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In this paper, two new algorithms for dual decomposition-
based distributed optimization are presented. Both algorithms 
rely on the quadratic approximation of the dual function of the 
primal optimization problem. The dual variables are updated 
in each iteration through a maximization of the approximated 
dual function. The first algorithm approximates the dual func-
tion by solving a regression problem, based on the values of the 
dual function collected from previous iterations. The second 
algorithm updates the parameters of the quadratic approxi-
mation via a quasi-Newton scheme. Both algorithms employ 
step size constraints for the update of the dual variables. 
Furthermore, the subgradients from previous iterations are 
stored in order to construct cutting planes, similar to bun-
dle methods for nonsmooth optimization. However, instead of 
using the cutting planes to formulate a piece-wise linear over-
approximation of the dual function, they are used to construct 
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valid inequalities for the update step. In order to demonstrate 
the efficiency of the algorithms, they are evaluated on a large 
set of constrained quadratic, convex and mixed-integer bench-
mark problems and compared to the subgradient method, 
the bundle trust method, the alternating direction method 
of multipliers and the quadratic approximation coordination 
algorithm. The results show that the proposed algorithms per-
form better than the compared algorithms both in terms of 
the required number of iterations and in the number of solved 
benchmark problems in most cases.
© 2023 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Many industrial applications of optimization require the solution of a system-wide 
problem over a network of agents [48]. Solving a system-wide optimization problem in a 
centralized fashion in such a setting can become computationally intractable if a large 
number of agents are involved. Furthermore, in production systems there has been a trend 
towards increased modularity and autonomy of subsystems in recent years [56]. This gives 
rise to distributed decision structures where the involved subsystems have a certain 
autonomy and pursue individual goals while only having access to local information 
[72]. In these cases the exchange of information between the subsystems or between the 
subsystems and a coordinating unit is often restricted as the subsystems do not want 
to share private information, e.g., their objective functions, local constraints, production 
parameters, etc. [30,41]. This is often the case in industrial complexes where production 
systems are coupled through interconnected networks of materials and energy [68]. The 
involved subsystems may not be willing or able to exchange the information required 
for the centralized solution of a system-wide optimization problems, e.g. because they 
belong to different business units or to different companies. Another area necessitating 
the solution of large-scale optimization problems is machine learning [24,58]. In addition 
to the size of the underlying optimization problems, data sovereignty plays an important 
role in many machine learning applications [39]. Training data may be distributed over 
multiple nodes of a network. Sharing this data between different nodes or between the 
nodes and a coordinator can be prohibitive due to bandwidth limitations or due to 
privacy concerns [35].

Distributed optimization methods offer a way to circumvent the aforementioned issues 
by splitting the aggregated optimization problem into smaller subproblems, solving the 
subproblems locally and coordinating these solutions by suitable mechanisms such that 
the coordinated solutions for the subproblems converge to the system-wide solution and 
system-wide constraints are met. The design of distributed optimization algorithms in-
volves the choice of the decomposition method and of the synchronization mechanism and 
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depends on the possible communication of data between subproblems and the coordinat-
ing instance. Examples of decomposition approaches include game theoretic approaches 
[71], population-based approaches [3], primal decomposition [53] and dual decomposition 
[20]. This paper focuses on dual decomposition where system-wide constraints that cou-
ple the subproblems are relaxed by introducing additional variables into the subproblems, 
solving the modified subproblems in a distributed fashion and coordinating the solution 
process by iteratively adapting the additional variables. This makes it possible to realize 
a high degree of privacy, as no or little sensitive information has to be shared between the 
subproblems. The coordination of the subproblems can be performed by a central coor-
dination algorithm which exchanges information with the subproblems (hierarchically), 
by directly exchanging information between the subproblems (networked optimization) 
or by solving the subproblems in a completely decentralized manner (non-cooperative 
games) [71]). In this work, hierarchical algorithms are considered which coordinate the 
solutions of the subproblems by iteratively adapting and broadcasting the additional 
variables, here the dual variables that result from the relaxation of the system-wide cou-
pling constraints. On the one hand, the hierarchical structure ensures that no sensitive 
information has to be shared between subproblems, as communication is only estab-
lished between the coordinator and the subproblems. On the other hand, the presence 
of the central coordinator enables to converge to the system-wide optimum of the ag-
gregated problem which is usually not possible through a fully decentralized approach if 
system-wide coupling constraints must be satisfied.

The type and the amount of information shared between the subproblems and the co-
ordinator influence the efficiency of distributed optimization algorithms. The exchanged 
information may include the contributions of the subsystems to the system-wide con-
straint functions [44] or the residual of the system-wide constraints [69], the optimal 
objective function values of the subsystems in each iteration, gradients of the subsys-
tems’ objective functions and constraints, and the Hessians of the Lagrangians of the 
subsystems [33]. The first two choices lead to a high degree of privacy of the subsys-
tems whereas algorithms that exchange the full information on the subsystem solutions 
are motivated by reducing the memory demand or computation time compared to the 
system-wide solution rather than assuring privacy. In the iterations of a hierarchical 
distributed optimization algorithm all subproblems are solved in parallel and return 
information to the coordinator, i.e., they are optimized in a synchronous manner. In con-
trast, asynchronous algorithms only require the solution of a subset of the subproblems 
in each iteration, leading to a trade off between collected information and computational 
efficiency [11]. Usually less iterations are required if all subproblems are solved in each 
iteration.

Dual decomposition-based algorithms generally exhibit a slow rate of convergence. 
This issue was addressed by, e.g., Maxeiner and Engell [44] and Wenzel et al. [69] where 
efficient use of information from previous iterations was made. In this paper a new 
algorithm is proposed that uses some of the elements of the quadratic approximation 
coordination (QAC) algorithm proposed by Wenzel et al. [69]. In contrast to the QAC 
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algorithm, the new algorithm, quadratically approximated dual ascent (QADA), ap-
proximates the dual function of the system-wide optimization problem by a quadratic 
function in each iteration. This requires to exchange the values of the Lagrangians of the 
subproblems at each iteration but still maintains privacy of the local constraints and of 
the contributions to the system-wide constraints. As will be shown below, this improves 
the rate of convergence for convex problems with real-valued decision variables and in 
particular leads to an efficient distributed solution of mixed-integer programs.

A regression-based approximation of the dual function requires an initialization phase 
where the necessary number of initial data points are collected. This is avoided by an 
algorithm that approximates the dual function based on quasi-Newton updates, which is 
referred to as the quasi-Newton dual ascent (QNDA) algorithm. The algorithm was first 
introduced in [73] and is discussed in detail and compared for the benchmark problems 
in this paper.

The remainder of this paper is organized as follows: Section 2 presents the main 
mathematical notation. In Section 3 the concepts of duality and dual decomposition 
for constraint-coupled optimization problems are introduced. Several distributed opti-
mization algorithms which will serve as references for the new proposed approaches 
are discussed in Section 4. The discussion focuses on algorithms that employ a hierar-
chical coordination structure where only first-order information is shared between the 
subproblems and the coordinator. Other related algorithms which employ different com-
munication structures, exchanged information and synchronization strategies, are also 
discussed briefly. Section 5 discusses algorithms that update the dual variables based 
on an optimization of a smooth surrogate function. This includes the QAC algorithm 
introduced in [69] as well as the new proposed algorithms, QADA and QNDA, which 
compute a quadratic surrogate function of the dual function. The convergence properties 
of these algorithms are discussed at the end of this section for different classes of prob-
lems in a semi-formal manner, based on known results for the same type of problems and 
similar algorithms. The performance of the new algorithms, in comparison to known ap-
proaches is evaluated for a large set of benchmark problems for different problem classes 
in Section 6. The paper concludes with a summary and an outlook on future research in 
Section 7.

2. Notation

We use boldfaced upper-case letters to denote matrices (X) and boldfaced lower-case 
letters to denote vectors (x). The notation [x]l denotes the l-th element of a vector x. 
Similarly, [X]l,j denotes the (l, j)-th element of a matrix X. The vector containing only 
ones is denoted by 1 while the vector containing only zeros is denoted by 0. I denotes 
the identity matrix of appropriate dimensions. The iteration index of the distributed 
optimization algorithms is denoted by t. The value of a variable x in iteration t is denoted 
by x(t) while xi indicates that a variable belongs to subproblem i. The Euclidean norm 
is denoted by ‖x‖2 =

√
xTx while ‖X‖F =

√∑n
l=1

∑n
k=1 |[X]l,k|2 denotes the Frobenius 
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norm of a matrix. SRn×n denotes symmetric matrices with n rows/columns The relative 
interior of a set X is denoted by relint(X ). The notation x∗ indicates the optimum of an 
optimization problem.

3. Duality and dual decomposition

In this work we consider optimization problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (1a)

s. t.
∑
i∈I

Aixi ≤ b, (1b)

xi ∈ Xi, ∀i ∈ I. (1c)

(1) describes an optimization problem consisting of Ns subproblems i ∈ I = {1, . . . , Ns}. 
Each subproblem has its own set of decision variables xi ∈ Knxi and an objective function 
fi : Knxi → K. In this paper we consider K ∈ {R, R ×Z}, i.e., continuous or mixed-integer 
optimization problems. The subsystems are coupled through the system-wide constraints 
(1b), also referred to as coupling, complicating or network constraints. The terms Aixi, 
with Ai ∈ Rnb×nxi can be interpreted as the utilization of shared limited resources 
depending on the decision variables xi, while b ∈ Rnb represents the availability of 
these resources. In addition to the system-wide constraints, each subproblem i contains 
individual constraints xi ∈ Xi ⊂ Knxi , where Xi is a non-empty compact set. We assume 
that the system-wide objective function is additive in the subsystem objective function 
values. The goal is to minimize the sum of the objective functions of all subproblems (1a), 
also called a social welfare objective [57], while satisfying the system-wide constraints 
(1b) as well as the individual constraints (1c).

Problem (1) is obviously separable in its objective function and the subproblems are 
only coupled through constraints. This class of problems is referred to as constraint-
coupled optimization problems. Therefore the system-wide or central problem can be 
decomposed by introducing dual variables λ ∈ Rnb , also referred to as Lagrange multi-
pliers, for the coupling constraints. With the dual variables, the Lagrange function can 
be formulated,

L(x,λ) :=
∑
i∈I

fi(xi) + λT
∑
i∈I

Aixi − λTb, (2)

where x = [xT
1 , . . . , xT

Ns
]T . Based on the Lagrange functions, the dual function

d(λ) := inf
xi∈Xi,∀i∈I

L(x,λ) (3)

can be defined. The dual function is a function of the dual variables λ. The domain of 
the dual variables is λ ≥ 0, stemming from the Karush-Kuhn-Tucker conditions and 
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from the fact that the system-wide constraints (1b) are inequalities [51]. Generally, the 
domain of the dual variables λ consists of all values for which the Lagrange function (2)
is bounded from below, i.e., all values for which d(λ) > −∞.

An important property of the dual function (3) is that its values always pro-
vide a lower bound for the objective value of the system-wide problem (1) (cf. 
[9]).

Since the dual function provides a lower bound for the objective values of the system-
wide problem, it also does so in the case of the optimal solution x∗. Naturally, one would 
be interested in the best attainable lower bound, corresponding to the maximum of the 
dual function. Finding this maximum is referred to as the dual problem,

max
λ∈Rnb

d(λ), (4a)

s. t. λ ≥ 0. (4b)

In contrast, the system-wide problem (1) is called the primal problem. We denote by λ∗

the optimal solution of the dual problem (4). Due to the lower bound property of the 
dual function the relation ∑

i∈I
fi(x∗

i ) ≥ d(λ∗) (5)

holds between the primal and dual optimal solutions. Inequality (5) is referred to as 
weak duality. The difference between the objective values of a feasible primal and corre-
sponding feasible dual solution is called duality gap,

DG =
∑
i∈I

fi(xi) − d(λ). (6)

If the primal problem, i.e., the system wide problem (1) is convex and a constraint 
qualification condition is satisfied, the optimal duality gap is zero. This implies, 
that ∑

i∈I
fi(x∗

i ) = d(λ∗). (7)

This condition is referred to as strong duality. A commonly used constraint qualification 
condition is Slater’s condition, which is satisfied if a strictly feasible solution of problem 
(1) exists [9],

∃ x ∈ relint (X ) ∩ {x ∈ Rnx |, Aixi < b}, (8)

with

X :=
{
x =

(
xT

1 , . . . ,xT
N

)T | xi ∈ Xi, ∀i ∈ I
}
. (9)
s
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Another important property of the dual problem (4) is that the dual function is always 
concave, regardless whether or not the primal problem is convex (cf. Theorem 12.10, 
[51]). Since the dual problem (4) is a maximization of a concave function over a convex 
feasible set, it is a convex optimization problem.

Dual decomposition-based distributed optimization algorithms rely on the solution 
of the dual problem (4). The solution of the dual problem is amendable to distributed 
computations, since the Lagrange function (2) is separable due to the relaxation of the 
system-wide constraints (1b). This means that the dual function can be evaluated by 
solving the individual optimization problems

min
xi∈Rnxi

Li(xi,λ), (10a)

s. t. xi ∈ Xi (10b)

in a distributed manner for a given value of the dual variables λ. Satisfaction of the cou-
pling constraints is only achieved upon convergence, contrary to primal decomposition-
based methods, where in each iteration a feasible primal solution is computed by impos-
ing (1b) [53,71]. In the case of nonconvex primal problems strong duality (7) does not 
hold. After convergence a feasible primal solution is usually recovered through the use 
of problem specific heuristics [11] or by modifying the primal problem a priori [60]. Note 
that we assume that the lower bound of problem (10)) is attainable, therefore replacing 
the infimum with the minimum.

Example. Consider the following optimization problem:

min
x1,x2

0.5x2
1 + 0.5(x2 − 1)2, (11a)

s. t. x1 + x2 = 0, (11b)

x1 ≤ 1, (11c)

x1, x2 ∈ R. (11d)

The Lagrange function of problem (11) is

L(x1, x2, λ) = 0.5x2
1 + 0.5(x2 − 1)2 + λ(x1 + x2) (12)

and the dual function

d(λ) = min
x1,x2

0.5x2
1 + 0.5(x2 − 1)2 + λ(x1 + x2), (13a)

s. t. x1 ≤ 1, (13b)

x1, x2 ∈ R. (13c)
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Note that since the coupling constraint (11b) is an equality, the domain of the dual 
variable is λ ∈ R. The value of the dual function now depends on whether or not the 
individual constraint (11c) is active. Two cases can be distinguished:
Case 1: x1 < 1 (inactive constraint)

For a fixed λ the value of the dual function (13) can be computed by setting the 
gradient of the Lagrange function (12) to zero:

∇L(x1, x2, λ) =
(

x1 + λ
x2 − 1 + λ

)
= 0 ⇒ x1 = −λ, x2 = 1 − λ. (14)

Substituting the values of x1 and x2 in (12) gives

d(λ) = −λ2 + λ, ∀λ > −1. (15)

Case 2: x1 = 1 (active constraint)
Setting the gradient of the reduced Lagrange function to zero gives

∇L(1, x2, λ) = x2 − 1 + λ = 0 ⇒ x2 = 1 − λ. (16)

Again, substituting the values for x1 and x2 into (12) gives

d(λ) = −λ2 + 1.5λ + 0.5, ∀λ ≤ −1. (17)

The dual function for problem (11) is given by

d(λ) =
{
−λ2 + λ, ∀λ > −1,
−λ2 + 1.5λ + 0.5, ∀λ ≤ −1.

(18)

It is easy to see that the dual function is continuous, as

lim
λ→−1+

d(λ) = lim
λ→−1−

d(λ) = −2. (19)

However, the dual function does not have continuous derivatives,

lim
λ→−1+

∇d(λ) = lim
λ→−1+

−2λ + 1 = 3, (20a)

lim
λ→−1−

∇d(λ) = lim
λ→−1−

−2λ + 1.5 = 4.5, (20b)

which means that it is not smooth. Hence, as the dual function is always concave, the 
dual problem

max d(λ) (21)

λ∈R
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is a convex, but nonsmooth optimization problem. The nonsmoothness is caused by a 
changing set of active individual constraints. This nonsmoothness is typical for dual 
optimization problems. Algorithms that aim to solve the nonsmooth dual problem are 
reviewed in the following section in the context of dual decomposition-based distributed 
optimization.

4. Review of dual decomposition-based distributed optimization

The general idea of dual decomposition was introduced by Everett [20]. Dual de-
composition can be regarded as a hierarchical scheme where a coordination algorithm 
computes values of the dual variables, which are communicated to the subproblems. The 
subproblems solve their individual optimization problems for the received values of the 
dual variables and communicate their results back to the coordinator. What information 
is communicated to the coordinator depends on the specific dual decomposition-based 
algorithm. Dual decomposition-based distributed optimization can be interpreted as a 
market mechanism where an auctioneer sets prices for shared resources and the subprob-
lems compute their optimal resource utilization according to these prices [62,69]. In this 
context the dual variables are called prices or shadow prices [28].

In this section, those dual decomposition-based distributed optimization algorithms 
which are used as a reference for comparison of the proposed algorithms are discussed. 
This includes the subgradient method, the bundle trust method (BTM) and the alternat-
ing direction method of multipliers (ADMM). Other related dual-decomposition based 
algorithms are also briefly reviewed.

