
1

Exploration of Design Alternatives for Reducing
Idle Time in Shor’s Algorithm: A Study on

Monolithic and Distributed Quantum Systems
Moritz Schmidt1, Abhoy Kole2, Leon Wichette3, Rolf Drechsler2, 4, Frank Kirchner1,3,*, Elie Mounzer3,*

1 Robotics Research Group, University of Bremen, 28359 Bremen, Germany
2 German Research Center for Artificial Intelligence Cyber-Phyiscal Systems (CPS), 28359 Bremen, Germany

3 German Research Center for Artificial Intelligence Robotics Innovation Center (RIC), 28359 Bremen, Germany
4 Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany

* Co-Principal Investigator (Co-PI)
Corresponding author: Moritz Schmidt (email: moritz.schmidt@uni-bremen.de).

Abstract—Shor’s algorithm is one of the most prominent quan-
tum algorithms, yet finding efficient implementations remains an
active research challenge. While many approaches focus on low-
level modular arithmetic optimizations, a broader perspective can
provide additional opportunities for improvement. By adopting
a mid-level abstraction, we analyze the algorithm as a sequence
of computational tasks, enabling systematic identification of
idle time and optimization of execution flow. Building on this
perspective, we first introduce an alternating design approach to
minimizes idle time while preserving qubit efficiency in Shor’s
algorithm. By strategically reordering tasks for simultaneous
execution, we achieve a substantial reduction in overall execution
time. Extending this approach to distributed implementations,
we demonstrate how task rearrangement enhances execution
efficiency in the presence of multiple distribution channels. Fur-
thermore, to effectively evaluate the impact of design choices, we
employ static timing analysis (STA)—a technique from classical
circuit design—to analyze circuit delays while accounting for
hardware-specific execution characteristics, such as measurement
and reset delays in monolithic architectures and ebit generation
time in distributed settings. Finally, we validate our approach
by integrating modular exponentiation circuits from QRISP and
constructing circuits for factoring numbers up to 64 bits. Through
an extensive study across neutral atom, superconducting, and ion
trap quantum computing platforms, we analyze circuit delays,
highlighting trade-offs between qubit efficiency and execution
time. Our findings provide a structured framework for optimizing
compiled quantum circuits for Shor’s algorithm, tailored to
specific hardware constraints.

I. INTRODUCTION

Shor’s algorithm [1] offers an exponential speedup for
integer factorization, presenting a substantial threat to RSA-
based cryptographic security [2]–[5]. Although large-scale
quantum computers capable of breaking RSA are still devel-
oped, improving the efficiency of Shor’s algorithm remains
vital for advancing practical quantum computing and shaping
post-quantum cryptography research.

Most previous research on implementing Shor’s algorithm
has focused on optimizing low-level modular arithmetic cir-
cuits, particularly modular addition and multiplication [5]–
[15]. However, these efforts primarily refine individual oper-
ations without fully exploiting the algorithm’s overall struc-
ture to reduce execution bottlenecks. Adopting a mid-level

abstraction allows us to break the algorithm into structured
computational tasks rather than solely optimizing gate-level
arithmetic. This task-based perspective facilitates a paral-
lelization strategy, allowing for a systematic analysis of idle
time and the optimization of critical paths of computation.
Moreover, as algorithm-level descriptions are translated into
compiled circuits, hardware-specific execution characteristics
become crucial in determining performance. Integrating these
factors at the compilation stage can lead to more efficient
implementations tailored to specific quantum architectures.

In this work, we enable the concurrent execution of op-
erations that were previously sequential by strategically re-
ordering mid-level computational tasks, leading to enhanced
performance. As part of this approach, we introduce an alter-
nating design that further reduces idle time while maintaining
qubit efficiency. We extend this method to distributed quantum
computing (DQC) [16]–[20], demonstrating how task rear-
rangements optimize execution when multiple ebit channels
are available. To systematically assess the impact of different
design choices, we utilize static timing analysis (STA) [21],
[22], a technique widely applied in classical circuit design
to analyze execution timing under hardware constraints. This
allow us to assess circuit delays across various quantum
hardware platforms and gain insights into how execution
bottlenecks arise at different levels of abstraction.

Our results indicate that the proposed task parallelization
methods remain effective regardless of the target hardware
architecture. In monolithic systems, we demonstrate that idle
time can be significantly reduced and quantify the trade-offs
between qubit efficiency and execution time, particularly in
architectures with slow reset and measurement operations. In
distributed setups, our analysis reveals how execution time
is influenced by the interplay between ebit generation time,
the number of ebit channels, and the size of the factored
number. To evaluate our approach, we integrate modular
exponentiation circuits from the QRISP library [23] into our
designs, enabling us to construct circuits capable of factoring
large numbers.We conduct a comprehensive study across neu-
tral atom, superconducting, and ion-trap quantum computing
platforms, analyzing how our designs impact circuit delays.

ar
X

iv
:2

50
3.

22
56

4v
1

 [
qu

an
t-

ph
]

 2
8

M
ar

 2
02

5

2

The insights gained from this analysis provide a starting point
for optimizing quantum circuit compilation based on specific
hardware constraints.

The remainder of this paper is structured as follows: Sec-
tion II introduces Shor’s algorithm, key concepts in dynamic
circuits, distributed quantum computing, and the STA tech-
niques used for execution time analysis. Section III presents
our mid-level abstraction perspective, examines existing circuit
designs in terms of qubit count and idle time, introduces our
alternating design and extends this perspective to distributed
execution. Section IV details our evaluation methodology, in-
cluding circuit construction using QRISP, hardware modeling,
and delay estimation. Section V presents our experimental
results and their implications for quantum circuit design.
Finally, section VI concludes with a discussion of future
research directions.

II. BACKGROUND

A. Shor’s Algorithm

Shor’s algorithm [1] is designed to factor a large com-
posite integer N into its prime components p and q where
N = p · q1.The factorization problem is reformulated as an
order-finding problem. The goal is to find the period r of the
modular exponentiation function f(x) = ax mod N , for a
randomly chosen positive integer a < N coprime to N . Once
r is obtained, the unknown factors p and q can be computed
classically by solving gcd(a

r
2±1, N) using Euclid’s algorithm.

By proposing an efficient quantum subroutine for finding r,
Shor made the factoring problem solvable in polynomial time
on a Quantum Processing Unit (QPU).

The quantum order finding subroutine relies on the unitary
implementation of the modular exponentiation function f(x):

Uf : |x⟩ |y⟩ 7→ |x⟩ |y · ax mod N⟩ (1)

Here, the register |y⟩, used for computing the modular
exponentiation, is called the work register (denoted as |rw⟩)
and requires n qubits, where n = ⌈log2N⌉. The data register
(denoted as |rd⟩), which stores the exponent x, has a size of
m = 2n.

The algorithm consists of three steps: (i) Initialize the work
register |rw⟩ to 1 and the data register |rd⟩ to an equal
superposition using Hadamard gates; (ii) Apply the unitary
operation Uf , and (iii) Apply the inverse Quantum Fourier
Transform (QFT †) to the data register |rd⟩. Upon measuring
the final state, an m-bit estimate of j/r is obtained, where
j ∈ {0, . . . , r−1}. The order r can then be determined through
classical post-processing using continued fractions. Figure 1
shows the complete high-level circuit of Shor’s algorithm.

The efficiency of Shor’s algorithm primarily depends on
the implementations of the QFT and modular exponentiation
operator Uf . For the QFT , a well-established implementation
exists using a gateset composed of controlled phase rotations
and Hadamard gates. However, the primary bottleneck lies in
the efficient implementation of the modular exponentiation Uf ,
which poses a substantial challenge. Since Uf must be unitary,

1For a more detailed introduction we refer to [24]

QFT†

Uf

X

H m

rw

rd

Fig. 1: A high-level circuit diagram of Shor’s algorithm for
prime factorization.

reversible arithmetic techniques, such as uncomputation [6],
must be employed. Additionally, extra ancilla qubits are often
required for the work register.

At the lowest level of abstraction, the core building block for
modular exponentiation is a modular adder. Various types of
adders have been proposed [7]–[13] and can be classified based
on their underlying approaches, including ripple carry [7],
[8], carry look-ahead [9] and QFT-based methods [10], [12],
[13]. These adders are used within hierarchical structures that
progress from (modular) addition to multiplication and finally
exponentiation. Implementations are typically evaluated based
on trade-offs between circuit width and depth. For instance,
some approaches minimize the required qubit count by in-
creasing circuit depth [13]–[15], achieving a current minimum
of 2n+2 qubits through the reuse of dirty ancillas [14], [15].

Specialized circuits have also been developed for demon-
strating Shor’s algorithm on Noisy Intermediate-Scale Quan-
tum (NISQ) hardware [25]–[27]. These circuits are often
highly optimized for specific values of N and a, rather than
being general-purpose solutions. For detailed discussions on
optimization techniques, such as window arithmetic, corset
representations, and comparisons of adder implementations,
we refer readers to [5], [10].

Our proposed designs operate at a mid-level abstraction
layer, decomposing Shor’s components into tasks, based on
its interpretation as an application case of Quantum Phase
Estimation (QPE), and without relying on specific arithmetic
implementations. This approach ensures compatibility with
a wide range of low-level optimizations, including various
modular addition realizations.

B. Dynamic Circuits

Circuits that utilize mid-circuit measurements, qubit resets,
and feed-forward control based on classical information are
referred to as dynamic circuits [28]–[30]. These circuit ele-
ments are not only essential for implementing quantum error
detection and correction [31], [32], but have also recently been
found to aid in other tasks, such as enabling efficient long-
range entanglement [33], [34] and state preparation [35], [36].

Dynamic circuits play a key role in optimizing Shor’s
algorithm. This is especially relevant with the introduction of
the semiclassical implementation of the QFT [37], [38]. If the

3

QFT is followed by measurement rather than additional gates,
the principle of deferred measurement [24] can be applied.
This enables earlier measurements and substitutes each two-
qubit controlled rotation with a single-qubit rotation, governed
by a classical measurement result, in the QFT realization
(see Figure 2). In Iterative Phase Estimation (IPE) [39], [40],

H

H

HP1
3 P2

3

P1
2

(a)

P1
3 P2

3

P1
2

H

H

H

(b)

Fig. 2: (a) The standard QFT implementation utilizing two-
qubit controlled rotations. (b) The semiclassical QFT using
early measurements to replace the two-qubit gates with clas-
sically controlled single-qubit phase rotations.

the semiclassical QFT is used within QPE, allowing each
qubit of the QFT to be executed sequentially. Since no multi-
qubit gates are involved, a single qubit is sufficient if qubit
resets are available. Shor’s order-finding routine, which can
be viewed as a form of QPE, benefits from IPE to reduce
the required qubit count [41], [42]. This iterative approach
has been experimentally demonstrated for two digit values of
N [43].

While dynamic circuits are now supported by several
hardware architectures, including superconducting [30], ion-
trap [32], and neutral atom QPUs [44], [45], and corresponding
compilation frameworks have been proposed [46], [47], find-
ing practical use cases where these tools can be effectively
utilized remains a challenge and often requires manual effort.

C. Distributed Quantum Computing
Current quantum hardware faces limitations in qubit scaling

due to technology-specific engineering challenges. Supercon-
ducting quantum computers rely on dilution refrigerators to
keep qubits at low temperatures. As the number of qubits
increases, the complexity and cost of managing wiring, con-
trol systems, and refrigeration also rise significantly [48].
In neutral atom systems, efficiently scaling qubit arrays re-
quires high-intensity lasers to maintain strong optical tweezers
while optimizing spatial constraints [49]. Trapped-ion sys-
tems face challenges with frequency crowding, where closely
spaced motional modes complicate individual qubit addressing
without crosstalk, necessitating precise control lasers [50].
To address these challenges and enable interaction between
distant quantum computers, Distributed Quantum Computing
has been proposed. DQC involves operating multiple QPUs
interconnected in a network, allowing for scalable quantum
processing [16]. This section offers an overview of the key
terms and concepts from [17] that are relevant to this work.

