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Background: Biomarker discovery and drug response prediction are central to

personalized medicine, driving demand for predictive models that also o�er

biological insights. Biologically informed neural networks (BINNs), also referred

to as visible neural networks (VNNs), have recently emerged as a solution to

this goal. BINNs or VNNs are neural networks whose inter-layer connections

are constrained based on prior knowledge from gene ontologies and pathway

databases. These sparse models enhance interpretability by embedding prior

knowledge into their architecture, ideally reducing the space of learnable

functions to those that are biologically meaningful.

Methods: This systematic review-the first of its kind-identified 86 recent papers

implementing BINNs/VNNs. We analyzed these papers to highlight key trends in

architectural design, data sources and evaluation methodologies.

Results: Our analysis reveals a growing adoption of BINNs/VNNs. However,

this growth is apparently juxtaposed with a lack of standardized, terminology,

computational tools and benchmarks.

Conclusion: BINNs/VNNs represent a promising approach for integrating

biological knowledge into predictive models for personalized medicine.

Addressing the current deficiencies in standardization and tooling is important

for widespread adoption and further progress in the field.

KEYWORDS

multi-omics integration, deep learning, explainable AI, machine learning, interpretable

models, gene regulatory networks, pathways, neural networks

1 Introduction

High-throughput technologies have transformed biological research, enabling the

collection of large-scale data from different molecular layers and leading to the emergence

of multi-omics, an approach that combines information from diverse sources, such as

genomics, transcriptomics, proteomics, andmetabolomics (Sun andHu, 2016). This allows

researchers to analyse complex interactions and regulatory mechanisms that drive cellular

function, disease progression and response to therapeutic interventions, with the potential

to identify novel biomarkers and better understand how genetic and environmental factors

influence disease (Subramanian et al., 2020).

However, multi-omics analysis is fraught with challenges due to high dimensional,

heterogeneous data, requiring methods capable of modeling non-linear relationships
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across multiple processes. Modern machine learning (ML)

techniques, such as deep learning, offer superior predictive

capabilities at the expense of interpretability. In this context, even

explainable AI (XAI) metrics may lack clear or robust biological

interpretations (Hancox-Li, 2020; Slack et al., 2021; Wei et al.,

2024).

To meet this demand, visible neural networks (VNNs), also

known as biologically-informed neural networks (BINNs), have

gained prominence (Selby et al., 2025). Unlike conventional neural

networks (NNs), which learn relatively unconstrained functional

approximations, VNNs incorporate prior knowledge directly into

their architecture: previously “hidden” nodes map directly to

entities such as genes or pathways, with inter-layer connections

constrained by their ontology (see Figure 1).

VNNs have the potential to enhance biomarker discovery

and drug development by learning relationships between genes,

pathways, drugs and disease phenotypes. Various VNN models

have been proposed, but standard terminology and clear design

practices—fostering scientific reproducibility, robustness and

generalizability—do not yet exist.

Several existing survey papers offer a high-level overview of

interpretable deep learning in omics, but without focussing on

detailed comparisons of biologically-informed architectures. This

review focusses specifically on VNNs, filling an important gap in

the literature. We examine design considerations in constructing

different VNN architectures and applying them to different tasks

and data sources.

Our contributions are as follows: a taxonomy of BINN

architectures, a critical appraisal of the dependencies, assumptions,

data sources and tools involved in building BINNs/VNNs; and

identification of several research gaps and future work.We consider

three underlying research questions:

1. What advantages do BINNs offer over traditional ML models,

and how is their relative performance typically benchmarked?

2. Are biological interpretations from VNNs robust to

architectural design decisions and reproducible across studies?

3. Can VNNs uncover new scientific knowledge?

2 Background

A living cell is a complex system of interacting molecules,

where metabolites and energy are used to form biomass. The cell’s

regulation is guided by the central dogma of biology: DNA encodes

RNA, which, in turn, encodes proteins (Crick, 1970). RNA and

proteins both play roles in metabolism, structure, replication, and

other cellular processes, interacting with each other and with DNA.

These interactions can regulate cellular functions, for example as

recruiting transcription factors or opening chromatin in eukaryotes

(Kadonaga, 1998). Gene interactions have been extensively studied,

expanding our understanding of cellular interaction networks, or

pathways (Yeger-Lotem et al., 2004). Pathways connect entities

such as genes, proteins and metabolites with other tissue

components, reflecting cellular functions from simple growth to

complex immune response. Databases describing such molecular

interactions are publicly available (see Section 5) representing

decades of biomedical research into causal relationships.

Multi-omics analysis uses data from heterogeneous sources

to describe biological processes (Hasin et al., 2017; Subramanian

et al., 2020). Modeling such sensitive and expensively collected

data necessitates modern statistical methods that exploit

existing domain knowledge to solve the “small data” problem

(Rahnenführer et al., 2023). Biomarker discovery in single-omics

data often relies on regularized linear models fit to a target of

interest. Biomarkers are derived from signals of significant features,

with enrichment analysis providing insights into their biological

functions, or the features with largest coefficients identified as

targets for validation in the laboratory (Ng et al., 2023).

Explainable AI (XAI) is a growing field of research that

aims to produce methods to explain the reasoning behind ML

models’ predictions. Ante-hoc explainability refers to models that

are intrinsically interpretable, whilst post-hoc methods are a way

of gaining insights about “black box” model predictions in terms

of their inputs (Retzlaff et al., 2024). Statistical models (or “data

models”; Breiman, 2001), such as generalized linear models,

are preferred when the main goal is inference: understanding

relationships between variables that describe a natural process. On

the other hand, when accurate prediction is a priority, especially

when datasets are large and high-dimensional, black-box models

(“algorithmic modelling”), are preferred, and capable of learning

signals from data with intrinsic structure, such as images and

sequences. However, larger samples and computational resources

are necessary for such methods to outperform simpler models on

tabular data (Grinsztajn et al., 2022).

To simplify the learning process, the search space can be

constrained through provision of additional information from

prior domain knowledge. Many taxonomies exist for these methods

(Van Harmelen and Ten Teije, 2019; Karniadakis et al., 2021; Dash

et al., 2022). Data augmentation involves generating additional data

through preprocessing, e.g. varying contrast of an input image.

Similarly, Yang et al. (2019) consider metabolite perturbations as

input, but enrich this data through simulation. Another method

involves crafting specialized loss functions for specific domains.

For instance, Jia et al. (2019) uses a loss based on physical

laws of energy distribution. Most relevant for this review is

constraining the computational graph, creating an inductive bias

in the neural network. Convolutional layers, for example, consider

the dependence of neighboring pixels in an image, while neural

ordinary differential equations (Chen R. T. et al., 2018) account for

the structure of physical processes. VNNs also fall into this category

and a taxonomy is given in Section 5.