4.1. Subgradient method

The simplest distributed optimization algorithm that is based on dual decomposition 
is the subgradient method. In this algorithm, the dual variables are updated along a 
subgradient direction of the dual function.

A vector ξ ∈ Rnχ is a subgradient of a concave function φ : Rnχ → R at the point 
χ0 ∈ Rnχ , if

φ(χ) ≤ ξT (χ− χ0) + φ(χ0) (22)

holds for all χ ∈ dom φ. The set of all subgradients comprises the subdifferential ∂φ(χ0)
of the function φ(χ) at the point χ0 [2]. The subgradient is a generalization of the 
gradient for nonsmooth (non-differentiable) convex functions. Note that (22) techni-
cally defines a supergradient of a concave function. However, the term subgradient is 
commonly used in the literature for both convex and concave functions. Geometrically 
the subgradient/supergradient is a normal vector to a supporting hyperplane of a con-
vex/concave function. Fig. 1 illustrates different subgradients both for differentiable (χ0)
and non-differentiable (χ′

0) points. In the subgradient method for distributed optimiza-
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Fig. 1. Geometric interpretation of subgradients for differentiable (χ0) and non-differentiable (χ′
0) points.

tion, the primal variables xi and the dual variables λ are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ
(t)) (23a)

λ(t+1) =
[
λ(t) + α(t)g(λ(t))

]+
(23b)

in each iteration t, where g(λ(t)) is a subgradient of the dual function at λ(t) and [·]+
denotes the projection onto the positive orthant. Note that the update of the primal 
variables (23a) can be performed in a distributed fashion by solving the local optimization 
problems for the given values of the dual variables. A subgradient of the dual function can 
be computed by evaluating the system-wide constraints for the primal variables x(t+1)

[71], i.e.,

g(λ(t)) :=
(∑

i∈I
Aix(t+1)

i − b
)

∈ ∂d(λ(t)). (24)

The update step (23b) updates the dual variables in the direction of the subgradient of 
the dual. The step size parameter α(t) plays an important role in the convergence of the 
algorithm. If it is chosen too large, the algorithm might diverge. If it is chosen too small, 
no substantial progress is made. The optimal step size can be defined by means of the 
Lipschitz constant of the gradient of the dual function [49]. However, this information 
is usually not available in a distributed optimization setting. For practical applications, 
the step size is adapted over the course of the iterations [4].

In this paper, we use as the termination criterion that both the Euclidean norm (2-
norm) of the primal residual ‖w(t)

p ‖2 and of the dual residual ‖w(t)
d ‖2 lie below pre-defined 

thresholds or that the maximum number of iterations is reached, i.e.(
‖w(t)

p ‖2 ≤ εp ∧ ‖w(t)
d ‖2 ≤ εd

)
∨ (t ≥ tmax). (25)

The primal residual indicates feasibility of the system-wide constraints. If these con-
straints (1b) are posed as inequalities, the primal residual is defined as
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[w(t)
p ]l := max

{[∑
i∈I

Aix(t)
i − b

]
l

, 0
}
, l = 1, . . . , nb. (26)

If they are posed as equalities it is defined as

w(t)
p :=

∑
i∈I

Aix(t)
i − b, (27)

i.e., equal to the subgradient. We also use the norm of the primal residual to compute 
the step size parameter, as proposed by [69],

α(t) = α(0)

max{‖w(0)
p ‖2, . . . , ‖w(t)

p ‖2}
. (28)

The dual residual indicates convergence of the dual variables to a stationary value and 
is defined as

w(t)
d := λ(t+1) − λ(t). (29)

Algorithm 1 summarizes the subgradient method (SG). Note that the steps 5–8 can be 
performed in a distributed manner, while steps 9–23 are performed by the coordinator.

Algorithm 1 Subgradient Method (SG).
Require: λ(0), α(0), εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i to the coordinator

8: end for
9: g(λ(t)) ← ∑

i∈I Aix(t+1)
i − b

10: if Constraints (1b) are inequalities then
11: for all l = 1, . . . , nb do
12: [w(t)

p ]l ← max
{[

g(λ(t))
]
l
, 0

}
13: end for
14: else if Constraints (1b) are equalities then
15: w(t)

p ← g(λ(t))
16: end if
17: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

18: if Constraints (1b) are inequalities then
19: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
20: else if Constraints (1b) are equalities then
21: λ(t+1) ← λ(t) + α(t)g(λ(t))
22: end if
23: w(t)

d ← λ(t+1) − λ(t)

24: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
25: return λ(t)
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4.2. Bundle trust method

The subgradient method descibed in Sec. 4.1 only employs the subgradient of the 
previous iteration in order to update the dual variables. However, in contrast to the 
gradient, a subgradient does not necessarily provide an ascent direction for the dual 
function. This often leads to a slow rate of convergence. A generally more efficient class 
of algorithms are bundle methods [43]. Bundle methods are among the most efficient 
algorithms for nonsmooth optimization [2]. As such they have been employed in the 
context of dual decomposition-based distributed optimization to solve the nonsmooth 
dual problem, e.g., for distributed model predictive control [55] or for the coordination 
of energy networks [75]. Furthermore, bundle methods are also widely used in other 
areas where nonsmooth problems have to be solved, such as machine learning, where 
nonsmoothness is often encountered due to regularization terms [37]. In the following, 
the bundle trust method (BTM) according to [2], as described in [73], is presented.

The idea of bundle methods is to employ subgradient information collected from 
multiple previous iterations in order to construct a piece-wise linear over-approximator, 
a so called cutting plane model, of the nonsmooth concave dual function d(λ). To this 
end, the data

B(t) = {(λ(j), d(λ(j)),g(λ(j))) ∈ Rnb ×R×Rnb | 1 ≤ j ≤ t} (30)

is stored in each iteration. B is referred to as a bundle. As shown in the previous section, 
the hyperplane defined by the subgradient is an over-approximator of its corresponding 
function. The cutting plane model d̂(t)(λ) of the dual function in iteration t is defined as

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}, (31)

where J (t) ⊆ {1, . . . , t} denotes the subset of the used data points. As storing the dual 
variables, dual values and subgradients for all past iterations might require a significant 
storage memory, we only store the bundle information up to a certain iteration age 
τ ,

J (t) := {max{1, t− τ + 1}, . . . , t}. (32)

Fig. 2 illustrates the cutting plane model for a nonsmooth dual function. The approxi-
mation can be written in an equivalent form as

d̂(t)(λ) = min
j∈J (t)

{d(λ(t)) + gT (λ(j))(λ− λ(t)) − β(j,t)}, (33)

with the linearization error

β(j,t) = d(λ(t)) − d(λ(j)) − gT (λ(j))(λ(t) − λ(j)), ∀j ∈ J (t). (34)
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Fig. 2. Illustration of the cutting plane model.

The bundle trust method computes a search direction s(t) in each iteration, by solving 
the direction finding problem

max
s∈Rnb

d̂(t)(λ(t) + s), (35a)

s. t. ‖s‖2
2 ≤ α(t), (35b)

λ(t) + s ≥ 0. (35c)

The constraint (35b) represents a trust region, preventing too aggressive update steps. 
For the radius of the trust region we use Eq. (28). The constraint (35c) ensures feasibility 
of the updated dual variables and can be omitted if the system-wide constraints (1b)
are equalities. It replaces the projection onto the feasible set used in (23b). Problem 
(35) is still nonsmooth and can be rewritten as a smooth quadratic direction finding 
problem

max
v∈R, s∈Rnb

v, (36a)

s. t. ‖s‖2
2 ≤ α(t), (36b)

gT (λ(j))s − β(j,t) ≥ v, ∀j ∈ J (t), (36c)
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λ(t) + s ≥ 0. (36d)

To summarize, the bundle trust method (BTM) updates the primal and dual variables 
in each iteration according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ
(t)), (37a)

s(t) = arg max
v∈R, s∈Rnb

v, (37b)

s. t. (36b)-(36d),

λ(t+1) = λ(t) + s(t). (37c)

Bundle methods often employ a null step, i.e., λ(t+1) = λ(t), in order to compute a 
new subgradient at the current iterate and to improve the approximation. In the case 
of dual decomposition-based distributed optimization the same subgradient would be 
obtained after a null step. The dual variables are therefore updated according to (37c)
in each iteration. Note that in the case of BTM in addition to the contributions to the 
subgradient gi(λ(t)) the subproblems have to also communicate their contribution to 
the dual function

di(λ(t)) = fi(x(t+1)
i ) + λ(t),Tgi(λ(t)) = Li(x(t+1)

i ,λ(t)) (38)

to the coordinator. The termination criteria are identical to the subgradient method. In 
this paper an aggregated bundle method is considered, i.e., the coordinator aggregates 
the contributions of all subsystems to the dual function and the subgradient. Algorithm 2
summarizes the bundle trust method. Again note that steps 6–10 are performed in par-
allel for the different subproblems, while steps 11–29 are performed by the coordinator.

4.3. Alternating direction method of multipliers

Another approach to solve the nonsmooth dual problem is to smoothen the problem 
by further convexifying the Lagrange function. This is used in augmented Lagrangian 
methods [1]. The issue with augmented Lagrangian methods is that separability is lost. 
The alternating direction method of multipliers (ADMM) is an extension of the aug-
mented Lagrangian methods, whereby separability is maintained. It was first introduced 
in [23] and [22] where it was applied to find the solution of differential equations. It has 
gained significant attention in recent years since it was popularized by Boyd et al. [8]. 
In its standard form the ADMM algorithm solves problems of the form

min
x1∈Rnx1 ,x2∈Rnx2

f1(x1) + f1(x2) (39a)

s. t. A1x1 + A2x2 = b, (39b)



V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 15
Algorithm 2 Bundle Trust Method (BTM).
Require: λ(0), α(0), τ , εp, εd, tmax
1: t ← 0
2: B(0) ← {}
3: repeat
4: t ← t + 1
5: Send λ(t) to all subproblems
6: for all i = 1, . . . , Ns do
7: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

8: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
9: coordinator

10: end for
11: g(λ(t)) ← ∑

i∈I Aix(t+1)
i − b

12: d(λ(t)) ← ∑
i∈I Li(x(t+1)

i , λ(t)) − λ(t),Tb
13: B(t) ← B(t) ∪ {(λ(t), d(λ(t)), g(λ(t)))}
14: if Constraints (1b) are inequalities then
15: for all l = 1, . . . , nb do
16: [w(t)

p ]l ← max
{[

g(λ(t))
]
l
, 0

}
17: end for
18: else if Constraints (1b) are equalities then
19: w(t)

p ← g(λ(t))
20: end if
21: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

22: J (t) ← {max{1, t − τ + 1}, . . . , t}
23: if Constraints (1b) are inequalities then
24: s(t) ← arg max

v∈R, s∈Rnb
v, s. t. (36b)-(36d)

25: else if Constraints (1b) are equalities then
26: s(t) ← arg max

v∈R, s∈Rnb
v, s. t. (36b), (36c)

27: end if
28: λ(t+1) ← λ(t) + s(t)
29: w(t)

d ← λ(t+1) − λ(t)

30: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
31: return λ(t)

by defining an augmented Lagrange function

L̂ρ(x1,x2,λ) := f1(x1) + f1(x2) + λT (A1x1 + A2x2 − b)

+ ρ

2‖A1x1 + A2x2 − b‖2. (40)

The primal variables are then updated in an alternating manner according to

x(t+1)
1 = arg min

x1∈Rnx1
L̂ρ(x1,x(t)

2 ,λ(t)), (41a)

x(t+1)
2 = arg min

x2∈Rnx2
L̂ρ(x(t+1)

1 ,x2,λ
(t)), (41b)

λ(t+1) = λ(t) + ρ(A1x(t+1)
1 + A2x(t+1)

2 − b). (41c)

The update of the primal variables (41a) and (41b) cannot be performed in parallel. 
In this paper we consider problems were multiple subsystems are connected through 
shared limited resources (1). This case suits the use of the optimal exchange version of 
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ADMM, as described in [8] (Sec. 7.3.2) and [64] (Sec. 3.5.4). This formulation relies on 
the introduction of auxiliary variables zi ∈ Rnb , which can be interpreted as a feasible 
resource utilization for subproblem i. Using the auxiliary variables, problem (1) can be 
reformulated,

min
x1,...,xNs

∑
i∈I

fi(xi), (42a)

s. t. Aixi ≤ zi, ∀i ∈ I, (42b)∑
i∈I

zi = b, (42c)

xi ∈ Xi, ∀i ∈ I. (42d)

The individual augmented Lagrange functions for problem (42) are defined as,

L̂i,ρ(xi,λ, zi) := fi(xi) + λT (Aixi − zi) + ρ

2 ‖Aixi − zi‖2
2 . (43)

In each iteration t, the primal, auxiliary and dual variables are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

L̂i,ρ(xi,λ
(t), z(t)

i ) (44a)

∀i ∈ I, z(t+1)
i = Aix(t+1)

i − ave(Ax(t+1) − b) (44b)

λ(t+1) = [λ(t) + ρ(t)ave(Ax(t+1) − b)]+ (44c)

where

ave(Ax(t+1) − b) : 1
Ns

∑
i∈I

(
Aix(t+1)

i − b
)

(45)

denotes the average of the system-wide constraints. Note that the update of the pri-
mal variables (44a) can now be performed in parallel. The update step of the auxiliary 
variables (44b) ensures the satisfaction of (42c) [64],∑

i∈I
z(t+1)
i =

∑
i∈I

Aix(t+1)
i −

∑
i∈I

ave(Ax(t+1) − b) (46a)

=
∑
i∈I

Aix(t+1)
i −Nsave(Ax(t+1) − b) (46b)

=
∑
i∈I

Aix(t+1)
i −

(∑
i∈I

Aix(t+1)
i − b

)
(46c)

= b. (46d)

ADMM can be interpreted as a proximal algorithm. The (scaled) proximal operator is 
defined as [54]
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x = proxρ,f (χ) := arg min
y

f(y) + 1
2ρ‖y − χ‖2

2. (47)

For a better interpretation of ADMM, Wenzel [64] defined a modified scaled proximal 
operator as

x = prox′
ρ,f (χ) := arg min

y
f(y) + 1

2ρ‖L(y) − χ‖2
2, (48)

which differs only in the first term of the regularization term, where a linear mapping 
L(y) is used. Using the definition (48) and omitting the constant term −λ(t),T zi the 
update of the primal variables (44a) can be rewritten as

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

f(xi) + λ(t),TAixi (49a)

+ ρ

2‖Aixi − z(t)
i ‖2

2

= arg min
xi∈Xi

Li(xi,λ
(t)) + ρ

2‖Aixi − z(t)
i ‖2

2 (49b)

= prox′
1/ρ,L(z(t)

i ). (49c)

Using eq. (49) the update step of ADMM can be interpreted as a proximal mapping onto 
a feasible resource utilization.

Note that while the dual variables λ are still common among the subsystems, the 
auxiliary variables zi are formulated for each subproblem individually. The update of 
the auxiliary variables is performed on the coordinator level.

ADMM is an efficient algorithm for dual decomposition-based distributed optimiza-
tion and it outperforms other algorithms for a variety of benchmark problems [36]. It 
converges under milder assumptions than the subgradient method for convex primal 
problems [8]. While convergence can be proven for constant values of the regularization 
parameter ρ, a variation of the parameter over the course of the iterations works well in 
practice. In this work, the adaptation strategy reported in [31] and [63] is employed:

ρ(t+1) =

⎧⎪⎪⎨
⎪⎪⎩
τ incrρ(t), if ‖w(t)

p ‖2 > μ‖w(t)
d ‖2

ρ(t)/τdecr, if ‖w(t)
d ‖2 > μ‖w(t)

p ‖2

ρ(t), otherwise.
(50)

The parameters μ, τ incr, τdecr > 1 are tuning parameters. In contrast to the subgradient 
method and the bundle trust method, the dual residual in ADMM is defined as

w(t)
d := z(t+1) − z(t), (51)

where z = [zT1 , . . . , zTN ]T ∈ Rnb·Ns denotes the collection of the auxiliary variables.

s
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ADMM leads to a slightly increased communication overhead between the subprob-
lems and the coordinator, as the auxiliary variables have to be communicated to each 
subproblem as well. Furthermore, the coordinator has to know the contribution to the 
coupling constraints of each subproblem in order to update the auxiliary variables (44b), 
whereas the subgradient method and BTM only require the knowledge of the aggregated 
value of the coupling constraints. In the context of distributed optimization of interacting 
autonomous units, a drawback is also that the structure of the subproblems is altered 
due to the addition of the regularization term, which makes the objective functions lose 
their original meaning as, e.g., the local profit. The ADMM algorithm is summarized in 
Algorithm 3. Steps 5–8 are performed in parallel by the subproblems while steps 9–25 
are performed by the coordinator.

