = {(X,Y,S) ∈ C | X ▷◁G Y |S} for
the set of its separations. We also write Ckcon(G)
(Cksep(G)), for the set of connection (separation)
statements of order k, i.e. with |S| = k.

Two causal graphs G,H ∈ G are called Markov equiv-
alent if they share the same separations, i.e. if
Csep(G) = Csep(H). This equivalence relation parti-
tions G into disjoint Markov equivalence classes, and
we write MEC(G) = {G′|G′ ∼ G} for the MEC of the
graph G. If G = {DAGs}, any MEC can be represented
uniquely as a CPDAG which may contain directed as
well as undirected edges. The CPDAG representing
MEC(G) is defined as the graph with the same skeleton
as G in which an edge is oriented X → Y if and only
if it is oriented in this way for every class member
G′ ∈ MEC(G). The MECs of MAGs can be represented
as PAGs which may contain directed, bidirected, undi-
rected and semidirected (◦→) edges. The PAG repre-
senting MEC(G) is the graph with the same skeleton as
G in which an edge mark is drawn if and only if the edge
mark appears in every class member G′ ∈ MEC(G). If
we start with a PAG or CPDAG H, we write MAG(H),
respectively DAG(H) for the set of all MAGs/DAGs
in the respective MEC, i.e. MAG(H) = MEC(G) for
any G ∈ MAG(H).

We also adopt the following terminology for graphical
reasoning. A node Y is a parent of a node X in a
mixed graph if there is a directed edge Y → X and
a child if there is a directed edge Y ← X. If there is
a bidirected edge Y ↔ X, then Y is called a sibling2

of X. Y is an ancestor of X if there exists a directed
path from Y to X and a descendant of X if there
is a directed path from X to Y . Two nodes that
share a common child are called spouses. We write
chG(X),paG(X), anG(X),desG(X), sibG(X), spG(X)
for the children, parents, ancestors, descen-
dants, siblings or spouses of X in G respectively.
Y is a possible parent of X in a MAG G if
Y ∈ ppaG(X) :=

⋃
G′∈MEC(G) paG′(X) and a possible

ancestor if Y ∈ panG(X) :=
⋃

G′∈MEC(G) ancG′(X).

Clearly possible parents/ancestors only depend on the
MEC of a graph and can be read off its graphical rep-
resentation. For instance, Y is a possible parent of X
in a DAG G if it is connected to X by an edge Y → X
or Y − X in CPDAG(G). Hence we can also write
ppaG(X) whenever G is a CPDAG or a PAG. We use
the shortcut notation paG(X ∪Y ) := paG(X)∪paG(Y ),
and similarly for children, spouses etc. If T ⊂ V is a
subset of nodes of a graph G, then GT is the subgraph
of G over T .

3 EXISTING DISTANCE
MEASURES

The Structural Hamming Distance The SHD
(Acid and Campos, 2003; Tsamardinos et al., 2006) is
the most commonly used metric to compare two causal
graphs. If G,H are two causal graphs, SHD(G,H) is de-
fined as the number of node pairs that do not have the
same type of edge between them in both graphs. For in-
stance, the node pair (X,Y ) contributes to SHD(G,H)
if X → Y in G but there is either no edge between X
and Y in H or an edge that is oriented differently. The
SHD is popular as it can be computed fast with only
a few lines of code and it can be adapted to graphs
of arbitrary types including those representing MECs.
However, the SHD has also been criticized for not
properly capturing the full causal implications of the
differences in the graphs G andH, as it only assesses the
presence/absence of direct effects. We illustrate this
critique with the following toy example which shows
that small structural changes to a graph can change
its causal implications considerably.

Example 1 The DAGs G and H in Figure 1 differ
in the orientation of one edge only, meaning that their

2These conventions unfortunately differ across the lit-
erature. We decided to employ the family tree inspired
conventions in which sibling means hidden common parent
and spouse means common child.
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X1 X2
... XM XM+1 XM+2... X2M

...G:

X1 X2
... XM XM+1 XM+2... X2M

...H:

Figure 1: Two DAGs G and H.

SHD is low relative to the total number of node pairs to
the point of being negligible for a large number of nodes.
On the other hand, any two nodes are connected by an
open causal path in G, while in H any node on the left
of the collider XM is d-separated from every node on
the right. In particular, no causal effects are permeated
from the left to the right of the graph, and one could
therefore argue that causally these graphs are not very
close. In Section 5 we also show empirically that edge
removal or reversal as in this example, has a much more
pronounced effect on separation- and adjustment-based
distance measures than on the SHD.

Adjustment Identification Distances AIDs
(Henckel et al., 2024) are designed to compare DAGs
with a view on causal effect estimation downstream
tasks, and they include the structural intervention dis-
tance (SID) of Peters and Bühlmann (2015) as a special
case. The core idea of AIDs is to choose an adjust-
ment strategy that produces identification formulas for
causal effects implied by the graph H. In a second
step, one then needs to verify whether the inferred
identification formulas are valid in the base graph G.
Whenever this is not the case, a penalty of 1 is added
to the distance score. We summarize their exact defini-
tions in Appendix E. Henckel et al. (2024) provide an
implementation of AIDs that achieves a computational
complexity of only O(N2) in sparse graphs. In addi-
tion, they propose an adaptation of AIDs to CPDAGs.
However, there is no obvious relationship between the
AID of two MECs represented by CPDAGs and their
class members as the following example illustrates.

Example 2 We first consider the two DAGs G′,H′

in Figure 2 which are both causal chains, but with a
different variable ordering. Clearly, these graphs are
very different structurally as they do not share a single
edge. This difference is witnessed by the parent-AID
(= SID) when applying it to the DAGs G′,H′ directly.
However, in either of the associated CPDAGs, there are
no identifiable causal effects. Therefore, the CPDAG-
parent-AID as defined in (Henckel et al., 2024) is zero.
As a consequence, an MEC inferred by a causal discov-
ery method may score perfectly when comparing it to
the CPDAG of a known ground truth DAG, while any
of the class members get a non-zero score. In other
words, there is no guarantee that the AID between

two MECs is bounded below (above) by the minimal
(maximal) value obtained by their class members.
Our main motivation for introducing separation dis-
tances is to define metrics that measure causal claims
that are invariant under Markov equivalence. While
this is desirable when the output of the discovery task
are MECs, it comes at the cost that such distances can
never distinguish members of the same MEC by con-
struction. Therefore, when the output of a discovery
method is more fine-grained than the MEC, separa-
tion distances should be combined with other metrics
such as AIDs or the SHD. More generally, we are of
the opinion that an evaluation across a broad range of
metrics is desirable in most cases anyway. Neverthe-
less, even when more than the MEC can be inferred, a
separation-based comparison is still a valid endeavor.
Inferring separations is a valuable aspect of a correct
discovery even if the method aims for more.

4 SEPARATION-BASED
DISTANCES

s/c-Metric Arguably, the most straightforward way
to compare the implied separations/connections of two
causal graphs is to define a graded sum over all possible
separation/connection statements. If G is a causal
graph with an appropriate notion of separation, we use
the separation indicator function ιG : C → {0, 1},

ιG(X,Y,S) =

{
1 if X ▷̸◁ GY |S
0 if X ▷◁G Y |S.

Definition 4.1. Consider two causal graphs G,H over
the same set of N nodes, equipped with an appropriate
notion of separation. Define

dks/c(G,H) :=
1

|Ck|
∑

(X,Y,S)∈Ck

|ιG(X,Y,S)− ιH(X,Y,S)|

for k = 0, . . . , N − 2. The s/c-metric up to order
K is defined as

d≤K
s/c (G,H) =

1

K + 1

K∑
k=0

dks/c(G,H).

If K = N − 2, we speak of the full s/c-metric and

write ds/c instead of d≤N−2
s/c .



Jonas Wahl, Jakob Runge

X1 X3 X5
... X2M91

X2 X4 X6
... X

2M

G′:

X1 X3 X5
... X2M91

X2 X4 X6
... X

2M

CPDAG(G′):

X1 X3 X5
... X2M91

X2 X4 X6
... X

2M

H′:

X1 X3 X5
... X2M91

X2 X4 X6
... X

2M

CPDAG(H′):

Figure 2: Two DAGs G′,H′ and their CPDAGs.

Figure 3: Empirical comparison between the parent-
AID and the separation-based metrics parent-SD and
pparent-SD to be defined in Section 4 on the DAGs
G′,H′ and their CPDAGs. The label M refers to the
index in Figure 2. The qualitative difference between
the adjustment-based metric and its separation-based
analog is negligible for DAGs but clearly visible for
CPDAGs.

In words, the s/c-metric is a weighted count of the
disagreement in separation/connection statements
between the two graphs. It defines a mathematical
metric on MECs, see Lemma D.2 in Appendix
D. If a graph G is fixed as a reference point, for
instance because it is the ground-truth in a simulated
experiment, we can also compare the separation and
connection statements implied by G separately to those
implied by H. This yields notions of false positive and
false negative rate for separations, see Appendix D
for exact definitions and a more detailed discussion.
Informal versions of such error rates were already used
in the simulation section of (Hyttinen et al., 2014) but
have not been adopted more broadly.