In a DQC environment, each QPU contains a set of qubits,
which are classified into two types: compute qubits, used
for general computations, and communication qubits. The
communication qubits are responsible for generating shared
entanglement between distant QPUs. DQC protocols depend
on communication ebits sharing the Bell state:

|Φ+⟩AB =
1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B) (2)

where the first qubit from the pair facilitates communication
with the compute qubits on QPU A, while the second qubit
enables communication with the compute qubits on QPU B.

c1

q3q2

q1 q5

q6q4

c2

QPU A QPU B

AB

Fig. 3: A distributed setup with two QPUs, A and B, linked by
an ebit channel that generates ebits |Φ+⟩AB on communication
qubits c1 and c2, facilitates computation involving computing
qubits qi and qj, located on separate QPUs.

A communication channel where such ebits sharing the Bell
state |Φ+⟩AB are repeatedly generated is called an ebit channel
(see Figure 3).

Analogous to classical communication, when computing
nodes lack direct ebit channels, Quantum repeaters and quan-
tum routers leveraging the entanglement swapping (ES) pro-
tocol have also been proposed [18], [51], [52] to facilitate
communication.

There are two primary protocols for utilizing ebits in dis-
tributed computation. The first is the teleportation or teledata
protocol [53], which consumes one ebit to transfer the state
of a qubit from one QPU to another.

The second is the EJPP protocol, also known as telegate
[54]. This protocol enables the remote execution of certain
gates, with controlled gates being the most notable example.

The EJPP protocol is executed in three phases, as shown in
Figure 4: Initially, during the starting process (also known as
cat-entangler phase), the state of the compute qubit from one
QPU, serving as the control, is temporarily mirrored onto the
communication qubit of the ebit associated with the compute
qubit on the other QPU. Then, a controlled gate is executed
locally between the mirrored communication qubit and the
target compute qubit. Finally, in the ending process (also called
the cat-disentangler phase), the state of the control compute
qubit is decoupled from the communication qubit.

An advantage of the EJPP protocol over teledata is that, with
the proposed embedding extension [55], multiple controlled
gates can be executed using only a single ebit, provided
no interrupting gates are present—such as an intermediate
Hadamard gate on the control qubit of two CNOT gates or
a pair of CNOT gates acting on the same qubits with flipped
control and target. As a result, EJPP enables remote execution
of a CU operation involving a complex multi-qubit U with
just one ebit, even if U is decomposed into multiple simpler
controlled gates.

4

G S E

AB

QPU A

QPU B

Z

H

X

X X

Fig. 4: The steps involved in conducting a remote CNOT op-
eration between QPUs A and B using the EJPP protocol: ebit
generation (G), the EJPP starting phase (S), local execution of
the CNOT gate, and the EJPP ending phase (E).

D. Static timing analysis

Currently, the time analysis of quantum circuits is primarily
approached from the standpoint of computational complexity,
i.e., the scaling of algorithms in terms of O-notation [56].
However, as quantum hardware advances, a more practical
approach to time analysis is becoming essential. The supported
gate set and corresponding gate times vary depending on
the targeted hardware. Additionally, factors like the execution
time of measurement and reset operations, as well as qubit
coherence times, differ depending on the chosen QPU. To
assess practical feasibility and optimize circuits effectively,
it’s important to account for these specific execution times.
Some works already consider such hardware timing aspects
in the context of circuit cutting [57], circuit compilation [58],
and qubit mapping [59]–[61]. With the progress in quantum
error correction, timing will become an even more critical
consideration.

Further, in the context of distributed quantum computing,
the time required for ebit distribution and routing through
quantum networks must also be considered [62]–[66]. As
quantum systems become larger and more distributed, re-
sources for distribution and the scheduling and synchronization
of computing tasks (e.g. with an execution manager [67]) will
be necessary. Therefore, simply analyzing the runtime of a cir-
cuit from a complexity standpoint is no longer sufficient. This
challenge is not new: classical circuits are also evaluated based
on their theoretical complexity, but must be examined with
specific timing constraints for practical circuit design [21],
[22]. In this work, we adopt definitions of classical circuit
design automation, similar to how definitions of classical
circuit complexity are used in quantum circuit complexity [56].
A summary of definitions and notation is given in Table I.

Definition 1 (Gate Delay). The gate delay is defined as the
time required to transform the state of n qubits (where n ≥ 1)
when applying an n-qubit gate U and denoted as tU .

In classical circuits, the delay of a logical gate refers to
the time it takes for a signal to pass through it. In quantum
circuits, we define such delay as the gate time of the native
gate set supported by the targeted QPU.

Definition 2 (Circuit Graph). A circuit graph is a directed
acyclic graph (DAG), where each vertex v ∈ V represents

Term/Symbol Definition
N Number to be factored
n Number of bits of N i.e. ⌈log2 N⌉

Gate delay tU Time for an input state to transition a gate U
Circuit graph A directed acyclic graph (DAG) modelling gate

dependencies
Weighted circuit graph Weighted directed acyclic graph (WDAG) ex-

tending the DAG with a weight function repre-
senting gate delays

Critical path Path with longest delay, determining the delay
of the overall circuit

Circuit depth Length of critical path in the circuit DAG
Path delay tP Combined signal delay along a path P of gates

in the WDAG
Circuit delay tC Path delay of critical path

TABLE I: Abbreviations and adopted notation from static
timing analysis [21], [22].

a gate, and an edge (u, v) ∈ E indicates that gate v is
a direct successor of gate u in a given quantum circuit C,
and denoted as GC = (V,E). The set V also includes two
additional vertices, Sc and Sk, which have no predecessor
and successor nodes, respectively, to mark the start and end
of the circuit execution.

H

Y

Z

X

(a)

H CX

CX

X

Y

Z

(b)

Fig. 5: An example quantum circuit (a) and corresponding
DAG representation (b). The DAG has two longest paths:
H⇝CU⇝CU⇝Y and H⇝CU⇝CU⇝Z.

Figure 5 illustrates an example circuit along with its corre-
sponding DAG. The depth of a circuit is typically represented
as the number of distinct time steps required to execute all
circuit instructions. In the DAG representation, this can be
defined more precisely.

Definition 3 (Critical Path, Circuit Depth). The critical path
is the longest sequence of vertices of the form Sc⇝ Sk that
are connected by edges for a given circuit graph GC and the
length of the critical path is referred to as the circuit depth.
The critical path is not necessarily unique.

This aligns with the intuitive definition, as each vertex
represents an instruction and each edge indicates a direct
dependency. Consequently, all instructions on critical paths
must be executed sequentially in separate time steps. Since the
instructions on critical paths determine the overall execution
time of the circuit, they act as a bottleneck in the computation.
Understanding how the structure of a circuit defines these
critical paths can provide valuable insights for optimization.

Definition 4 (Weighted Circuit Graph). The weighted circuit
graph is a circuit graph GC(V,E), with edges like (u, v)
weighted according to the gate delay tv of vertex v and

5

denoted by GW (V,E,w). For all edges like (u, Sk) where
Sk indicates the end of execution, the weight w is set to 0.

The WDAG not only represents the dependencies between
gates but also incorporates their associated delays. Figure 6
illustrates an abstract Shor circuit along with its corresponding
DAG and WDAG.

Definition 5 (Path Delay). The path delay is the sum of
weights of the edges along a given path P in a weighted
circuit graph GW (V,E,w) and denoted as tP .

Definition 6 (Circuit Delay). The circuit delay is the critical
path delay in a weighted circuit graph GW (V,E,w) and
denoted as tC . For a sequence of operations U1, . . . , Uk

forming a circuit C we also denote the circuit delay tC =
t(U1U2 . . . Uk). The circuit delay is bound by the sum of the
delay of all its operations i.e. tC ≤

∑k
i=1 tUi , where the

inequality becomes an equality only if the Ui operations form
a path.

Circuit delay, like circuit depth, measures a circuit’s ex-
ecution time but does so with greater accuracy for specific
hardware by considering gate execution times. This is impor-
tant because gate delays influence path delays and can alter
the longest path within the circuit. Consequently, the critical
path identified in the DAG representation may not align with
that of the WDAG.

U1 U2 U4

P1
3 P2

3

P1
2

H

H

H H

H

H

(a)

Sc

H

H

CU

CU

H M

CU

P H M

P P H M

Sk

H

(b)

Sc

H

H

CU

CU

H M

CU

P H M

P P H M

Sk

H

(c)

Fig. 6: Abstract Shor circuit (a) and corresponding DAG
(b) and WDAG (c) representation. The colors in the WDAG
represent the magnitude of gate delays.

III. PARALLELIZATION OF SHOR’S ALGORITHM

A. Task Abstraction

The quantum order-finding subroutine of Shor’s algorithm
can be viewed from the perspective of quantum phase es-
timation. Specifically, consider an n-qubit unitary operator

U with eigenvalues λj = e2πiθj and corresponding eigen-
states |ψj⟩. The objective of QPE is to estimate θj given
an eigenstate |ψj⟩. Since |ψj⟩ is an eigenstate, it satisfies
the relation U |ψj⟩ = λj |ψj⟩. By employing a controlled-
U (CU) gate and preparing the control register in the state
|+⟩ = 1/

√
2(|0⟩ + |1⟩), the eigenvalue can be moved to the

control register using phase kickback:

CU(|+⟩ |ψj⟩) =
1√
2
(|0⟩ |ψj⟩+ λj |1⟩ |ψj⟩) (3)

By applying a Hadamard gate to the control register and then
measuring it, we can extract λj and consequently determine
θj , provided λj ∈ {±1}. For higher resolution of θj , i.e.,
θj =

k
2m , the approach can be extended by using an m-qubit

control register |l⟩ and replacing the CU gate with an m-
controlled-U (CmU) gate such that:

CmU : |l⟩ |ψj⟩ 7→ |l⟩U l |ψj⟩ (4)

The desired value of θj is obtained by performing QFT † on
the control register, followed by measurement. The general
structure of the algorithm is depicted in Figure 7.

QFT†

U

H m

Fig. 7: A high-level circuit diagram of quantum phase estima-
tion (QPE). Applying QPE on the eigenstate |ψj⟩ yields the
phase θj of eigenvalue λj = e2πiθj .

In Shor’s algorithm for solving the order-finding problem
to factor a number N, the circuit can be adapted by choosing
the U operation as:

Ua : |x⟩ 7→ |x · a mod N⟩ (5)

Then CmUa is equivalent to Uf from Equation 1. In this
setup, the m-qubit control register |l⟩ corresponds to the data
register |rd⟩, while the bottom register holding the eigenstate
|ψj⟩ corresponds to the work register |rw⟩.

Further, the state preparation of |ψj⟩ can be avoided in this
circuit formation. This is because the state |1⟩ is an equal
superposition over all eigenstates of Ua. To extract the order
r, any θj where j is coprime to r can be used. Consequently,
initializing the work register in the state |1⟩ and running the
algorithm effectively results in a random selection of one of
the eigenstates.

For our proposed circuit optimization schemes an unraveling
of Ua is not necessary. The designs make use of the inherent
structure of QPE and can, in principle, be applied to any
QPE-based application. Specifically, in the context of Shor’s

6

algorithm, these optimizations can be integrated with any
modular adder circuit or other enhancements, as long as they
do not interfere with the circuit’s higher-level abstraction.