Knowledge graphs (KGs) (Hogan et al., 2021) can integrate data

from various sources, including scientific literature. Increasingly

used in bioinformatics to encode and retrieve complex knowledge,

KGs describe entities—including genes, proteins, pathways,

diseases, and functional annotations—across multiple levels of

organization (Yi et al., 2022). They are often built upon

pathway databases, such as Reactome (Croft et al., 2011), Gene

Ontology (The Gene Ontology Consortium et al., 2023), or

KEGG (Kanehisa, 2000), that provide curated ontologies focussing

on cellular processes, metabolism, interactions or signaling. These

databases or networks can themselves be seen as “simple” KGs

with restricted set of entities and relations. Biological KGs

combined with network analysis methods offer the potential to

discover or explain new relationships between drugs, genotypes and
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FIGURE 1

Machine learning approaches to multi-omics integration. (a) Feedforward neural network. (b) Autoencoder. (c) Patient similarity network. (d)

Biologically-informed, visible neural network.

phenotypes (Chandak et al., 2023) and their embeddings have been

employed in biomarker discovery (Galluzzo, 2022), multi-omics

integration (Xiao et al., 2023) and drug-target discovery (Zahra

et al., 2023); for example, GLUE is a KG-based architecture that

integrates omics features based on regulatory interactions (Cao and

Gao, 2022).

Constructing a NN based on such databases is a form of

knowledge-intensive ML. Integrating the most general KGs may

result in very large NNs that fail to learn relevant patterns.

Prior knowledge integration is a universality–generalizability

tradeoff: compared to a dense neural network, a VNN’s function

space is reduced, losing universality but generalizing better

to the real-world context of the specific biological systems

of interest (Miao, 2024). In most cases, this is achieved by

leveraging pathway databases such as Gene Ontology, KEGG

or Reactome to inform the design of hidden layers in the

network, ensuring that (some or all of) the model’s internal

representations align with known entities and relationships. VNNs

aim to emulate signaling processes, enhancing interpretability

and biological relevance, thereby accurately modeling complex

systems and facilitating discovery of novel insights. As Hanczar

et al. (2020) observe, this approach aims to bridge the gap

between data-driven ML models and mechanistic understanding,

making it particularly valuable in fields like genomics and

systems biology, where omics data lack the structure of imaging

or text data commonly exploited by popular deep learning

frameworks.

2.1 What’s in a name?

“Visible neural network” (VNN) is one of myriad terms

to describe a NN model whose hidden layers and connections

are constrained by a pre-specified ontology; terminology is far

from standardized, making literature search difficult. “Visible”

emphasizes interpretability without restricting to biological

applications: similarly, knowledge-primed (Fortelny and Bock,

2020), knowledge-guided (Lee and Kim, 2022; Hao et al., 2022)

or knowledge-based neural networks (Ciallella et al., 2021), or

ontology-based autoencoders (Doncevic and Herrmann, 2023;

Joas et al., 2024) allow for hierarchical structures beyond biology.

Hartman et al. (2023); Elmarakeby et al. (2021); Voigt et al.

(2024) prefer “biologically informed neural networks” (BINNs),

but this term is also used more generally (Wysocka et al., 2023) to

describe NNs with ante-hoc, ad-hoc, or post-hoc interpretability.

“BINNs” can also refer to biologically-informed neural-symbolic

methods (Lagergren et al., 2020; Przedborski et al., 2021; Rodríguez

et al., 2023), or biologically-inspired NNs found in connectomics

(Klinger et al., 2021) or neuromorphic computing (Yamazaki

et al., 2022). Here, “visibility” refers to the direct incorporation of
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biological pathway structures into the neural network architecture,

offering intrinsic interpretability, such that VNNs sit within the

broader category of BINNs.

3 Related work

VNNs are a growing sub-field at the intersection of deep

learning-based multi-omics integration, interpretable ML methods

for biology, and XAI more generally. Across these areas, various

survey papers have been published that mention the concept of

VNNs and BINNs, however, most do not discuss this area in detail.

An overview of these review articles, including their scope and

limitations, is given in Table 1.

We consider three categories of reviews: narrative reviews,

systematic reviews and quantitative benchmarks.

3.1 Narrative reviews

Gazestani and Lewis (2019) presented an early review

of methods of ontology integration, including methods with

TABLE 1 Existing review papers on explainable deep learning for multi-omics.

References Papers Scope VNNs? Shortcomings

Gazestani and Lewis

(2019)

43 Narrative. Discusses the integration of multi-omics data with

network data such as genetic interactions or co-expression data.

Highlights GNNs and VNNs (namely DCell).

X Older paper so does not cover recent

developments beyond DCell.

Crawford and Greene

(2020)

62 Narrative.How to improve ML models in biomedicine by

incorporating prior knowledge, including sequence context, gene

sets and pathways, interaction or co-expression networks, ontologies

and phylogenetic trees.

X VNNs are mentioned but specific

advantages, disadvantages and

opportunities are not explored in detail.

Lee and Kim (2022) 68 Narrative. Use of DL models to understand interactions between

different molecules using prior knowledge. Divides models into

weakly and strongly guided, the latter including VNNs, which

incorporate Gene Ontology into their architecture.

X Lacks discussion on other architectural

designs, data types and interpretation

methods relevant to VNNs.

Leng et al. (2022) 71 Benchmark. Benchmark of DL models for multi-omics data fusion in

cancer. Compares 6 neural networks (including 2 CNNs and 2

GNNs), 4 autoencoders and 6 VAEs on simulated and real (TCGA)

cancer datasets for ML tasks.

- Biologically-informed methods are

mentioned in discussion but not

included in benchmark.

Samal et al. (2022) 95 Narrative. Review of recent interpretable deep learning methods for

drug sensitivity prediction, exploring various probing strategies.

X Lack of discussion on model robustness

and reliability of interpretations.

Dhillon et al. (2023) 98 Systematic. Examines use of a broad range of traditional and deep

learning-based ML methods with various omics types to identify

biomarkers for cancer. Emphasizes importance of multi-omics

integration and highlights increasing use of DL.

X Limited coverage of interpretability, no

explicit focus on VNNs or methods

integrating prior knowledge; prominent

VNNmethods not cited.

Hauptmann and Kramer

(2023)

28 Benchmark. Benchmark of DL models for multimodal fusion in drug

response prediction from multi-omics. Compares 6 existing methods

and proposes a new method called Omics Stacking.

- Prior knowledge integration not

mentioned.

Novakovsky et al. (2023) 95 Narrative. Application of XAI techniques to DL models in genomics.

Primarily focusses on post-hoc interpretation methods.