Separation-based measures of this kind have an

obvious drawback. The number of separation state-
ments (X,Y,S) grows exponentially in the number
of nodes so that they are slow to compute and do
not scale to large graphs. Therefore, in practice, a
manageable subset of separation statements needs to
be selected to keep computations manageable. For this,
there are two possible approaches. The first one is to
choose statements randomly to compute a Monte-Carlo
style approximation of the full metric. The second
approach is to select only few separating statements
according to a predefined deterministic strategy. We
provide a plot of the quality of Monte-Carlo style
approximation in Appendix H. In the main text, we
focus on the second approach, since it delivers a
greater computational speed-up and requires a deeper
theoretical investigation.

Separation Strategies Separation strategies are the
analog of adjustment strategies Henckel et al. (2024)
for separation. Roughly speaking, the fundamental
idea of Henckel et al. (2024) is to associate to every
pair of nodes (X,Y ) in a DAG H a so-called adjust-
ment set adH(X,Y ) according to a fixed strategy, and
to validate whether the induced adjustment formula
for computing the causal effect of X on Y remains
valid in a second DAG G. This second DAG G is
typically (but not necessarily) the ground truth in a
simulated experiment. (Henckel et al., 2024) explicitly
consider parent adjustment, ancestor adjustment, and
optimal adjustment (Runge, 2021) as possible adjust-
ment strategies. We will propose separation analogs
of these strategies for DAGs, MAGs and their MECs
(CPDAGs and PAGs). This task is non-trivial along
two dimensions: first, the direct analogs of parent and
ancestor adjustment, parent separation and ancestor
separation, while valid for DAGs, are not valid sepa-
ration strategies for general mixed graphs, see Figure
6 in Appendix B. Based on the work (van der Zander
and Lískiewicz, 2020), we will therefore also introduce
ZL-separation for MAGs, named after that paper’s
authors. Secondly, while being a separating set is in-
variant under Markov equivalence, the specific choice
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of separating set, if done naively, may depend on the
MEC member (more on this below).

We fix a class of graphs G with an appropriate no-
tion of separation in which any pair of non-adjacent
nodes can be separated. We primarily have the classes
G = {DAGs}, {CPDAGs}, {MAGs}, {PAGs} with m-
separation in mind, but we will briefly discuss exten-
sions to cyclic graphs towards the end of this section.

Definition 4.2. A separation strategy (sep-strategy)
for G ∈ G is a map SG(·, ·) that associates to every pair
of non-adjacent nodes (X,Y ) of G a set SG(X,Y ) such
that X ▷◁G Y |SG(X,Y ). A universal sep-strategy for
G is a map S : G 7→ SG that associates a sep-strategy
to every G ∈ G.

Given two graphs G,H ∈ G and a sep-strategy SH(·, ·)
for the latter, we define the indicator function

ιSG,H(X,Y ) =

{
1 if X ▷̸◁ GY |SH(X,Y )

0 if X ▷◁G Y |SH(X,Y ).

for any pair of G-non-adjacent nodes (X,Y ) /∈ EH.

Definition 4.3 (S-separation distance). Let S be
a universal sep-strategy for G. The (normalized) S-
separation distance (S-SD) of G and H ∈ G is defined
as

dS(G,H) := 1

N(N − 1)

∑
(X,Y )∈nadj(H)

ιSG,H(X,Y ),

where the sum runs over non-adjacent node pairs in H.

Thus, the S-SD measures whether the separating set
for (X,Y ) on H that has been selected according to
the strategy S remains a separating set on G, and if
this is not the case, a penalty is incurred.

Remark 4.4. Like the adjustment identification dis-
tances of Henckel et al. (2024), separation distances
are not symmetric, i.e. dS(G,H) ̸= dS(H,G), as the
two graphs play different roles in the distance’s com-
putation. We also define a symmetric S-SD of G and
H by taking the geometric mean of both directions

dSsym(G,H) := 1
2

(
dS(G,H) + dS(H,G)

)
.

Other symmetrizations, e.g. taking the harmonic mean
instead of the geometric one, are also possible.

Since any DAG is a MAG, any universal sep-strategy for
{MAGs} is also a universal sep-strategy for {DAGs}.
Similarly, any universal sep-strategy S for {CPDAGs}
defines a universal sep-strategy S′ for {DAGs} by
S′

G = SMEC(G) as any separating set for a MEC is
a separating set for all its members. We note the sub-
tlety that the converse of this statement need not be
true because a sep-strategy S defined on DAGs may

not be well-defined on CPDAGs, in the sense that we
may have SG(X,Y ) ̸= SG′(X,Y ) for some nodes X,Y
even if G ∼ G′ are Markov equivalent.

Before discussing further theoretical properties of SDs,
we present several possible sep-strategies in increasing
order of generality. For proofs of all results of this
section, we refer to Appendix B.

Parent Separation on DAGs As for adjustment,
the most straightforward idea to separate non-adjacent
nodes in a DAG is by using their parents. This yields
the symmetric sep-strategy SG(X,Y ) = SG(Y,X) =
paG(X ∪ Y ), (X,Y ) /∈ EG . However, parent separa-
tion is only a universal sep-strategy on DAGs. On
MAGs, two non-adjacent nodes might not be separa-
ble through their parents, see Figure 6 in Appendix B
for a counterexample. In addition, parent separation
does not directly extend to CPDAGs, as generically
paG(X ∪ Y ) ̸= paG′(X ∪ Y ) for Markov equivalent
G ∼ G′. We call the corresponding separation distance
for DAGs the parent-SD.

Ancestor Separation on DAGs Another uni-
versal sep-strategy for DAGs that parallels adjust-
ment is ancestor separation, i.e. SG(X,Y ) =
(anG(X ∪ Y )) \{X,Y }, (X,Y ) /∈ EG . Again, this is
not a valid sep-strategy for MAGs, see Figure 6, nor
does it extend to CPDAGs. We call the corresponding
separation distance the ancestor-SD.

p-Parent Separation on CPDAGs Replacing par-
ents by possible parents yields the sep-strategy for
SG(X,Y ) = ppaG(X ∪ Y ), (X,Y ) /∈ EG whenever G is
a CPDAG. We prove that possible parents are valid
separators in Appendix B, Lemma B.1.

ZL-Separation on MAGs and their MECs To
define a universal sep-strategy that remains valid on
MAGs, we first recall that a set of nodes S is a minimal
separator for (X,Y ) on a graph G if X ▷◁G Y |S and
X ▷̸◁ GY |S ′ for any proper subset S ′ ⊊ S. (van der
Zander and Lískiewicz, 2020) describe a fast algorithm
that returns a minimal separator for non-adjacent nodes
X,Y in any MAG G. We will call this separator the
ZL-separator ZLG(X,Y ), and SG(X,Y ) = ZLG(X,Y )
defines a universal sep-strategy for MAGs. Since defin-
ing a separator as the output of an algorithm is incon-
venient, we will now characterize it differently. The
algorithm of (van der Zander and Lískiewicz, 2020)
computes the ZL-separator by first computing a so-
called nearest separator to (X,Y ) and the refining this
nearest separator to a minimal one. A set of nodes
S ⊂ panG(X ∪ Y ) is called a nearest separator rel-
ative to (X,Y ) on a MAG G if (i) X ▷◁G Y |S; and
(ii) for every W ∈ panG(X ∪ Y )\{X,Y } and every
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path π connecting W and Y on the moralized graph3

(GpanG(X∪Y ))
m such that nodes(π) ∩ S ̸= ∅, any other

set S ′ ⊂ panG(X ∪ Y ) that separates (X,Y ) must also
satisfy nodes(π) ∩ S ′ ̸= ∅.
Lemma 4.5. Let X,Y be non-adjacent nodes on a
MAG G, and let S be a nearest separator for (X,Y ).
Then any separator S ′ ⊂ S is also nearest for (X,Y ).

Theorem 4.6. Let X,Y be non-adjacent nodes on a
MAG G. The ZL-separator ZLG(X,Y ) is the unique
separator that is both minimal and nearest for (X,Y ).
Moreover, ZLG(X,Y ) = ZLG′(X,Y ) for Markov equiv-
alent MAGs G ∼ G′.

We call the separation distance based on ZL-separation
the ZL-SD. Due to Theorem 4.6, the ZL-SD is a well-
defined separation distance on MAGs and their MECs.

MB-enhanced Sep-Strategies In this paragraph,
we present a way to adapt a universal sep-strategy
S using the Markov blanket (MB) to produce a new
universal sep-strategy MB(S). This MB-enhancement
can be carried out on any of the considered classes of
graphs but its primary advantage is for DAGs/CPDAGs
where the MB-enhanced strategy can be computed at
lower computational cost than the original strategy, at
least for sparse graphs. To define MB-enhancement,
we recall that the Markov blanket MBG(X) of a node
X in a MAG G is defined as the smallest set of nodes S
with the property that X ▷◁G Y |S for all Y /∈ S. If G is
a DAG, the Markov blanket of X can be conveniently
characterized as the union of its parents paG(X), its
children chG(X) and its spouses spG(X), i.e. the nodes
that share a common child with X. For general MAGs,
the Markov blanket can be characterized graphically as
well but this characterization is slightly more involved,
see Appendix C. We observe that MBG(X) = MBG′(X)
for Markov equivalent G ∼ G′, see Lemma C.1, so that
the Markov blanket is well-defined on MECs.