The CmU operation from Equation 4 can be decomposed as
follows: Since l =

∑n−1
i=0 li2

i is represented in binary on the
data register, each bit li accounts for controlling 2i repetitions
of U , i.e., a CU2i operation. Therefore, the CmU operation
can be expressed as a sequence of m gates acting on the work
register, which is initialized in the state |1⟩. Each CU2i gate
is controlled by a separate qubit from the date register |rd⟩,
as shown below:

CmU(|l⟩ |ψ⟩) =
n−1∏
i=0

CU2i(|l⟩ |ψ⟩) (6)

The QFT † has a sequential structure. For each qubit qj ,
starting from the first qubit q0 to the last qubit qm, a phase
correction operation Pj is applied, followed by a Hadamard
gate. The phase correction operation Pj on qubit qj involves
a set of controlled phase rotations R−1

k = P (−2πi/2k)
determined by the states of the preceding qubits, specifically:

Pj =

j∏
k=1

Rj−k
k+1 (7)

where Rl
k is the phase rotation Rk controlled by qubit ql.

Applying QFT † to the data register |rd⟩ can be expressed as:

QFT † |rd⟩ =
m−1∏
i=0

PiHi |rd⟩ (8)

where Hi denotes the Hadamard gate applied to qubit qi. This
standard approach is referred to as the regular design and
Figure 8 shows an exemplary circuit for m = 3.

U1 U2 U4

H

H

H H

H

HP1
3 P2

3

P1
2

Fig. 8: The high-level circuit for the regular design of Shor’s
algorithm, implemented as QPE with a 3-qubit data register
(i.e., m = 3). Each data qubit controls the execution of a
specific modular exponentiation operation of the form U2i ,
followed by phase processing as part of the QFT †.

To summarize, the main operations for the work register
involve the m CU2i gates, which are executed sequentially.
Each qubit in the data register controls exactly one of these
gates and then undergoes a phase correction step influenced
by all preceding qubits.

B. Monolithic Parallelization
An effective optimization technique to reduce the qubit

count in Shor’s algorithm is to use the semi-classical imple-
mentation of the QFT [37]. This approach leverages the princi-
ple of deferred measurement [24]. Specifically, after applying

the final Hadamard gate to a qubit, the qubit can be measured
immediately, as all subsequent operations are controlled gates
that can be implemented using classical controls. This process
is illustrated in Figure 9.

U1 U2 U4

P1
3 P2

3

P1
2

H

H

H H

H

H

Fig. 9: The regular design of Shor’s algorithm utilizing the
semi-classical QFT †. All two-qubit gates in QFT † acting on
3-qubit data register (i.e., m = 3) are replaced with classically
controlled single-qubit gates.

The IPE [39], [40] incorporates the semi-classical QFT
within QPE. In this approach, once a data qubit has been used
as a control for its corresponding CU2i operation, completed
its phase processing, and its phase has been measured, it is no
longer needed. This allows the qubit to be reset and reused for
the next CU2i operation. As a result, the entire data register
can be implemented using just a single qubit. The iterative
process can be represented as follows:

m−1∏
i=0

HCU2iPiHMR (9)

Here, the index of the Hadamard gate H is omitted since
only one qubit is used for the data register. M denotes
measurement in the computational basis, R represents the
qubit reset, and Pi corresponds to the phase correction as
described in Equation 7. This method is known as the iterative
realization of Shor’s algorithm. An example circuit for the case
m = 3 is shown in Figure 10.

0 0

U1 U2 U4

H H HH H HP1
2 P1

3 P2
3

Fig. 10: The iterative design of Shor’s algorithm with a 3-
qubit data register (i.e., m = 3) implemented as IPE. The data
register is reduced to a single qubit at the expense of longer
circuit delay.

Although the iterative realization uses only one qubit instead
of m qubits for the data register, it results in a longer
execution time. As outlined in Equation 9, each operation
must be performed sequentially: starting with the Hadamard
initialization, followed by the controlled modular arithmetic
CU2i , phase correction Pi, a second Hadamard gate, mea-
surement, and finally a qubit reset. This sequential execution
creates a critical path that traverses all CU2i operations for
i = 0, 1, . . . ,m − 1, along with the phase correction steps.
Throughout this process, the work register remains active

7

only during the CU2i operations, leading to idle periods, as
illustrated in Figure 11.

U2i

H 0 HHPi

U2i+1

Fig. 11: The idle time experiencing in the work register of the
iterative design of Shor’s algorithm due to phase processing on
the data qubit as part of the semi-classical QFT † operation.

In contrast, in the regular realization, once a CU2i op-
eration is completed on the work register, the next CU2i+1

operation can proceed without waiting for phase processing,
measurements, resets, and reinitialization. Consequently, the
regular approach enables parallel execution of computational
tasks, reducing the overall processing time, at the cost of more
qubits.

To address this issue, the alternating design combines qubit
resets and the semi-classical QFT †, similar to the iterative
approach, but uses two data qubits instead of one to enable
parallelization. The key idea is to alternate the iterative pro-
cess between the two data qubits. After the work register
is initialized and the first data qubit undergoes the initial
Hadamard gate, i.e., H0, the first CU1 operation is executed
using this qubit and the work register. While CU1 is being
executed, the second qubit is initialized with H1. Once CU1

is complete, the next operation CU2 is executed using the
second qubit and the work register. During CU2, the phase
information is extracted from the first qubit, which is then
reset and is reinitialized with H0 and becomes ready for the
next operation CU4 as soon as CU2 finishes. This alternating
pattern continues until all CU2i operations are completed,
effectively interleaving the usage of the two data qubits to
achieve parallelism and minimize idle time in the work register
observed in the corresponding iterative design (see Figure 11),
thereby enhancing overall execution time. Figure 12 illustrates
the design of Shor’s algorithm using the proposed alternating
approach.

0 HHPi 0 HHPi

H 0 HHPi

U2i U2i+1 U2i+2

Fig. 12: The alternating design of Shor’s algorithm reducing
the idle time experienced in the work register of the corre-
sponding iterative design by introducing an additional data
qubit to alternate the phase processing tasks.

The potential timing advantage of the alternating approach
depends on the duration of the CU2i operations and the phase
processing gates. If the CU2i operations are short, there may
not be enough time to simultaneously extract the phase and
reset the other data qubit, resulting in some idle time —
although shorter than the idle time observed in the iterative

design. Conversely, if the CU2i gates are sufficiently long
and satisfies the condition:

tCU2i+1 ≥ t(PiHMRH) ∀i (10)

then there is no delay in the work register because, during each
CU2i operation, there is sufficient time to extract the phase,
reset, and reinitialize the other qubit. Consequently, the critical
path consistently runs through the work register without being
affected by the data register.

To understand the amount of idle time that can be reduced,
both by the alternating and regular design, we first split the
overall circuit delay tC into three parts:

tC = tH +

m−1∑
i=0

tCU2i + δP (11)

The initial Hadamard as well as all CU2i operations have to
be executed sequentially, so their delays will always contribute
to the overall circuit delay. The additional delay based on
phase processing, denoted as δP , varies based on the choice
of design. We again split δP into two parts:

δP = δMP + δ¬M
P (12)

where δMP denotes the mitigatable delay and δ¬M
P denotes the

unavoidable delay due to phase processing. In principle, each
phase processing step can be executed in parallel to following
CU2i+1 gates. The exception is the last phase processing,
which incurs an unavoidable delay since no further CU2i gates
remain for overlap:

δ¬M
P = t(Pm−1HMRH) (13)

The amount of delay that can be mitigated from all other
phase processing steps depends on the choice of design and
the length of the CU2i operations. If the CU2i operations are
long, the critical path goes through the CU2i gates and no
delay of the phase processing contributes to the circuit delay.
On the other hand, if the CU2i operations are instant, all phase
processing delay contributes. Therefore, the mitigatable delay
due to phase processing is bound by:

0 ≤ δMP ≤
m−2∑
i=0

t(PiHMRH) (14)

As a more relaxed upper limit, the worst-case duration
(m − 1)t(Pm−1HMRH) > δMP can be considered, which
uses the worst-case tPm−1

for phase gates, given that each
phase correction Pi requires one more adjustment than its
predecessor Pi−1.

These bounds hold for the alternating as well as the reg-
ular design. The concrete difference in circuit delay then
depends on the durations of the CU2i operations. Longer
delays in CU2i operation create more opportunities for al-
ternating parallelization while maintaining an overall circuit
delay comparable to the regular design. In the worst-case
scenario, if the CU2i delay significantly exceeds the upper
limit (m − 1)t(Pm−1HMRH), the idle time becomes neg-
ligible. Consequently, the overall circuit delays for all three
approaches converge, with a slight preference for the iterative
design due to its use of one fewer data qubit compared to the
alternating approach.

8

C. Distributed Shor

Several early studies have explored distributed implemen-
tations of Shor’s algorithm. One of the most comprehensive
early works [68] presents a distributed approach for the regular
design using VBE [7] adders in the modular exponentiation
circuits. This approach assumes a setup with multiple nodes,
each containing n+c qubits, where c represents additional an-
cilla and communication qubits. Due to space constraints, the
data register — comprising m = 2n quibts — is divided into
two blocks across the nodes. The work register is split into five
parts to align with the structure of the VBE implementation.

A comparative study [69] evaluates different adder choices
for various distributed settings, including qubit capacities on
QPUs, network topology, and I/O capabilities. It also examines
the use of EJPP versus teleportation protocols. Another recent
work [70] investigates the impact of imperfect ebits in QPE
with a distributed QFT using embedding techniques. Addi-
tionally, [5] proposes optimizations for monolithic implemen-
tations of Shor’s algorithm for large numbers and highlights
distributed implementations as a potential area for future
enhancement. Meanwhile, general approaches to distributed
compilation, such as [19], [20], [55], [71], do not consider
the specific structure of Shor’s algorithm, like the roles of
the data and work quantum registers, potentially limiting their
optimization effectiveness.

rd A

Brw

QFT†H m

U1 U2 U2m-1

Fig. 13: The distributed design of Shor’s algorithm: the data
register |rd⟩ is allocated to QPU A, while the work register
|rw⟩ is allocated to QPU B. The CU2i operations must be
performed remotely between the two QPUs.

In contrast to these previous works, our proposed designs
operate at a higher level of abstraction and are agnostic to spe-
cific adder choices. As a result, we do not explore partitioning
the work register. Instead, our approach places the data register
on one QPU and the work register on another (see Figure 13).
This configuration maintains flexibility, allowing our proposed
distribution designs to be combined with further subdivisions
of the work register at lower abstraction levels.

D. Distributed Parallelization

In Shor’s algorithm, since the QFT † operates entirely on the
data register, the primary task for distribution involves modular
exponentiation, which affects both the data and work registers.
According to the CmU decomposition from Equation 6, the
2n CU2i gates, each controlled by a single qubit on the data

register, must be executed across separate QPUs. Teleporting
the control qubits to the work QPU and then back to the
data QPU would be costly, requiring two ebits per CU2i

gate, amounting to a total of 2m ebits. Instead, we use the
EJPP protocol to perform each CU2i operation remotely. This
process consists of three steps: (i) Applying a starting process
S, which involves the control data qubit for the CU2i gate
on QPU A and a shared ebit between QPUs A and B, (ii)
Executing the CU2i gate locally on the work register located
on QPU B using the shared ebit, and (iii) Completing the
remote operation with an ending process E, which uses the
control qubit from QPU A and the shared ebit. The entire
process can be represented as:

CU |rd⟩ |rw⟩ → E(CU)S |rd⟩ |ϕ+⟩ |rw⟩ (15)

By utilizing embedding, only one ebit is needed for each
CU2i operation, requiring a total of m ebits, even when
the CU gates are decomposed into native gates. The S and
E operations involve only a few basic gates and introduce
minimal delay. However, generating an ebit (G) between two
QPUs can be time-consuming depending on the hardware and
distance. Since the distribution setup requires m ebits, multiple
ebit generation cycles will be necessary during the distributed
execution of the algorithm.