Algorithm 3 Alternating Direction Method of Multipliers (ADMM).
Require: λ(0), z(0), ρ(0), μ, τincr, τdecr, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t), z(t)

i and ρ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← prox′
1/ρ,L(z(t)

i )
7: Send Aix(t+1)

i to the coordinator
8: end for
9: for all i = 1, . . . , Ns do

10: z(t+1)
i ← Aix(t+1)

i − ave(Ax(t+1) − b)
11: end for
12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p ]l ← max
{[∑

i∈I Aix(t+1)
i − b

]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ←
∑

i∈I Aix(t+1)
i − b

18: end if
19: if Constraints (1b) are inequalities then
20: λ(t+1) ← [λ(t) + ρ(t)ave(Ax(t+1) − b)]+
21: else if Constraints (1b) are equalities then
22: λ(t+1) ← λ(t) + ρ(t)ave(Ax(t+1) − b)]
23: end if
24: w(t)

d ← z(t+1) − z(t)

25: ρ(t+1) ← Update(50)
26: until (‖w(t)

p ‖2 ≤ εp ∧ ‖w(t)
d ‖2 ≤ εd) ∨ (t ≥ tmax)

27: return λ(t)

4.4. Other related dual decomposition-based methods

Several algorithms have been proposed that aim at improving the performance of the 
subgradient method. The only parameter that can be tuned in the subgradient method 
is the step size. Nedić and Bertsekas [47] provide several dynamic step size adjustment 
strategies. In contrast to the gradient, the subgradient does not always provide an as-
cent direction for the dual variables [43]. Bragin et al. [11] address this via the surrogate 
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Lagrangian relaxation (SLR) method, also providing convergence proofs. Instead of up-
dating the dual variables in the direction of the subgradient, a surrogate subgradient 
direction which forms an acute angle towards the optimal dual values is used. The al-
gorithm was extended in [10] by introducing an additional absolute value penalty in the 
objective function of the primal problem (surrogate absolute value Lagrangian relax-
ation, SAVLR) and in [40] by employing ordinal optimization. These methods were used 
to solve mixed-integer linear programming (MILP) problems with the main concern be-
ing the computational scalability. However, the recovery of a primal feasible solution is 
not explicitly addressed. The algorithms based on SLR do not require the solution of each 
subproblem in each iteration. This generally results in a larger number of iterations, each 
of which on the other hand require less computation time. Therefore these algorithms are 
suitable for problems where the solution of the subproblems poses the main bottleneck. 
A common approach to improve the rate of convergence for gradient-based algorithms 
is to use acceleration methods. Uribe et al. [59] adapt the fast gradient method (FGM) 
proposed by Nesterov [50] and apply it to distributed optimization over networks. They 
study different problem classes for the subproblems, where the degree of convexity and 
smoothness is varied. However, the system-wide problem is a consensus problem, where 
no individual or system-wide constraints are considered. Similar consensus problems are 
considered in [18], where consensus constraints are introduced and subsequently relaxed 
through dual decomposition. The authors propose a quasi-Newton method which relies 
on decentralized computations to update the approximated Hessians locally. The same 
algorithm is further studied in [19], where it is directly applied to the primal problem 
without introducing dual variables. Nevertheless, no constraints are considered, except 
for consensus constraints, and direct neighbor communication with an exchange of gra-
dients is necessary in each iteration. Zargham et al. [74] locally approximate the inverse 
of the Hessian matrices by allowing direct communication between the subproblems. No-
tarnicola and Notarstefano [52] allow communication of auxiliary variables between the 
subproblems and employ a relaxation and successive distributed decomposition (RSDD) 
approach. Direct communication between the subproblems is also not intended in this 
work. The aim of dual decomposition-based distributed optimization algorithms usually 
is to find a set of primal-dual variables that satisfy the Karush-Kuhn-Tucker (KKT) 
conditions. The Lagrange multiplier method and the KKT conditions are generalized in 
[38] to a wider class of functions that still satisfy the strong duality condition. These 
generalizations are subsequently applied to distributed optimization.

Goldstein et al. [27] extended ADMM to improve its rate of convergence by employing 
a predictor-corrector–type acceleration step. However, this step is only stable for strongly 
convex problems. In order to improve the rate of convergence second-order information 
can be exploited. Houska at al. [33] extended ADMM into the augmented Lagrangian-
based alternating direction inexact Newton method (ALADIN). In this approach, the 
Hessians of the Lagrangians of the subproblems are approximated, which requires the 
communication of the constraint Jacobian matrices. This kind of second-order informa-
tion is assumed to be inaccessible in this paper. Chatzipanagiotis et al. [13] introduce an 
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acceleration step into the augmented Lagrangian method and propose the accelerated 
distributed augmented Lagrangian method (ADAL), which is used to solve distributed 
convex problems. The convergence of ADAL for nonconvex problems is further stud-
ied in [14]. ADMM is also generalized to nonconvex problems in [39], where nonconvex 
equality constraints are considered. As discussed in Sec. 4.3, ADMM belongs to the class 
of proximal algorithms. Other proximal algorithms can also be applied to distributed 
optimization, e.g., the Douglas-Rachford splitting method [32]. These methods rely on 
the addition of a penalty term to the objective function. A similar idea forms the basis of 
interior point methods, where a barrier term is added to the objective function in order 
to handle constraints [61]. Necoara and Suykens [46] combine dual decomposition with 
interior point methods by adding self-concordant barrier terms to the Lagrange function.

Maxeiner and Engell [44] propose an approximation of the dual function by performing 
subgradient update steps with a constant step size and then using the collected data to 
extrapolate the update steps towards the optimal dual variables. This extrapolation is 
based on the analytic solution of the dual problem for unconstrained quadratic programs 
and requires adjustments if individual constraints are added or if other problem classes 
are considered.

5. Algorithms based on smooth approximations

This section presents three different algorithms that rely on the computation of a 
smooth surrogate function ψ(t)(λ). The parameters of the surrogate function are obtained 
by minimizing a loss function depending on previously collected information B(t),

ψ(t)(λ) := arg min
ψ : Rnb→R

∑
j∈J (t)

L(ψ(λ(j)),B(t)). (52)

Once the surrogate function is obtained, the dual variables are updated by solving an 
optimization problem, subject to constraints on the dual variables,

λ(t+1) = arg min
λ∈M

ψ(t)(λ). (53)

First, two algorithms based on the solution of a regression problem are presented. These 
are the quadratic approximation coordination (QAC) algorithm presented in [69] and 
the new quadratically approximated dual ascent (QADA) algorithm. The algorithms 
share some components, in particular, the strategy to select regression data and the 
constraints on the step size. After the introduction of these components, the QAC and 
QADA algorithms are presented. In the QAC algorithm the squared Euclidean norm 
of the primal residual ‖w(t)

p (λ)‖2
2 is approximated by a quadratic function. The QADA 

algorithm is based on approximations of the dual function d(λ) which is advantageous 
for several reasons, as explained below. Furthermore, bundle information and cutting 
planes are used to handle the nonsmoothness of the dual function.
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In addition to the regression-based approximation of the dual function, an algorithm 
based on quasi-Newton updates is presented. The quasi-Newton dual ascent (QNDA) 
algorithm, first presented in [73], also approximates the dual function as a quadratic 
function. However, the approximation of the Hessian is based on Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updates.

A discussion of the convergence of the proposed algorithms is provided at the end of 
the section.

5.1. Regression-based approximations

This section presents the algorithms in which the surrogate function is obtained as the 
solution of a regression problem. First, the underlying regression problem is introduced, 
followed by a description of the regression data selection strategy. As the quadratic ap-
proximations are only valid locally, a trust region constraint based on the used regression 
data is presented, which prevents the dual variables from moving too far away from the 
range of validity of the surrogate function. Afterwards, the QAC algorithm is summarized 
briefly and the QADA algorithm is presented.

5.1.1. Fitting the parameters of a quadratic model
The regression-based algorithms follow the basic idea of derivative-free optimization 

according to Conn et al. [16], where locally a surrogate, in this case quadratic, model is 
fitted to previously collected data. To this end, a set of data points,

D(t) = {(λ(j), ψ̂(λ(j)))| 1 ≤ j ≤ t} (54)

collected from previous iterations is chosen, where λ(j) is a value of the dual variables and 
ψ̂(λ(j)) the corresponding observed value of the approximated function. The surrogate 
function considered in this paper is a quadratic function of the form

ψ(t)(λ) := 1
2λ

TQ(t)λ + q(t),Tλ + q
(t)
0 ,

Q(t) ∈ SRnb×nb ,q(t) ∈ Rnb , q
(t)
0 ∈ R. (55)

The parameters of the quadratic model (55) can be computed as the solution of the 
regression problem

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

‖ψ(t)(λ(j)) − ψ̂(λ(j))‖2
2. (56)

In order to obtain the solution (56) in a closed form, eq. (55) can be rewritten as

ψ(t)(λ) =
nb∑ nb∑

[Q(t)]l,j [λ]l[λ]j +
nb∑

[q(t)]l[λ]l + q
(t)
0 . (57)
l=1 j=1 l=1
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The parameters of the surrogate function can be summarized in a vector p(t),

p(t),T := ([Q(t)]1,1, . . . , [Q(t)]1,n(t)
b
, [Q(t)]2,2, . . . , [Q(t)]nb,nb

,

[q(t)]1, . . . , [q(t)]nb
, q

(t)
0 ). (58)

Let n(t)
j := |J (t)| be the number of used regression points in iteration t and

ψ̂
(t)

:= (ψ̂(λ(1)), . . . , ψ̂(λ(n(t)
j )))T (59)

the vector of observed values of the approximated function. Then, by defining the 
Vandermonde-matrix [64]

M(t) :=
(
l◦21 , l1 ◦ l2, . . . , l1 ◦ lnb

, l◦22 , . . . , l◦2nb
, l1 . . . , lnb

,1
)
, (60)

with ll := ([λ(1)]l, . . . , [λ(n(t)
j )]l)T and the element-wise vector multiplication ◦, the pa-

rameters of the surrogate function can be obtained as

p(t) =
(
M(t),TM(t)

)−1
M(t)ψ̂

(t)
. (61)

Note that λ(1) in equations (59) and (60) denotes the first dual variables in the regression 
set (54), not the dual variables in the first iteration of the dual decomposition-based 
algorithm.

In order to perform a quadratic approximation at least

nreg,min := (nb + 1)(nb + 2)/2 (62)

data points are necessary, i.e., n(t)
j ≥ nreg,min, since p(t) ∈ Rnreg,min [16,64]. This shows 

that the regression-based approximations cannot be used in the first iterations of 
regression-based algorithms. Instead, an initial sampling phase is required, e.g., using the 
subgradient method, until at least nreg,min data points have been collected. Furthermore, 
the choice of the data used in the regression problem, i.e., J (t) ⊆ {1, . . . , t}, plays an 
important role in the performance of the algorithms and is discussed in the next section.

5.1.2. Regression data selection strategy
The selection of suitable points for the quadratic approximation has been studied 

extensively in the context of derivative-free optimization [16]. The following criteria are 
usually considered [26,69]:

• spread,
• distance,
• number of points,
• age.
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Fig. 3. Illustration of the regression data selection using the nearest axis point separation algorithm.

The points should be spread in different directions to provide enough information on 
the approximated function. For a good local approximation, the majority of the data 
points should not lie too far away from the current iterate in order to keep the ap-
proximation local. A minimum number of points (62) has to be used for the quadratic 
approximation, but too many points might result in a poor quality of the approximation 
if the approximated function is not quadratic and the points that are considered are 
far away from the current iterate, e.g., in the case of a changing set of active individ-
ual constraints of the subproblems. Finally, only recent points should be used for the 
approximation. This is essential if the parameters of the optimization problems change 
over time, e.g., in the context of modifier adaptation in real-time optimization [26,66].

Different algorithms have been proposed for data selection in the context of quadratic 
approximation. Two different algorithms from Wenzel et al. [66] and Gao et al. [26] were 
compared in [70]. Throughout this work the nearest axis point separation (NAPS) algo-
rithm from [66] is used as it yields comparable results to the selection algorithm proposed 
in [26] at a lower computational cost. The NAPS algorithm was developed in the context 
of modifier adaptation for real-time optimization with quadratic approximation, and 
later also applied to distributed optimization [64,65,69]. The algorithm aims at selecting 
recent points that lie close to the current iterate λ(t) as well as evenly spread points 
lying further away in order to stabilize the approximation. The algorithm is illustrated 
in Fig. 3 for a two dimensional example and its steps are summarized in Algorithm 4. 
First, all data points that are too old are excluded from the data set, depending on a 
user defined age parameter τ . The matrix containing all previously stored points is de-
noted by Λ := (λ(0), . . . , λ(t)). These points are divided into inner points ΛI and outer 
point ΛO. A point is classified as an inner point if it lies within a distance Δλ of the 
current iterate. All inner points are added to the set of regression points Λ(t). The space 
of dual variables Rnb is then divided into segments according to their sign configuration 
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(in reference to λ(t)) and their nearest axis. For instance, in Fig. 3 the segment S(+,+)
1

contains all points λ where [λ]1, [λ]2 > 0 lying closest to the [λ]1 axis. The algorithm 
then cycles through all segments, always selecting the point closest to the current iterate 
λ(t). The cycling process is repeated until at least nreg,min points have been added to the 
regression set Λ. Finally, the values of the approximated function ψ̂(λ) corresponding 
to the selected dual variables are selected. The regression data used for the subsequent 
quadratic approximation is

D(t) = {(λ(j), ψ̂(λ(j)))| j ∈ J (t)}, (63)

where J (t) contains the indices of the selected data points. The NAPS algorithm is 
summarized in Algorithm 4.

Algorithm 4 Nearest Axis Point Separation (NAPS, adapted from [69]).
Require: λ(t), Λ, Ψ̂, τ , Δλ, nreg,min

1: Λ(t) ← ∅, J (t) ← ∅
2: Λ ← Λ\{λ(j)| j < t − τ} 	 Remove old points.
3: ΛI ← {λ(j)| ‖λ(j) − λ(t)‖2 ≤ Δλ} 	 Inner points.
4: J (t) ← J (t) ∪ {j ∈ {1, . . . , t}| λ(j) ∈ ΛI} 	 Select all indices of inner points.
5: Λ(t) ← Λ(t) ∪ ΛI 	 Select all inner points.
6: ΛO ← Λ\ΛI 	 Outer points.
7: while |Λ(t)| < nreg,min do
8: for S(.)

l ∈ {S(.)
1 , . . . , S(.)

nb
} do 	 Go through all segments

9: j ← arg min
j∈{j| λ(j)∈S(.)

l ∩ΛO}
‖λ(j) − λ(t)‖2

10: J (t) ← J (t) ∪ {j}
11: Λ(t) ← Λ(t) ∪ {λ(j)}
12: S(.)

l ← S(.)
l \{λ(j)}

13: ΛO ← ΛO\{λ(j)}
14: end for
15: end while
16: ψ̂

(t) ← {ψ̂(λ(j)) ∈ Ψ̂| j ∈ J (t)} 	 Match observations to selected points
17: return Λ(t), ψ̂(t), J (t)

5.1.3. Covariance-based step size constraint
Wenzel and Engell [65] proposed a covariance-based step size constraint for the update 

of the dual variables. The constraint prevents too aggressive steps and leads to updates 
that are in the region where the local approximation is valid.

First, the covariance matrix of the approximation data is computed,

C(t) = cov(Λ(t)). (64)

The orientation of the ellipsoid is determined by the eigenvectors of the covariance matrix 
while the corresponding eigenvalues are related to the lengths of its axes. Wenzel and 
Engell [65] proposed to bound the axes of the ellipsoid, so that the search space does 
not become too small, hindering the progression of the algorithm, or too big, possibly 
leading to a numerically unbounded problem. This scaling of the axes is performed using 



V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058 25
a singular value decomposition, which preserves the original orientation. The singular 
value decomposition is performed for the covariance matrix,

C(t) = U(t)Σ(t)V(t),T , Σ(t) = diag(σ(t)
l ), (65)

where σ(t)
l , l = 1, . . . , nb denote the singular values. Subsequently, the singular values 

are scaled according to

σ̂
(t)
l := max{sl,min{σ(t)

l , sl}}, (66)

where sl and sl are user defined element-wise lower and upper bounds. Note that in 
this way each axis can be scaled independently, even though using the same lower and 
upper bounds is usually more convenient in practice. Using the scaled singular values, 
the scaled covariance matrix can be computed,

Ĉ(t) = U(t)Σ̂(t)V(t),T , Σ̂(t) = diag(σ̂(t)
l ). (67)

The updated dual variables λ(t+1) are then constrained to lie within an ellipsoid which 
is defined by the scaled covariance matrix,

E(Λ(t)) := {λ ∈ Rnb |(λ− λ(t))T Ĉ(t),−1(λ− λ(t)) ≤ (γ(t))2}. (68)

Wenzel et al. [69] propose to update γ(t) according to

γ(t) = max{log ‖wp(λ(t))‖2, γ}, (69)

where γ is a user defined lower bound to prevent the ellipsoid from collapsing to a single 
point. This choice of γ(t) allows bigger steps when the current point is far away from the 
optimum and reduces the step size if the point is near the optimum.