Now, given a universal sep-strategy S on a class of
graphs G, we define the MB-enhanced sep-strategy as

SG(X,Y ) =

{
MBG(X) if Y /∈ MB(X)

SG(X,Y ) else.

for two non-adjacent nodes X,Y . Thus, we use the
Markov blanket of X as a separator for all nodes ex-
cept for those that are non-adjacent to X but part
of MBG(X) themselves. For these nodes, we employ
the initial sep-strategy. The advantage of the MB-
enhanced strategy over the original one is then that
the MB-separator only depends on X and not on Y

3the moralized graph of a MAG H is the undirected
graph in which nodes A and B share an edge if and only
if on H there is a path between them on which all nodes
except A and B are colliders. We denote it by Hm.

for ’most’ node pairs (X,Y ). In DAGs/CPDAGs of
bounded node degree, the number of exceptional cases
is small compared to the number of nodes N which al-
lows us to leverage the results of Henckel et al. (2024) to
achieve a faster implementation of complexity O(N2),
see below. On MAGs, this speed-up is only retained
under stronger assumptions, see Appendix C.

Extensions to cyclic graphs The s/c-metric can
be defined for any class of graphs under consideration
as long as this class is accompanied by a fitting no-
tion of separation. To extend separation distances to
other types of graphs, it is necessary to specify a fit-
ting sep-strategy. For mixed graphs with cycles and
σ-separation, a sep-strategy can be defined by noting
that two nodes in such a graph G can be σ-separated by
S if and only if they can bem-separated by S in the acy-
clification ac(G) of G (Bongers et al., 2021). Therefore,
the problem of defining a sep-strategy can be reduced
to defining a sep-strategy in mixed graphs. Moreover,
any mixed graph can be projected onto a MAG over the
same nodes with equivalent m-separations. Therefore,
a valid sep-strategy can be defined by projecting ac(G)
onto its MAG projection and employing a sep-strategy,
such as ZL-separation, for MAGs.

Further properties of S-SDs In this section, we
focus on the theoretical properties of separation dis-
tances of MAGs which are also inherited by DAGs.
We denote the undirected skeleton of a MAG G by
sk(G). We also recall that a triple of nodes (X,Y, Z) is
called an unshielded triple if Y is adjacent to both X
and Z but X and Z are non-adjacent. The unshielded
triple (X,Y, Z) is an unshielded collider if both edges
have arrowheads pointing into Y . We denote the set
of all unshielded colliders on a G by Uc(G). Finally,
in a MAG G, a path π between nodes X and Y is a
discriminating path for node V if (i) π includes at least
three edges; (ii)V is a non-endpoint of π and adjacent
to Y on π; and (iii) X and Y are non-adjacent in G and
every node between X and V on π is both a collider
on π and a parent of Y . Richardson and Spirtes (2002)
showed that two MAGs G,H over the same nodes are
Markov equivalent if and only if (a) they share the same
skeleton; (b) they share the same unshielded colliders
and (c) if π is a discriminating path for node V in both
graphs, then V is a collider on π in G if and only if it
is a collider on π in H.

We have already discussed that two Markov equivalent
MAGs satisfy dS(G,H) = 0. The next result shows to
what extent graphs at zero distance are similar.

Theorem 4.7. Let S be a universal sep-strategy for
MAGs. If dS(G,H) = 0, then

(i) sk(G) ⊂ sk(H);
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(ii) If (X,Y, Z) is an adjacent triple4 on both graphs,
and an unshielded collider on H, then it is an
unshielded collider on G.

(iii) if π is a discriminating path for node V in both
graphs, and V is a collider on π in H, then it is a
collider on π in G.

In particular, dSsym(G,H) = 0 if and only if G and H
are Markov equivalent.

Figure 4: Effect of edge removal and reversal on differ-
ent distance metrics. Parent-AID and SD are affected
much more strongly by such local operations than the
SHD.

Complexity of Implementations The computa-
tional complexity of our algorithms may depend on
the sep-strategy and we provide detailed computations
in Appendix F. In general, the distance computation
consists of two steps: a separator computation step in
the graph H and a verification step on the graph G that
checks whether the separatorsSH(X,Y ) found onH re-
main separators on G. For non-enhanced sep-strategies
excluding ZL-separation, the separator computation is
O(N3) or lower, for ZL-separation in a MAG this step
is O(N4) (O(N3) on sparse graphs) (van der Zander
and Lískiewicz, 2020). The verification step can be
executed with worst-case complexity O(N2) (O(N) on
sparse graphs) (van der Zander et al., 2014) per node
pair (X,Y ) and thus O(N4) in total (sparse: O(N3)).
This is one degree slower than the complexity O(N3)
(sparse: O(N2)) of the algorithm that computes the
parent- or ancestor-AID in (Henckel et al., 2024). For
MB-enhanced strategies, however, we can mimic the
ideas of Henckel et al. (2024) to achieve a lowered com-
plexity of O(N2) on sparse graphs. This is because,
thanks to the Bayes-Ball algorithm (Geiger et al., 1990;
Shachter, 1998), see also (Henckel et al., 2024, Ap-
pendix D), we can verify many separation statements
while looping over only one node X instead over pairs
of nodes (X,Y ). The loop over the second node Y only
has to be entered in exceptional cases. The number of
exceptional cases is bounded by the size of the Markov
blanket which is in turn bounded by d2, where d is

4that is to say, Y is adjacent to both X and Z

the maximal node degree of the graph. Therefore, on
sparse graphs with d = const., we reach a complex-
ity of O(N2) similar to the one for AIDs. A similar
trick can be applied in the separator computation step
to achieve a complexity of O(N2). Empirically, com-
puting the MB-enhanced parent-SD on 100 pairs of
Erdös-Renyi graphs with N = 1000 nodes and an ex-
pected number of 10N edges, took 0.59s on average on
an Apple M1max 64GB chip as opposed to 4.35s for
the non-enhanced parent-SD.

5 EMPIRICAL RESULTS

In Figure 5, we draw an Erdös-Renyi DAG G ∼ G(N, p)
from which we then randomly remove one edge and re-
verse the orientation of another edge to obtain a second
graph H. We then compare the normalized distances
of these two graphs as well as the distances of their
CPDAGs. We conduct a similar experiment for mixed
graphs which we generate in an Erdös-Renyi fashion
with edge density p and a probabilty of 0.25 that a
given edge is bidirected. Among SDs, the ZL-SD reacts
the most strongly to the edge deletion/reversal. Parent-
SD, MB-enhanced parent-SD and parent-AID both also
witness the difference in graphs much more clearly than
the SHD. On average, the parent- and pparent-SD seem
to behave more conservative than their adjustment ana-
log and somewhat interpolate between the SHD and
the parent-AID. For mixed graphs/MAGs the only
available distances are the SHD and the ZL-SD which
exhibit a clear difference in values for sparser graphs.
Interestingly, for very dense graphs the ZL-SD even
drops below the difference in SHD which is likely due
to the fact that in such graphs barely any nodes can be
separated anymore. In Figure 4, we plot the change in
distance metrics to a base graph after we have removed
an edge and reversed another one k-times, k = 1, . . . , 10.
The base graph is a randomly drawn Erdös-Renyi DAG
G ∼ G(25, 0.25) and the removed and reversed edges
are drawn uniformly random from existing edges. We
have repeated this experiment 100 times and Figure 4
shows the averages across these runs. Parent-AID and
all SDs are more strongly affected by these removal
and reversal operations than the SHD. Remarkably,
the Markov enhanced parent-SD behaves very similar
to the parent-AID. In Appendix H, we provide further
experiments on the correlation of different distances
and on s/c-metrics.

In summary, our experiments and theoretical considera-
tions demonstrate that AID, SDs and the SHD measure
different notions of similarity of causal graphs, and the
choice of metric should depend on the ultimate goal of
the causal discovery effort.