H

H

U1

H

S
E

G G

U2

S

Fig. 14: The regular distributed design of Shor’s algorithm
results in idle time between two CU2i operations due to the
usage of a single ebit channel. The idle period occurs due to
the the end process (E) of the previous CU2i operation, as
well as the ebit generation (G) and start process (S) for the
next CU2i+1

operation.

Further, if only a single ebit channel is available between
the two QPUs before each CU2i operation, the previous EJPP
protocol must be completed with an ending process E, a
new ebit is then generated over the ebit channel, and the
starting process begins the next EJPP protocol. Similar to the
iterative monolithic design, the work register remains idle due
to the inclusion of processes G, E, and S in the critical path.
Figure 14 illustrates the regular distributed design of Shor’s
algorithm and highlights the instances of idle time that occur
during the scheduling of CU2i operations on the work register
when only a single ebit channel is used.

When multiple ebit channels are available, distribution tasks
can be parallelized, as illustrated in Figure 15 for the regular
design. While one CU2i operation is in progress, the ebit for
the next CU2i+1

can be generated, and the starting process for
the next operation can be executed. Since the next CU2i+1

9

H

H

U1

H

S
E

G G

U2

G

S

S
E

Fig. 15: The regular distributed design of Shor’s algorithm
utilizing two ebit channels to eliminate idle time in the work
register caused by ebit generation (G), start process (S), and
end process (E). The idle period reduction is achieved by
alternating the two ebit channels, allowing the scheduling
of distribution processes to occur simultaneously to CU2i

operations.

works on a different data qubit, it can proceed while the
current CU2i is running. Furthermore, the next CU2i+1

does
not need to wait for the ending process of the previous one, as
it can be processed in parallel. By alternating between two ebit
channels, similar to the alternating design for the monolithic
setup, the idle time in the work register can be reduced.

The benefit of using more ebit channels depends on both
the delay of the CU2i operations and the time required for
ebit generation. If the ebit generation process is too slow, it
cannot run fully in parallel with a CU2i gate and will delay
the next CU2i+1

operation. With two ebit channels, during the
time of one CU2i gate, the start process (S), ebit generation
(G), and end process (E) must all be completed to avoid idle
time. With three ebit channels, the next ebit must be ready
after execution of two gates, CU2i and CU2i+1

. Similarly,
with four ebit channels, the next ebit must be ready after three
gates, CU2i , CU2i+1

, and CU2i+2

and so on. This sets the
condition for zero idle time with k ebit channels, meaning that
a CU2i+k

operation will not be delayed if the full distribution
block (G, S, E) has been executed during all the previous
k − 1 gates, CU2i , CU2i+1

, ..., CU2i+k−1

:

k−1∑
j=0

tCU2i+j ≥ t(GSE) ∀i (16)

For large m, a looser bound can be derived by using the av-
erage CU2i gate delay t̄CU , which approximates Equation 16
for large m:

(k − 1)t̄CU ≥ t(SGE) (17)

We investigate the amount of idle time from distribution
that can be mitigated by analyzing how the delay of distri-
bution processes contributes to the overall circuit delay of
Equation (11):

tC = tH +

m−1∑
i=0

tCU2i + δP + δD (18)

The initial Hadamard and the CU2i operations still have to be
executed sequentially, so their delays will always contribute
to the overall circuit delay and there can be delay from
phase processing. The additional delay based on distribution is
denoted as δD and depends on the amount and speed of EJPP
channels used, as well as the duration of CU2i operations.
We split δD into mitigatable delay δMD and unavoidable delay
δ¬M
D due to distribution:

δD = δMD + δ¬M
D (19)

The ebit generation and start process for the first CU2i gate
will inevitably contribute to the circuit delay, as they can
not be parallelized. Similarly, the final termination process
cannot be executed concurrently with the last CU2m−1

gate.
Combined, the unavoidable delay is equal to the delay of one
full distribution block (G, S, E):

δ¬M
D = t(GS) + tE = t(GSE) (20)

For the other distribution operations, if the other operations are
long enough and the critical path goes through the CU2i gates
or phase processing, no delay of the distribution operation
processing contributes to the circuit delay. On the other hand,
if the CU2i and phase processing operations are instant or
not running in parallel, all distribution delay contributes.
Therefore, the mitigatable delay from distribution processes
is bound by:

0 ≤ δMD ≤ tE +

m−2∑
i=1

t(GSE) + t(SG)

= (m− 1)t(GSE)

(21)

In principle, these bounds apply to all setups with multiple
ebit channels and all three monolithic designs (i.e., regular,
iterative, and alternating), though for the iterative design, the
start and end processes cannot be parallelized because all
operations (S, E, and CU2i) act on the same single data qubit.
It is important to note, that only in the case of the iterative
design with a single ebit channel (i.e. where every operation is
sequential) the phase processing and distribution process delay
contribution independently add to the overall circuit delay.
However, if multiple data qubits are used, phase processing
can run in parallel with ebit generation and CU gates on the
work register, reducing the overall idle time. Similarly, when
multiple ebit channels are used, distribution process can be
parallelized and the delay contributions δP and δD are highly
dependent on one another. In these cases, the total idle time
depends on which operation becomes the bottleneck in the
computation, determining the critical path.

IV. METHOD

To evaluate the impact of our proposed design approaches
on circuit delay, we selected modular exponentiation circuits
from available resources and implemented them using the
Qiskit framework [72]. Since the performance of the de-
signed circuits depends on the latency of primitive oper-
ations supported by the targeted hardware, we constructed
both monolithic and distributed quantum computing models
in accordance with existing literature and available quantum
systems [23], [25]–[27], [44], [45], [49], [62], [73]–[95].

10

A. QPU Modeling
For both monolithic and distributed setups, we adopted a

generic basis gate set {I,X,H, P (θ), CX}, requiring transpi-
lation only for gates with multiple controls and SWAP gates.
Additionally, we did not impose a specific qubit topology,
eliminating the need for extra SWAP gates to enable two-
qubit interactions. The discussed parallelization approaches
are compatible with any quantum hardware platform. Three
widely used platforms were selected for the experiments —
superconducting, ion-trap, and neutral-atom-based QPUs —
where ebit generation has been experimentally demonstrated
and dynamic circuits are supported. For superconducting
QPUs, we used IBM Eagle and IBM Heron characteristics
as benchmarks for gate execution times, measurements, and
resets, leveraging their accessibility through the IBM Quantum
Platform [73]. To map gate times to our chosen generic basis
gate set, we computed the average single-qubit gate time (tq1),
and two-qubit gate time (tq2). A detailed list of extracted
backend properties is provided in Table II.

Superconducting Backend Properties
Backend tq1 tq2 tmeasure treset
Eagle sherbrooke 57 ns 533 ns 1216 ns 1276 ns
Heron r1 torino 32 ns 68 ns 1560 ns 1708 ns
Heron r2 fez 24 ns 84 ns 1560 ns 1584 ns
Heron r2 marrakesh 36 ns 68 ns 2100 ns 2236 ns

TABLE II: Average delays for single-qubit gates (tq1), two-
qubit gates (tq2), as well as reset (treset) and measurement
(tmeasure) times for superconducting QPUs from IBM [73].

For ion-trap QPUs, we similarly extracted execution times
for the IonQ Aria and IonQ Forte systems from the IonQ
cloud [74], as reported in Table III.

Ion-Trap Backend Properties
Backend tq1 tq2 tmeasure treset
IonQ Aria 1 135 µs 600 µs 300 µs 20 µs
IonQ Aria 2 135 µs 600 µs 50 µs 15 µs
IonQ Forte 130 µs 970 µs 150 µs 50 µs

TABLE III: Average delays for single-qubit gates (tq1), two-
qubit gates (tq2), as well as reset (treset) and measurement
(tmeasure) times for ion-trap QPUs from IonQ [74]

Regarding neutral atom QPUs, while QuEra systems [75]
are available via cloud access, they are restricted to analog
quantum computing and do not support quantum circuits.
Therefore, we based our model (see Table IV) on recent
advancements in gate-based quantum computing from the
literature [44], [45], [49], [76]–[83].

Finally, we picked one representative system from each
platform for further analysis (see Table V): IonQ Forte for
ion-trap QPUs, IBM Heron (ibm torino) for superconducting
QPUs, and a neutral-atom QPU based on the reports in [49]2.

B. DQC Modeling
As there are is no DQC hardware publicly available yet,

we cannot directly extract execution times for distributed

2The reset duration for the neutral atom QPU model is modeled as the
combined time of a measurement followed by a single-qubit gate, as no
specific values have been reported.

Neutral Atom Backend Properties
Backend tq1 tq2 tmeasure treset
[76] 250 ns/4.1 µs 416 ns 6 ms N/A
[49] ∼2 µs ∼400 ns ∼10 ms N/A
[80] N/A ∼250 ns N/A N/A
[81] N/A ∼110 ns N/A N/A
[82] N/A ∼6.5 ns N/A N/A
[45] N/A N/A 4 ms N/A

TABLE IV: Reported average delays for single-qubit gates
(tq1), two-qubit gates (tq2), as well as reset (treset) and mea-
surement (tmeasure) times for neutral atom quantum computers
in the literature.

Backend Properties
Backend tq1 tq2 tmeasure treset
IonQ Forte 130 µs 970 µs 150 µs 50 µs
IBM Heron 32 ns 68 ns 1560 ns 1708 ns
Neutral Atom 2 µs 400 ns 10 ms 10.002 ms

TABLE V: Average delays for single-qubit gates (tq1), two-
qubit gates (tq2), as well as reset (treset) and measurement
(tmeasure) times for the selected experimental setups: Ion-trap
(IonQ Forte), superconducting (IBM Heron), and neutral atom
setups chosen for experiments.

operations. Instead, we have to rely on models based on
experimental DQC setups. We assume a distribution model
where QPUs are interconnected via quantum and classical
channels, with ebits facilitating non-local gate execution. Our
parallelization approach requires only two QPUs and does
not assume a specific network architecture. For simplicity,
we consider a direct connection between the two systems,
eliminating the need for routing through quantum nodes,
quantum repeaters, or entanglement swapping.

Since Qiskit does not yet support a distributed circuit model,
we constructed circuits in which qubits are divided into subsets
corresponding to the first and second QPU, along with qubit
pairs designated for ebit channels. The ebit generation process
is modeled using a Hadamard and a CNOT gate, with modified
execution times (tebitH , tebitCX

) representing the ebit generation
time (tebit).

The ebit generation between distant QPUs has been exper-
imentally demonstrated using photonic quantum communica-
tion, coupled with computing platforms based on atoms [84]–
[88], ion traps [89], [90], [96], diamonds [91], and supercon-
ductors [92]–[94]. Based on these studies, we calculated a re-
alistic range of ebit generation times (tebit) for our three chosen
hardware platforms, as shown in the following paragraphs.