5.1.4. The QAC algorithm
The quadratic approximation coordination (QAC) algorithm was first proposed in 

[67]. It was motivated by the distributed optimization of quadratic programs (QPs) 
without local constraints

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (70a)

s. t.
∑
i∈I

Aixi = b, (70b)

with symmetric positive definite matrices Hi ∈ SRnxi
×nxi , ci ∈ Rnxi , Ai ∈ Rnb×nxi

and b ∈ Rnb . This problem can be summarized as
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min
x

1
2xTHx + cTx (71a)

s. t. Ax = b (71b)

where H := diag(H1, . . . ,HNs
), cT := (cT1 , . . . , cTNs

), A = (A1, . . . ,ANs
). It is easy to 

show that the squared Euclidean norm of the primal residual ‖wp‖2
2 = ‖Ax − b‖2

2 is a 
quadratic function of the dual variables. The Lagrange function of problem (71) is

L(x,λ) = 1
2xTHx + cTx + λT (Ax − b) . (72)

Since the matrices Hi are symmetric and positive definite, i.e., problem (71) is convex, 
the optimal primal solution x∗ can be computed as a function of the dual variables by 
applying the Karush-Kuhn-Tucker conditions [9]:

∇xL(x,λ) != 0 ⇒ x∗(λ) = −H−1(c + ATλ). (73)

Thus the primal residual wp can be formulated as a function of the dual variables,

wp(λ) = Ax∗(λ) − b = −AH−1(c + ATλ) − b. (74)

Computing the squared Euclidean norm of the primal residual leads to

‖wp(λ)‖2
2 = 1

2λ
T 2AH−1ATAH−1AT︸ ︷︷ ︸

=:Q̂

λ+ (75)

2(cTH−1AT + bT )AH−1AT︸ ︷︷ ︸
=:q̂T

λ+

(cTH−1AT + bT )(AH−1c + b)︸ ︷︷ ︸
=:q̂0

.

Thus the squared Euclidean norm of the primal residual is a quadratic function of the 
dual variables [69]

‖wp(λ)‖2
2 = 1

2λ
T Q̂λ + q̂Tλ + q̂0. (76)

The QAC algorithm is based on local quadratic approximations of the squared Euclidean 
norm of the primal residual, i.e., of

ψ̂(λ) = ‖wp(λ)‖2
2 =

∥∥∥∥∥∑
i∈I

Aixi(λ) − b

∥∥∥∥∥
2

2

. (77)

The surrogate function is a quadratic function
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r(t)(λ) = 1
2λ

TQ(t)λ + q(t),Tλ + q
(t)
0 (78)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

∥∥∥r(t)(λ(j)) − ‖wp(λ(j))‖2
2

∥∥∥2

2
. (79)

The regression data

D(t) = {(λ(j), ‖wp(λ(j)))‖2
2| j ∈ J (t)}, (80)

is selected using the NAPS algorithm. After obtaining the surrogate function, the dual 
variables are updated through a minimization problem, subject to the covariance-based 
step size constraint

λ(t+1) = arg min
λ∈Rnb

r(t)(λ), (81a)

s. t. λ ∈ E(Λ(t)), (81b)

λ ≥ 0. (81c)

The QAC algorithm is summarized in Algorithm 5. Again, steps 5–8 are performed by 
the subproblems in parallel, while steps 9–34 are performed by the coordinator.

A key feature of the QAC algorithm is that it only requires the communication of the 
contribution to the system-wide constraints from the individual subproblems. Therefore, 
no sensitive information has to be shared, preserving privacy of the subsystems. This 
is essential, e.g., in the case of coupled production systems which might share limited 
resources while belonging to different companies. Through the quadratic approximation 
the QAC algorithm is able to infer second order information of the dual problem, thereby 
improving the rate of convergence compared to the subgradient method, which has access 
to the same information.

Nevertheless, the QAC algorithm also faces some drawbacks. First, the squared Eu-
clidean norm of the primal residual, which will also be referred to as primal residual in 
the following for the sake of brevity, is only quadratic for the special case of distributed 
QPs without individual constraints (70). Wenzel et al. [69] showed that the primal resid-
ual is a piece-wise quadratic function of the dual variables for distributed QPs with 
individual constraints. The quadratic approximation in this case depends on the set of 
active individual constraints. If the set of active individual constraints changes, the pri-
mal residual is not smooth [69]. It was shown in the example in Section 3 that this is 
also the case for the dual function d(λ). However, while the dual function always retains 
concavity, the same does not hold for the convexity of the primal residual. Thus, in a 
more general distributed optimization setting the QAC algorithm tries to approximate a 
nonsmooth and nonconvex function as a smooth quadratic function, which might reduce 
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Algorithm 5 Quadratic Approximation Coordination (QAC).
Require: λ(0), α(0), τ , Δλ, si, si, γ, nreg,start, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subsystems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i to the coordinator

8: end for
9: g(λ(t)) ← ∑

∀i∈I Aix(t+1)
i − b

10: if Constraints (1b) are inequalities then
11: for all l = 1, . . . , nb do
12: [w(t)

p ]l ← max
{[

g(λ(t))
]
l
, 0

}
13: end for
14: else if Constraints (1b) are equalities then
15: w(t)

p ← g(λ(t))
16: end if
17: if j < nreg,start then 	 Perform SG updates until enough points are collected
18: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

19: if Constraints (1b) are inequalities then
20: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
21: else if Constraints (1b) are equalities then
22: λ(t+1) ← λ(t) + α(t)g(λ(t))
23: end if
24: else 	 Perform QAC Updates
25: D(t) ← NAPS(Λ, ‖wp(Λ)‖2

2, τ, Δλ)
26: E(Λ(t)) ← ComputeEllipsoid(Λ(t), si, si, γ)
27: r(t)(λ) ← Regression(D(t))
28: if Constraints (1b) are inequalities then
29: λ(t+1) ← arg minλ∈E(Λ(t)) r

(t)(λ), s.t. λ ≥ 0
30: else if Constraints (1b) are equalities then
31: λ(t+1) ← arg minλ∈E(Λ(t)) r

(t)(λ)
32: end if
33: end if
34: w(t)

d ← λ(t+1) − λ(t)

35: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
36: return λ(t)

its efficiency. The issue of the changing sets of active constraints was addressed in [69]
by employing a fallback strategy, if an insensitivity of the primal residual was detected. 
However, the numerical experiments described in Section 6 showed that the QAC algo-
rithm actually performed better without the fallback strategy. Therefore its discussion 
is omitted at this point.

5.1.5. Quadratically approximated dual ascent
As discussed in the previous section, approximating the primal residual as a quadratic 

function suffers from a number of drawbacks, mainly the loss of convexity and nons-
moothness. The problem of nonconvexity of the primal residual can be circumvented by 
approximating the dual function, i.e.,

ψ̂(λ) = d(λ) = min
xi∈Xi, ∀i∈I

∑
Li(xi,λ) − λTb, (82)
i∈I
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which is always concave. For the special case of distributed QPs (70) it is also easy to 
show that the dual function is quadratic. By inserting the optimal values of the primal 
variables x∗(λ) (73) into the Lagrange function (72) the dual function computes to

d(λ) = 1
2λ

T (−AH−1AT )︸ ︷︷ ︸
=:Q̃

λ+ (83)

(−cTH−1AT − bT )︸ ︷︷ ︸
=:q̃T

λ+

(−1
2cTH−1c)︸ ︷︷ ︸

q̃0

.

While the primal residual can become nonconvex, even for convex primal problems, 
the dual function is always concave, regardless whether or not the primal problem is 
convex. In the new proposed algorithm, the dual function is approximated by a quadratic 
function,

d
(t)
Q (λ) = 1

2λ
TQ(t)λ + q(t),Tλ + q

(t)
0 (84)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

‖d(t)
Q (λ(j)) − d(λ(j))‖2

2. (85)

The regression data

D(t) = {(λ(j), d(λ(j)))| j ∈ J (t)}, (86)

is selected using the NAPS algorithm. Once the quadratic approximation has been 
performed, the dual variables can be updated by maximizing the approximated dual 
function. The update step of the dual variables can be interpreted as an ascent step for 
the dual function using a quadratic approximation. Therefore the algorithm is referred 
to as Quadratically Approximated Dual Ascent (QADA).

A difference between the QAC and QADA algorithms is the amount of information 
collected from the subproblems in each iteration. While the QAC algorithm only requires 
the information about the violation of the system-wide constraints, the QADA algorithm 
additionally requires the information about the contributions of the subproblems to the 
dual function,

di(λ) = min Li(xi, λ). (87)

xi∈Xi
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Fig. 4. Illustration of the effect of bundle cuts.

This essentially means that the QADA algorithm collects the same information as bundle 
methods (30), consisting of the dual variables, the corresponding values of the dual 
function and the subgradients. This bundle information can be used to better handle the 
nonsmoothness of the dual function.

5.1.6. Bundle cuts
The core idea of the QADA algorithm is that a quadratic surrogate model of the dual 

function is computed and optimized in order to update the dual variables. However, a 
quadratic function can exhibit a significant approximation error, especially if the opti-
mum is at or near a point of nondifferentiability. This situation is illustrated in Fig. 4a. 
The available points (blue circles) are used to compute the quadratic approximation of 
the dual function dQ(λ). The maximum of the quadratic approximation (green cross) is 
far from the actual optimum of the dual function. Updating the dual variables based on 
this approximation results in a deterioration of the objective value. To alleviate this is-
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sue, the collected subgradients can be used to formulate cutting planes. According to the 
definition of the subgradient (22) the following relation holds between the dual function 
d(λ) and a subgradient g(λ(j)) at a point λ(j):

d(λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)). (88)

This implies that a quadratic approximation of the dual function is not valid, if it does 
not satisfy condition (88). Therefore, the collected subgradients are used to formulate 
additional constraints on the updated dual variables λ(t+1), referred to as bundle cuts 
in the following:

d
(t)
Q (λ(t+1)) ≤ d(λ(j)) + gT (λ(j))(λ(t+1) − λ(j)), ∀j ∈ {t− τ + 1, . . . , t}. (89)

The bundle cuts are formulated by using the data points that are not older than the age 
parameter τ . Fig. 4b illustrates the effect of the bundle cuts on the QADA update step. 
Constraining the quadratic approximation of the dual function to have a value lying 
below the cutting planes results in an update that is closer to the optimum of the actual 
dual function. (89) constitutes a quadratic inequality constraint on the update of the dual 
variables, similar to the covariance-based step size constraint. Note that no additional 
parameters have to be defined by the user for these constraints. In the following, the 
bundle cuts are summarized as

BC(t) = {λ ∈ Rnb |d(t)
Q (λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)),

∀j ∈ {t− τ + 1, . . . , t}}. (90)

The dual variables are updated in each iteration of the QADA algorithm by maximizing 
the approximated dual function, subject to the covariance-based step size constraints 
and the bundle cuts,

λ(t+1) = arg max
λ∈Rnb

d
(t)
Q (λ), (91a)

s. t. λ ∈ E(Λ(t)) ∩ BC(t), (91b)

λ ≥ 0. (91c)

The QADA algorithm is summarized in Algorithm 6. Note that the initial sampling 
steps in Algorithm 6 are performed using the subgradient method, similar to the QAC 
algorithm (Algorithm 5). However, since the QADA algorithm also uses the bundle in-
formation, BTM could also be used for the initial sampling. Steps 5–9 are performed 
in parallel by the subproblems while steps 10–37 are performed by the coordina-
tor.
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Algorithm 6 Quadratically Approximated Dual Ascent (QADA).
Require: λ(0), α(0), τ , Δλ, si, si, γ, nreg,start, εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
8: coordinator
9: end for

10: g(λ(t)) ← ∑
∀i∈I Aix(t+1)

i − b
11: d(λ(t)) ← ∑

∀i∈I Li(x(t+1)
i , λ(t)) − λ(t),Tb

12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p ]l ← max
{[

g(λ(t))
]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ← g(λ(t))
18: end if
19: if j < nreg,start then 	 Perform SG updates until enough points are collected
20: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

21: if Constraints (1b) are inequalities then
22: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
23: else if Constraints (1b) are equalities then
24: λ(t+1) ← λ(t) + α(t)g(λ(t))
25: end if
26: else 	 Perform QADA Updates
27: D(t) ← NAPS(Λ, d(Λ), τ, Δλ)
28: E(Λ(t)) ← ComputeEllipsoid(Λ(t), si, si, γ)
29: d

(t)
Q (λ) ← Regression(D(t))

30: F(t) ← E(Λ(t)) ∩ BC(t)

31: if Constraints (1b) are inequalities then
32: λ(t+1) ← argmaxλ∈F(t)d

(t)
Q (λ), s. t. λ ≥ 0

33: else if Constraints (1b) are equalities then
34: λ(t+1) ← argmaxλ∈F(t)d

(t)
Q (λ)

35: end if
36: end if
37: w(t)

d ← λ(t+1) − λ(t)

38: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
39: return λ(t)

5.1.7. Summary of regression-based algorithms
Fig. 5 shows a flowchart of the regression based algorithms (QAC and QADA). The 

algorithm is initialized with the dual variables λ(0). In each iteration, the subproblems 
are solved for the current values of the dual variables and the subgradient and, in the 
case of the QADA algorithm, the dual value is communicated to the coordinator. If 
not enough iterations have been performed, the dual variables are updated using the 
subgradient method (23b). Otherwise the data for the approximation is selected and the 
regression problem is solved. After updating the covariance-based step size constraint 
and, in the case of QADA, the bundle cuts constraints, the dual variables are updated 
by optimizing the surrogate function.
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Fig. 5. Flowchart of the regression-based coordination algorithms (adapted from [69]).

5.2. Quasi-Newton dual ascent

Quasi-Newton methods have proven to be very efficient for smooth convex optimiza-
tion problems. The idea is to approximate the Hessian of the objective function by only 
using first order information, i.e., objective values and gradients. In this paper the same 
principle is applied to the dual optimization problem (4). If no individual constraints 
(1c) are considered, the dual function is smooth and the subgradient is equal to the gra-
dient. In the case of individually constrained subproblems, nondifferentiabilities of the 
dual function occur at the points where the set of active constraints changes. However, 
quasi-Newton update steps can still be employed to compute a search direction of the 
dual function. The proposed quasi-Newton dual ascent (QNDA) algorithm is described 
in the following. A decentralized quasi-Newton algorithm was presented in [18] and [19]. 
There the subproblems use the curvature of their own objective function and estimate 
that of their neighbors. The proposed decentralized Broyded-Fletcher-Goldfarb-Shanno 
(D-BFGS) method relies on local communication between the subproblems without ag-
gregating information through a central coordinator. However, this network topology 
requires the exchange of objective gradients, which is not considered in this paper. 
Furthermore, no individual constraints are considered, which would result in a nons-
moothness of the dual problem. In contrast, the algorithm presented in this section 
estimates the curvature of the dual function, while taking the nonsmoothness into ac-
count through the previously discussed bundle cuts.

The idea of Newton methods is to approximate the objective function d(λ) by a 
quadratic function around the current iterate λ(t) through its Taylor series,
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d(λ) ≈ 1
2(λ− λ(t))T∇2d(λ(t))(λ− λ(t)) + ∇T d(λ(t))(λ− λ(t)) + d(λ(t)). (92)

As the dual function is nonsmooth, i.e., ∇d(λ) and ∇2d(λ) do not exist for every value 
of λ, if the set of active constraints changes, the quadratic approximation (92) cannot be 
used in practice. Even for distributed problems without local constraints, i.e., for smooth 
dual functions, the Hessian ∇2d(λ) is usually not readily available in a distributed set-
ting. Therefore, instead of using the analytical gradient and Hessian, approximations are 
used, resulting in the following approximation of the dual function:

d
(t)
B (λ) = 1

2(λ− λ(t))TB(t)(λ− λ(t)) + gT (λ(k))(λ− λ(t)) + d(λ(t)), (93)

where the gradient is replaced by a subgradient g(λ(t)) and the Hessian is approximated 
in each iteration by the matrix B(t), leading to a quasi-Newton method. The update of 
the approximated Hessian B(t) can also be interpreted as the solution of an optimization 
problem based on previous data. Thus, the surrogate function dB(λ) is obtained through 
the solution of an optimization problem (52). However, unlike in the case of the QAC or 
QADA algorithms no regression is performed. To compute an update of the approximated 
Hessian the variations of the dual variables,

s(t) := λ(t) − λ(t−1) (94)

and of the subgradients

y(t) = g(λ(t)) − g(λ(t−1)) (95)

are defined. The approximated Hessian is then updated according to [51],

B(t) = arg min
B∈SRnb×nb

‖B − B(t−1)‖F (96a)

s. t. B(−1)y(t) = s(t), (96b)

were ‖ · ‖F denotes the (weighted) Frobenius norm. The approximated Hessian has to 
be symmetric, since the actual Hessian is also always symmetric. Constraint (96b) is 
called the secant condition and captures the local curvature of the objective function. 
The solution of (96) can be written in a closed form as [51]

B(t) = B(t−1) + y(t)y(t),T

y(t),T s(t) − B(t−1)s(t)s(t),TB(t−1),T

s(t),TB(t−1)s(t) . (97)

Eq. (97) is the well-known BFGS-update scheme. The surrogate function d(t)
B (λ) is a 

smooth approximation of the dual function. In order to perform the approximation of 
the dual function the same amount of information as in the BTM and QADA algorithms 
is collected. Therefore the bundle cut constraints can be employed to address the non-
smoothness of the actual dual function. However, the approximation is not based on 
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multiple regression points, as in the case of the QADA algorithm. Thus, the covariance-
based step size constraint should not be employed, as it is not representative of the range 
of validity of the approximation. Instead the same trust region as in BTM can be used. 
The dual variables are updated in each iteration by solving the optimization problem

λ(t+1) = arg max
λ∈Rnb

d
(t)
B (λ), (98a)

s. t. ‖λ− λ(t)‖2
2 ≤ α(t), (98b)

λ ∈ BC(t), (98c)

λ ≥ 0. (98d)

The proposed algorithm performs an ascent step of the dual function using a quasi-
Newton method. Hence it is referred to as Quasi-Newton Dual Ascent (QNDA). The 
algorithm is summarized in Algorithm 7. Steps 5–9 are performed in parallel by the 
subproblems while steps 10–36 are performed by the coordinator.