Jonas Wahl, Jakob Runge

Figure 5: Average values of different graph distances applied to an Erdös-Renyi DAG G ∼ G(N = 25, p) and
another DAG H which is obtained from G by randomly deleting one edge and reversing one edge orientation.
The plot on the left shows the distance values for the DAGs themselves while the plot in the middle compares
their CPDAGs for increasing values of p. For mixed graphs, the only available distances are the ZL-SD and the
SHD which are depicted in the rightmost plot. We ran 100 experiments per parameter.

separation-based adjustment-based structure-based

s/c-metric SD AID SHD

compares?
all

separation statements
selected

separation statements
selected

adjustment sets
edges (presence
and orientation)

local? no no no yes

variants
FP-/FN-rates;

randomly chosen
sep-statements;

symmetrization;
different

sep-strategies;

symmetrization;
different

adjustment
strategies;

edge or orientation
FP-/FN-rates;

applicable to
DAGs, MAGs,
CPDAGS, PAGs
cyclic graphs;

DAGs, MAGs,
CPDAGS, PAGs
cyclic graphs;

DAGs, CPDAGS,
further extensions

possible;
all graphs;

scales to
large graphs?

no yes yes yes

particularly
recommended

for
small graphs;

MECs,
graph classes
beyond DAGs;

evaluation of
causal discovery
for downstream
effect estimation;

all graphs;

Table 1: Summary of measures of comparison for causal graphs.

6 CONCLUSION

We have introduced new separation-based graph dis-
tances that allow to quantify how similar two causal
graphs are in terms of their implied separation state-
ments. Many of these metrics are fast to compute,
scalable, and applicable to DAGs, their Markov equiv-
alence classes (CPDAGs) as well as mixed graphs that
incorporate bidirected edges for hidden confounding.
We have compared them with other metrics through
toy examples and empirical experiments. We summa-
rize the properties of the available distance measures
in Table 1. Our work is in line with other recent
attempts to provide more comprehensive tools to evalu-
ate causal discovery algorithms such as (Henckel et al.,
2024; Faller et al., 2024; Ramsey et al., 2024). Consid-
ering these recent developments regarding evaluation
together with new proposals for more realistic data
simulation (Gamella et al., 2025; Andrews and Kum-
merfeld, 2024; Ormaniec et al., 2024) and the use of

more real-world data , we believe that it would be
worthwhile to conduct an extensive re-evaluation of
popular causal discovery methods across a broad range
of measures and data sources in future work.

Code availability An implementation
of the distance measures introduced in
this work is available in the repository
https://github.com/JonasChoice/sep distances.

https://github.com/JonasChoice/sep_distances


Separation-Based Distance Measures for Causal Graphs

Acknowledgements JW and JR received funding
from the European Research Council (ERC) Start-
ing Grant CausalEarth under the European Union’s
Horizon 2020 research and innovation program (Grant
Agreement No. 948112). JW also received support
from the German Federal Ministry of Education and
Research (BMBF) as part of the project MAC-MERLin
(Grant Agreement No. 01IW24007). We thank Leonard
Henckel for valuable discussions and his suggestion to
use Markov blankets as separators. We also thank Si-
mon Bing for proof-reading a previous version of this
manuscript.

References

Acid, S. and Campos, L. M. d. (2003). Searching for
Bayesian Network Structures in the Space of Re-
stricted Acyclic Partially Directed Graphs. Journal
of Artificial Intelligence Research, 18:445–490.

Andrews, B. and Kummerfeld, E. (2024). Better simu-
lations for validating causal discovery with the dag-
adaptation of the onion method. arXiv preprint
arXiv:2405.13100.

Biza, K., Tsamardinos, I., and Triantafillou, S. (2020).
Tuning Causal Discovery Algorithms. In Proceedings
of the 10th International Conference on Probabilistic
Graphical Models, pages 17–28. PMLR.
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Causal chambers as a real-world physical testbed for
ai methodology. Nature Machine Intelligence, pages
1–12.

Geiger, D., Verma, T., and Pearl, J. (1990). d-
separation: From theorems to algorithms. In Ma-
chine intelligence and pattern recognition, volume 10,
pages 139–148. Elsevier.

Gerhardus, A. and Runge, J. (2020). High-recall causal
discovery for autocorrelated time series with latent
confounders. In Advances in Neural Information
Processing Systems, volume 33, pages 12615–12625.
Curran Associates, Inc.

Heisterkamp, S. H. (2009). Directed acyclic graphs and
the use of linear mixed models. Technical Report.
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Wienöbst, M. (2023). On the computational complexity
of graph moralization. Blog post at mwien.github.io.

Zhang, J. (2008). Causal reasoning with ancestral
graphs. Journal of Machine Learning Research,
9:1437–1474.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing,
E. P. (2018). DAGs with NO TEARS: Continuous
Optimization for Structure Learning. In Advances in
Neural Information Processing Systems, volume 31.
Curran Associates, Inc.



Separation-Based Distance Measures for Causal Graphs

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Not Applicable

(b) The license information of the assets, if appli-
cable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable



Separation-based Distance Measures for Causal Graphs:
Supplementary Material

A RELATED WORK

The articles (Acid and Campos, 2003; Tsamardinos et al., 2006) introduce the SHD, (Peters and Bühlmann,
2015) introduce the SID. The latter is generalized to a broader class of adjustment identification distances in
(Henckel et al., 2024). Liu et al. (2010) and Biza et al. (2020) define algorithms that judge causal graphs based
on their predictive abilities for the purpose of hyperparameter selection. In addition, several works address
method evaluation and causal graph falsification. Faller et al. (2024) propose a criterion for evaluating causal
discovery algorithms in the absence of a ground truth which quantifies the compatibility of causal graphs that
were inferred over different subsets of variables. Pitchforth and Mengersen (2013) review methods to validate
expert-elicited Bayesian networks. Machlanski et al. (2024) discuss causal model evaluation in the context of
causal effect estimation, and Eulig et al. (2023) develop a permutation-based test for causal graph falsification.
Ramsey et al. (2024) propose a statistical test for the validity of the Markov property of a distribution on a
causal graph. Faltenbacher et al. (2025) investigate how coherently the separations of the output graph of a
constraint-based causal discovery method reflect the conditional independencies that where measured during its
run. Faller and Janzing (2025) investigate how to use redundant test results to correct errors in the learned graph.

B PROOFS

Lemma B.1. Let G be a DAG. For any pair of non-adjacent nodes (X,Y ), the set of possible parents ppaG(X∪Y )
is a d-separating set.

To prove Lemma B.1 we recall that separations on CPDAGs can be nicely handled with definite status paths. Fix
a CPDAG H and a path π = (π(1), . . . , π(n)) on H. A non-collider π(i) is called a definite non-collider on π if
the triple (π(i− 1), π(i), π(i+1)) is unshielded or if one of its adjacent edges is oriented away from π(i) in H. An
arbitrary node on π(j) on π is said to be of definite status on π if it is a definite non-collider or a collider. Finally
the path π is called a definite status path if all of its non-endpoint nodes are of definite status. A definite status
path π from X to Y is called d-blocked by a set of nodes S ⊂ V\{X,Y } if one of its non-colliders is in S or if one
of its colliders does not have any descendants (including itself) in S. Zhang (2008) proved that X and Y are
d-separated by a set S in one (every) DAG in DAG(H) if and only if every definite status path on H is d-blocked
by S.

Proof of Lemma B.1. We consider H := CPDAG(G), consider the pair of non-adjacent nodes (X,Y ) and the set
of possible parents S := ppaH(X ∪ Y ). By the previous considerations, we need to show that S d-blocks any
definite status path between X and Y . Let π = (π(1), π(2), . . . , π(n)), n ≥ 3 be such a definite status path with
π(1) = X and π(n) = Y . We will need to consider several different cases. First, if π(1)← π(2) or π(1) ◦−◦ π(2)
and similarly if π(n−1)→ π(n) or π(n−1)◦−◦π(n), then S contains a non-collider of π and hence π is d-blocked.
Therefore, we now assume that π(1)→ π(2) and π(n− 1)← π(n). Then, there must be a collider on π. Next, we
assume that S d-unblocks π and derive a contradiction.

Case 1: We first consider the case, where there is exactly one collider C = π(i), 1 < i < n on π.
Then every edge (π(k − 1), π(k)) must be directed towards C, i.e. π(k − 1) → π(k) for k ≤ i and
π(k) ← π(k + 1) for k ≥ i as any other orientation would generate an additional collider on π in any DAG
G′ ∈ DAG(H). Since S d-unblocks π, there must be a possible parent P ∈ ppaH(X) ∩ des(C). Then the
path X = π(1) → π(2) → . . . C → . . . P ◦−◦ X would induce a cycle in some DAG G′ ∈ DAG(H). The case
P ∈ ppaH(Y ) ∩ des(C) is analogues.
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Case 2: Now we assume that there is more than one collider on π. Let C = π(iC) be the first and
C ′ = π(iC′) be the last collider on the path , so that in particular iC < iC′ . By the same reasoning as in Case 1,
the subpath (π(1), . . . , π(iC) must be right-directed and the subpath (π(iC′), . . . , π(n)) must be left-directed. If S
d-unblocks π, then there must exist P ∈ S ∩ (des(C) ∪ {C}) and P ′ ∈ S ∩ (des(C ′) ∪ {C ′}) with descending paths
ξ and ξ′ from C to P and C ′ to P ′ respectively. If P ∈ ppaH(X), then the concatenation of (π(1), . . . , π(iC)),
ξ and the edge P ◦−◦ X (or P → X) would yield a cycle in some G′ ∈ DAG(H). By the same argument,
P ′ ∈ ppaH(Y ) would induce a cycle in some G′ ∈ DAG(H). Therefore, we must have P ∈ ppaH(Y ) and
P ′ ∈ ppaH(X). We now assume that P is the first node on the descending path ξ that is in ppaH(Y ) (otherwise,
we replace P by the first node P ∗ on ξ with this property). Similarly we assume that P ′ is the first node on the
descending path ξ′ that is in ppaH(X). Consider the path Π obtained by concatenating in this order the path
(π(1), . . . , π(iC)), the path ξ = (ξ(1), . . . , ξ(k)), the edge (P, Y ), the inverse of the path (π(iC′), . . . , π(n)), the
path ξ′ = (ξ′(1), . . . , ξ′(l)) and the edge (P ′, X). We will show the contradictory conclusion that Π must be a
cycle.