X Does not focus specifically on VNNs.

Wysocka et al. (2023) 42 Systematic. DL models for multi-omics integration in cancer

research. Focus on bio-centric interpretability and integration of

domain knowledge at preprocessing, architectural design and

posthoc comparison stage. Identifies trends in GNNs and VNNs.

X Limited coverage of VNNs, without

explicit definition or discussion of

variations.

Abbasi et al. (2024) 74 Systematic. Trends in data modalities, feature engineering and AI

models for survival prediction from omics data.

- No biologically-informed methods

mentioned.

Chen et al. (2024) 78 Narrative. Perspective on opportunities and challenges for

interpretable ML methods in computational biology, discussing

various IML methods and their evaluation. Briefly mentions

biologically-informed neural networks like DCell and P-Net as

examples of IML architectures incorporating domain knowledge.

X Provides a general overview of IML

including examples of VNNs but does

not go into detail about their specific

architectures.

Sidorova and Lozano

(2024)

34 Narrative. Compares deep learning methods for survival analysis

with traditional models.

X Only one biologically-informed model

mentioned.

Wagle et al. (2024) 28 Narrative. Overview of DL methods for single-cell omics analysis.

Comprehensive discussion of interpretability with focus on gene

regulation.

X Lack of explicit VNN definition or

discussion of VNN-specific

architectures.

van Hilten et al. (2024a) 123 Systematic. Considerations and challenges when designing

interpretable deep learning models for genomics, including

characteristics of data, model architecture and interpretation

strategy.

X Limited depth on VNNs, no direct

comparison with other methods.
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hierarchical layers defined by gene ontology (i.e., VNNs), as

well as network propagation models, a special case of GNNs.

Crawford and Greene (2020) reviewed approaches for embedding

biological structures into machine learning models, including

sequence encodings, network embeddings and models constrained

by ontological structures. Our review specifically narrows down

to VNNs that use pathways and ontologies for structured

input integration. Other relevant works include Novakovsky

et al. (2023) on explainable AI in genetics, and Lee and Kim

(2022), which distinguishes between “weak” (e.g., data-driven

GNNs) and “strong” biological guidance (e.g., structured VNNs).

Wagle et al. (2024) provided a review of interpretable deep

learning models specifically for single-cell omics, highlighting

the importance of model transparency in this context. Chen

et al. (2024) provided a broad perspective on interpretable ML

in computational biology. They mention biologically informed

methods and categorize them, together with attention based

algorithms, as “by-design” methods, which they see as naturally

interpretable. Samal et al. (2022) reviewed interpretable deep

learning models for drug sensitivity prediction, exploring various

“probing” strategies for examining how input data is processed

within the network, including some biologically-informed

approaches. Sidorova and Lozano (2024) asked whether deep

learning methods for survival analysis outperformed traditional

models, mentioning biologically-informed architectures (Hao

et al., 2018b; Hou et al., 2023, Cox-PASNet, PathExpSurv). A

brief and accessible high-level overview of BINNs is also given

in Selby et al. (2025).

3.2 Systematic reviews

Wysocka et al. (2023) conducted a systematic review of

BINNs. They derived a taxonomy of pre-processing, in-processing

and post-hoc biological interpretability. Their review spans 42

publications up to 2022, sourced from PubMed and the Web of

Science. Focussing on oncology, it covers a range of interpretability

methods, including GNNs and post-hoc explainability measures

for conventional deep learning models. About 10 models whose

architecture is “explicitly defined” by domain knowledge are

included. However, the relativemerits of these architectures or their

underlying assumptions are not critically evaluated. Dhillon et al.

(2023) offered a more general systematic review of ML methods for

multi-omics-based biomarker identification—again focussing on

cancer—without a specific focus on biologically-informed models

like VNNs. Abbasi et al. (2024) reviewed a large number of methods

for survival analysis inmulti-omics, using deep learning, traditional

ML and statistical methods, but not any methods for knowledge

integration. A recent systematic review paper by van Hilten

et al. (2024a) includes 24 VNN papers, representing probably the

most complete survey to date. They compare the popularity of

VNNs with other methods, noting the sparsity of VNNs allows

handling a greater number of input features than computationally

intensive transformer models, though conventional NNs remain

the most popular approach. However, the review does not

distinguish different VNN architectures or discuss specific

design decisions.

3.3 Benchmarks

Leng et al. (2022) performed a benchmark of deep learning

models for multi-omics data fusion in cancer, comparing 6

NNs (including two CNNs and two GNNs), four autoencoders

and six variational autoencoders on simulated and real cancer

datasets for supervised and unsupervised learning tasks. However,

their analysis did not cover any NNs with biologically-informed

architectures. Similarly, Hauptmann and Kramer (2023) evaluated

various deep learning-based multi-modal fusion approaches in

drug response prediction and proposed a new method called

Omics Stacking, but did not explore any VNNs. Other works

extending specific methods include benchmarks of one or more

VNN approaches (e.g., Esser-Skala and Fortelny, 2023): we discuss

these in Section 5.

3.4 The gap we fill

In summary, most existing reviews either focus broadly on

multi-omics ML approaches or are limited to specific contexts

such as cancer or general interpretability methods. Our systematic

review addresses this gap by focussing specifically on visible neural

network architectures. We aim to provide a more detailed analysis

of technical implementations, discussing the topic of robustness

and reproducibility, covering the latest works in this area. Up-

to-date coverage includes recent papers from 2024, focussing

on applications beyond oncology and with an examination of

ways in which VNNs have been both designed, implemented and

evaluated, summarizing comparisons with traditional models and

with each other.

4 Methods

Our aim was to compare architectural design considerations

in BINN-like models and identify key contributions in the field.

Thus we sought papers—for which the full text was available, to

understand the model structure—using NN models informed by

biological ontologies, applied to tabular (multi-)omics datasets.

The systematic review was conducted following the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA; Page et al., 2021) guidelines to ensure transparency and

rigor. The PRISMA flow diagram (Figure 2) outlines the process of

study identification, screening, eligibility assessment and inclusion.

4.1 Search strategy

We conducted a comprehensive search using PubMed to

identify relevant papers. Unlike Wysocka et al. (2023) we chose

not to restrict our search to works in oncology, instead focussing

on biologically informed models in any application with the query

multi-omics AND (deep learning OR computer

science OR neural networks OR network analysis

OR machine learning) AND (biologically

informed), filtered to works published in the period 2018–2024:

spanning from the earliest known BINN papers to the most recent

publications at the time of retrieval.
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FIGURE 2

PRISMA diagram summarizing article selection.