Our long-range ebit generation model is based on [62],
which assumes a neutral-atom platform. In this model, we
assume a local heralded entanglement generation between
a telecom photon and a local qubit for both QPUs. The
probability of successful local entanglement generation is
given by:

p = phtνhνt (22)

where pht is the photon generation probability, νh is the
heralding- and νt the entangling detector efficiency. After both
QPUs send their entangled photons, a photonic Bell state
measurement (BSM) at a midpoint between them generates

11

the end-to-end ebit. The success probability of this process is:

pe =
1

2
νop

2e
−d
L0 (23)

where νo is the optical BSM efficiency, d is the link length, and
L0 is the attenuation length of the optical fiber. The average
time for a successful (Ts) and failed (Tf) entanglement attempt
is given by:

Ts = τp +max{τh, τt +
d

cf
+ τo} (24)

Tf = τp +max{τh, τt +
d

cf
+ τo, τc} (25)

where τp is the time required to excite the qubit, τh is the
herald-cavity time, τt is the telecom-cavity time, τo is the
optical BSM time, cf is the speed of light in the optical
fiber, d

cf
accounts for the time it takes for the telecom photons

to reach the midpoint and for the classical acknowledgement
being sent back from the BSM, and τc represents the additional
time required for a local qubit reset in case of a failed
entanglement attempt.

Overall the expected entanglement generation time is then
calculated as:

T =
peTs + (1− pe)Tf

pe
(26)

For neutral-atom systems, we use parameter values com-
monly found in the literature [84], [85]:

pht = 0.53, νh, νt = 0.8, νo = 0.39,

L0 = 22km, τo = τa = τt = 10µs, cf = 2 · 108m/s,
τp = 5.9µs, τh = 20µs, τd = 100µs

For distances ranging from 1–50 km, these parameters yield
ebit generation times between 5–115ms.3. A similar heralding
approach has been demonstrated for superconducting sys-
tems [93], with reported ebit generation times between 10–
1000µs. For ion trap QPUs, ebit generation times of approxi-
mately ∼ 5.5ms have been observed over short distances [90],
while for longer distances (up to 230m), the reported range is
2-17s [89].

These values represent optimistic estimates, as our model
does not account for additional factors such as entanglement
swapping, quantum repeaters, or entanglement purification, all
of which would reduce the success probability of end-to-end
ebit generation and increase the overall generation time.

C. Modular Exponentiation Circuits

Only a limited number of circuits are available for Shor’s al-
gorithm [23]. The circuits presented in [25]–[27] are manually
designed for small values of N , optimized for minimal width
and depth to enable early demonstrations on NISQ hardware.
Additionally, MQT Bench [95] provides fixed Shor circuits for
N = 9, 15, 821 as benchmarks for design evaluations.

We used the QRISP [23] framework, which offers a high-
level interface for generating circuits for arbitrary N with

3We assume no coherence time restrictions, as in [62], which could
otherwise further constrain the capacity of an ebit channel.

various arithmetic adders [8], [11], [12], [97]. For our ex-
periments, the default Fourier-adder [12] was used. Since the
proposed approaches are independent of specific arithmetic
implementations, they can seamlessly integrate with any of the
mentioned circuits. For the optimized circuits, CU operations
were manually designed based on the design details provided
in the relevant papers. In the case of QRISP, the underlying
factorization function was used to extract CU operations,
which were then incorporated into the Qiskit [72] environment.
In general, the choice of the parameter a in the modular
exponentiation operation can influence both circuit depth and
execution time. However, the parameter a was consistently
set to 2 in our evaluation to keep the number of experiments
manageable.

D. Delay Calculation

To determine the circuit delay in practice, a dummy source
(Sc) and sink (Sk) vertex are added in the beginning and end
of the WDAG, respectively, and the longest path from source
to sink (Sc⇝ Sk) is computed. Unlike the WDAG definition,
weighted graphs for path calculations typically assign weights
to edges. However, without loss of generality, these weights
can be transferred from a vertex v’s instruction to all its
incoming edges (., v), as every path passing through v must
traverse at least one of its incoming edges. Since the graph is
acyclic, a path will use at most one incoming edge 4.

For a DAG, the longest path can be efficiently determined
using a topological sorting of its vertices. When generating
quantum circuits programmatically (e.g., in Qiskit), operations
are typically appended sequentially to a queue-like list, in-
herently forming a topological order of V. If the circuit is
structured in this manner, its longest path can be computed
directly. The space complexity of this calculation is O(V), as it
requires storing each vertex’s longest distance from the source
and its predecessor along the longest path. However, if only
the path length is needed, storing just the distance suffices. In
quantum circuits, further optimization is possible, i.e., instead
of storing distances for all vertices, only distances associated
with individual qubits and classical bits need to be maintained.
Since each operation can act on at most all available bits, the
number of incoming edges is limited to the number of qubits
and classical bits. By tracking which bits correspond to an
edge, we can further reduce storage requirements. Algorithm 1
presents this space-efficient approach for computing circuit
delay.

In our experiments, we applied different weight mappings
for this delay calculation. Specific instructions such as re-
set, measure, and ebit-related operations (ebith, ebitCX) were
assigned distinct weights, while all other instructions were
weighted using the average values tq1 and tq2 . Since ebit
generation is represented by a Hadamard and CNOT gate
rather than a detailed physical model, we set ebith = 0
and allocate the entire execution time to ebitCX, as outlined

4To accurately represent the weights of the initial instructions, we utilize
the dummy source node (sk). Similarly, the outgoing edges (v, .) can be used
to model the weights of the instructions together with the dummy sink node
(sk).

12

Algorithm 1: Circuit Delay
Input:

Circuit as topologically sorted list:
U = [U1, . . . , UNU

],
List of circuit bits: B

Result: Circuit delay tC
t[b] = 0, ∀b ∈ B
for i = 1, . . . , NU do

Bi ← U [i].bits
ti ← U [i].delay
tmax ← max({t[b],∀b ∈ Bi})
foreach b ∈ Bi do

t[b] = tmax + ti
end

end
tC ← max({t[b],∀b ∈ B})
return tC

in subsection IV-B. This ensures a balanced execution time
distribution across the two qubits involved in the ebit channel.

To compute execution time, we considered three ap-
proaches: circuit moments, a weighted DAG method using the
NetworkX library [98], and algorithm 1. While algorithm 1 is
the most efficient, circuit moments and the weighted DAG
method serve as valuable intermediate representations for
circuit compilation tasks, justifying their additional compu-
tational cost. For our experiments, algorithm 1 was used.

V. RESULTS

We evaluated our proposed design approach across three
distinct hardware platforms: neutral atoms, superconducting
qubits, and ion traps. The analysis included two circuit
sets: optimized circuits [26], [99] and QRISP-generated cir-
cuits [23], with N sizes of up to n = 64 bits. For the
evaluation, we utilized the QPU parameters of ibm torino
heron QPU for superconducting qubits, the ionq forte QPU for
ion traps, and neutral atom QPU parameters reported in [49].

Key metrics assessed for each circuit included work register
size, gate counts (single- and two-qubit gates), and the average
delay for executing controlled unitary (CU) operations on the
selected platforms. The results are summarized in Figure 16.
The effectiveness of the proposed approach was evaluated in
both monolithic and distributed setups.

In the monolithic environment, experimental results demon-
strated that for all circuits the alternating design: (i) achieved
the same circuit depth as the corresponding regular design
across all architectures and (ii) required one additional qubit
compared to the iterative design. In the distributed envi-
ronment, experiments revealed that the depth of alternating
circuits was significantly influenced by: (i) the availability of
ebit channels, and (ii) the ebit generation time, with higher
ebit generation times requiring more than two ebit channels
to maintain performance. Detailed experimental results are
presented below.

A. Analysis in the Monolithic Setup

Initially, in the monolithic environment, we constructed
iterative, regular, and proposed alternating circuits for all
chosen values of N and calculated their delay across archi-
tectures, as shown in Figure 17. For superconducting and
ion trap QPUs, the delay of CU operations quickly outpaced
the delays of phase processing and qubit resets, even for
small N. Consequently, the mitigable idle time formed only a
negligible part of the overall circuit delay, resulting in roughly
equal performance across all monolithic designs within these
architectures.

In contrast, for neutral atoms, even at the largest tested N
(i.e., n = 64), a significant delay difference persisted between
iterative and regular/alternating designs due to Equation 10
being violated. This aligns with expectations, as measurement
and reset times for neutral atoms remain orders of magnitude
slower than gate operations. Conversely, in superconducting
QPUs, measurements and resets are only slightly slower, and
in IonQ systems, they are even faster than single- and two-
qubit operations. While the iterative design is the most qubit-
efficient design, its delay is significantly larger compared to
the other two approaches. The alternating design achieved
delays equal or close to the regular design but required only
one additional qubit compared to the iterative approach. To
explore the differences between regular and alternating designs
in neutral atoms, we computed the relative delay reduction
compared to the iterative approach (see Figure 18). The
alternating design consistently reduced delay by 50% up to
n = 50. The regular design also began with a 50% reduction
for small N but peaked at n = 25 before converging with the
alternating design’s performance at n = 50. Beyond n = 50,
both designs exhibited equal and decreasing delay reductions.

This behavior can be understood by breaking the delay
into two components: mitigable idle time and non-mitigable
operational delay (CU executions and final phase processing).
We isolated the mitigable portion by comparing the observed
delay reduction to the theoretical bound for idle time, tidle from
Equation 14, as shown in Figure 19. For small N, the mitigable
phase processing delay dominates, but only a small fraction of
idle time can be reduced via parallelization due to short CU
operations. As N increases, larger CU operations introduce
more delay, enabling both alternating and regular designs to
mitigate a greater portion of the idle time. The performance
of the regular design peaks at n = 25, where it mitigates all
idle time, while the alternating design achieves this at n = 50.

The trends in Figure 18 reflect this interplay between
mitigable idle time and non-mitigable operational delay. For
the alternating design, the increase in idle time mitigation
matches the increasing CU operation delay, keeping the rela-
tive reduction constant. In contrast, the regular design initially
mitigates idle time faster than CU delay grows, leading to a
greater relative delay reduction until it reaches the limit at
n = 25. Beyond this, the diminishing significance of idle
time compared to CU delay causes a decrease in relative delay
reduction.

These results highlight the importance of tailoring design

13

29 218 227 236 245 254 263

N

0

50

100

150

200

W
o
rk

 R
e
g

is
te

r
S

iz
e

(a)

210 220 230 240 250 260

N

0

100000

200000

300000

400000

In
st
ru
ct
io
n
-C
o
u
n
t #U1q

#U2q

(b)

29 218 227 236 245 254 263

N

105

106

107

108

109

1010

A
v
e
ra

g
e
 C

U
 D

u
ra

ti
o
n

neutral_atom

ionq_forte

heron

(c)

Fig. 16: The size of the work register (a), single- and two-qubit gate counts (b) and average delay for the neutral atom,
superconducting and ion trap weights (c) for the CU gates of the experiments. The arithmetic circuits were generated using
QRISP [23].

t(CU)

29 218 227 236 245 254 263

N

0

2

4

6

D
e
la

y
 (

s)

iterative

alternating

regular

(a)

29 218 227 236 245 254 263

N

0.00

0.25

0.50

0.75

1.00

1.25
D

e
la

y
 (

n
s)

1e8

(b)

29 218 227 236 245 254 263

N

0.00

0.25

0.50

0.75

1.00

1.25

D
e
la

y
 (

n
s)

1e12

(c)

Fig. 17: Monolithic delay scaling of the iterative, alternating, regular approach for neutral atom (a), IBM superconducting (b)
and IonQ ion-trap (c) weights.

29 218 227 236 245 254 263

N

0

20

40

60

80

100

R
e
la

ti
v
e
 D

e
la

y
 R

e
d

u
ct

io
n
 (

%
)

iterative

alternating

regular

Fig. 18: Relative delay reduction of the alternating and regular
design compared to the delay of the iterative design for the
neutral atom QPU weighting.