If the edge (P, Y ) was left-directed P ← Y in some G′ ∈ DAG(H), then ξ′(l − 1)→ P = ξ(l)← Y would be a
collider and we show that this is contradictory. Indeed, if this collider was unshielded, then P would be a child of
Y in every G′ ∈ DAG(H) which contradicts the assumption P ∈ ppaH(Y ). However, if the collider was shielded,
there would have to be an edge (ξ(l − 1), Y ) and since P was the first node on ξ that is a possible parent of
Y , this edge would have to be directed as ξ(l − 1)← Y . But then the edge (P, Y ) must be directed as P ← Y
in every G′′ ∈ DAG(H) to avoid the cycle Y → ξ(l − 1)→ P → Y . But this again contradicts the assumption
P ∈ ppaH(Y ). Consequently, the edge (P, Y ) must be right-directed P → Y in every G′ ∈ DAG(H). We can
repeat the same line of reasoning for the edge (P ′, X) to see that this edge needs to be right-directed as well. But
then we have achieved our final contradiction that the path Π must be circular.

In both cases we have derived the desired contradiction and hence S must d-block π.

Lemma B.2. Let X,Y be non-adjacent nodes on a MAG G, and let S be a nearest separator for (X,Y ). Then
any separator S ′ ⊂ S is also nearest for (X,Y ).

Proof. It suffices to show that S ′ satisfies condition (ii) in the definition of nearest separator. Let W ∈
panG(X ∪ Y )\{X,Y } and let π be a path connecting W and Y on the moralized graph (GpanG(X∪Y ))

m with
nodes(π) ∩ S ′ ̸= ∅. Since S ′ ⊂ S, we also have nodes(π) ∩ S ̸= ∅, and since S is nearest, we must have
nodes(π) ∩ T ̸= ∅ for any separating set T ⊂ panG(X ∪ Y ), establishing property (ii) for S ′.

Theorem B.3. Let X,Y be non-adjacent nodes on a MAG G. The ZL-separator ZLG(X,Y ) is the unique
separator that is both minimal and nearest for (X,Y ). Moreover, ZLG(X,Y ) = ZLG′(X,Y ) for Markov equivalent
MAGs G ∼ G′.

Proof. We first show that ZLG(X,Y ) is both minimal and nearest for (X,Y ). Minimality was already established
in (van der Zander and Lískiewicz, 2020), and by construction of the algorithm that outputs ZLG(X,Y ) in (van der
Zander and Lískiewicz, 2020), ZLG(X,Y ) is a subset of a nearest separator. By Lemma B.2, ZLG(X,Y ) is also
nearest. To prove uniqueness, let S,S ′ be two minimal nearest separators for (X,Y ). By symmetry we need only
show S ⊂ S ′. Let W ∈ S. We want to show that W ∈ S ′. Since S is a minimal separator, there must exist a
path Π from X to Y on G that is not closed by S\{W} but closed by S. In particular, W is the unique element
of S that is a non-collider on Π. By (Richardson and Spirtes, 2002, Lemma 3.17) the sequence of non-colliders on
Π forms a undirected path π on (GpanG(X∪Y ))

m from X to Y . The subpath π′ starting from W and ending at Y
has the property that nodes(π′)∩S = {W}. Now, we use the assumption that S is a nearest separator for (X,Y ).
Condition (ii) of the definition of nearest separators namely implies that nodes(π′)∩S ′ ̸= ∅. If W ∈ nodes(π′)∩S ′,
then in particular W ∈ S ′ and we are done. To finish the proof, we show that W /∈ nodes(π′) ∩ S ′ leads to a
contradiction. If W /∈ nodes(π′) ∩ S ′, we choose W ′ ∈ nodes(π′) ∩ S ′ and consider the subpath π′′ starting from
W ′. Since S ′ was also assumed to be nearest, nodes(π′′) ∩ S ′ ̸= ∅ implies that also nodes(π′′) ∩ S ≠ ∅. But π′′

was a subpath of π′\{W} so it follows that nodes(π′)\{W}∩S ̸= ∅ which contradicts nodes(π′)∩S = {W}. This
concludes the proof.

Finally, we note that minimality and being nearest are invariant under Markov equivalent which proves that
ZLG(X,Y ) = ZLG′(X,Y ) for Markov equivalent MAGs G ∼ G′.
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Theorem B.4. Let S be a universal sep-strategy for MAGs. If dS(G,H) = 0, then

1. sk(G) ⊂ sk(H);

2. If (X,Y, Z) is an adjacent triple on both graphs, and an unshielded collider on H, then it is an unshielded
collider on G.

3. if π is a discriminating path for node V in both graphs, and V is a collider on π in H, then it is a collider
on π in G.

In particular, dSsym(G,H) = 0 if and only if G and H are Markov equivalent.

Proof. If X and Y are non-adjacent in H, they are separated by SH(X,Y ), and since dS(G,H) = 0, SH(X,Y )
also separates them in G. Hence X and Y are also non-adjacent in G, proving the first claim. To establish the
second claim, consider an unshielded collider (X,Y, Z) ∈ Uc(H) that is also an adjacent triple on G. By the
first claim (X,Y, Z) is also unshielded in G. (X,Y, Z) ∈ Uc(H) implies that Y /∈ SH(X,Z). Since dS(G,H) = 0,
SH(X,Z) is therefore a separating set not containing Y on G as well, so that (X,Y, Z) must be a collider on G.
Now, let π = (X,W1, . . . ,Ws, V, Y ) be a discriminating path for node V between nodes X and Y on both graphs
such that V is a collider on π in H. By induction over i, Wi ∈ SH(X,Y ) for i = 1, . . . , s and moreover because
of the collider property V /∈ SH(X,Y ). If V was not a collider on π in G, then SH(X,Y ) would open the path π
in G which would contradict dS(G,H) = 0. Hence V must be a collider on π in G.

Finally, let us consider the symmetrized distance dSsym(G,H) which is zero if and only if dS(G,H) = 0 and

dS(H,G) = 0. So, by the first part of the theorem, both graphs have the same skeleton, the same unshielded
triples and the same colliders on shared discriminating paths. Hence they are Markov equivalent. Conversely, if G
and H are Markov equivalent, then any separating strategy for one graph is a separating strategy for the other,
so dSsym(G,H) = 0.

The following figure proves that neither parent nor ancestor separation are valid sep-strategies for MAGs.

VX Y

Z

W

Figure 6: In this MAG G, paG(X ∪ Y ) = {W,Z} does not m-separate X and Y as it unblocks the path
X ↔ Z ↔ V → W ↔ Y . The same is true for the ancestral set ancG(X ∪ Y )\{X,Y } as well as for the set of
potential parents ppaG(X ∪ Y ) as both coincide with paG(X ∪ Y ) in this example.

C MB-SEPARATION IN MAGS

In this section, we extend the Markov blanket separation distance to MAGs. Recall that the Markov blanket of
X is the smallest set of nodes of G with the property that X ▷◁G Y |MBG(X) for all Y /∈ MBG(X). The following
characterization of the Markov blanket for MAGs has been considered in various places, see for instance (Pellet
and Elisseeff, 2008). It is based on the notion of collider paths: A path π = (π(1), π(2), . . . , π(n)) from X = π(1)
to Y = π(n) is a collider path if n > 2 and all middle nodes π(2), . . . , π(n− 1) are colliders on π. The Markov
blanket MBG(X) of a node X on a MAG G then consists of all nodes Y such that

(i) Y is adjacent to X or,
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(ii) there exists a collider path from Y to X.

We record that the Markov blanket is invariant under Markov equivalence.

Lemma C.1. If two MAGs G ∼ G′ are Markov equivalent, then for any node X, we have MBG(X) = MBG′(X).

Proof. Sincem-separation is invariant under Markov equivalence MBG(X) has the property thatX ▷◁G′ Y |MBG(X)
for all Y /∈ MBG(X). Since MBG′(X) is the smallest subset with this property, we must have MBG′(X) ⊂ MBG(X).
Repeating the argument with reversed roles of G and G′ finishes the proof.