However, non-standard terminology in this subfield means this

query alone may not capture all relevant papers. For example,

Ma et al. (2018) was one of the first papers to use the term

“visible neural network,” but “multi-omics” or “omic” does not

appear anywhere in the article, nor do phrases like “biologically

informed” or “pathway.” Other relevant works may be published

in conferences or periodicals not indexed by PubMed. Rather than

contorting our search query to detect these (admittedly significant)

edge cases, we opted to augment our main query with a Google

Scholar search for “visible neural networks” as well as adding

selected papers manually, including 47 works already included in

existing reviews.

Periodically, our database of results has been updated by adding

new articles reported as citing key review papers, according to

Google Scholar. In this way we were able to include several very

recently published works, e.g., Meirer et al. (2024); Liu P. et al.

(2024).

4.2 Screening

After removing duplicates, a total of 678 unique records

were screened by title and abstract using inclusion and exclusion

criteria as defined above. The screening was performed by

three reviewers—with backgrounds in statistics, computer science

and bioinformatics—working independently. Disagreements were

resolved by majority vote, following a discussion drawing on each

reviewer’s respective expertise.
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4.3 Eligibility

Full-text versions of 262 articles were assessed for eligibility

against the predefined criteria, which included methodological

journal or conference papers proposing neural network approaches

to model omics data that integrate prior biological knowledge into

their network architecture. Studies were excluded at this stage

if they did not involve NNs, if they were fully connected, non-

biologically informed structures, or if biological interpretations

only took the form of post-hoc gene-set enrichment analysis

(GSEA). We focussed our attention on sparsely-connected

feedforward neural networks (FFNNs) and autoencoders, while

convolutional, attention or graph-based models were generally

excluded, as were those designed solely for genomic/proteomic

sequences or imaging data.

4.4 Inclusion

86 papers met the eligibility criteria and were included in the

final analysis. These studies represent a variety of papers proposing

or evaluating biologically-informed neural network architectures,

as well as several relevant survey papers (see Section 3). We also

highlight 7 “honorable mentions:” papers that do not strictly meet

the inclusion criteria but are interesting examples of alternative

approaches.

4.5 Reporting

The full list of included papers is given in Appendix Table A1.

The PRISMA checklist is provided in the Supplementary materials.

4.6 Bibliometrics

Citation counts and relationships were retrieved from the

CrossRef API using the R package rcrossref (Chamberlain et al.,

2022) to construct a citation network between the papers (see

Figure 3). We verified the existence of individual works in PubMed

using the NCBI eUtils API (Winter, 2017).
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Bibliometric network of VNN papers, scaled by number of citations and shaded by year of publication.
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5 Results

5.1 Overview

Our review examines the key advancements in visual

neural networks (VNNs), focussing on taxonomy, architectural

innovations, methods for evaluation and practical applications.

The review identified major developments across diverse

architectures—feed-forward neural networks, autoencoders and

graph neural networks—evaluated on a variety of omics datasets

and knowledgebases. A critical theme is the tradeoff between

sparsity for interpretability and the robustness of explanations

in complex biological datasets. We also explore how specific

design decisions, such as data integration strategies and pathway

representations, influence model performance.

We consider “strong” biological guidance (Lee and Kim, 2022)

where models are constrained by prior knowledge, specifically

the “in-processing” paradigm (Wysocka et al., 2023) where such

information informs the model’s internal architecture. By contrast,

wrangling data into a graph structure and applying non-dedicated

ML algorithms (such as GNNs) constitutes biologically-informed

“data pre-processing” (Wysocka et al., 2023) and is not our focus

here; similarly we do not dwell on post-hoc model explanations

or enrichment analyses for non-biologically-informed models (e.g.

Hanczar et al., 2020).

Post-2020, VNN research has grown significantly, with key

works like DCell (Ma et al., 2018), DrugCell (Kuenzi et al., 2020),

and P-Net (Elmarakeby et al., 2021) central to the citation network

(Figure 3). P-Net has been reproduced by Pedersen et al. (2023)

and built upon by Hao et al. (2018a); Hu et al. (2022); Hartman

et al. (2023), applying the framework to other modalities and

targets. Similarly, MOViDA (Ferraro et al., 2023) builds upon

DrugCell, itself an extension of DCell. Approximately half of recent

studies are uncited by prior reviews (see Figure 2), indicating

untapped contributions. A full list of retrieved works and associated

abbreviations is given in Appendix Table A1.

5.2 Taxonomy of architectures

Table 2 divides works according to their broad architecture:

feed-forward neural networks (Figure 1d) and autoencoders

(Figure 1b) constitute the majority of VNNs, but there also exist

some GNNs and CNNs with apparent pathway-aware properties,

and other notable approaches.

A VNN is a neural network model with at least one layer of

structural sparsity based on connections not directly observable

in the main data. Hence, patient similarity networks (Pai and

Bader, 2018, Figure 1c) are not VNNs, because their inter-node

connections are derived from the data.

Figure 4 gives a prototypical illustration, with various features

of VNN models, described in detail later in this section and

tabulated in Table 3. From left to right [input(s) to output] the

model’s abstraction becomes progressively more complex as later

levels in the neural network correspond to higher tiers in the

pathway hierarchy. Such a model can be constructed from a

FFNN, with numbers of hidden layers and nodes within each

layer corresponding to the desired gene and pathway levels.

TABLE 2 Architectures used in included papers (numbers of papers in

parentheses).

Architecture Single omics Multi-omics

FFNN BINN, CellTICS,

Cox-PASNet, DCell, Deep

GONet, DeepBINN,

DrugCell, DrugCell+fusion,

DTox, GeneticNN, GenNet,

GenNet-Interpret, GONN,

KPNNs, MPVNN,

PAGE-Net, ParsVNN,

PASNet, PathDeep,

pathDNN, PathExpSurv,

PiDeeL, PINNet,

SigPrimedNet, White-Box,

XAI-AGE, XMR (27)

BiGMLVQ, BioM2,

BioVNN, BioXNet,

Cancer-Net,

consDeepSignaling,

DeepGAMI, DeepHisCoM,

DeepKEGG, DeepOmix,

DeepSignalingSynergy,

DeepSigSurvNet,

DrugVNN, GCS-Net,

KP-Net, ME+GE, MiNet,

MOViDA, MULGONET,

Multitask-VNN,

NeST-VNN, P-Net, P-Net

Robustness, Varmole,

VNNSurv (25)

Autoencoder ACSNI, expiMap, GONN,

GSAE, OntoVAE, PAAE,

pmVAE, priorVAE, VEGA

(9)

PathME (1)

GNN GraphGONet, IRnet (2) DrugVNN, GSNNs,

Multilevel-GNN (3)

CNN PBAC, ReGeNNe (2) PathCNN (1)

Factor Graph FGNN (1) MPAC (1)

Initially densely connected, a masking matrix removes inter-layer

connections that do not correspond to known biological relations.