29 218 227 236 245 254 263

N

0

20

40

60

80

100

R
e
la

ti
v
e
 M

o
n
o
lit

h
ic

B
o
u
n
d
 M

it
ig

a
ti

o
n
 (

%
)

iterative

alternating

regular

Fig. 19: Relative delay mitigation compared to the idle time
bound of Equation 14 for neutral atom QPU weighting.

choices to the QPU characteristics and the size of N. For
superconducting and ion trap systems, the iterative design
consistently performs best, as it is the most qubit-efficient
approach and all designs have similar delay. For neutral
atoms, the regular design is advantageous for smaller N, while
for larger N, the alternating design offers comparable delay
efficiency to the regular design with the added benefit of
requiring only one additional qubit over the iterative approach.

B. Analysis in the Distributed Setup

For the distributed parallelization, we extended the mono-
lithic setup by integrating two QPUs connected via one to four
ebit channels. The circuits for all the selected values of N
from the monolithic experiments were recompiled, with their
work and data registers partitioned across separate QPUs. We
then evaluated the circuit delay across architectures where the
ebit generation times were determined based on the hardware
specifications outlined in subsection IV-B.

Figure 20 provides an overview of all conducted experi-
ments. For a given value of N and ebit generation time tebit,
the delay of compiled circuits using one to four ebit channels is
compared. A higher number of ebit channels is preferred only
if it results in a lower circuit delay compared to configurations
with fewer channels, even by a small margin. This approach
reflects the high cost of ebit channels, emphasizing that their
increased usage should be justified by more than a slight delay
reduction.

We can also see from Figure 20 that faster ebit generation
times require fewer ebit channels, as the same ebit generation
rate can be achieved with fewer channels. Additionally, for

14

214 225 236 247 258

N

0.25

0.50

0.75

1.00

1e8

E
b

it
 G

e
n
e
ra

ti
o
n
 T

im
e
 (

s)

(a)

214 225 236 247 258

N

0.0

0.2

0.4

0.6

0.8

1.0 1e6

(b)

214 225 236 247 258

N

0.0

0.5

1.0

1.5

1e10

1

2

3

4 O
p

tim
a
l #

E
JP

P

(c)

Fig. 20: Distributed delay scaling behavior for different ebit generation times and number N to factor. The heatmaps show
the optimal choice for the number of ebit channels (denoted as EJPP) for the neutral atom (a), IBM superconducting (b) and
IonQ ion-trap (c) weights.

214 225 236 247 258

N

0.25

0.50

0.75

1.00

E
b

it
 G

e
n
e
ra

ti
o
n
 T

im
e
 (

s)

1e8

(a)

214 225 236 247 258

N

0.25

0.50

0.75

1.00

1e8

(b)

214 225 236 247 258

N

0.25

0.50

0.75

1.00

1e8

1

2

3

4 O
p

tim
a
l #

E
JP

P

(c)

Fig. 21: Distributed delay scaling behavior for different ebit generation times and number N to factor. The heatmaps show the
optimal choice for the number of ebit channels (denoted as EJPP) for the neutral atom setup and the iterative(a), alternating
(b) and regular design (c). The difference in phase processing idle time from the monolithic designs lead to different behaviors
when distributed.

larger values of N , fewer ebit channels are needed because
the required ebit generation rate decreases; slower ebit gener-
ation becomes acceptable since CU operations take longer to
complete.

In the ion trap and superconducting setups, distributing the
three monolithic design choices shows no significant differ-
ences, which aligns with the monolithic analysis where all
three approaches exhibited similar delays. However, the neu-
tral atom setup behaves differently, as illustrated in Figure 21.
In the iterative approach, fewer ebit channels are required
compared to the alternating and regular cases. With very fast
ebits, even a single ebit channel is sufficient. Conversely, the
regular approach typically requires four ebit channels, with
three being sufficient for larger N and fast ebits. The alter-
nating case falls in between, requiring two ebit channels for
fast ebits and gradually more for slower ebits. This behavior
is linked to the parallel execution of ebit generation and phase
processing during CU operations. In the iterative setup, phase
processing takes a longer time, allowing ebit generation to be
slower without causing idle time. In contrast, the regular setup
minimizes idle time during phase processing, necessitating
faster ebit generation to avoid distribution-related idle time.

To analyze the transition points for optimal ebit channel
configurations, we first examined the delay implications of
multiple ebit channels by evaluating their behavior as N

scales, with fixed ebit times for a specific hardware setup.
Figure 22a illustrates the delay for one to four ebit chan-
nels in the alternating design with tebit = 0.55ms for the
superconducting hardware configuration. Notably, the setup
with a single ebit channel shows a significantly higher delay
than the others. This is expected, as a single ebit channel
offers no parallelization, resulting in prolonged idle times.
Figure 22b presents the reduction in delay relative to the single
ebit channel setup. For small N , ebit generation constitutes the
majority of the delay. With k ebit channels, k ebit generations
can occur simultaneously, reducing the delay to approximately
1/k of that with no parallelization. However, as N increases,
the performance gains from additional ebit channels diminish.

We also explored a scenario where the hardware is not
fixed, and instead, the number to be factored is predefined,
requiring the selection of the optimal distribution hardware
(ebit channel count and speed). Figure 23 shows the delay
scaling and relative delay reduction (compared to the delay
with one ebit channel) for a fixed 45 bit number N . For very
small ebit generation times, multiple ebit channels provide
minimal benefit, as the impact of mitigable delay on the
overall delay is negligible. However, as ebit generation times
increase, parallelization becomes advantageous, with only two
ebit channels being sufficient for effective parallelism. As seen
in Figure 23b, when the ebit generation time approaches the

15

29 218 227 236 245 254 263

N

0.0

0.5

1.0

1.5

2.0

D
e
la

y
 (

n
s)

1e8

#EJPP
4

3

2

1

(a) Scaling depth

29 218 227 236 245 254 263

N

0

20

40

60

80

100

R
e
la

ti
v
e
 D

e
la

y
 R

e
d
u
ct

io
n
 (

%
)

(b) Scaling delay reduction

Fig. 22: Scaling of the delay (a) and delay reduction (b) for
different N and fixed ebit generation time of 0.55ms for the
ion trap setup.

0.0 0.5 1.0 1.5 2.0
Ebit Generation Time (s) 1e7

0.5

1.0

1.5

2.0

D
e
la

y
 (

n
s)

1e12

4

3

2

1

#EJPP
4

3

2

1

(a)

0.0 0.5 1.0 1.5 2.0
Ebit Generation Time (s) 1e7

0

20

40

60

80

100

R
e
la

ti
v
e
 D

e
la

y
 R

e
d
u
ct

io
n
 (

%
)

1 dCU
2 dCU

(b)

Fig. 23: Scaling of the delay (a) and delay reduction (b) for
different ebit times and a fixed N with n = 45 bits for the ion
trap setup.

average t(CU) delay, three and four ebit channels start to
outperform two. This is in line with the condition outlined
in Equation 16, where ebit generation exceeds the duration
of a single CU operation, making alternating between two
channels inadequate. Similarly, when the ebit generation time
approaches 2t(CU), three ebit channels no longer suffice, and
four ebit channels are necessary to mitigate as much idle time
as possible.

0.0 0.5 1.0 1.5 2.0
Ebit Generation Time (s) 1e7

0

20

40

60

80

100

R
e
la

ti
v
e
 E

b
it

 T
im

e

M
it

ig
a
ti

o
n
 (

%
)

1 dCU
2 dCU

#EJPP
4

3

2

1

Fig. 24: Relative mitigation of idle time compared to the bound
of idle time from distribution (Equation 17) for different ebit
times and a fixed N with n = 45 bits for the ion trap setup.
For small ebit times, circuit transpilation in overlaps between
CU operations lead to mitigation above 100%.

Figure 24 demonstrates the extent to which parallelization
mitigates the theoretical time bound (Equation 21) for dis-
tributed computing, including ebit generation and the EJPP
start- and end-processes. For small ebit generation times,
setups with multiple ebit channels can eliminate all idle time
except for the unavoidable initial ebit generation and start pro-
cess. As the ebit generation time increases, we again observe
the thresholds of t(CU) and 2t(CU), where two and three ebit
channels no longer provide optimal efficiency. For large ebit
times, the time required for distribution dominates the delay
and the results converge with those shown in Figure 23b. In
this regime, with k ebit channels, ebit generations are split
into sets of k, which can be executed in parallel, reducing
the circuit delay to 1/k. This also reveals diminishing returns
when moving from k to k + 1 ebit channels.

These findings highlight how the performance of Shor’s
algorithm implementations is influenced by available hardware
and problem size, providing valuable insights for making
optimal design decisions. A mid-level perspective of multiple
designs allows for more flexibility on leveraging a targeted
hardware efficiently. As our study shows, the difference in
execution time between different designs and ebit channel
parallelization strategies strongly depends on the hardware
platform, problem size, and distribution setup. An analysis like
ours can help determine how much of a targeted hardware’s
available compute resources can be effectively utilized for
performance improvements. For instance, there may be a trade-
off between having multiple slower ebit channels or fewer
faster channels, depending on the scale of Shor’s algorithm
being run. Other possible use cases are scenarios of multiple
programs running on a single QPU or a QPU cluster. In such
cases, a workload manager [67] could evaluate whether the

16

benefit of more ebit channels for one program justifies limiting
the resources available for others. Integrating our proposed
analysis tools and designs to such tools would improve their
allocation and scheduling capabilities.

VI. CONCLUSION

In this work, we investigated mid-level designs for Shor’s
algorithm from a timing perspective and introduced a new
design for reducing idle time while preserving qubit efficiency.
By reordering tasks to enable simultaneous execution, we
improved overall execution time and extended these optimiza-
tions to distributed quantum systems. In distributed setups,
we identified idle time bottlenecks caused by distribution
protocols and proposed mitigation strategies using multiple
ebit channels.

To systematically account for hardware-specific execution
times, we adapted static timing analysis (STA) techniques
from classical circuit design for quantum circuit optimization.
This allowed us to incorporate gate execution delays and
communication overhead in our design process. We evaluated
our approaches on neutral atom, superconducting, and ion-
trap platforms—both monolithic and distributed—by integrat-
ing modular arithmetic circuits from the QRISP framework.
Our results confirmed that the proposed alternating design
effectively reduces idle time and demonstrated how hardware
constraints can inform circuit optimization in both monolithic
and distributed settings.

Our approach complements existing arithmetic circuit opti-
mization techniques by enhancing execution efficiency through
task scheduling and idle time reduction. While prior research
on Shor’s algorithm has primarily focused on minimizing
circuit depth and qubit count, we show that task reordering
at a mid-level abstraction provides additional performance
gains, especially when considering execution times of actual
hardware.

Similarly, our mid-level approach to distributed execution
does not replace necessary low-level task distribution but
instead adds another layer of refinement for ordering tasks
and managing information exchange. As large-scale quantum
networks emerge, efficient scheduling and synchronization of
distributed tasks will become increasingly critical.

Beyond Shor’s algorithm, our findings suggest that simi-
lar parallelization and idle time reduction techniques could
benefit other quantum algorithms with layered computational
structures. QPE-based algorithms are a natural extension due
to their structural similarities, but broader applications in
quantum computing may also benefit from improved task
scheduling and distribution-aware execution strategies.

Our study underscores the importance of hardware-aware
quantum circuit design and serves as a foundation for inte-
grating STA-inspired methods into quantum circuit compila-
tion and design automation. A promising direction for future
research is exploring additional timing-based optimization
techniques for other quantum algorithms, particularly in error-
corrected quantum systems, where logical operations introduce
further time constraints.