Therefore if S defines a sep-strategy on Markov equivalence classes, then so does its MB-enhanced strategy. For
PAGs (and consequently also for MAGs), we can therefore define the MB-enhancement of ZL-separation

SG(X,Y ) =

{
MBG(X) if Y /∈ MBG(X)

ZLG(X,Y ) else.

for all non-adjacent pairs (X,Y ). In DAGs, the computational advantage of Markov blanket separation over other
sep-strategies is that its implementation can avoid a double loop over nodes X and Y for all but the exceptional
cases, leading to lower computional complexity if the number of exceptions is small, see Appendix F below. This
is the case if the maximal node degree d, i.e. the maximal number of neighbors per node is small compared to the
total number of nodes: any Y ∈ MBG(X) that is non-adjacent to X can be reached in exactly two steps, so the
number of exceptional cases is d2 at most. In MAGs, this guarantee can no longer be upheld, since collider paths
can be of arbitrary lengths and thus a small node degree is no longer sufficient to bound the size of the set of
exceptions. Such bounds can only be retained if in addition to the node degree, the maximal lengths of collider
paths is assumed to be small compared to the number of nodes.

D FURTHER RESULTS ON S/C-METRICS

Two causal graphs G,H of the same type are called K-th order Markov equivalent if their separations/connections

coincide up to order K (Kocaoglu, 2023), that is if d≤K
s/c (G,H) = 0.

Lemma D.1. Let G be a class of graphs with an appropriate notion of separation, e.g. G = {MAGs} and

m-separation. d≤K
s/c is a metric on the set G⧸∼ of K-th order Markov equivalence classes of G.

Corollary D.2. Consider a class of graphs G with an appropriate notion of separation.

Then, ds/c(G,H) = 0 if and only if G and H are Markov equivalent. Moreover, ds/c defines a metric (in the
mathematical sense of the word) on the set of Markov equivalence classes over G.

Proof of Lemma D.1. Consider the real vector space Vk of maps Ck → R on which ∥f∥k =
1
Ck

∑
(X,Y,S)∈Ck

|fk(X,Y,S)| defines a norm. Then ∥(f0, . . . , fK)∥ :=
∑K

k=0 ∥fk∥k defines a norm on the graded

vector space VK =
⊕K

k=0 Vk. We now define the mapping

gK : G→ VK , G 7→ (1− iG |C0
, . . . , 1− iG |CK

),

where iG |Ck
is the separation indication function restricted to the set of k-th order separation/connection

statements. We observe that gK(G0) = gK(G) if and only if G and H have the same separations up to order K.

In other words, the mapping gK is well-defined on the quotient G⧸∼ of K-th order Markov equivalence classes
and becomes an embedding. Since d≤K

s/c (G,H) is nothing but

d≤K
s/c (G,H) = ∥gK(G)− gK(H)∥,

it follows directly that d≤K
s/c is a metric on G⧸∼. Finally, since the usual notion of Markov equivalence means

that two graphs share exactly the same separations, G and H are Markov equivalent if and only if ds/c(G,H) =
d≤N−2
s/c (G,H) = 0, so this is indeed the special case where K = N − 2 by which point all separation statements

have been exhausted.
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Remark D.3. (i) Since dks/c(G,H) is bounded by 1, d≤K
s/c (G,H) is also bounded by 1 due to the normalization

constant 1
K+1 . This value is taken if G is the fully disconnected and H is a fully connected graph.

(ii) If one prefers to assign more importance to differences in low order statements than to differences in higher
order statements, this can be reflected by introducing a weight wk, k = 0, . . . N −2 and replace the s/c-metric
with a weighted version

dws/c(G,H) =
1∑
k wk

K∑
k=0

wk · dks/c(G,H).

D.1 Markov and Faithfulness metric

The s/c-metric introduced in the previous subsection is a symmetric notion of distance for two causal graphs to
which differences in connections and differences in separations between the two graphs contribute equally. We
can also consider separations and connections separately at the price of losing symmetry: we have to specify one
graph as a reference point for the separations or connections that we would like to compare. A version of the
distance measures that we are about to introduced (without the grading by order) has been used implicitly in
(Hyttinen et al., 2014) to evaluate their causal discovery method.

Definition D.4. Consider two causal graphs G,H over the same set of nodes, equipped with an appropriate
notion of separation. We first define

dkc (G,H) :=
1

|Ckcon(G)|
∑

(X,Y,S)∈Ck
con(G)

(1− ιH(X,Y,S)).

for k = 0, . . . , N − 2. Then we call

d≤K
c =

1

K + 1

K∑
k=0

dkc (G,H).

the c-metric or Markov metric of H to G of order K. If K = N − 2, we just speak of the c-metric or
Markov metric and write dc instead of dN−2

c .

We recall that a distribution PV over the node variables V is called Markovian on a causal graph G, if the graphical
separation X ▷◁G Y |S implies the conditional independence X |= PV

Y |S, and is called faithful on G if the graphical
connection X ▷̸◁G Y |S implies the conditional dependence X ̸ |= PVY |S

The name ’Markov metric’ is justified by the following result.

Lemma D.5. Consider two causal graphs G,H over the same set of nodes X, equipped with an appropriate
notion of separation. Suppose that PV is a distribution on X that is Markovian and faithful on the graph G. Then
dc(G,H) ̸= 0, if and only if PV is not Markovian on H.

Proof. If dc(G,H) ̸= 0, then there must be a triple (X,Y,S) ∈ Ccon(G) ∩ Csep(H). Since (X,Y,S) ∈ Ccon(G) and
PV is faithful on G, we must have that X ̸ |= PVY |S. If PV would be Markovian on H, (X,Y,S) ∈ Csep(H) would
imply X |= PV

Y |S, which is a contradiction. Conversely, if PV is not Markovian on H, there must be a triple
(X,Y,S) ∈ Csep(H) with X ̸ |= PVY |S. Since PV is Markovian on G, it follows that (X,Y,S) ∈ Ccon(G) and thus
(X,Y,S) ∈ Ccon(G) ∩ Csep(H). Hence dc(G,H) ̸= 0.

Consider a simulated experiment to evaluate a causal discovery method M which outputs the graph H. If
the parameters of the data-generation process are chosen in such a way that the Markov property and causal
Faithfulness w.r.t to the ground truth graph G is guaranteed, according to the previous lemma, dc(G,H) ̸= 0
means that PV does not have the Markov property on the output graph. In other words, dc(G,H) measures how
far the pair (H, PV) is from being Markovian. As the Markov property is the most fundamental link between
the distribution and the graph, a large Markov metric should be a clear warning sign that the algorithm is not
performing well or that the data-generation process is far from being faithful on G. Markovianity on G is usually
a given in a data simulation.

We can define an analogous notion for separations instead of connections.
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Definition D.6. Consider two causal graphs G,H over the same set of nodes X, equipped with an appropriate
notion of separation. We first define

dks(G,H) :=
1

|Cksep(G)|
∑

(X,Y,S)∈Ck
sep(G)

ιH(X,Y,S).

for k = 0, . . . , N − 2. Then we call

d≤K
s =

1

K + 1

K∑
k=0

dks(G,H).

the s-metric or Faithfulness metric of H to G of order K. If K = N − 2, we just speak of the c- or
Faithfulness metric and write dc instead of dN−2

c .

The following result is the analogue of Lemma D.5 for the Faithfulness metric.

Lemma D.7. Consider two causal graphs G,H over the same set of nodes X, equipped with an appropriate
notion of separation. Suppose that PV is a distribution on X that is Markovian and faithful on the graph G. Then
ds(G,H) ̸= 0 if and only if PV is not faithful on H.

Proof. If ds(G,H) ̸= 0, then there must be a triple (X,Y,S) ∈ Csep(G) ∩ Ccon(H). Since (X,Y,S) ∈ Csep(G)
and PV is Markovian on G, we must have that X |= PV

Y |S. If PV would be faithful on H, (X,Y,S) ∈ Ccon(H)
would imply X ̸ |= PVY |S, which is a contradiction. Conversely, if PV is not faithful on H, there must a triple
(X,Y,S) ∈ Ccon(H) with X |= PV

Y |S. Since PV is faithful on G, it follows that (X,Y,S) ∈ Csep(G) and thus
(X,Y,S) ∈ Csep(G) ∩ Ccon(H). But this means that ds(G,H) ̸= 0.

The name ’Faithfulness metric’ is thus motivated by the fact that if G is a ground truth graph in a simulated
experiment, the Faithfulness metric measures the amount of Faithfulness violations in a method’s output graph.

Remark D.8.

(i) Like the s/c-metric before, both the Markov and the Faithfulness metric only depend on the Markov
equivalence classes of the two graphs in play.

(ii) At first glance, it might seem like ds(G,H) = dc(H,G) but this is not the case. The crucial difference lies in
the normalization constants of the k-th order contributions which need not coincide in ds(G,H) and dc(H,G).