• Feed-forward networks A “standard” NN for supervised

learning, FFNNs may be applied to classification, regression

or survival analysis tasks. Feed-forward VNNs may have deep

structures with multiple layers of nested pathways, such as

DCell (Ma et al., 2018) and P-Net (Elmarakeby et al., 2021);

however the simplest networks, e.g., Cox-PASNet (Hao et al.,

2018b) include just one pathway layer.

• Autoencoders Autoencoders are a class of deep learning

models for unsupervised learning and consist of three

components: an encoder, a latent space and a decoder (see

Figure 1b). Input features are encoded through one or more

hidden layers into a “bottleneck” layer representing a low-

dimensional latent space; a decoder, typically mirroring the

architecture of the encoder, then reconstructs the input

features from this space. Some of the earliest BINNs are

autoencoders, e.g., GSAE (Chen H.-I. H. et al., 2018).

A typically used extension of this idea are variational

autoencoders (VAE) which are probabilistic and generative

models learning a multivariate distribution (e.g., Gaussian)

as latent space, enabling latent space disentanglement and

compactness. Examples include VEGA (Seninge et al., 2021)

and ExpiMap (Lotfollahi et al., 2023); other models come in

both AE and VAE variants, e.g., PAAE/PAVAE (Avelar et al.,

2023), or FFNN and AE variants, e.g. GONN/GOAE (Peng

et al., 2019). Liu B. et al. (2024) proposed “pathway-informed

priors” where knowledge is integrated into the VAE loss term.

• Convolutional neural networks CNNs have been widely

adopted in the analysis of structured datasets like images and

sequences. Applying CNNs to multi-omics data is possible
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FIGURE 4

General hierarchical structure of a visible neural network, featuring multi-omics integration, a hierarchy of genes, multi-level pathways or biological

processes (green, yellow, and blue, respectively), a ragged structure with skip connections and layers containing fully connected “residual” nodes.

Data not mappable to pathways can be included via intermediate or late fusion.

by combining with other data modalities such as sequences

(DeepGo; Kulmanov et al., 2018) or by synthesizing “pathway

images” from tabular data (PathCNN; Oh et al., 2021).

• Graph neural networks GNNs can directly leverage the

topological structure of biological data, making them

particularly well suited for tasks where the relationships

between entities need to be explored. For example,

GraphGONet (Bourgeais et al., 2022) uses the structure

of the Gene Ontology graph directly; Yan et al. (2024)

used a GNN to embed genes, followed by a “pathway

aggregation block” resembling a FFNN, to obtain pathway-

level features. As GNNs operate primarily through learned

graph representations, they do not inherently enforce

predefined biological hierarchies, which can make them less

suitable for applications where pathway-level interpretability

and strict adherence to known biological relationships

are necessary.

Some authors adopt hybrid approaches, for example:

ReGeNNe (Sharma and Xu, 2023) combines GNN and CNN

layers; GraphGONet (Bourgeais et al., 2022) claims to offer

advantages of an FFNN and a GNN; DeepKEGG (Lan et al.,

2024) introduces a “pathway self-attention module.” Biologically

informed generalized matrix learning vector quantization

(BiGMLVQ; Voigt et al., 2024) bills itself as a non-deep-learning

approach but is nevertheless NN based. BioM2 (Zhang et al.,

2024) performs pathway-level feature selection, concatenating

features with filtered inputs unmapped to pathways. While

this approach can be performed in a deep learning pipeline,

the authors note it could also be performed using multi-stage

logistic regression or other machine learning methods. In

a more network focused approach, Kim et al. (2018, 2019)

employ a random walk algorithm across an integrated pathway

network based on the Kyoto Encyclopædia of Genes and

Genomes (KEGG) pathways to derive pathway-level scores for

downstream tasks such as survival prediction. However, this

approach does not directly incorporate a biologically informed

neural network structure. Uzunangelov et al. (2021) present

AKLIMATE, an example of a stacked kernel learner incorporating

pathway knowledge.

5.3 Data and applications

Figure 5 shows gene expression (transcriptomics/mRNA) is

the dominant omics modality, featuring in more than half

of papers, followed by copy number variations (CNV); DNA

mutations, including single nucleotide polymorphisms (SNPs),

were also a common data type. As shown in Table 2, 31 models

integrated multi-omics data, with some models such as P-Net

(Elmarakeby et al., 2021) ostensibly applicable to any number

and combination of omics levels (in the paper itself they used

just two).

A limited number of models—especially for survival analysis—

integrated omics or multi-omics data with “non-omics” inputs not

mappable to pathways: Cox-PASNet (Hao et al., 2018b) and MiNet

(Hao et al., 2019), combine gene expression, DNAmethylation and

copy number variations with clinical data, such as patient age, via

late fusion. DrugCell (Kuenzi et al., 2020; Greene and Costello,

2020) extended DCell (Ma et al., 2018) by integratingmutation data

with embeddings of the chemical structure of different drugs, also

via late fusion; however later analysis by Nguyen et al. (2024) found

mid- or early fusion models performed better. Other examples

of such drug–genotype modular networks include BioXNet (Yang

et al., 2024), MOViDA (Ferraro et al., 2023) and XMR (Wang et al.,

2023).
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TABLE 3 Architectural features in included papers.

Feature Value n Examples

Pathway

Depth

Deep 29 BINN, BioXNet, Cancer-Net, CellTICS,

Deep GONet, DrugCell,

DrugCell+fusion, DTox, FGNN,

GCS-Net, GeneticNN, GenNet,

GenNet-Interpret, GSNNs, IRnet,

k-DNN, KP-Net, KPNNs, ME+GE,

MOViDA, Multitask-VNN, NeST-VNN,

OntoVAE, P-Net, P-Net Robustness,

ParsVNN, VNNSurv, XAI-AGE, XMR

Shallow 40 ACSNI, BiGMLVQ, BioM2, BioVNN,

consDeepSignaling, Cox-PASNet,

DCell, DeepBINN, DeepGAMI,

DeepHisCoM, DeepKEGG, DeepOmix,

DeepSignalingSynergy,

DeepSigSurvNet, DrugVNN, expiMap,

GONN, GraphGONet, GSAE, MiNet,

MPVNN, Multilevel-GNN, PAAE,

PAGE-Net, PASNet, PathCNN,

PathDeep, pathDNN, PathExpSurv,

PathME, PBAC, PiDeeL, PINNet,

pmVAE, priorVAE, ReGeNNe,

SigPrimedNet, Varmole, VEGA,

White-Box

NA 1 MPAC

Hidden Layers X 35 BiGMLVQ, consDeepSignaling,

Cox-PASNet, DeepBINN, DeepGAMI,

DeepHisCoM, DeepOmix,

DeepSignalingSynergy,

DeepSigSurvNet, DrugCell+fusion,

expiMap, GCS-Net, GONN, GSAE,

GSNNs, IRnet, MiNet, MOViDA,

Multilevel-GNN, OntoVAE, PAAE,

PAGE-Net, PASNet, PathCNN,

PathDeep, pathDNN, PBAC, PiDeeL,

PINNet, pmVAE, priorVAE,

SigPrimedNet, Varmole, VEGA,

VNNSurv

Mixed Layers X 4 BioM2, expiMap, PAGE-Net, PINNet

“Deep” means the network contains multiple biologically-informed pathway layers; “hidden”

layers are made up of fully-connected nodes; “mixed” layers contain both biologically-sparse

and fully-connected nodes; NA, not applicable.