5.3. Discussion of the convergence properties of the QADA and QNDA algorithms

In this section, we provide a preliminary analysis of the convergence properties of 
the QADA and QNDA algorithms for different cases, distributed quadratic and general 
convex problems without constraints, distributed quadratic and general convex problems 
with individual constraints and distributed mixed-integer quadratic programs. The argu-
ments, as usual, resort to applying sufficiently small step sizes which assures convergence 
but is not advantageous for the performance of the algorithms, which is demonstrated in 
the next section. In the real implementation and parameterization, the algorithms include 
heuristic components which can only be validated by tests for well-designed benchmark 
problems.

First, we consider the case of distributed quadratic programs without individual con-
straints,

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (70a)

s. t.
∑
i∈I

Aixi = b. (70b)

As was shown in Section 5.1.5, the dual function of Problem (70) is

d(λ) = 1
2λ

T (−AH−1AT )λ + (−cTH−1AT − bT )λ +
(
−1

2cTH−1c
)
, (83)

where the matrices and vectors H, c and A contain the parameters of the subproblems. 
In a dual decomposition-based distributed optimization algorithm a subgradient of the 
dual function in iteration t can be computed as

g(λ(t)) = Ax(t+1) − b, (100)
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Algorithm 7 Quasi-Newton Dual Ascent (QNDA).
Require: λ(0), B(0), α(0), τ , εp, εd, tmax
1: t ← 0
2: repeat
3: t ← t + 1
4: Send λ(t) to all subproblems
5: for all i = 1, . . . , Ns do
6: x(t+1)

i ← arg minxi∈Xi
Li(xi, λ(t))

7: Send Aix(t+1)
i and Li(x(t+1)

i , λ(t)) to the
8: coordinator
9: end for

10: g(λ(t)) ← ∑
∀i∈I Aix(t+1)

i − b
11: d(λ(t)) ← ∑

∀i∈I Li(x(t+1)
i , λ(t)) − λ(t),Tb

12: if Constraints (1b) are inequalities then
13: for all l = 1, . . . , nb do
14: [w(t)

p ]l ← max
{[

g(λ(t))
]
l
, 0

}
15: end for
16: else if Constraints (1b) are equalities then
17: w(t)

p ← g(λ(t))
18: α(t) ← α(0)/ max{‖w(0)

p ‖2, . . . , ‖w(t)
p ‖2}

19: if j = 1 then 	 Perform SG update in first iteration.
20: if Constraints (1b) are inequalities then
21: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+
22: else if Constraints (1b) are equalities then
23: λ(t+1) ← λ(t) + α(t)g(λ(t))
24: end if
25: else 	 Perform QNDA Updates
26: y(t) ← g(λ(t)) − g(λ(t−1))
27: B(t) ← BFGS(B(t−1), y(t), s(t))
28: F(t) ← {λ ∈ RnB | ‖λ − λt‖2

2 ≤ α(t)} ∩ BC(t)

29: if Constraints (1b) are inequalities then
30: λ(t+1) ← argminλ∈F(t)d

(t)
B (λ), s. t. λ ≥ 0

31: else if Constraints (1b) are equalities then
32: λ(t+1) ← argminλ∈F(t) d̃

(t)
B (λ)

33: end if
34: end if
35: s(t+1) ← λ(t+1) − λ(t)

36: w(t)
d ← s(t+1)

37: until (‖w(t)
p ‖2 ≤ εp ∧ ‖w(t)

d ‖2 ≤ εd) ∨ (t ≥ tmax)
38: return λ(t)

with

x(t+1) = arg min
x∈Rnx

1
2xTHx + cTx + λ(t),T (Ax − b) (101)

= −H−1(c + ATλ(t)). (73)

Inserting (73) into (100) yields

g(λ(t)) = −AH−1(c + ATλ) + b = ∇d(λ(t)), (102)

which shows that in the case of distributed QPs without individual constraints the sub-
gradient is equal to the gradient of the dual function. This implies that the corresponding 
dual problem is an unconstrained smooth convex problem.
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In this special case the subgradient method is equivalent to a steepest ascent method 
with a step size α(t) and a search direction s(t) = ∇d(λ(t)),

λ(t) = λ(t) + α(t)s(t). (103)

Quasi-Newton methods generally provide better search directions, by accounting for the 
curvature of the objective function. The search direction for the BFGS method is given by

s(t) = B(t),−1∇d(λ(t)), (104)

where B(t) denotes the approximation of the Hessian computed by (97). Using this 
search direction is equivalent to the QNDA algorithm, if bundle cuts are omitted and a 
line search is used instead of a trust region. Note that since the dual problem is smooth 
for this special case, the bundle cuts are not required. Convergence in this case can be 
proven by a suitable selection of the step size, e.g., by requiring the satisfaction of the 
Wolfe conditions [51],

d(λ(t) + α(t)s(t)) ≥ d(λ(t)) + β1α
(t)∇T d(λ(t))s(t), (105a)

∇T d(λ(t) + α(t)s(t))s(t) ≥ β2∇T d(λ(t))s(t), (105b)

β1 ∈ (0, 1), β2 ∈ (β1, 1). (105c)

However, the problem with finding a suitable step size through conditions (105) is that 
the closed form of the objective function d(λ) is not known to the coordinator. Thus, the 
step size has to be adjusted heuristically. The same issue arises when using a trust region 
approach, as a certain degree of centralized information is necessary to compute optimal 
hyper-parameters. The same convergence properties can be transferred for distributed 
general convex problems without local constraints, as the subgradient is equal to the 
gradient of the dual function.

In the case of the QADA algorithm, a quadratic surrogate function is computed by 
solving a regression problem. In the special case of distributed QPs without individual 
constraints (70) the dual function is quadratic, but unknown to the coordinator. For 
enough data points, assuming a well-conditioned Vandermonde matrix M(t) (60) and 
except for numerical errors, the surrogate function will be equal to the actual dual 
function. This means that the update of the dual variables in the QADA algorithm 
computes the solution to the dual problem. However, the employed trust region will 
usually prevent convergence within a single iteration.

The situation is more complicated if individual constraints of the subproblems are 
considered. In the case of distributed QPs without individual constrains Wenzel et al. 
[69] showed that the primal residual for QAC is piecewise quadratic, depending on the 
set of active constraints. The same holds for the dual function. The arguments made 
above for the case without individual constraints can then be made locally once a point 
sufficiently close to the optimum has been reached, employing a suitable (small) step 



38 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
size. As long as the step size is small, the dual function can be approximated locally by 
a quadratic function. If the set of active constraints changes, the quadratic form of the 
dual function also changes. Again, assuming a small update steps, a good approximation 
can be obtained after a few steps. Note that since the dual function is (globally) concave, 
moving towards the optima of the piece-wise quadratic regions of the dual function will 
eventually guide the search towards the global optimum of the dual function.

Similar arguments can be made for more general problems, as e.g. distributed convex 
problems. Many convex optimization algorithms with provable convergence employ a 
quadratic approximation of the objective function, e.g., sequential quadratic program-
ming (SQP) methods, Newton methods or quasi-Newton methods. As the dual problem 
is a convex optimization problem, the same principles can be applied locally. In a re-
gion where the active constraints do not change, the arguments made for distributed 
problems without individual constraints hold, as the subgradient is equal to the gradi-
ent. The main difference to more general convex optimization problems is that the dual 
function exhibits nonsmoothness when the set of active individual constraints changes. 
Therefore, the QADA and QNDA algorithms combine smooth convex optimization with 
bundle methods for nonsmooth optimization. As described above, a cutting plane model 
is defined,

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}. (31)

It has been shown that the cutting plane model will exactly match the concave nons-
mooth dual function, as t goes to ∞ [7], i.e.,

lim
t→∞

d̂(t)(λ) = d(λ), (106)

if all previously collected points are kept in the bundle. This is the basis of the proof of 
the (theoretical) convergence of bundle methods. In the QADA and QNDA algorithms 
the cutting plane model is used as an upper bound of the new objective value. For 
instance, the QNDA update (98) can be reformulated as

λ(t+1) = arg max
λ∈Rnb

d
(t)
B (λ), (107a)

s. t. ‖λ− λ(t)‖2
2 ≤ α(t), (107b)

d
(t)
B (λ) ≤ d̂(t)(λ), (107c)

λ ≥ 0. (107d)

As t tends to ∞, the constraints (107c) prevent the algorithm from moving in a wrong 
direction, eventually leading to convergence. The same holds for the QADA algorithm.

From a practical point of view, it is not desirable to store all previously collected 
information in the bundle, as this would necessitate a possibly infinite storage capacity. 
Therefore only recent data is stored in the bundle, both for BTM and the two proposed 
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algorithms, with the age parameter τ being an important hyper-parameter. If sufficient 
data is kept in the bundle good performance can be observed in practice.

In this paper distributed mixed-integer quadratic programs are also considered. In this 
case, the dual problem essentially does not differ from the case of distributed general 
convex problems. However, the convergence arguments made above apply only to the 
dual function, i.e., convergence of the dual variables. For convex problems, the optimal 
primal solution can be obtained at the dual optimum, since strong duality holds. This 
is however not the case for integer problems. It can generally not be guaranteed that a 
feasible primal solution will be obtained, even at the dual optimum. Vujanic et al. [60]
propose a tightening the right-hand side of the system-wide constraints and prove that 
a feasible solution of the original primal problem is obtained at the dual optimum of 
the modified problem, additionally providing some performance guarantees. The same 
tightening is applied in this paper and discussed in more detail in Section 6.2. Feasibility 
is proven for mixed-integer linear programming problems. The transfer of these results 
to mixed-integer quadratic programming problems is an open research question. From 
a practical point of view a key issue when considering distributed integer problems (or 
nonconvex problems in general) in a dual decomposition-based distributed optimization 
setting is that all subproblems have to be solved to global optimality. Recall that the 
dual function is actually defined as the infimum of the Lagrange function for a value of 
the dual variables (3). Global optimality of mixed-integer programming problems with
convex relaxations can be assessed through the obtained integrality gap. Prematurely 
terminating the optimization of the subproblems at a suboptimal solution, or converging 
to a local minimum of the subproblems for continuous nonconvex problems can lead 
to the loss of convexity of the sampled response surface of the dual function or the 
computation of wrong subgradients. Applying the proposed algorithms to nonconvex 
problems where global optimality of the subproblems cannot be guaranteed is also an 
open research question.

Note that all discussions on convergence consider the case that the dual optimum is 
found for t → ∞. This however does not guarantee the efficiency of the algorithms. For 
instance, the general ADMM algorithm for problem (39) provably converges to the dual 
optimum under certain convexity assumptions. The application of ADMM in practice 
shows that it converges fast to a solution with modest accuracy (in terms of the primal 
residual) near the optimum, but that finding a high accuracy solution can be very time 
consuming [8]. The practical efficiency of the new proposed algorithms in comparison to 
the benchmark algorithms, both in terms of number of required iterations and solution 
accuracy, is demonstrated in the next section.

6. Computational results

In this section, the performance of the proposed new QADA and QNDA algorithms 
is compared to the subgradient method, BTM, ADMM and to the QAC algorithm for 
different benchmark problems. Three different problem classes are considered, distributed 



40 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
quadratic programs (QP), distributed mixed-integer quadratic programs (MIQP) and 
distributed convex programs (Conv).

All algorithms and subproblems were implemented in the programming language Julia 
[5] using the optimization toolbox JuMP [17]. All affine, QP and MIQP subproblems 
were solved using the commercial solver Gurobi [29], while general convex problems 
were solved using the interior-point solver IPOPT [61]. The update problem of BTM is 
guaranteed to be a linear program with affine and convex quadratic constraints, therefore 
it was solved using Gurobi. The update problems of QAC, QADA and QNDA were solved 
using IPOPT. All computations were performed on a standard Laptop PC (Intel(R) 
Core(TM) i5-6200U CPU @ 2.30 GHz, 8 GB RAM).

In order to assess the efficiency of the different algorithms the computation time 
required for the solution of a distributed optimization problem is computed as [55]

Tcomp = Niter · Tcomm +
Niter∑
t=1

(T (t)
update + max

i∈I
T

(t)
sub,i), (108)

where Niter is the number of required iterations, Tcomm is the required communication 
time between the coordinator and the subproblems, which is assumed to be constant, 
T

(t)
update is the time required by the coordinator to update the dual variables in iteration 

t and T (t)
sub,i is the solution time of subproblem i in iteration t. In a distributed optimiza-

tion setting the subproblems can be solved in parallel. Since the coordinator needs to 
collect the responses of all subproblems, the time for updating the primal variables in 
each iteration is dictated by the slowest subproblem. The communication time is set to 
Tcomm = 800 ms in the following.

All algorithms are terminated if the Euclidean norms of the primal and dual residuals 
lie below a threshold εp and εd respectively, or when the maximum number of iterations 
tmax is reached.

6.1. Distributed QPs

A large number of distributed QP benchmark problems were defined in [65] and [69]
with the following structure:

min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (109a)

s. t.
∑
i∈I

Aixi = 0, (109b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (109c)

with xi ∈ Rnxi . The system-wide constraints (109b) can be interpreted as a resource 
network balance, were Ns subsystems share resources. The goal is to optimize the overall 
system in a distributed manner while ensuring that the network is balanced, i.e., that 
the resource production and consumption matches.
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The matrices Hi were generated randomly as symmetric positive definite matrices,

Hi = MT
i Mi, Mi ∈ Rnxi

×nxi , (110)

where the elements of Mi were drawn from a normal distribution [Mi]l,j ∈ N (μ = 0, σ =
1). The elements of the vectors ci were drawn from the same normal distribution. The 
elements of the matrices of the coupling constraints Ai were first drawn from a uniform 
continuous distribution Uc(1, 2). Afterwards, they were altered such that their sign is 
flipped or they are set to zero through the uniform discrete distribution Ud[−1, 0, 1],

Ai = Bi ◦ Ci ∈ Rnb×nxi , [Bi]l,j ∈ Uc(1, 2), [Ci]l,j ∈ Ud[−1, 0, 1], (111)

where ◦ denotes element-wise multiplication. If a row in Ai only contained zeros, a 
correction step was performed that creates at least one nonzero entry. Box constraints 
(109c) were used as individual constraints for each subproblem. In all cases [xLB

i ]l = −10
and [xUB

i ]l = 10.
The number and size of the subproblems were varied as follows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},

Number of variables: nxi
∈ {2, 3, . . . , 10}, Ns ≥ nxi

.

All subproblems contain the same number of primal variables (nxi
= nx, ∀i ∈ I)

and the number of coupling constraints was set equal to the number of variables, i.e., 
nb = nx. Fifty problem instances were generated for each pair of number of subsystems 
and number of coupling constraints/variables (Ns, nb). In the following, the notation 
QP(R)

(Ns,nb) is used, where R indicates the number of the problem instance. For example, 
QP(7)

(256,2) refers to the seventh problem instance containing 256 constrained quadratic 
programs, each with 2 variables, connected through 2 coupling constraints. In [65] and 
[69] nxi

∈ {2, . . . , 5} was considered, resulting in total of 1400 problem instances. By 
increasing the number of primal variables/system-wide constraints an additional 1400 
problems were generated, resulting in a total of 2800 distributed QPs. It should be noted 
that all benchmark problems are strongly convex and satisfy Slater’s constraint qualifi-
cation, since xi = 0, ∀i ∈ I is a strictly feasible solution. Therefore, strong duality holds 
and solving the dual problem is equivalent to solving the primal problem. Furthermore, 
since the system-wide constraints are equalities, no nonnegativity constraints have to be 
imposed on the dual variables.
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6.1.1. Parameter settings for distributed QPs
For the subgradient method (SG) the initial step size parameters was set to α(0) =

2 × 10−3 and then varied according to (28). The same parameter was used for the trust 
region of BTM. Furthermore, for BTM only recent points were used to construct the 
cutting plane model, with an age parameter τ = 2 × nreg,min. For ADMM the initial 
regularization parameter was set to ρ(0) = 1/Ns and varied according to (50) with 
τdecr = 1.25, τincr = 1.5 and μ = 10. The parameters for the regression-based algorithms 
were mostly chosen as in [69]. The age parameter of NAPS was set to τ = 2 × nreg,min, 
similar to the BTM algorithm, while the radius of the inner sphere was set to Δλ =
5 × 10−5. The lower and upper bounds for the covariance-based step size constraints 
were set to sl = nb × 10−6 and sl = nb × 10−3 respectively. The parameter γ(t) was 
updated according to (69), with γ = 1. The regression data was selected using the 
NAPS algorithm. However, all recent points according to the age parameter τ were used 
to construct the bundle cuts in the case of the QADA algorithm. The same age parameter 
was used for the bundle cuts of the QNDA algorithm, while the trust region was defined 
in the same way as for the BTM algorithm. The approximated Hessian was initialized 
with the negative identity matrix B(0) = −I. The bundle cuts usually lead to more 
conservative update steps, especially during the initial iterations. This issue can slow 
down the convergence of the QADA and QNDA algorithms. Therefore, the bundle cuts 
were only enforced within a certain distance to the optimum, i.e., when

‖wp(λ(t))‖2 ≤ εb · ‖wp(λ(0))‖2. (112)

The corresponding parameter was set to εb = 0.6. The dual variables, and the auxiliary 
variables in the case of ADMM, were initialized with λ(0) = 0 and z(0)

i = 0, ∀i ∈ I. The 
maximum number of iterations was set to tmax = 500 and the convergence tolerances 
to εp = εd = 10−2. All parameters were set by trial and error, in order to find the 
parameters that result in the most converged benchmark problems. All parameters are 
summarized in Table A.5 in the appendix.