Analogy to False Positive and False Negative Rate The term dkc in the Markov metric measures the
number of connections of the ground truth graph G with |S| = k that the graph H misses (”false negatives”)
relative to the total number of connections of G (”positives”) with |S| = k. Thus, since we scale the Markov
metric by 1

N−1 we compute the average false negative rate across all orders for separation/connection statements.
Similarly, the Faithfulness metric measures the number of separations of the ground truth graph G with |S| = k
that the graph H mistakes for connections (”false positives”), relative to the total number of separations of G
(”negatives”) with |S| = k. The Faithfulness metric, can thus be interpreted as the average false positive rate
across all orders for separation/connection statements. Like usual FPRs and FNRs, we can also combine Markov
and Faithful distance into a ROC-curve to obtain an additional quality metric, see (Hyttinen et al., 2014).

E A SUMMARY OF ADJUSTMENT IDENTIFICATION DISTANCES

Adjustment Identification Distances (AIDs) were introduced in (Henckel et al., 2024). As we often refer to these
distances in the main document, we repeat their definition here for the convenience of the reader. This section
does not contain any original results, and the reader is encouraged to consult (Henckel et al., 2024) for more
details.

AIDs are based on the notion of identifying formulas in causal graphs. An identifying formula for the effect of
variable X on variable Y in a DAG G is an equation that expresses the interventional distribution P (Y |do(X))
purely in terms of the observational distribution of the graphical nodes for any distribution P compatible with
G. An effect is called identifiable if there is at least one identifying formula for it. A (sound and complete)
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identification strategy is then defined as an algorithm that inputs a tuple (G, X, Y ) and that returns a correct
identifying formula if there is one, and none otherwise.

More specifically Henckel et al. (2024) focus on identification through adjustment. If X,Y ∈ V are nodes and
S ⊂ V\{X,Y } is a subset of nodes, then S is a valid adjustment set for the effect of X on Y if P (Y |do(X)) =∫
P (y|x, s)P (s)ds for any distribution P compatible with G, now assuming that P has a density with respect

to the Lebesgue measure. Since paG(X) is a valid adjustment set for (X,Y ) whenever Y is not itself a parent
of X, the first option to define an identification strategy is to use the identification formula obtained through
parent adjustment; this is what Henckel et al. (2024) call the parent adjustment strategy. Other identification
strategies used in (Henckel et al., 2024) are ancestor adjustment, which employs the identifying formula obtained
by conditioning on all ancestors of X, and optimal adjustment (Henckel et al., 2022) which makes use of the
adjustment set of minimal variance. To build a distance measure for DAGs from identification strategies, the
final missing ingredient is a verifier, i.e. an algorithm that inputs a tuple (G, X, Y ) and an identifying formula
and that outputs whether this formula is, in fact, a correct identifying formula for the effect of X on Y on G.

With these tools at hand, the adjustment identification distance AID(G,H) for a given adjustment strategy is
defined by (1) computing the identifying formula prescribed by the chosen strategy in H for each pair of nodes
(X,Y ), X ≠ Y ; (2) verifying for each pair of nodes whether this formula is correct in G; and (3) incurring a
penalty of 1 whenever the formula is false in G.

To generalize AIDs to CPDAGs, it is first necessary to observe that in CPDAGs causal effects may longer be
identifiable. Therefore, in CPDAG-AIDs, a penalty is incurred not only when the identifying formula computed
in H is incorrect in G, but also if an effect is identifiable in one graph but not in the other.

F ALGORITHMS

F.1 Algorithms to compute separation distances

In this section, we will present pseudocode to compute the parent-, the MB- and the ZL-separation distance,
including a more detailed discussion of their computational complexity. Each algorithm consists of two steps, a
separator computation step in one graph and a separator verification in the other. The computational bottleneck
is the verification step which will therefore be our main focus.

Separator Computation Separators can be computed as follows. We record the algorithmic complexity of
each step, and our usage of ’sparse’ refers to a bounded node degree d independent of the number of nodes N .
Recall that a graph is of bounded node degree d if each node is adjacent to at most d other nodes. The number
of edges of a graph will be denoted by M .

Computing the parent separators paH(X ∪ Y ) for all node pairs (X,Y ) is of computational complexity O(N3) in
general: one needs to compute paH(X) for all X in a first loop (O(N2)) and then take the union paH(X ∪ Y )
(O(N)) for all node pairs (X,Y ) (O(N2) times), so O(N3) in total. In the sparse case, taking the union is only
O(1) so that the complexity reduces to O(N2). Similar arguments also yield the same general complexity O(N3)
for computing ancestor and potential parent separators. Computing the ZL-separator of (X,Y ) in a MAG H is
of complexity O(N +M) (van der Zander and Lískiewicz, 2020) and this needs to be executed O(N2) times, so
that the complexity in terms of N is O(N4) in general and O(N3) in the sparse case. Computing the Markov
blanket MBH(X) in a DAG H for all X can be done by computing the moralized graph (O(N3)5 and O(N2) in
the sparse case) and by subsequently computing the adjacencies of X in this graph for all X O(N2), yielding an
upper bound of O(N3) in general and O(N2) in the sparse case. Computing the MB-enhanced (possible) parent
separator is therefore of complexity O(N3) in general and O(N2) in the sparse case as well.

To compute the ZL-separator, we use the algorithm introduced in (van der Zander and Lískiewicz, 2020) which is
of computational complexity O(N +M). The ZL-separator ZLG(X,Y ) depends on both arguments X,Y and
hence we need to loop through both, leading to a complexity of O(N4) or O(N3) if the input graph is sparse.

Separation Verifier Since verifying whether the separators computed in a graph H are in fact separators
in another graph G is the computationally most costly step, we will provide more details here. In general,

5this can actually be reduced to ≈ O(N2.37), see (Heisterkamp, 2009; Wienöbst, 2023)
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the complexity of this part of the distance computation is O(N2 · (N +M)) or O(N4) in terms of N only, as
Algorithm 1 illustrates. In the sparse case where M ∈ O(N), this becomes O(N2). We write nadj(H) for the set
of non-adjacent node pairs in a graph H (computable in O(N2)).

Algorithm 1 Pseudocode to verify separators and compute the corresponding non-normalized SD.

Require: causal graph G, list SH(X,Y ), (X,Y ) ∈ nadj(H) of proposed separator found in a previous step based
on another graph H.
Initialize distance d← 0;
for (X,Y ) ∈ nadj(H) {loop of length O(N2)}
do
check X ▷◁G Y |SH(X,Y ); {complexity O(N +M)}
if check returns false then

d += 1;
end if

end for

.

On a DAG or CPDAG G, MB-enhancement yields an improvement thanks to the Bayes-Ball algorithm (Geiger
et al., 1990; Shachter, 1998), see also (Henckel et al., 2024, Appendix D). For a given node X and a set S, the
Bayes-Ball algorithm is able to compute the set nsepG(X,S) = {Y | Y ▷̸◁ GX|S} in time O(N +M). We apply it
in Algorithm 2 to achieve the desired reduction in complexity.

Algorithm 2 Pseudocode to verify MB-enhanced separators and to compute the corresponding non-normalized
SD. The worst case computational complexity is O(N2 · (N +M)). If G and H are sparse, the computational
complexity reduces to O(N2).

Require: DAG G, list of Markov blankets MBH(X), X ∈ V , list of separators for exceptional casesSH(X,Y ), Y ∈
MBH(X)\ (paH(X) ∪ chH(X)).
Initialize distance d← 0;
for X ∈ V {loop of length N}
do
get nsepG(X,S) with Bayes-Ball; {complexity O(N +M) and O(N) if G is sparse}
d← |nsepG(X,S) ∩ V\MBH(X)|; {complexity O(N)}
for Y ∈ MBH(X)\ (paH(X) ∪ chH(X)); {loop of length O(N),O(1) if H is sparse}
do
check X ▷◁G Y |SH(X,Y ); {complexity O(N +M), O(N) if G is sparse}
if check returns false then
d += 1;

end if
end for

end for

.

F.2 Algorithms to compute s/c-metrics

For the sake of completion, even though the computation is straightforward, we also provide pseudocode to
compute the s/c-metric. Once again, we rely on an oracle function ιG(X,Y,S) that takes in a causal graph and a
triple (X,Y,S) ∈ C and outputs 0 if X and Y are separated and 1 if they are connected by S in G. Practical
implementations of such an oracle for DAGs (d-separation) are available in the R package Dagitty (Textor et al.,
2016) and the Python packages networkx and Tigramite (https://github.com/jakobrunge/tigramite). The
oracle implemented in Tigramite is also applicable to MAGs (m-separation), tsMAGs and tsDAGs.

G The CHALLENGE OF INVALID OUTPUT GRAPHS

In this section, we would like to draw attention to an additional challenge that occurs when applying evaluation
metrics to causal discovery algorithms based on the PC-algorithm. Separation-based (or adjustment-based)

https://github.com/jakobrunge/tigramite
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Algorithm 3 Pseudocode to compute the s/c-metric.

Require: G, H causal graphs (e.g. DAGs) or Markov equivalence classes (e.g. CPDAGs) with N nodes, Oracle
for fitting notion of separation. Sets Lk of order k-triples to be tested for k = 0, . . . , N − 2.
if G (or H) is Markov equivalence class then
G (or H) ← member of G (or H);

end if
dist = 0.0;
for k = 0, . . . , N − 2 do
distk = 0.0;
count = 0;
for triples (X,Y,S) ∈ Lk do
count += 1;
distk += |ιG(X,Y,S)− ιH(X,Y,S)|;

end for
dist += distk

count ;
end for
return dist

N−1 .