As shown in Appendix Table A2, oncology is a major

application area for VNNs, with 46 papers; 13 were concerned

with drug response (e.g., consDeepSignaling; Zhang et al., 2021);

4 with cellular processes; 3 with schizophrenia and 3 with COVID-

19. While this shows cancer research is significant, VNNs are not

limited to this disease.

Many authors used data from common sources, with omics

data from the Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) particularly popular; see Figure 6. Some authors

used their own collected data or else did not clearly specify an

existing database as their source. Use of common data sources

may make replication of results more straightforward (nearly

every paper provided analysis code: Appendix Table A4) but may

also raise questions about their real-world generalizability, given

sampling biases present in these cohorts. (KEGG) and Reactome

were equally commonly chosen as sources of biological ontology

information, followed by Gene Ontology and MSigDB. All are

publicly accessible databases. Kim and Lee (2023) highlighted
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FIGURE 5

Input data types in published VNN models.

differences in performance for the downstream task depending on

the ontology used.

5.4 Evaluating biologically informed
architectures

Assessing the usability of VNNs requires comprehensive

evaluation of predictive performance, interpretations, and

robustness against appropriate baselines. Of included papers,

56 compared with traditional (non-NN) models and 54

compared with non-biologically-informed NNs, with just 22

comparing their proposed models with other BINN variants,

meaning most VNNs are evaluated in isolation to other

biologically-informed models.

5.4.1 VNNs perform similarly to denser models
Fortelny and Bock (2020) posited that BINNs operate as

“information processing units” using network-based computations

to regulate their states. Thus, by mirroring cellular regulatory

systems, VNNs provide a deeper understanding of these

mechanisms, and can offer similar prediction performance to

“black box” fully-connected networks while being significantly

more sparse. However, redundancy in the structure of VNNs

leads to variability in edge weights, making explanations less

robust—a problem that may be mitigated via dropout on hidden

nodes during training. Similarly, Huang et al. (2021) argued that

redundancy among nodes and edges can lead to overfitting and

less robust explanations; they proposed a pruning mechanism

to mitigate the issue, resulting in model simpler than DrugCell

while offering superior accuracy: their ParsVNN model reduced

computation time and memory footprint and number of included

genes by up to 90%, with statistically significant increases in

predictive performance across five datasets.

Kuenzi et al. (2020) compared their VNN to a “black-box”

neural network with equivalent depth and sparsity, finding broadly
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Sources of omics data and pathway knowledge in biologically-informed models.

similar performance and superior accuracy to a non-deep-learning

model. In contrast, Pedersen et al. (2023) compared P-Net with a

randomly-connected network. They observed a clear decrease in

performance for the random connections in comparison to the

BINN. Lin et al. (2017) also found biologically-sparse networks

outperformed fully-connected models. However a fully-connected

network with random masked nodes is not necessarily optimal for

multi-omics if it assumes early fusion (Hauptmann and Kramer,

2023); VNNs have been shown sensitive to fusion stage (Nguyen

et al., 2024), so but early-integrated baselines could be “strawmen.”

5.4.2 Performance is sensitive to architecture
Several studies have compared different biologically informed

architectures on the same data to assess their relative benefits.

For instance, PINNet (Kim and Lee, 2023) was compared against

traditional ML models and dense NNs. They also compared two

types of VNNs, informed by GO and KEGG respectively, which

outperformed the non-biologically-informed models. Meanwhile,

PBAC (Deng et al., 2024) conducted an ablation study on its

architecture, revealing that removing the biological information

mask and the attention layer, respectively, reduced the performance

of drug response prediction. However, they did not benchmark

their architecture against other models.

5.4.3 Robustness of interpretations
Since VNNs rely on the same biological knowledge as

commonly used gene- or pathway-enrichment analysis

frameworks, they inherit similar problems, such as balancing

between specific pathways with few genes and broad pathways

with many genes. Additionally, VNNs can be prone to overfitting

and instability resulting from small sample sizes, leading to

significant changes with different train-test splits or initializations

(Esser-Skala and Fortelny, 2023). Common strategies for the

training of VNNs are the introduction of dropout layers to

stabilize training, in particular when overlapping ontology terms

are used. Further, weights can be restricted e.g. by weight decay

configuration or by restricting the direction (positive weight) to fix

direction. Additionally, Esser-Skala and Fortelny (2023) assessed

the robustness of interpretations in several models, including

DTox and P-Net (Hao et al., 2022; Elmarakeby et al., 2021).

Meirer et al. (2024) raised the question of robustness of

biomarker signatures found by BINNs. Their solution, DeepBINN,

fits a sub-network per pathway—each a NN with a fixed number

of hidden layers—whose output weight measures that pathway’s

importance. By comparing the ranks of pathways over successive

initializations, the authors claim to yield a “robust” signature.

5.5 Architectural design

Even within the taxonomies listed in Table 2, VNN

architectures differ considerably, based on different design

considerations highlighted in Figure 4.

5.5.1 Pathway nodes
Some VNN architectures have multiple hidden nodes per gene

or pathway, representing their ability to perform multiple tasks

concurrently. For example, DCell (Ma et al., 2018) and derivatives

(Kuenzi et al., 2020; Ferraro et al., 2023, DrugCell, MOViDA;) have

6 nodes per pathway; OntoVAE (Doncevic and Herrmann, 2023)

has 3. However, most other architectures map each entity to at most

one node in the network, simplifying the representation—and its

interpretation—at the possible expense of predictive power.

Perhaps the most crucial design choice is the selection of the

source and type of biological knowledge to be incorporated in

a VNN. However, surprisingly little efforts have been made in

the field to analyse and study the impact on choosing Reactome

pathways, KEGG, GO-terms, or other sources. Since these sources

all have their strength and weaknesses in relation to coverage

(number of genes represented), overlap between terms or curation

quality, a big impact on VNNs and their architectural choices

is expected. For example for VAEs authors state that overlap of

genes across pathways is countered by dropout layers (Seninge
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et al., 2021), similarly reported in feed/forward VNNs by Fortelny

and Bock (2020). ParsVNN (Huang et al., 2021) approaches the

problem of redundant subsystems in VNN models by a pruning

mechanism.