6.1.2. Results for distributed QPs
The 2800 benchmark problems were solved using the subgradient method (SG), BTM, 

ADMM, QAC, QADA and QNDA. The QADA algorithm requires an initial sampling 
phase until enough data points are available for a regression. These initial steps were 
performed by the SG (QADA-SG), BTM (QADA-BTM) and QNDA (QADA-QNDA) 
algorithms. In principle the same algorithms could be used to initialize the QAC algo-
rithm. However, a main feature of the algorithm is that it only requires subgradients 
from previous iterations. Therefore, the QAC algorithm was only initialized using SG 
updates.

A summary of the results is given in Table 1 and in Fig. 6. A more extensive summary 
is given in Table D.7 in the appendix. The results show that the subgradient method 
performs poorly for the considered benchmarks. Only a small fraction of the problems 



Fig. 6. Mean values of the primal residuals upon convergence for the distributed quadratic programs. Each 
data point represents the mean values of the converged problem instances for a pair Ns and nb (cf. Ta-
ble D.7).

Table 1
Summary of the results for the distributed optimization of QPs (mean values of the converged instances 
only), t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in 
s), ‖wp‖2: mean primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp ‖wp‖2 %c

SG 384.74 308.36 9.88 16.83
BTM 196.95 160.07 7.47 95.11
ADMM 179.55 145.54 6.81 82.3
QAC 199.24 167.73 2.15 57.32
QADA-SG 133.49 139.5 3.31 96.46
QADA-BTM 128.10 135.22 3.26 96.96
QADA-QNDA 127.23 135.47 3.29 96.57
QNDA 134.31 126.4 3.94 98.50

is solved within the allowed number of iterations. Additionally, the problems that do 
converge require a large number of iterations and long computation times. BTM and 
ADMM are significantly more robust, being able to solve most of the benchmark prob-
lems. While BTM solves more problems, ADMM requires fewer iterations and exhibits 
faster computation times for its converged problems. The number of required iterations 
and computation time for the QAC algorithm is comparable to BTM and ADMM. QAC 
converges fast near the optimum, yielding the lowest values of the primal residual upon 
convergence, but it is not very robust, solving only slightly more than half of the bench-
mark problems. Note however, that all other algorithms except the subgradient method 
use more information on the subproblems and that ADMM enforces that the subsystem 
problems are modified which may have practical disadvantages in a fully distributed set-
ting. The QADA and QNDA algorithms show the best performance, both being able to 
solve almost all benchmark problems. Interestingly, while QADA requires less iterations 
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Fig. 7. Results of the distributed optimization of problem QP(7)
(256,2).
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Fig. 8. Results of the distributed optimization of problem QP(17)
(16,2).
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to converge, QNDA requires less computation time. This is due to the fact that the up-
date steps of the dual variables are less expensive in the case of QNDA, as no regression 
and no singular value decomposition are required for the updates of the approximated 
dual and the step size constraints respectively. However, if the required communication 
time is larger than assumed in this study, QADA might perform better. In terms of scal-
ability, both ADMM and BTM perform well for cases with relatively few subproblems 
where they tend to perform better than the approximation-based algorithms. Their per-
formance deteriorates as the problem size increases. In contrast, the approximation-based 
algorithms scale well with the problem size. The main influencing parameter for the per-
formance of these algorithms is the number of dual variables/system-wide constraints. 
The proposed algorithms are especially well suited for distributed optimization problems 
that consist of many subproblems which are coupled by relatively few constraints.

Fig. 7 shows the results for the distributed optimization of benchmark problem 
QP(7)

(256,2). The contour plots in Fig. 7a demonstrate the advantage of the QADA 
and QNDA algorithms compared to the QAC algorithm. The squared primal residual 
‖wp(λ)‖2

2 (left) is nonconvex and nonsmooth. In the shown problem instance, the opti-
mum lies near a point of nondifferentiability, making it difficult for the QAC algorithm 
to find a suitable quadratic approximation. In contrast, the dual function d(λ) (shown 
on the right) is concave. Additionally, the effect of the changing set of active constraints, 
which cause the nonsmoothness, is less profound in the dual function. These effects lead 
to faster convergence of the QADA and QNDA algorithms, even though QADA initially 
takes some steps away from the optimum. Among the examined algorithms the ones 
approximating the dual function (BTM, QADA, QNDA) exhibit the best performance. 
The subgradient method and ADMM also converge, but require more iterations.

While the bundle cuts are able to handle the nonsmoothness of the dual function in 
most cases, this does not apply to all benchmark problems. Fig. 8 shows the results for 
benchmark problem QP(17)

(16,2), where the optimum lies at a point of nondifferentiabil-
ity. No algorithm manages to converge, except for ADMM, which smoothens the dual 
function via the regularization term in the augmented Lagrange function. All other al-
gorithms terminate close to the optimum, but are not able to reach it within the allowed 
number of iterations. The QADA and QNDA algorithms manage to converge for most 
benchmark problems, even for the ones where the optimum lies at a nondifferentiable 
point. From the tests ADMM is only able to reach an optimum at a nondifferentiable 
point if only a few subproblems are involved.

6.2. Distributed MIQPs

In [69] only convex QPs were considered. In this paper the computational results 
are extended by also considering distributed MIQPs. The benchmark problems have the 
following structure:
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min
x1,...,xNs

∑
i∈I

1
2xT

i Hixi + cTi xi, (113a)

s. t.
∑
i∈I

Aixi ≤ b, (113b)

Dixi ≤ di, ∀i ∈ I, (113c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (113d)

xi ∈ Rnc
xi × Znd

xi ,∀i ∈ I, (113e)

with nc
xi

= �nxi
/2� and nd

xi
= �nxi

/2�. The matrices and vectors Hi, ci, Ai, xLB
i

and xUB
i were generated in the same way as for the distributed QPs. The elements 

for the individual constraints (113c) were drawn from continuous uniform distributions 
[Di]l,j ∈ Uc(−5, 5) and [di]l ∈ Uc(−1, 1).

The elements of the right-hand side of the system wide constraints (113b) b were 
drawn from the same distribution as the elements of the matrices Ai. Since the system-
wide constraints are inequalities a situation might occur were the solutions of the 
subproblems are completely decoupled, i.e., were λ = 0 results in a feasible solution. 
This trivial solution is avoided by tightening the system-wide constraints. Once all sub-
problems were generated, the decoupled subproblems

min
xi

1
2xT

i Hixi + cTi xi, (114a)

s. t. Dixi ≤ di, ∀i ∈ I, (114b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (114c)

xi ∈ Rnc
xi × Znd

xi ,∀i ∈ I, (114d)

were solved, obtaining the decoupled optimal primal variables x̃∗
i . The elements of b

were then tightened according to

[b]l = [b]l − (1 + [β]l)

∥∥∥∥∥∑
i∈I

Aix̃∗
i

∥∥∥∥∥
2

, (115)

with [β]l ∈ Uc(0.1, 0.3). Finally, after generating all subproblem parameters the feasibility 
of the central problem was evaluated. If the problem was infeasible, the benchmark 
problem was discarded and a new one was generated.

For the MIQPs large-scale problems were considered, i.e., problems with Ns � nb
[12,60]. The number and size of the subproblems were varied as follows:

Number of subproblems: Ns ∈ {100, 200, 300, 400, 500},

Number of variables: nxi
∈ {2, 3, 4, 5}.



48 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
All subproblems contain the same number of variables nx = nxi
and the number of 

system-wide constraints is equal to the number of variables of each subproblem, i.e., nb =
nx. Ten benchmark problems were generated for each combination (Ns, nb), resulting in 
a total of 200 MIQP benchmark problems.

6.2.1. Recovery of primal feasibility for distributed MIQPs
Due to the integrality constraints (113e) MIQPs are always nonconvex, i.e., strong 

duality does not hold. This means that the primal problem might not be feasible at 
the optimal dual solution. Vujanic et al. [60] proved that a feasible primal solution 
can be obtained for large-scale mixed-integer linear programs (MILP) if the system-
wide constraints are tightened via a contraction. The right-hand side of the system-wide 
constraints is contracted as follows,∑

i∈I
Aixi ≤ b, (116a)

b = b − ζ, (116b)

[ζ]l = nb · max
i∈I

{
max
xi∈Xi

[Ai]l,:xi − min
xi∈Xi

[Ai]l,:xi

}
, (116c)

where [Ai]l,: denotes the lth row of the matrix Ai. The same contraction was used in this 
paper. Therefore, in a first step all subproblems have to solve the two inner optimization 
problems in (116c) and communicate the results to the coordinator. The coordinator 
then collects all responses and tightens the coupling constraints. It is important to note, 
that the contracted right-hand side b̄ is used to compute the subgradient and dual value 
within the distributed optimization algorithm. However, the original right-hand side b
is used to compute the values of the primal residual for the termination criterion, as one 
is interested in the feasibility of the original problem. As the coupling constraints are 
inequalities, the primal residual is computed using (26) and nonnegativity constraints 
are imposed on the dual variables.

6.2.2. Parameter settings for distributed MIQPs
As noted earlier, the coupling constraints (113b) are inequalities for the MIQP bench-

mark problems. In general, it is easier to find a feasible solution for inequality constrained 
problems using dual decomposition-based distributed optimization than for equality con-
strained ones. By selecting larger values for the dual variables, the corresponding primal 
solution is “pushed” towards primal feasibility. This can be achieved by using an aggres-
sive parametrization of the distributed optimization algorithms. However, even though 
an obtained primal solution might be feasible, it tends to be further away from the opti-
mum, compared to a more conservative parametrization. This is illustrated in Fig. 9 for 
problem MIQP(1)

(300,3) using the subgradient method. By setting the initial step size pa-
rameter α(0) to 5 ×10−2 convergence is achieved within a single iteration. In comparison, 
setting the parameter to 3 × 10−4 leads to convergence after 100 iterations. However, 
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Fig. 9. Results of the distributed optimization of problem MIQP(1)
(300,2) using the subgradient method with 

different initial step size parameters α(0).

the more aggressive parameter leads to a primal solution with a relative duality gap of 
5.74% while the conservative choice leads to a gap of 0.48% (cf. Sec 6.2.3, eq. (117)). 
This is due to the obtained values of the dual variables. As seen in Fig. 9b and 9d the 
more conservative choice converges with smaller values of the dual variables, which lie 
closer to the optimum. Similar effects can be observed for all distributed optimization al-
gorithms. Therefore, all algorithms are parametrized more conservatively for the MIQP 
benchmark problems compared to the QP problems in order to obtain better primal 
solutions.

The step size parameter was set to α(0) = 3 × 10−4 and the regularization pa-
rameter for ADMM was set to ρ(0) = 10−3/Ns. The age parameter of NAPS was 
set to τ = 1.5 × nreg,min. The bounds for the covariance-based step size constraints 
were set to sl = nb × 10−8, sl = nb × 10−4 and γ = 0.1. The remaining param-
eters remained unchanged compared to the QP benchmark problems. All parameters 
were set by trial and error, in order to find the parameters that result in the most 
converged benchmark problems. All parameters are summarized in Table A.5 in the 
appendix.

As discussed in Sec. 6.2.1, the distributed optimization algorithms actually try to solve 
a primal problem with the contracted right-hand side b. However, the algorithms are 
terminated prematurely, i.e., when the original problem is feasible. In this case the dual 
variables might not have converged to a stationary value, as they are updated on the basis 
of the tightened problem. Therefore, only the primal residual is used as a convergence 
criterion for the MIQP benchmark problems in order to avoid unnecessary iterations. It 
should be noted that waiting for the dual variables to converge to a stationary value can 
also deteriorate the primal solution, similar to an aggressive parametrization.
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Fig. 10. Relative duality gaps (rel. DG) of the MIQP benchmark problems upon termination for the examined 
algorithms. The value of the rel. DG for not converged runs has no meaning, as it corresponds to an infeasible 
primal solution (cf. Table D.8).

Table 2
Summary of the results for the coordination of MIQPs (mean values of the converged instances only), 
t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in s), 
rel. DG: mean relative duality gap of converged runs (in %), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp rel. DG %c

SG 86.69 69.88 1.66 99.5
BTM 80.52 65.41 1.66 100
ADMM 25.06 21.16 2.22 100
QAC 59.40 52.83 2.13 86.0
QADA-SG 19.37 18.37 2.54 100
QADA-BTM 20.78 18.62 3.53 100
QADA-QNDA 22.20 22.76 2.86 100
QNDA 79.90 74.91 1.73 100

6.2.3. Results for distributed MIQPs
The MIQP benchmark problems were solved using the same algorithms as for the QP 

problems. The results are illustrated in Fig. 10 and summarized in Table 2. Instead of 
depicting the primal residual (which is 0 for converged runs), Fig. 10 shows the relative 
duality gap,

rel. DG = 100 ·
∑

i∈I fi(x∗
i (λ)) − d(λ)∑

i∈I fi(x∗
i (λ)) (117)

for all benchmark problems, i.e., the relative difference between the objective value of 
a feasible primal solution obtained for a value of the dual variables λ and the corre-
sponding value of the dual function. As weak duality still holds, the value of the dual 
function provides a lower bound on the global optimum of the primal problem. Thus, 
0 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
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Fig. 11. Results of the distributed optimization of problem MIQP(7)
(100,2).
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Fig. 12. Results of the distributed optimization of problem MIQP(9)
(500,5).

the relative DG is useful to prove a worst-case distance of a found solution to the global 
optimum. As can be seen, most algorithms can solve all benchmark problems, except 
for the subgradient method (which solves all but one) and QAC. Out of the considered 
algorithms, QADA exhibits the best performance, both in terms of computation time 
and required iterations. QADA here shows a significantly superior performance when 
compared to QNDA.

The results indicate that the primal residual cannot be approximated well as a 
quadratic function in all cases, leading to a poor performance of the QAC algorithm. 
One such instance is shown in Fig. 11 for benchmark problem MIQP(7)

(100,2). The surface 
plots in Fig. 11a show that the primal residual ‖wp‖2

2, which is approximated by QAC, 
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Table 3
Computational results for all MIQP benchmark problems with Ns = 500 and nx = 5. The central solution 
shows the relative integrality gap and the computation time while the distributed optimization algorithms 
show the relative duality gap and the computation time.

Central SG BTM
rel. IG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 3.70 3600 0.77 22.67 0.82 50.55

MIQP(2)
(500,5) 2.87 3600 0.43 12.97 0.35 30.91

MIQP(3)
(500,5) 3.74 3600 0.31 29.18 0.83 56.29

MIQP(4)
(500,5) 3.81 3600 1.22 2.42 0.03 6.48

MIQP(5)
(500,5) 3.00 3600 0.05 148.11 2.52 200.63

MIQP(6)
(500,5) 3.51 3600 0.03 162.75 3.42 208.11

MIQP(7)
(500,5) 3.15 3600 4.78 20.23 0.36 43.17

MIQP(8)
(500,5) 3.22 3600 5.36 137.68 2.01 181.13

MIQP(9)
(500,5) 3.53 3600 3.41 33.23 0.81 61.12

MIQP(10)
(500,5) 3.33 3600 0.59 66.4 0.96 106.82

Mean 3.39 1.21 63.56 1.21 94.52
ADMM QAC QADA-SG
rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 0.80 22.88 – 465.69 0.92 18.72

MIQP(2)
(500,5) 0.55 27.07 0.37 12.98 0.37 12.98

MIQP(3)
(500,5) 1.04 21.65 1.03 33.40 1.22 19.49

MIQP(4)
(500,5) 0.04 18.93 0.05 2.43 0.05 2.48

MIQP(5)
(500,5) 4.76 23.46 4.28 39.72 4.78 30.65

MIQP(6)
(500,5) 5.36 23.45 5.15 41.83 5.89 26.76

MIQP(7)
(500,5) 0.39 21.69 0.36 19.73 0.70 18.32

MIQP(8)
(500,5) 4.85 23.40 0.75 46.61 5.29 26.45

MIQP(9)
(500,5) 1.21 23.43 0.67 350.01 1.07 19.30

MIQP(10)
(500,5) 1.79 23.7 2,75 67.61 1.15 21.53

Mean 2.08 22.97 1.71 68.26 2.14 19.67
QADA-BTM QADA-QNDA QNDA
rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s] rel. DG [%] Tcomp [s]

MIQP(1)
(500,5) 0.90 21.86 0.85 21.93 0.77 54.13

MIQP(2)
(500,5) 0.50 19.37 0.43 21.38 0.31 33.34

MIQP(3)
(500,5) 1.22 23.06 1.15 23.20 0.83 67.61

MIQP(4)
(500,5) 0.03 6.48 0.03 4.46 0.03 4.39

MIQP(5)
(500,5) 3.96 31.68 5.54 31.66 2.69 245.26

MIQP(6)
(500,5) 4.10 35.24 9.02 30.56 3.43 249.38

MIQP(7)
(500,5) 0.66 22.54 0.59 21.74 0.36 50.78

MIQP(8)
(500,5) 9.18 31.95 6.03 31.05 2.01 217.67

MIQP(9)
(500,5) 1.38 21.37 1.40 23.79 0.87 77.00

MIQP(10)
(500,5) 5.86 32.19 2.23 29.46 0.95 124.96

Mean 2.78 24.57 2.73 23.92 1.22 112.45

is nonsmooth and nonconvex. In comparison, the dual function is always concave and 
the nonsmoothness is less profound. Therefore, QADA and QNDA are able to compute 
a better smooth approximation and to handle the nonsmoothness through the bundle 
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cuts. This is reflected in the convergence of the algorithms. QADA converges quickly 
to a feasible primal solution. ADMM converges in a similar number of iterations. While 
QNDA does also converge, it does so in the same number of iterations as BTM and is 
slower than QADA and ADMM. Finally, QAC is not able to converge within the allowed 
number of iterations.