.

metrics that compare two graphs G and H require that both of these graphs are able to decide whether (X,Y,S)
is a separation or a connection statement (or whether S is adjustment set for (X,Y )) in the respective graph. For
instance, if the applied notion of separation is d-separation, then G and H should be DAGs or CPDAGs. While
score-based causal discovery methods like GES (Chickering, 2003), NOTEARS (Zheng et al., 2018), GLOBE
(Mian et al., 2021), BCCD (Claassen and Heskes, 2012), parametric methods like LinGaM (Shimizu et al., 2006)
or logic-based methods like (Hyttinen et al., 2014) guarantee that their output is either a proper causal graph
or a MEC, this is no longer true for all PC-based algorithms. Due to assumption violations or contradictory
independence test results during their execution, the order independent version of PC (Colombo and Maathuis,
2014) might run into logical conflicts between different orientation rules. or it might label unshielded triples
X − Y − Z in the graph as ambiguous. The conservative PC algorithm of (Ramsey et al., 2006) labels an
unshielded triples X − Y − Z ambiguous if the middle node Y is in some but not all separating sets that the
method found for X and Z. The majority decision rule (Colombo and Maathuis, 2014) labels a triple ambiguous
if Y belongs to exactly half of all separating sets found for X and Z. If conflicts or ambiguities occur, the output
graph is invalid in the sense that it does no longer imply separation/connection statements for arbitrary triples
(X,Y,S). Hence computing separation-based or adjustment-based metrics is no longer straightforward.

Dealing with Conflicting Orientations Since conflicts between different orientation rules are serious errors
that flag assumption violations of some form, the most conservative way to treat them in a performance evaluation
of a PC-like method is to record the proportion of their occurrence and then disregard graphs with conflicts for
further steps. A well-performing method should lead to (a) a low proportion of graphs with conflicts and (b)
good results w.r.t. the chosen evaluation metric on its valid output graphs.

Dealing with Ambiguities In contrast to conflicting orientations, the appearance of ambiguities is a sign that
a method is conservative about the inferences it is willing to make. Discarding graphs with ambiguities entirely,
therefore seems like an overly harsh punishment for a method not being willing to make strong claims. We will
now describe a procedure for computing best-case and worst-case distances to a ground truth for graphs with
ambiguities by considering all possible ways in which ambiguities may be interpreted. The proposed strategy is
similar to how the structural intervention distance is computed for a CPDAG by iterating through all DAGs
that are represented by a given CPDAG, see (Peters and Bühlmann, 2015). The procedure will start with the
following input data:

• A (ground truth) DAG or CPDAG G;

• An undirected graph H that will serve as the skeleton of a DAG or tsDAG;

• A partition of the set of unshielded triples U = Uc ∪Unc ∪Ua of H into colliders (Uc), non-colliders (Unc) and
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Algorithm 4 Pseudocode to compute distance measures for graphical outputs with ambiguities.

Require: G, H, Uc, Ua as defined above. A distance metric d(·, ·).

Initialize empty list L.
for all B ⊂ Ua do
HB ← H;
COL← Uc ∪ B;
Collider phase: try: orient all (X,Y, Z) ∈ COL as colliders on HB;
if No conflicting orientations and no cycle in HB then

Orientation phase: try: Apply Meek’s orientation rules to HB;
if No conflicting orientations and no cycle in HB then

append HB to L;
end if

end if
end for
if L = ∅ then
max-dist, mean-dist, min-dist ← 1;

else
max-dist ← maxB∈L d(G,HB);
mean-dist ← meanB∈Ld(G,HB);
min-dist ← minB∈L d(G,HB);

end if
return max-dist, mean-dist, min-dist.

ambiguous triples (Ua).

This information is part of the output of the conservative PC algorithm (Ramsey et al., 2006), the stable PC
algorithm with the majority rule (Colombo and Maathuis, 2014) or the Tigramite implementation of PCMCI+
with the conservative or majority contemporary collider rule (Runge, 2020).

From this input, we now generate a list of CPDAGs (HB) where B ⊂ Ua. For each CPDAG HB in this list,
we then compute the desired distance d(G,HB) and, finally, we arrive at the best-case, average and worst-case
estimate

min
B⊂Ua

dx(G,HB), mean(dx(G,HB)) max
B⊂Ua

dx(G,HB).

The details are outlined as pseudocode in Algorithm 4.

H ADDITIONAL EXPERIMENTS

In this section, we provide additional empirical experiments on separation-based distance measures.

H.1 Correlations of symmetrized distance measures

In Figure 7, we plot the correlation coefficients of the parent-SD with other distance measures for Erdös-Renyi
DAGs G(N, p) with N = 25 nodes for different values of p (500 runs per parameter). We decided to use
symmetrized versions of the included distance measures as this is a bit more similar to the SHD for a fair
comparison. Parent-SD and its MB-enhanced variant are strongly correlated for all values of p, suggesting that it
might generically be advantageous to employ the latter due to its faster runtime. All other metrics are strongly
correlated for very sparse graphs, but this correlation drops off rapidly and then increases again. Interestingly,
for 0.25 ≤ p ≤ 0.85, parent-SD and SHD even become negatively correlated. These correlations do not differ
substantially between DAGs and CPDAGs. We include a similar plot for the correlation of the ZL-SD and the
SHD on mixed graphs further below in Appendix H.2. In addition, we compute the correlation of separation
distances with the full separation metric that computes all separation statements on N = 10 nodes in Appendix
H.3. While this correlation is close to 1 for sparse DAGs, it decreases when the DAGs become more dense.
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Figure 7: Correlation coefficients of symmetrized distance measures applied to Erdös-Renyi graphs G,H ∼ G(N, p)
(left) and their associated CPDAGs (right) for increasing values of p. We ran 500 experiments per parameter.

H.2 Correlation of ZL-SD and SHD on mixed graphs

First, we repeat the experiments on the correlation of distance measures on mixed graphs. In this context, the
available comparison metrics are the ZL-SD and the SHD, so these are the only ones we consider. We generate
500 random mixed graphs by the following scheme. We first generate a causal order with a random permutation.
Then for every node pair (X,Y ) for which X < Y in the causal order, we generate an edge between them with
probability p. If an edge is drawn, we orient the edge as X → Y with probability q = 0.2, 0.7, 0.9 and as X ↔ Y
with probability 1− q. The resulting graphs are acyclic but not necessarily MAGs as they might not be ancestral
or might have almost cycles. The lack of ancestrality is unproblematic for the computation of the ZL-SD as the
separator search will simply return None for two non-adjacent nodes that cannot be separated. We did not apply
any checks for almost-cycles as this would have introduced a significant computational overhead and would not
have changed the general form of these plots.

Figure 8: Correlation of ZL-SD and SHD across 500 random mixed graphs with probability q = 0.2 (left), q = 0.7
(middle) and q = 0.9 (right) that an existing edge is directed.

H.3 Correlation of SDs and the s-metric

In this section, we present a plot on the correlation of separation distances with the full s-metric across 100 pairs
of Erdös-Renyi DAGs G,H ∼ G(N, p) on 10 nodes for different values of p. More precisely, we compare the values
of dS(G,H) to the values of ds(H,G) as these metrics are the most similar conceptually: in both cases separations
found in H are verified in G. We see that all SDs are strongly correlated with ds(H,G) for sparse graphs but the
correlation drops for more dense ones. This illustrates that the choice of only specific separators according to a
sep-strategies approximates a full comparison well on sparse graphs but the tradeoff of this selection becomes
more apparent, the denser the graphs become.

H.4 Monte-Carlo approximation of the full s/c-metric

Due to the exponential growth of the number of separation statements in the number of nodes N , computing the
full s/c-distance as a weighted average across all separation statements is very time-consuming and only feasible
for a small number of nodes. A possible way to alleviate this issue is to specify a fixed number L of separation
statements to be tested per order and to then draw these L statements randomly. In this case the normalization
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Figure 9: Correlation of SDs with the full s-metric ds(H,G).

Figure 10: Difference to the full s/c-metric when only L = 100, 200, 300, 400, 500 separation statements are drawn
randomly per order on Erdös-Renyi DAGs with N = 10 nodes and edge probability p = 0.4.

constant in the order terms of the s/c-metric has to be set to L−1. Figure 10 below shows that at least for small
graphs, for which the full s/c-distance can still be checked, this approximation yields very good results. We note
however that there is a trade-off between the quality of the approximation and the computational speed-up as
high values of L will give better approximation while low values will reduce the computational effort. Nevertheless,
even with low values of L the number of separation statements to be checked, and hence the computational cost,
is still significantly higher than for the deterministic sep-strategies.

Reproducibility The Python code used for the experiments in this work is available in the repository
https://github.com/JonasChoice/SDs_experiments.

https://github.com/JonasChoice/SDs_experiments
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