An important next step is to validate our designs on real
hardware once distributed quantum computing systems be-

come publicly available. While our study focuses on relatively
large circuits, factoring 2048-bit RSA keys remains well
beyond current capabilities. Reaching this scale will likely
necessitate error-corrected quantum systems [5], reinforcing
the relevance of our techniques for logical quantum computing
as a key area for future research.

Finally, as distributed quantum computing advances, new
challenges will arise in synchronization, task coordination,
and ebit generation constraints. Our methods provide an initial
step toward addressing these challenges by reducing idle time,
and future research can further refine task scheduling and
synchronization strategies to enhance distributed quantum exe-
cution, contributing to the broader goal of scalable, distributed
quantum computation.

AUTHOR CONTRIBUTIONS

M.S., A.K., L.W. and E.M. conducted the research. M.S.
with the help from L.W. wrote the code, A.K. and E.M.
formalized the approach, E.M. and F.K. supervised the work,
E.M. provided directions, M.S. drafted the initial manuscript
and created the figures. All authors contributed to the
manuscript’s text and have read, reviewed and approved the
final manuscript.

ACKNOWLEDGMENT

The authors would like to thank Hans Hohenfeld, Gunnar
Schönhoff and Felix Wiebe for their helpful feedback. This
work was supported by the German Ministry for Economic Af-
fairs and Climate Action (BMWK) and the German Aerospace
Center (DLR) in the project QuMAL-KI under project num-
bers 50RA2208A (DFKI) and 50RA2208B (University of
Bremen).

17

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Annu. Symp. Found. Comput. Sci., 1994, pp. 124–134.

[2] V. Bhatia and K. Ramkumar, “An efficient quantum computing technique
for cracking rsa using shor’s algorithm,” in 2020 IEEE 5th international
conference on computing communication and automation (ICCCA).
IEEE, 2020, pp. 89–94.

[3] J. A. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, “Post-quantum
cryptography: state of the art,” The New Codebreakers: Essays Dedi-
cated to David Kahn on the Occasion of His 85th Birthday, pp. 88–108,
2016.

[4] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol.
549, no. 7671, pp. 188–194, 2017.

[5] C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[6] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, “Efficient
networks for quantum factoring,” Physical Review A, vol. 54, no. 2, p.
1034, 1996.

[7] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary
arithmetic operations,” Physical Review A, vol. 54, no. 1, p. 147, 1996.

[8] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

[9] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A
logarithmic-depth quantum carry-lookahead adder,” arXiv preprint
quant-ph/0406142, 2004.

[10] A. Pavlidis and D. Gizopoulos, “Fast quantum modular exponenti-
ation architecture for shor’s factorization algorithm,” arXiv preprint
arXiv:1207.0511, 2012.

[11] C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2,
p. 74, 2018.

[12] T. G. Draper, “Addition on a quantum computer,” arXiv preprint quant-
ph/0008033, 2000.

[13] S. Beauregard, “Circuit for shor’s algorithm using 2n+3 qubits,” 2003.
[14] Y. Takahashi and N. Kunihiro, “A quantum circuit for shor’s factoring

algorithm using 2n + 2 qubits,” Quantum Info. Comput., vol. 6, no. 2,
p. 184–192, mar 2006.

[15] T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n+
2 qubits with toffoli based modular multiplication,” arXiv preprint
arXiv:1611.07995, 2016.

[16] M. Caleffi, M. Amoretti, D. Ferrari, J. Illiano, A. Manzalini, and A. S.
Cacciapuoti, “Distributed quantum computing: a survey,” Computer
Networks, vol. 254, p. 110672, 2024.

[17] A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When
entanglement meets classical communications: Quantum teleportation
for the quantum internet,” IEEE Transactions on Communications,
vol. 68, no. 6, pp. 3808–3833, 2020.

[18] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K.
Lo, and I. Tzitrin, “Quantum repeaters: From quantum networks to the
quantum internet,” Reviews of Modern Physics, vol. 95, no. 4, p. 045006,
2023.

[19] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, “Compiler
design for distributed quantum computing,” vol. 2, pp. 1–20, 2021.

[20] D. Ferrari, S. Carretta, and M. Amoretti, “A modular quantum compi-
lation framework for distributed quantum computing,” vol. 4, pp. 1–13,
2023.

[21] S. Harris and D. Harris, Digital design and computer architecture.
Morgan Kaufmann, 2015.

[22] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Electronic
design automation for IC implementation, circuit design, and process
technology. CRC Press, 2017.

[23] R. Seidel, S. Bock, R. Zander, M. Petrič, N. Steinmann, N. Tcholtchev,
and M. Hauswirth, “Qrisp: A framework for compilable high-
level programming of gate-based quantum computers,” arXiv preprint
arXiv:2406.14792, 2024.

[24] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[25] U. Skosana and M. Tame, “Demonstration of Shor’s factoring algorithm
for N = 21 on IBM quantum processors,” Sci Rep, vol. 11, no. 1, p.
16599, Aug 2021.

[26] M. Amico, Z. H. Saleem, and M. Kumph, “Experimental study
of shor’s factoring algorithm using the ibm q experience,” Phys.
Rev. A, vol. 100, p. 012305, Jul 2019. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.100.012305

[27] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines,
S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable shor
algorithm,” Science, vol. 351, no. 6277, pp. 1068–1070, 2016.

[28] F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre,
A. Javadi-Abhari, and E. Z. Zhang, “Exploiting qubit reuse through
mid-circuit measurement and reset,” arXiv preprint arXiv:2211.01925,
2022.

[29] S. Brandhofer, I. Polian, and K. Krsulich, “Optimal qubit reuse for near-
term quantum computers,” in 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE), vol. 1. IEEE, 2023, pp.
859–869.

[30] A. D. Córcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev, J. M.
Chow, and J. M. Gambetta, “Exploiting dynamic quantum circuits in
a quantum algorithm with superconducting qubits,” Physical Review
Letters, vol. 127, no. 10, p. 100501, 2021.

[31] C. Ryan-Anderson, N. Brown, M. Allman, B. Arkin, G. Asa-Attuah,
C. Baldwin, J. Berg, J. Bohnet, S. Braxton, N. Burdick et al., “Imple-
menting fault-tolerant entangling gates on the five-qubit code and the
color code,” arXiv preprint arXiv:2208.01863, 2022.

[32] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer et al.,
“Demonstration of the trapped-ion quantum ccd computer architecture,”
Nature, vol. 592, no. 7853, pp. 209–213, 2021.

[33] E. Bäumer, V. Tripathi, D. S. Wang, P. Rall, E. H. Chen, S. Majumder,
A. Seif, and Z. K. Minev, “Efficient long-range entanglement using
dynamic circuits,” PRX Quantum, vol. 5, no. 3, p. 030339, 2024.

[34] E. Bäumer and S. Woerner, “Measurement-based long-range entangling
gates in constant depth,” arXiv preprint arXiv:2408.03064, 2024.

[35] K. C. Smith, E. Crane, N. Wiebe, and S. Girvin, “Deterministic constant-
depth preparation of the aklt state on a quantum processor using fusion
measurements,” PRX Quantum, vol. 4, no. 2, p. 020315, 2023.

[36] K. C. Smith, A. Khan, B. K. Clark, S. Girvin, and T.-C. Wei, “Constant-
depth preparation of matrix product states with adaptive quantum
circuits,” arXiv preprint arXiv:2404.16083, 2024.

[37] R. B. Griffiths and C.-S. Niu, “Semiclassical fourier transform for
quantum computation,” Phys. Rev. Lett., vol. 76, pp. 3228–3231, Apr
1996.

[38] E. Bäumer, V. Tripathi, A. Seif, D. Lidar, and D. S. Wang, “Quantum
fourier transform using dynamic circuits,” Physical Review Letters, vol.
133, no. 15, p. 150602, 2024.

[39] E. Knill, G. Ortiz, and R. D. Somma, “Optimal quantum measurements
of expectation values of observables,” Phys. Rev. A, vol. 75, p.
012328, Jan 2007. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.75.012328

[40] M. Dobšı́ček, G. Johansson, V. Shumeiko, and G. Wendin, “Arbitrary
accuracy iterative quantum phase estimation algorithm using a single
ancillary qubit: A two-qubit benchmark,” Phys. Rev. A, vol. 76, p.
030306, Sep 2007. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.76.030306

[41] S. Parker and M. B. Plenio, “Efficient factorization with a single pure
qubit and log n mixed qubits,” Physical Review Letters, vol. 85, no. 14,
p. 3049, 2000.

[42] M. Mosca and A. Ekert, “The hidden subgroup problem and eigenvalue
estimation on a quantum computer,” in NASA International Conference
on Quantum Computing and Quantum Communications. Springer,
1998, pp. 174–188.

[43] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and
J. L. O’brien, “Experimental realization of shor’s quantum factoring
algorithm using qubit recycling,” Nature photonics, vol. 6, no. 11, pp.
773–776, 2012.

[44] J. W. Lis, A. Senoo, W. F. McGrew, F. Rönchen, A. Jenkins, and A. M.
Kaufman, “Midcircuit operations using the omg architecture in neutral
atom arrays,” Physical Review X, vol. 13, no. 4, p. 041035, 2023.

[45] T. Graham, L. Phuttitarn, R. Chinnarasu, Y. Song, C. Poole, K. Jooya,
J. Scott, A. Scott, P. Eichler, and M. Saffman, “Midcircuit measurements
on a single-species neutral alkali atom quantum processor,” Physical
Review X, vol. 13, no. 4, p. 041051, 2023.

[46] S. Niu, E. Kokcu, A. Mitra, A. Szasz, A. Hashim, J. Kalloor,
W. A. de Jong, C. Iancu, and E. Younis, “Ac/dc: Automated
compilation for dynamic circuits,” 2024. [Online]. Available: https:
//arxiv.org/abs/2412.07969

[47] M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig, “Qubit-reuse
compilation with mid-circuit measurement and reset,” Physical Review
X, vol. 13, no. 4, p. 041057, 2023.

[48] M. Mohseni, A. Scherer, K. G. Johnson, O. Wertheim, M. Otten, N. A.
Aadit, Y. Alexeev, K. M. Bresniker, K. Y. Camsari, B. Chapman,
S. Chatterjee, G. A. Dagnew, A. Esposito, F. Fahim, M. Fiorentino,

https://link.aps.org/doi/10.1103/PhysRevA.100.012305
https://link.aps.org/doi/10.1103/PhysRevA.75.012328
https://link.aps.org/doi/10.1103/PhysRevA.75.012328
https://link.aps.org/doi/10.1103/PhysRevA.76.030306
https://link.aps.org/doi/10.1103/PhysRevA.76.030306
https://arxiv.org/abs/2412.07969
https://arxiv.org/abs/2412.07969

18

A. Gajjar, A. Khalid, X. Kong, B. Kulchytskyy, E. Kyoseva, R. Li,
P. A. Lott, I. L. Markov, R. F. McDermott, G. Pedretti, P. Rao,
E. Rieffel, A. Silva, J. Sorebo, P. Spentzouris, Z. Steiner, B. Torosov,
D. Venturelli, R. J. Visser, Z. Webb, X. Zhan, Y. Cohen, P. Ronagh,
A. Ho, R. G. Beausoleil, and J. M. Martinis, “How to build a quantum
supercomputer: Scaling from hundreds to millions of qubits,” 2025.
[Online]. Available: https://arxiv.org/abs/2411.10406

[49] K. Wintersperger, F. Dommert, T. Ehmer, A. Hoursanov, J. Klepsch,
W. Mauerer, G. Reuber, T. Strohm, M. Yin, and S. Luber, “Neutral atom
quantum computing hardware: performance and end-user perspective,”
EPJ Quantum Technology, vol. 10, no. 1, p. 32, 2023.