For integer problems the optimal duality gap tends to decrease as the number of 
subproblems increases [60]. This also holds for the nonsmoothness of the response 
surfaces [69]. Thus, the performance of the approximation-based algorithms tends to 
improve for larger problems. An example is shown in Fig. 12 for benchmark problem 
MIQP(9)

(500,5) where all algorithms converge to a feasible solution. The evolution of the 
primal residual (Fig. 12a) and the dual variables (Fig. 12b) indicate that QAC tends 
to oscillate, leading to a slower convergence. Fig. 12 also shows that BTM and QNDA 
converge slower than QADA and ADMM. This holds for the majority of the MIQP 
benchmark problems. Interestingly, the increased number of subproblems also affects 
the subgradient method, which tends to perform better for larger MIQP problem in-
stances.

As discussed in Sec. 1, one reason for employing distributed optimization is to preserve 
privacy between the subproblems. However, another reason might be the computational 
performance of the system-wide optimization problem. This aspect is relevant for large-
scale mixed-integer problems, where a centralized monolithic solution can become in-
tractable. Decomposing a large-scale problem into smaller subproblems and solving them 
in a distributed manner can lead to significant computational savings. A main appeal of 
state-of-the-art MIP solvers is that even when the global optimum is not found within the 
desired computation time, a worst-case distance to this optimum can be inferred through 
the relative integrality gap (rel. IG). The same holds for dual decomposition-based dis-
tributed optimization algorithm, where the distance of a found feasible primal solution 
to the global optimum is bounded by the duality gap. MIPs are always nonconvex due 
to the integrality constraints, meaning that strong duality does not hold. However, weak 
duality is always satisfied and provides bounds on the global optimum. In order to assess 
the quality of the solutions obtained through the dual decomposition-based distributed 
optimization algorithms, they were compared to solutions obtained through a central 
optimization of the system-wide problem using the commercial solver Gurobi for the 
benchmark problems with Ns = 500 and nx = 5. A time limit of one hour (3600 s) was 
set for the central optimization. The results are shown in Table 3. Remarkably, Gurobi 
was not able to solve any problem to global optimality within the time limit. In contrast, 
the dual decomposition-based algorithms all converge within much shorter computation 
times (except for problem MIQP(1)

(500,5) using QAC). Even though the found primal so-
lutions are not provably globally optimal, the relative DG is usually better than the 
relative IG provided by Gurobi. Thus, distributed optimization provides better bounds 
(and better primal solutions) for the examined benchmark problems. Among the dual 
decomposition-based distributed optimization algorithms QADA-SG exhibits the best 
computation times, followed by ADMM. QADA-BTM and QADA-QNDA exhibit larger 
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computation times, since the initial samping steps are computationally more expensive, 
compared to simple subgradient updates.

6.3. General distributed convex problems

In Sec. 6.1 all of the subproblems were quadratic programs. In this section, more 
general convex problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (118a)

s. t.
∑
i∈I

Aixi = 0, (118b)

xT
i Gixi ≤ p2

i , ∀i ∈ I (118c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (118d)

are considered. The objective functions fi(xi) are all convex functions (inside the feasi-
ble set of (118)) and are summarized in Table B.6 in the appendix alongside the bounds 
(118d) and the distributions from which their parameters were randomly drawn. The 
objective function for each subproblem is chosen randomly out of the considered con-
vex functions with a uniform probability. The parameters of the system-wide constraints 
(118b) were drawn from the same distributions as for the distributed QP problems. Each 
subproblem is subject to individual convex constraints in the form of an ellipsoid around 
the origin (118c), with random parameters Gi = NT

i Ni, [Ni]l,j ∈ N (μ = 0, σ = 1)
and pi ∈ Uc(1, 5). The number and size of the subproblems were varied as fol-
lows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},
Number of variables: nxi

∈ {2, 3, . . . , 10}, Ns ≥ nxi
.

All subproblems contain the same number of primal variables nx = nxi
and the num-

ber of system-wide constraints is equal to the number of variables of each subproblem, 
nb = nx. Ten benchmark problems were generated for each combination (Ns, nb), re-
sulting in a total of 560 convex benchmark problems. Note that all benchmark problems 
are convex and satisfy Slater’s condition, as x = 0 is a strictly feasible solution. As the 
system-wide constraints (118b) are equalities, no nonnegativity constraints are imposed 
on the dual variables.

6.3.1. Parameter settings for distributed convex problems
The parameters for the distributed convex benchmarks were set to be equal to the 

ones for the distributed QPs (cf. Sec. 6.1.1 and Table A.5). All parameters were set 
by trial and error, in order to find the parameters that result in the most converged 
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Fig. 13. Values of the primal residuals upon termination for the distributed convex programs. Each data 
point represents an algorithm applied to a benchmark problem (cf. Table D.9).

Table 4
Summary of the results for the coordination of convex problems (mean values of the converged instances 
only), t: mean number of iterations until convergence, Tcomp: mean computation time of converged runs (in 
s), ‖wp‖2: mean primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax
iterations.

Algorithm t Tcomp ‖wp‖2 %c

SG 342.51 310.45 9.72 46.07
BTM 160.29 139.29 7.8 78.26
ADMM 117.44 104.97 7.44 93
QAC 207.16 186.9 6.55 81.52
QADA 123.52 149.39 6.95 75.1
QNDA 97.13 114.71 4.58 97.14

benchmark problems. As the previous results showed that the performance of QADA 
is not heavily influenced by the algorithm used for the initial sampling phase, only the 
initialization with QNDA is considered in the following. For the sake of brevity this is 
denoted by QADA instead of QADA-QNDA.

6.3.2. Results for distributed convex problems
The results for the distributed optimization of the convex benchmark problems are 

illustrated in Fig. 13 and summarized in Table 4. The mean computation time for a 
single update step of the primal and dual variables (Tcomp/t) increases compared to the 
distributed QPs. This is due to the fact that the solution of the general convex subprob-
lems is computationally more expensive than that of the QPs. This is also due to the fact 
that the problems with an affine and quadratic objective function can be solved by the 
commercial solver Gurobi, while the general convex problems are solved with IPOPT. 
This points to a benefit of distributed optimization, namely, that arbitrary solvers can 
be used for each subproblem [42]. Table 4 shows that QNDA achieves the largest num-
6 V. Yfantis et al. / EURO Journal on Computational Optimization 11 (2023) 100058
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Fig. 14. Results of the distributed optimization of problem Conv (6)
(64,2).
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Fig. 15. Results of the distributed optimization of problem Conv (4)
(256,7).

ber of converged benchmark problems and requires the least number of iterations and 
the second least computation time. In comparison, QADA performs rather poorly, only 
outperforming the subgradient method. Interestingly, QADA performs better for rela-
tively few subproblems and system-wide constraints. One such instance is depicted in 
Fig. 14 for benchmark problem Conv(6)

(64,2). Here QADA requires the fewest iterations to 
converge. In contrast, QNDA takes multiple steps away from the optimum, significantly 
deteriorating its performance. Fig. 14a and 14c also show that ADMM overshoots in 
the beginning, which might indicate that a less aggressive tuning could lead to a better 
convergence.

The QNDA algorithm outperforms all other algorithms for large benchmark problems. 
One such instance is depicted in Fig. 15 for problem Conv(4) . No algorithm converges, 
(256,7)
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except for the subgradient method and QNDA. QAC exhibits significant oscillations. 
The remaining algorithms (BTM, ADMM and QADA) all converge to the vicinity of the 
optimum relatively quickly. However, they are not able to actually find the optimum. This 
is also illustrated in Fig. 15b, where it can be seen that all algorithms terminate close to 
the optimal dual variables. This behavior is indicative for an optimal solution lying close 
to or at a point of nondifferentiability. While the subgradient method converges after a 
large number of iterations, QNDA computes the solution more efficiently. Initially, the 
algorithm follows a similar path as BTM. However, while BTM is not able to converge, 
QNDA does so within few iterations.

7. Summary and outlook

In this paper, two new efficient dual decomposition-based distributed optimization 
algorithms were presented. Both are based on the approximation of the dual function by 
a quadratic function. The quadratically approximated dual ascent (QADA) algorithm 
solves a regression problem based on information collected from previous iterations in 
order to estimate the parameters of the quadratic surrogate function. The quasi-Newton 
dual ascent (QNDA) algorithm updates the approximated Hessian of the dual func-
tion through a BFGS-update. The update of the dual variables for both algorithms is 
subject to step size constraints. In contrast to the primal residual which was approx-
imated in previous work based on quadratic surrogates, the dual function is concave, 
regardless of the problem class of the primal optimization problem. However, the dual 
function is usually nonsmooth, if the set of active individual constraints changes. This 
nonsmoothness was addressed by constructing cutting planes using subgradients from 
previous iterations and incorporating them into the update of the dual variables as ad-
ditional constraints. Results for a large number of benchmark problems showed the 
efficiency of the proposed algorithms. A remarkable result in our view is that dual 
decomposition-based distributed optimization algorithms, and especially QADA, can 
be used to speed up the solution of mixed-integer programs were a centralized solu-
tion does not converge in reasonable amounts of time. While the QADA algorithm 
showed superior performance for distributed MIQPs, the QNDA algorithm outperformed 
the other algorithms for general distributed convex problems. For distributed QPs the 
QADA and QNDA algorithms showed a similar performance, outperforming other algo-
rithms.

When comparing the algorithms, it must not be forgotten that they use different 
amounts of information that is exchanged between the coordinator and the local opti-
mizations. The subgradient method and QAC only need information on the residual of 
the system-wide constraints, the bundle method, QADA and QNDA additionally need 
the values of the dual function while ADMM requires a modification of the local prob-
lems and the communication of auxiliary variables. Depending on the application, this 
exchange of additional information and the modification of the local problems may be 
problematic or not.
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Future research will progress in two directions, algorithmic improvements and applica-
tions. In terms of the performance of the QADA algorithm, the solution of the regression 
problem is a key component. If this problem is not well conditioned, the approximation 
can fail and lead to wrong update steps. Therefore, a preconditioning strategy of the re-
gression problem could improve the subsequent update steps. Wenzel et al. [70] proposed 
a method to evaluate the quality of regression data sets based on their Λ-poisedness. The 
selection of the regression data could be performed by directly optimizing this criterion. 
The quality criterion could also be used to perform exploratory moves, in order to en-
hance the approximation data [25]. Furthermore, the update steps of the dual variables 
require the solution of an optimization problem. For badly conditioned or badly selected 
data the update problems can become nonconvex in some cases for both algorithms. 
Guaranteeing the convexity of the update problem would significantly impact the com-
putational performance. This could be achieved by posing the problem of computing the 
surrogate function as a semi-definite programming problem. The aforementioned algo-
rithmic improvements could also enhance the performance of the QAC algorithm. The 
results for the distributed convex problems showed that the QADA algorithm converges 
faster to the vicinity of the optimum. However, the QNDA algorithm is more effective 
in actually finding the optimum once it reached its vicinity. The strengths of both al-
gorithms could be combined by alternating between different update strategies for the 
dual variables. Finally, in this paper no assumptions where made on the topology of the 
network of subproblems. The network topology is reflected in the matrices Ai. Explic-
itly considering the sparsity structure of the system-wide constraints could lead to the 
elimination of the need for a central coordinator and the application of the algorithms 
to network optimization.

In terms of applications, the QAC algorithm was developed in the context of 
market-like coordination of coupled production plants with shared resources [68]. Dual 
decomposition-based distributed optimization can also be applied in other areas. Model 
predictive control (MPC) has been a major field of research in distributed optimiza-
tion [15]. Dual decomposition-based distributed MPC could be applied for systems with 
slow dynamics and long sampling times where a certain degree of privacy between 
the subsystems is required [6]. Another potential application for dual decomposition-
based distributed optimization is demand-side management (DSM), where multiple 
energy consumers are connected to a common grid [34]. This is an example of au-
tonomous subsystems sharing a limited resource (energy). DSM problems are usually 
posed as mixed-integer problems, which results in additional challenges for distributed 
optimization, as discussed in this paper. Privacy also plays an important role in ma-
chine learning applications when training data is stored in a decentralized fashion and 
cannot be shared. Dual decomposition can for instance be used for the distributed 
training of support vector machines [21] (convex problems) or for distributed cluster-
ing [45] (integer problems) by training individual models and coupling their parameters 
through consensus constraints. In the context of machine learning, parallelization of the 
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algorithms on specialized hardware like GPUs can provide further computational bene-
fits.
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Appendix A. Summary of the used parameters

Table A.5 contains all parameters used for the dual decomposition-based distributed 
optimization algorithms in Sec. 6.

Appendix B. Convex objective functions

All objective functions used for the convex benchmark problems in Sec. 6.3 are sum-
marized in Table B.6.

Appendix C. Benchmark problems

All benchmark problems used in Sec. 6 can be found under https://github .com /VaYf /
EJCOMP _Benchmark _Problems.

Appendix D. Summaries of computational results

Tables D.7, D.8 and D.9 summarize the results for the distributed optimization of the 
QP, MIQP and general convex benchmark problems respectively.

https://github.com/VaYf/EJCOMP_Benchmark_Problems
https://github.com/VaYf/EJCOMP_Benchmark_Problems
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roblems.

Algorithms

All
eter SG, BTM, QAC, QADA, QNDA

All
ces All
s All

QADA, QNDA
ADMM
ADMM
ADMM
ADMM
ADMM
QAC, QADA

QAC, QADA
QAC, QADA

QAC, QADA
QAC, QADA
QAC, QADA
Table A.5
Detailed parameter settings of the distributed optimization algorithms for the solution of the benchmark 

QP/Conv MIQP Description

λ(0) 0 0 initial dual variables
α(0) 2 × 10−3 3 × 10−4 initial step size/trust region param
tmax 500 500 maximum number of iterations
εp, 10−2 10−2 primal residual convergence tolera
εd 10−2 – dual residual convergence toleranc
εb 0.6 0.6 bundle cuts threshold
ρ(0) 1/Ns 10−3/Ns initial regularization parameter
τincr 1.5 1.5 see (50)
τdecr 1.25 1.25 see (50)
μ 10 10 see (50)
z(0) 0 0 initial auxiliary variables
nreg,start nreg,min nreg,min collected points before QAC/QAD

are initialized
τ 2 × nreg,min 1.5 × nreg,min allowed age of data points
Δλ 5 × 10−5 5 × 10−5 radius of inner circle

for data selection
si nb × 10−6 nb × 10−8 ellipsoid parameter (66)
si nb × 10−3 nb × 10−4 ellipsoid parameter (66)
γ 0.1 1 ellipsoid parameter (69)
p

n
e

A
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Parameters

ai, [ci]l ∈ N (μ = 0, σ = 1)
See Sec. 6.1

10 · 1 [ai]l, [ci]l ∈ Uc(1, 5)

[ai]l, [ci]l ∈ N (μ = 0, σ = 1)
10 · 1 [ai], [ci]l ∈ Uc(1, 5)

10 · 1 [ai], [ci]l ∈ Uc(1, 5)
Table B.6
Used convex objective functions for the distributed convex programs.

Name fi(xi) Bounds

Affine cT
i xi + ai −10 · 1 ≤ xi ≤ 10 · 1

Quadratic 1
2xT

i Hixi + cT
i xi −10 · 1 ≤ xi ≤ 10 · 1

Powers
∑nxi

l=1 ([xi]l + [ci]l)[ai]l − 1
2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤

Exponential
∑nxi

l=1 exp([ci]l · [xi]l + [ai]l) −10 · 1 ≤ xi ≤ 10 · 1
Negative log −

∑nxi

j=1[ci]j log([xi]j + [ai]j) − 1
2 min
j=l,...,nxi

[ci]l · 1 ≤ xi ≤

Negative entropy
∑nxi

j=1[ai]j [xi]j log([xi]j + [bi]j) − 1
2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤
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Table D.7

terations until convergence, ‖wp‖2: mean primal 
e of converged runs within tmax iterations.