Lastly, the chosen database or ontology, as well as the level

of hierarchy, ideally matches the purpose of the model e.g., using

KEGG metabolic networks for insights into cancer cell metabolism

or Reactome immune pathways for studying infections. Currently,

most studies using VNNs are explorative and typically do not

restrict incorporated biological knowledge in a purpose-driven

way. However, PathExpSurv (Hou et al., 2023) uses a “pathway

expansion” phase to adaptively adjust pathway-gene connections,

potentially enhancing interpretability. Also expanding on the idea

of including pathway information, MPVNN (Ghosh Roy et al.,

2022) is uses mutation assays to build multiple (mutated) versions

of a given pathway.

5.5.2 Auxiliary layers (layer-wise loss)
DCell also introduced “auxiliary layers,” a method for

intermediate pathway layers (for models who have them) to

contribute to the loss function and to allow attribution to particular

hierarchical levels. P-Net adopts a similar approach of adding

“predictive layers” with sigmoid activation after each hidden layer,

with later layers weighted more highly in the loss function.

5.5.3 Hidden and mixed layers
Some architectures include fully-connected hidden layers that

are not a priori biologically interpretable. These layers introduce

additional complexity to the network, potentially improving

predictive power but at the expense of interpretability. For example,

models like PASNet (Hao et al., 2018a) andMiNet (Hao et al., 2019)

include this structure. However, the rationale behind including

such layers is not always clearly explained.

The inclusion of these hidden layers may allow the model to

capture latent interactions not accounted for by existing biological

knowledge, but this assumption requires further validation.

Other architectures include fully-connected nodes in the same

layer as the interpretable nodes, a design we will call “mixed layers;”

with the the additional nodes denoted “residual” nodes for their

ostensible aid to model performance or simply “hidden” nodes due

to their lack of biological interpretability.

In most works the authors do not mention why they chose

a given design. However, some works have performed ablation

studies with and without hidden layers or nodes in the architecture:

Lin et al. (2017) compare multiple dense NNs and VNNs with

one or two fully connected hidden layers, seeing the best overall

performance in the networks with two additional hidden layers

in a clustering task. They also found pre-training not beneficial

in comparison to training from scratch for clustering cells, but it

increased performance for cell type retrieval (classification task).

In contrast in Voigt et al. (2024), BiGMLVQ the model with more

prototype layers (classification layers) performed worse, which the

authors attributed to overfitting. Fortelny and Bock (2020) showed

that drop-out on pathway level, as well as input layers, increased

robustness to redundancies and imbalances inherent to biological

networks.

In particular, autoencoders using biological knowledge to

guide representation learning rely heavily on the combination

of fully-connected encoders and sparse decoders representing

pathway or ontology relationships. However, only authors of VEGA

(Seninge et al., 2021) studied other possible architectures and

combinations while others like expiMap (Lotfollahi et al., 2023)

or OntoVAE (Doncevic and Herrmann, 2023) adopted the same

general structure and a theoretical analysis or broad benchmark

of different encoder-decoder combinations has not been done to

our knowledge. Neither are we aware of any work that performed a

systematic architecture search with the pathway layers or additional

fully connected layers on feed-forward VNNs.

5.5.4 Shallow and deep hierarchies
Biologically-informed sparse neural network architectures

involve a kind of inductive bias, wherein the hidden layers represent

biological entities or processes and the connections between the

layers represent biological relations. In principle, such a network

can be constructed by starting with a fully-connected network and

then applying a masking matrix corresponding to the existence or

strength of relations between the biological entities. However, given

heterogeneous pathway databases and data processing pipelines,

the method of converting a hierarchy of biological pathways into

a neural network is by no means standardized. For example,

a pathway may contain genes and other pathways: should the

network include skip connections to account for this (see Figure 4)?

How many hidden layers or nodes in each layer should be chosen

before certain paths are “pruned” from the model?

Many architectures incorporate a single layer for pathways

following the gene layer, but others extend this to multiple levels

to represent a hierarchy of pathways. The methods for constructing

these hierarchical relationships vary across models, and often it

is not explicitly clear how a “top-level” pathway or biological

process is defined. For instance, decisions on whether intermediate

pathways should be merged or truncated are typically not well-

documented. Ma and Zhang (2019) proposed factor graph neural

networks (FGNNs), which include a single pathway layer, but may

be “unrolled” to a deeper structure to add greater expressive power.

The early pathway-guided neural network architectures are

rather complex, incorporating deep pathway hierarchies. ParsVNN

(Huang et al., 2021) applied proximal alternative linearized

minimization to the NP-hard problem of l0 norm and group

lasso regularization in order to prune redundant edges between

pathways, resulting in simpler structures.

Other authors argue for the simplicity and interpretability of

a shallow network (Chen H.-I. H. et al., 2018; Voigt et al., 2024)

with just one gene layer aggregating inputs from one or more omics

levels, followed by a single pathway layer.

One technical consideration when building a deeper network

is how to handle pathways that are not all the same depth of

hierarchy. The bottom of a pathway ontology is not well defined,

so networks such as P-Net (Elmarakeby et al., 2021) and later

Cancer-Net (Pedersen et al., 2023) start from the most abstract

level of “biological processes,” defined as Reactome pathways with

no parents, successively adding layers for each generation of child

pathways, stopping at a user-selected depth, for example, 6 layers.
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If a branch of the Reactome tree does not have so many levels, then

“dummy nodes” are added to allow implementation in a layered

machine learning framework like PyTorch. However, since each of

these dummy nodes has a nonlinear activation, some information is

inevitably lost or altered. In contrast, DrugCell (Kuenzi et al., 2020)

employs direct skip connections, whichmay bemore challenging to

implement in common ML frameworks but offer greater flexibility

in modeling complex biological relationships.

The notion of skip connections can be extended further.

Whereas a VNN is typically formulated as a directed acyclic graph

with discrete sequential layers, Evans et al. (2024) recently proposed

“graph-structured neural networks” (GSNNs)—not to be confused

with GNNs—an extension of VNNs that allows for cycles and self-

loops. Like GNNs, GSNNs use an input graph as an inductive bias

to constrain the information flow in the neural network. Unlike

GNNs, GSNNs do not share weights across nodes; instead, each

node is associated with its own distinct neural network.