[50] J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton,
J. J. Bollinger, D. Leibfried, C. Ospelkaus, A. P. VanDevender, and
D. J. Wineland, “Toward scalable ion traps for quantum information
processing,” New Journal of Physics, vol. 12, no. 3, p. 033031, mar 2010.
[Online]. Available: https://dx.doi.org/10.1088/1367-2630/12/3/033031

[51] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp.
1023–1030, 2008.

[52] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum
repeaters,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 21, no. 3, pp. 78–90, 2015.

[53] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters, “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–
1899, Mar 1993.

[54] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, “Optimal local
implementation of nonlocal quantum gates,” Physical Review A, vol. 62,
no. 5, p. 052317, 2000.

[55] J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andrés-Martı́nez, D. Mills,
L. Henaut, and M. Murao, “Entanglement-efficient bipartite-distributed
quantum computing,” Quantum, vol. 7, p. 1196, Dec. 2023.

[56] A. C.-C. Yao, “Quantum circuit complexity,” in Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science. IEEE, 1993, pp.
352–361.

[57] D. Bhoumik, R. Majumdar, A. Saha, and S. Sur-Kolay, “Distributed
scheduling of quantum circuits with noise and time optimization,” arXiv
preprint arXiv:2309.06005, 2023.

[58] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.

[59] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[60] H. Deng, Y. Zhang, and Q. Li, “Codar: A contextual duration-aware
qubit mapping for various nisq devices,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[61] I. Shaik and J. van de Pol, “Optimal layout synthesis for quantum circuits
as classical planning,” in 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[62] M. Caleffi, “Optimal routing for quantum networks,” Ieee Access, vol. 5,
pp. 22 299–22 312, 2017.

[63] M. Ghaderibaneh, C. Zhan, H. Gupta, and C. Ramakrishnan, “Efficient
quantum network communication using optimized entanglement swap-
ping trees,” IEEE Transactions on Quantum Engineering, vol. 3, pp.
1–20, 2022.

[64] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 62–75.

[65] T. Coopmans, S. Brand, and D. Elkouss, “Improved analytical bounds
on delivery times of long-distance entanglement,” Physical Review A,
vol. 105, no. 1, p. 012608, 2022.

[66] S. Rodrigo, D. Spanò, M. Bandic, S. Abadal, H. Van Someren, A. Ovide,
S. Feld, C. G. Almudéver, and E. Alarcón, “Characterizing the spatio-
temporal qubit traffic of a quantum intranet aiming at modular quantum
computer architectures,” in Proceedings of the 9th ACM International
Conference on Nanoscale Computing and Communication, 2022, pp.
1–7.

[67] D. Ferrari, M. Bandini, and M. Amoretti, “Execution management
of distributed quantum computing jobs,” in 2024 IEEE International
Conference on Quantum Computing and Engineering (QCE), vol. 2.
IEEE, 2024, pp. 150–154.

[68] A. Yimsiriwattana and S. J. L. Jr., “Distributed quantum computing: a
distributed Shor algorithm,” in Quantum Information and Computation
II, vol. 5436, 2004, pp. 360 – 372.

[69] R. V. Meter, W. Munro, K. Nemoto, and K. M. Itoh, “Arithmetic
on a distributed-memory quantum multicomputer,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 3, no. 4,
pp. 1–23, 2008.

[70] N. Neumann, R. van Houte, and T. Attema, “Imperfect distributed
quantum phase estimation,” in Computational Science – ICCS 2020,
V. Krzhizhanovskaya et al., Eds. Cham: Springer, 2020, pp. 605–615.

[71] P. Andres-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Ya-
mamoto, M. Murao, and R. Duncan, “Distributing circuits over hetero-
geneous, modular quantum computing network architectures,” Quantum
Science and Technology, vol. 9, no. 4, p. 045021, 2024.

[72] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R.
Johnson, and J. M. Gambetta, “Quantum computing with Qiskit,” 2024.

[73] I. Quantum, “Ibm quantum experience,” 2025. [Online]. Available:
https://quantum-computing.ibm.com

[74] “Ionq quantum cloud,” https://cloud.ionq.com/backends, accessed: 2025-
01-10.

[75] Q. C. Inc., “Quera neutral atom quantum computers,” 2025. [Online].
Available: https://www.quera.com

[76] A. Radnaev, W. Chung, D. Cole, D. Mason, T. Ballance, M. Bedalov,
D. Belknap, M. Berman, M. Blakely, I. Bloomfield et al., “A universal
neutral-atom quantum computer with individual optical addressing and
non-destructive readout,” arXiv preprint arXiv:2408.08288, 2024.

[77] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kali-
nowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner et al., “A
quantum processor based on coherent transport of entangled atom
arrays,” Nature, vol. 604, no. 7906, pp. 451–456, 2022.

[78] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi,
H. Bernien, M. Greiner, V. Vuletić, H. Pichler et al., “Parallel imple-
mentation of high-fidelity multiqubit gates with neutral atoms,” Physical
review letters, vol. 123, no. 17, p. 170503, 2019.

[79] W. Xu, A. V. Venkatramani, S. H. Cantú, T. Šumarac, V. Klüsener, M. D.
Lukin, and V. Vuletić, “Fast preparation and detection of a rydberg qubit
using atomic ensembles,” Physical Review Letters, vol. 127, no. 5, p.
050501, 2021.

[80] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz,
H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara et al., “High-
fidelity parallel entangling gates on a neutral-atom quantum computer,”
Nature, vol. 622, no. 7982, pp. 268–272, 2023.

[81] S. Jandura and G. Pupillo, “Time-optimal two-and three-qubit gates for
rydberg atoms,” Quantum, vol. 6, p. 712, 2022.

[82] Y. Chew, T. Tomita, T. P. Mahesh, S. Sugawa, S. de Léséleuc, and
K. Ohmori, “Ultrafast energy exchange between two single rydberg
atoms on a nanosecond timescale,” Nature Photonics, vol. 16, no. 10,
pp. 724–729, 2022.

[83] M. A. Norcia, W. B. Cairncross, K. Barnes, P. Battaglino, A. Brown,
M. O. Brown, K. Cassella, C.-A. Chen, R. Coxe, D. Crow,
J. Epstein, C. Griger, A. M. W. Jones, H. Kim, J. M. Kindem,
J. King, S. S. Kondov, K. Kotru, J. Lauigan, M. Li, M. Lu,
E. Megidish, J. Marjanovic, M. McDonald, T. Mittiga, J. A. Muniz,
S. Narayanaswami, C. Nishiguchi, R. Notermans, T. Paule, K. A.
Pawlak, L. S. Peng, A. Ryou, A. Smull, D. Stack, M. Stone,
A. Sucich, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro,
T. Wilkason, T.-Y. Wu, X. Xie, X. Zhang, and B. J. Bloom, “Midcircuit
qubit measurement and rearrangement in a 171Yb atomic array,”
Phys. Rev. X, vol. 13, p. 041034, Nov 2023. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.13.041034

[84] M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “An integrated
quantum repeater at telecom wavelength with single atoms in optical
fiber cavities,” Applied Physics B, vol. 122, pp. 1–15, 2016.

[85] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld,
and H. Weinfurter, “Heralded entanglement between widely separated
atoms,” Science, vol. 337, no. 6090, pp. 72–75, 2012.

[86] S. Ghosh, N. Rivera, G. Eisenstein, and I. Kaminer, “Creating heralded
hyper-entangled photons using rydberg atoms,” Light: Science & Appli-
cations, vol. 10, no. 1, p. 100, 2021.

[87] T. van Leent, M. Bock, R. Garthoff, K. Redeker, W. Zhang, T. Bauer,
W. Rosenfeld, C. Becher, and H. Weinfurter, “Long-distance distribution
of atom-photon entanglement at telecom wavelength,” Physical Review
Letters, vol. 124, no. 1, p. 010510, 2020.

[88] Y. Zhou, P. Malik, F. Fertig, M. Bock, T. Bauer, T. van Leent,
W. Zhang, C. Becher, and H. Weinfurter, “Long-lived quantum memory
enabling atom-photon entanglement over 101 km of telecom fiber,” PRX
Quantum, vol. 5, no. 2, p. 020307, 2024.

[89] V. Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. Fioretto, Y. Pu,
A. Mazloom, P. Sekatski, M. Canteri, M. Teller et al., “Entanglement of

https://arxiv.org/abs/2411.10406
https://dx.doi.org/10.1088/1367-2630/12/3/033031
https://quantum-computing.ibm.com
https://cloud.ionq.com/backends
https://www.quera.com
https://link.aps.org/doi/10.1103/PhysRevX.13.041034

19

trapped-ion qubits separated by 230 meters,” Physical Review Letters,
vol. 130, no. 5, p. 050803, 2023.

[90] L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance,
K. Thirumalai, J. Goodwin, D. Lucas, and C. Ballance, “High-rate, high-
fidelity entanglement of qubits across an elementary quantum network,”
Physical review letters, vol. 124, no. 11, p. 110501, 2020.

[91] E. Bersin, M. Sutula, Y. Q. Huan, A. Suleymanzade, D. R. Assumpcao,
Y.-C. Wei, P.-J. Stas, C. M. Knaut, E. N. Knall, C. Langrock et al.,
“Telecom networking with a diamond quantum memory,” PRX Quantum,
vol. 5, no. 1, p. 010303, 2024.

[92] J. Ang, G. Carini, Y. Chen, I. Chuang, M. Demarco, S. Economou,
A. Eickbusch, A. Faraon, K.-M. Fu, S. Girvin et al., “Arquin: ar-
chitectures for multinode superconducting quantum computers,” ACM
Transactions on Quantum Computing, vol. 5, no. 3, pp. 1–59, 2024.

[93] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lončar, M. J.
Reagor, and D. R. Englund, “Optically heralded entanglement of super-
conducting systems in quantum networks,” Physical Review Letters, vol.
127, no. 4, p. 040503, 2021.

[94] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo,
Y. Salathé, A. Akin, S. Storz, J.-C. Besse et al., “Deterministic quantum
state transfer and remote entanglement using microwave photons,”
Nature, vol. 558, no. 7709, pp. 264–267, 2018.

[95] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Bench-
marking software and design automation tools for quantum computing,”
Quantum, 2023, MQT Bench is available at https://www.cda.cit.tum.de/
mqtbench/.

[96] D. Main, P. Drmota, D. Nadlinger, E. Ainley, A. Agrawal, B. Nichol,
R. Srinivas, G. Araneda, and D. Lucas, “Distributed quantum computing
across an optical network link,” Nature, pp. 1–6, 2025.

[97] S. Wang, A. Baksi, and A. Chattopadhyay, “A higher radix architecture
for quantum carry-lookahead adder,” Scientific Reports, vol. 13, no. 1,
p. 16338, 2023.

[98] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[99] U. Skosana and M. Tame, “Demonstration of shor’s factoring algorithm
for n= 21 on ibm quantum processors,” Scientific reports, vol. 11, no. 1,
p. 16599, 2021.

https://www.cda.cit.tum.de/mqtbench/
https://www.cda.cit.tum.de/mqtbench/

	Introduction
	Background
	Shor's Algorithm
	Dynamic Circuits
	Distributed Quantum Computing
	Static timing analysis

	Parallelization of Shor's algorithm
	Task Abstraction
	Monolithic Parallelization
	Distributed Shor
	Distributed Parallelization

	Method
	QPU Modeling
	DQC Modeling
	Modular Exponentiation Circuits
	Delay Calculation

	Results
	Analysis in the Monolithic Setup
	Analysis in the Distributed Setup

	Conclusion
	References