5.6 Scientific discovery

VNNs being more performant than their densely-connected

counterparts raises the possibility of discovering pathway structures

through regularization. That is, if a VNN really is better than

an equivalently sparse model, then neural architecture search, for

example via pruning, could in principle learn such a structure

without prior knowledge integration (Sprang et al., 2024). Such an

approach to scientific knowledge discovery—which would enable

prediction of new pathway relations, akin to knowledge graph edge

prediction—has not yet beenwidely explored in the VNN literature.

Though ParsVNN (Huang et al., 2021) prunes irrelevant

pathways, it starts with a biologically-informed structure. Similarly

DeepHisCoM (Park et al., 2022) and DeepBINN (Meirer et al.,

2024) explore non-linear relationships only among existing

pathways. PathExpSurv (Hou et al., 2023) extended pathway

knowledge integration by performing “pathway expansion” to

include pathways that may not exist in the original database.

First a biologically-sparse network is trained, then fine-tuned with

dense connections; weights that are not regularized in the second

stage may be indicative of undiscovered pathways. Mixed layers

(see Table 3), containing both interpretable and non-interpretable

nodes, might allow models to harness predictive performance

beyond the constraints of the pathway database, but so far this has

not been applied to discovery of new pathways.

5.7 Resources and tools

Most papers introducing methods provide open-source code

for reproducibility (Appendix Table A4), however, the re-usability

and maintainability of some of these codebases is not necessarily

guaranteed, especially if raw data or data preprocessing code are not

provided or the repository hard-coded for a specific dataset or file

system. Nonetheless, Pedersen et al. (2023) was able to reproduce

the results of P-Net (Elmarakeby et al., 2021), updating the code

to newer ML frameworks. van Hilten et al. (2021) released their

GenNet framework, which has since been extended with modules

for interpretability (van Hilten et al., 2024b).

A recently developed package called binn (Hartman et al.,

2023), focused on proteomics, offers the capability to build

VNNs with a given input pathway set. Autoencodix (Joas

et al., 2024) is a framework for building different autoencoder

architectures, which includes one ontology-based architecture as

an option.

There remains a gap, however, for a user-friendly, general-

purpose package that supports multi-omics data inputs and

different pathway databases and allows exploration of different

design decisions to ensure the robustness of the yielded

predictions and explanations. Especially interesting would be

a highly general package capable of modeling non-biological

ontologies (such as in chemistry or social sciences) using a sparse

VNN framework.

6 Discussion

VNNs have seen increasing adoption since their emergence

around 2017–18. Their versatility is evidence in applications

spanning protein classification, survival analysis, diagnosis, and

drug-interaction prediction (Kulmanov et al., 2018; Hao et al.,

2018a,b; Ma et al., 2018). Compared to full-connected neural

networks and other ML algorithms, VNNs often demonstrate

comparable or superior performance. Studies such as Pedersen et al.

(2023) highlight that randomized sparse networks of comparable

size underperform in comparison, underscoring the value of

integrating biological knowledge. This integration enhances neural

networks’ ability to extract signals from relatively small and

tabular datasets. However, many studies fail to benchmark against

traditional ML methods, which can outperform neural networks

[e.g., SVMs in Kim and Lee (2023), see also Borisov et al. (2022)],

do not compare with non-biologically-informed NNs to quantify

the value of knowledge integration, or do not compare their

implementation with existing VNN frameworks.

Interpretability is a key advantage of VNNs over “black box”

dense neural networks. By constraining networks with biological

pathways, VNNs reduce the function space, trading universality

for an inductive bias that promotes faster convergence and enables

pathway-level insights via node activations (Kerg et al., 2022).

Despite this potential, further theoretical exploration of these

inductive biases is required. Emerging evidence suggests that

node activations in VNNs can be mapped to their biological

counterparts to yield novel insights verifiable in the laboratory

(e.g., Elmarakeby et al., 2021, validated biomarkers in vitro) but

no studies have conclusively shown that these activations are both

data-driven and shaped by the inductive bias. Sparse network

randomizations studies remain insufficient to fully elucidate the

function spaces of these models. Additionally, the reliance on

simplified gene-to-pathway mappings often neglects directional

and regulatory relationships, limiting real-world applicability.

Flexible architectures with less restrictive activation functions may

better capture the multi-layered complexity of cellular biology,

bridging trends in explainability and the training of molecular

foundation models (Ma et al., 2024; Hao et al., 2024; Cui et al.,

2024).
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Another limitation lies in the completeness and quality

of pathway databases. While these resources are invaluable,

they provide an incomplete picture of cellular processes,

particularly for non-human or non-model organisms where

database curation is often automated and less robust. Only

a few studies, such as Park et al. (2022); Hou et al. (2023),

have explored the use of VNNs for pathway expansion or the

discovery of new biological relationships, leaving this area

largely untapped.

Similarly, the impact of different biological databases or

knowledge graphs on performance remains underexplored.

Variations in database focus and quality could significantly

influence VNN results, but most studies do not benchmark their

models across multiple databases.

Finally, nearly all VNN architectures rely on early fusion

for multi-omics data, which can result in the loss of structural

information and diminished performance. For example, Pedersen

et al. (2023) found that fusion strategies had a greater impact on

performance than randomized sparse connections. Intermediate

fusion techniques, as proposed by Hauptmann and Kramer (2023),

may offer a more effective approach. However, there remains

a gap in developing VNN architectures that incorporate these

advanced strategies.

7 Conclusion

Visible neural networks (VNNs) represent a promising

advancement in multi-omics data integration, providing a

unique combination of predictive performance and biological

interpretability. This systematic review has highlighted critical

trends, including the importance of sparse architectures informed

by biological priors, the impact of design choices on model

robustness, and the variability in performance across datasets and

ontologies.

While the field has grown substantially since 2020,

challenges remain in standardizing terminology, benchmarking

methodologies and improving reproducibility. While many works

use the nomenclature “BINNs” or “VNNs,” other works use

different conventions or do not offer any specific name. Some

authors test models extensively against other neural networks,

both sparse and dense, and classical ML methods, others perform

fewer or no such comparisons, motivating a comprehensive

benchmarking framework.

Future research should prioritize systematic evaluations of

VNN architectures, particularly regarding the robustness of

pathway-level interpretations and the interplay between sparsity

and prediction accuracy. Expanding the use of pathway databases,

integrating multi-omics modalities with more flexible fusion

strategies and exploring novel applications beyond oncology could

further enhance their utility. Additionally, developing general-

purpose, user-friendly software frameworks for constructing

and evaluating VNNs would foster broader adoption and

reproducibility. Discovering novel pathway relations through

neural architecture search remains an untapped opportunity.

By addressing these challenges, VNNs have the potential

to unlock novel biological insights, bridge gaps in multi-omics

research and contribute to advances in personalized medicine.
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