BTM

t ‖wp‖2 Tcomp %c

196.95 7.47 160.07 95.11
90.24 5.68 72.7 100
79.78 5.78 64.28 100
146.82 6.52 118.31 100
177.52 6.85 143.1 100
65.1 6.33 52.45 100
112.74 7.07 90.85 100
167.06 6.99 134.69 100
185.76 7.56 149.77 100
239.9 7.45 193.63 98
268.96 7.47 217.47 94
320.42 7.46 260.22 86
70.36 6.04 56.7 100
103.48 6.96 83.39 100
140.16 6.74 112.99 100
177.34 8.02 143.0 100
233.92 7.69 188.8 100
246.31 7.81 199.12 96
303.51 7.77 246.35 94
356.37 7.77 291.76 92
383.29 7.95 319.84 82
65.5 6.16 52.8 100
96.04 7.12 77.4 100
130.08 7.12 104.88 100
166.04 7.68 133.9 100
207.43 8.06 167.42 98
237.71 7.7 192.17 96
291.64 7.82 236.7 100
328.81 8.04 268.97 94
352.24 8.09 292.34 92
55.82 6.16 45.01 100
80.36 6.73 64.82 100
116.08 7.37 93.65 98
155.72 7.76 125.68 100
Results for the coordination of QPs (mean values of the converged instances only), t: mean number of
residual of converged runs (×10−3), Tcomp: mean computation time of converged runs (in s), %c: percent

QP SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 384.74 9.88 308.36 16.83 179.55 6.81 145.54 82.3
(2, 2) 488.0 9.96 390.71 2 19.88 6.6 15.92 100
(4, 2) 435.6 9.93 348.76 10 32.22 5.93 25.81 100
(4, 3) – – – 0 44.62 5.73 35.75 100
(4, 4) – – – 0 49.22 6.14 39.43 100
(8, 2) 335.67 9.93 268.76 6 37.32 6.25 29.9 100
(8, 3) 344.0 9.98 275.45 2 57.84 6.28 46.33 100
(8, 4) – – – 0 69.96 6.41 56.05 100
(8, 5) – – – 0 80.42 5.29 64.43 100
(8, 6) – – – 0 97.48 5.58 78.14 100
(8, 7) – – – 0 117.02 5.25 93.83 100
(8, 8) – – – 0 143.42 4.34 115.02 100
(16, 2) 307.14 9.85 245.96 14 45.26 7.55 36.26 100
(16, 3) – – – 0 57.78 8.22 46.29 100
(16, 4) – – – 0 76.16 8.61 61.02 100
(16, 5) – – – 0 90.02 8.22 72.14 100
(16, 6) – – – 0 112.88 7.09 90.52 100
(16, 7) – – – 0 130.1 7.56 104.37 100
(16, 8) – – – 0 132.5 7.18 106.31 100
(16, 9) – – – 0 162.78 6.66 130.64 100
(16, 10) – – – 0 169.2 6.38 135.8 100
(32, 2) 407.57 9.9 326.43 14 62.68 7.98 50.24 100
(32, 3) 384.0 9.74 307.54 4 68.76 8.68 55.13 100
(32, 4) – – – 0 70.06 8.92 56.15 100
(32, 5) – – – 0 90.48 9.05 72.55 100
(32, 6) – – – 0 117.22 9.12 94.06 100
(32, 7) – – – 0 119.48 9.05 95.91 100
(32, 8) – – – 0 140.3 8.96 112.66 100
(32, 9) – – – 0 158.14 9.28 127.01 100
(32, 10) – – – 0 175.53 9.09 141.04 98
(64, 2) 269.73 9.81 216.11 30 119.82 7.55 96.14 100
(64, 3) 401.6 9.91 321.79 10 167.74 7.27 134.71 100
(64, 4) 232.0 9.94 185.91 2 154.4 7.12 124.04 96
(64, 5) 462.0 9.9 370.21 2 180.18 7.74 144.85 100
 i
ag
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BTM

t ‖wp‖2 Tcomp %c

204.92 7.63 165.55 100
225.84 7.91 182.7 98
268.52 8.05 217.97 92
297.57 8.19 243.03 98
327.05 7.87 270.27 88
47.18 6.18 38.05 100
71.42 7.06 57.59 100
107.2 7.74 86.48 100
150.42 7.74 121.39 100
184.9 7.95 149.3 100
228.14 8.17 184.49 98
270.06 8.21 219.05 94
302.5 8.15 246.89 84
328.77 8.44 271.64 86
47.62 7.05 38.44 100
79.18 6.99 63.92 100
115.52 7.21 93.27 96
161.58 8.1 130.5 96
213.37 8.17 172.5 92
275.6 8.2 223.0 90
311.61 8.13 252.73 76
317.19 8.61 258.52 62
340.5 8.78 281.28 56

(continued on next page)
Table D.7 (continued)

QP SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

(64, 6) – – – 0 184.04 7.15 148.13 98
(64, 7) – – – 0 160.06 8.19 128.85 100
(64, 8) – – – 0 173.29 8.74 139.54 98
(64, 9) – – – 0 154.56 9.21 124.49 100
(64, 10) – – – 0 165.35 9.76 133.2 98
(128, 2) 336.5 9.74 269.66 60 195.11 6.21 156.95 94
(128, 3) 357.54 9.86 286.51 26 265.8 5.87 214.33 82
(128, 4) 396.5 9.89 317.75 16 297.69 6.26 240.2 78
(128, 5) 483.0 9.85 387.09 2 329.59 5.98 266.25 64
(128, 6) – – – 0 363.05 4.86 293.65 42
(128, 7) 430.5 9.91 345.11 4 388.74 4.2 314.79 38
(128, 8) – – – 0 393.42 5.29 318.96 24
(128, 9) – – – 0 379.73 5.41 308.82 22
(128, 10) – – – 0 347.78 5.51 283.17 18
(256, 2) 264.78 9.75 212.3 72 285.66 4.99 233.81 76
(256, 3) 346.23 9.87 277.61 52 309.54 4.76 254.01 56
(256, 4) 367.05 9.87 294.31 40 332.08 4.94 272.93 24
(256, 5) 413.67 9.9 331.73 18 365.67 4.16 301.43 24
(256, 6) 444.2 9.9 356.26 10 449.0 6.89 370.87 8
(256, 7) 356.5 9.92 285.94 4 446.5 4.47 369.52 4
(256, 8) 487.0 9.83 390.68 2 358.0 4.02 296.67 2
(256, 9) 483.0 9.93 388.06 2 0
(256, 10) – – – 0 – – – 0
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Table D.7 (continued)

QADA-BTM

t ‖wp‖2 Tcomp %c

128.10 3.26 135.22 96.96
79.29 1.16 81.5 98
54.2 0.69 54.53 100
83.78 1.0 80.78 100
99.24 0.65 94.21 98
50.18 0.75 49.0 100
74.5 0.97 71.98 96
90.65 1.52 85.24 96
101.38 1.58 94.36 100
126.63 3.07 118.89 98
166.5 2.12 161.86 96
204.39 2.61 207.13 92
38.9 0.98 36.99 98
77.4 1.04 73.76 100
87.06 2.26 80.52 100
99.9 2.19 92.27 100
140.04 3.15 130.28 100
169.7 3.15 163.62 92
191.09 4.52 189.8 92
254.27 3.48 272.58 96
287.04 4.55 331.77 90
38.42 0.82 35.46 100
57.86 1.16 54.2 98
68.57 3.03 62.98 98
105.58 3.75 96.52 96
133.7 3.56 123.52 94
164.98 3.43 158.62 96
200.6 3.12 198.95 100
229.2 4.03 243.75 90
263.07 4.28 303.17 92
33.58 1.55 44.82 100
51.44 1.0 73.93 100
68.62 3.43 94.95 96
101.2 3.72 135.79 98
121.0 4.6 160.05 98
150.56 4.47 212.24 100
183.59 4.49 257.16 92
QP QAC QADA-SG

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 199.24 2.15 167.73 57.32 133.49 3.31 139.5 96.46
(2, 2) 71.59 1.7 59.78 98 92.1 1.48 94.36 98
(4, 2) 59.35 0.12 49.52 98 62.96 0.83 63.07 98
(4, 3) 133.77 0.61 111.15 88 98.19 0.84 94.21 96
(4, 4) 172.55 0.73 142.92 84 103.83 0.84 98.74 96
(8, 2) 61.18 0.13 50.89 100 55.68 0.34 54.11 100
(8, 3) 114.68 0.59 95.07 88 70.14 0.77 66.6 98
(8, 4) 198.28 0.57 164.05 72 102.63 2.0 96.3 98
(8, 5) 187.36 0.3 154.64 50 107.82 1.72 99.41 100
(8, 6) 232.47 1.18 191.63 38 135.53 2.73 126.11 98
(8, 7) 267.89 1.12 220.67 18 178.96 3.0 172.32 96
(8, 8) 283.17 1.59 233.67 12 217.6 2.75 219.73 94
(16, 2) 48.09 0.61 39.89 92 46.83 0.29 44.31 96
(16, 3) 90.12 0.18 74.5 82 72.41 1.4 68.11 98
(16, 4) 173.22 0.53 142.89 64 90.72 1.85 84.46 100
(16, 5) 212.15 1.27 174.71 54 106.08 3.24 96.94 100
(16, 6) 300.0 1.21 246.79 24 147.48 3.12 137.22 100
(16, 7) 262.0 4.5 215.46 8 181.55 4.18 174.51 94
(16, 8) 329.0 4.63 271.44 4 203.02 4.0 203.03 92
(16, 9) 412.0 0.0 342.64 2 266.65 4.23 283.6 98
(16, 10) – – – 0 298.77 4.33 347.32 86
(32, 2) 42.54 0.21 35.13 92 46.56 0.91 43.19 100
(32, 3) 84.18 0.63 69.35 80 62.56 1.89 58.2 100
(32, 4) 143.88 1.45 118.33 82 75.53 2.66 69.08 98
(32, 5) 248.36 1.41 204.51 56 118.35 4.32 107.45 96
(32, 6) 253.23 0.85 208.03 26 138.91 3.02 129.05 92
(32, 7) 412.5 3.98 339.07 8 169.02 3.28 160.11 96
(32, 8) 244.0 – 201.09 2 198.66 3.84 198.02 100
(32, 9) – – – 0 241.02 3.83 255.18 92
(32, 10) – – – 0 270.86 4.87 307.4 88
(64, 2) 45.31 0.59 41.39 96 31.62 1.02 43.44 100
(64, 3) 85.67 1.21 77.27 90 49.58 1.94 71.2 100
(64, 4) 139.49 2.05 124.65 82 69.34 3.83 93.72 94
(64, 5) 220.75 1.68 197.5 48 110.73 3.04 144.17 98
(64, 6) 359.5 4.08 320.61 32 130.98 4.59 174.69 98
(64, 7) 429.0 5.58 381.52 8 160.73 4.85 221.55 96
(64, 8) – – – 0 187.64 4.01 246.8 90
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QADA-BTM

t ‖wp‖2 Tcomp %c

207.84 5.44 223.83 98
243.56 5.43 282.29 96
25.9 1.75 23.48 100
40.96 1.77 38.04 98
68.24 3.34 62.19 100
88.96 4.44 80.45 100
118.29 5.03 109.91 98
151.77 6.01 146.24 96
180.35 5.16 180.84 98
216.63 5.68 232.67 98
254.94 4.75 294.96 94
24.92 2.11 31.03 100
40.41 3.26 37.57 98
63.68 5.26 57.08 100
86.22 4.88 77.67 98
109.28 4.76 102.81 92
137.23 5.16 131.69 94
181.83 5.65 184.45 96
228.23 6.11 248.18 94
256.17 4.45 299.57 92

(continued on next page)
Table D.7 (continued)

QP QAC QADA-SG

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

(64, 9) – – – 0 211.48 4.66 223.92 96
(64, 10) – – – 0 248.17 5.04 285.49 96
(128, 2) 33.55 0.91 27.63 98 29.16 1.02 26.11 100
(128, 3) 74.86 1.84 61.54 100 56.67 1.64 52.49 98
(128, 4) 144.81 3.16 119.0 84 67.94 4.62 60.51 98
(128, 5) 255.65 3.19 209.99 74 91.12 4.59 81.62 100
(128, 6) 317.08 3.64 260.34 26 120.16 4.17 109.3 98
(128, 7) 447.43 6.88 367.6 14 155.96 5.05 150.04 94
(128, 8) – – – 0 176.44 5.64 174.09 96
(128, 9) – – – 0 216.81 5.78 229.86 96
(128, 10) – – – 0 258.61 4.93 292.52 92
(256, 2) 30.66 1.65 27.41 94 24.26 2.26 31.32 100
(256, 3) 65.47 3.01 53.86 68 44.76 3.11 40.82 98
(256, 4) 136.28 3.63 120.78 80 64.12 4.62 57.22 100
(256, 5) 214.71 4.14 189.67 68 89.23 4.97 80.8 96
(256, 6) 374.73 5.77 330.63 30 111.79 5.25 104.01 94
(256, 7) 354.0 7.29 311.04 8 136.79 6.07 130.12 94
(256, 8) – – – 0 181.6 5.34 184.46 96
(256, 9) – – – 0 223.89 5.85 240.29 94
(256, 10) – – – 0 265.65 5.18 309.53 92
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Table D.7 (continued)

5

QP QADA-QNDA QNDA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
Mean 127.23 3.29 135.47 96.57 134.31 3.94 126.4 98
(2, 2) 73.71 1.32 76.14 98 114.79 1.81 110.15 96
(4, 2) 58.92 0.88 59.72 100 107.0 1.24 98.03 10
(4, 3) 88.22 1.13 85.64 100 162.68 3.05 147.07 88
(4, 4) 99.66 0.85 93.68 100 183.33 2.89 161.29 98
(8, 2) 48.82 0.6 48.29 100 67.62 2.03 58.86 10
(8, 3) 66.49 0.58 63.23 98 113.92 3.72 98.82 96
(8, 4) 86.49 1.38 81.01 98 162.72 3.45 143.16 10
(8, 5) 105.98 1.52 99.51 98 158.6 3.8 138.52 10
(8, 6) 125.84 2.09 118.4 98 196.5 4.65 174.04 10
(8, 7) 171.27 2.07 165.87 98 209.17 4.44 184.88 96
(8, 8) 208.91 3.68 210.65 92 249.43 5.49 224.42 94
(16, 2) 52.8 1.23 49.9 98 55.67 2.3 47.84 98
(16, 3) 72.73 1.08 69.9 98 93.02 3.35 80.1 10
(16, 4) 81.64 1.69 75.68 100 118.66 4.09 102.81 10
(16, 5) 102.96 3.26 95.29 100 139.9 4.25 121.31 10
(16, 6) 135.53 3.31 126.33 98 184.63 4.34 161.44 98
(16, 7) 168.29 3.9 164.59 90 175.94 5.46 157.71 98
(16, 8) 193.8 3.81 194.65 92 215.06 4.65 194.23 10
(16, 9) 248.6 4.25 266.73 96 241.82 5.34 224.1 10
(16, 10) 273.55 5.2 317.29 84 273.83 4.82 259.13 92
(32, 2) 47.54 0.87 44.06 100 56.96 2.8 49.13 10
(32, 3) 63.46 1.53 59.4 100 84.42 3.46 73.24 10
(32, 4) 73.53 1.82 67.76 98 104.52 2.86 90.92 10
(32, 5) 103.4 3.13 94.43 96 124.96 4.14 108.99 98
(32, 6) 127.04 2.97 117.49 92 139.69 4.78 123.51 98
(32, 7) 162.69 3.17 156.72 96 165.2 4.27 147.07 98
(32, 8) 194.74 3.45 194.06 100 200.04 4.73 181.42 10
(32, 9) 225.04 3.84 240.13 90 206.24 4.2 191.17 98
(32, 10) 260.49 5.3 302.28 94 217.28 5.3 206.8 10
(64, 2) 31.08 1.16 42.06 100 51.02 2.25 60.07 10
(64, 3) 50.65 1.79 78.23 98 63.92 2.81 78.38 10
(64, 4) 71.19 2.61 101.98 96 87.51 3.97 105.08 98
(64, 5) 98.82 4.44 131.8 98 106.36 4.09 129.2 10
(64, 6) 116.65 4.06 156.17 98 126.41 3.71 154.4 98
(64, 7) 157.96 4.76 231.93 98 141.68 4.6 178.34 10
c

.

0

0

0
0
0

0
0
0

0
0

0
0
0

0

0
0
0

0

0
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.5
Table D.7 (continued)

QP QADA-QNDA QNDA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 127.23 3.29 135.47 96.57 134.31 3.94 126.4 98
(64, 8) 180.93 4.5 249.15 90 165.38 5.51 197.14 94
(64, 9) 206.29 5.01 223.49 98 176.47 5.31 164.97 98
(64, 10) 240.42 4.63 279.79 96 193.42 4.65 183.88 100
(128, 2) 28.78 1.76 26.24 100 36.2 2.12 31.54 100
(128, 3) 44.4 2.08 41.81 100 53.04 2.8 46.94 100
(128, 4) 64.8 3.81 59.89 98 72.96 3.84 64.4 100
(128, 5) 88.72 4.96 81.46 100 101.54 4.19 90.49 100
(128, 6) 107.71 4.67 100.64 98 104.16 4.8 93.86 100
(128, 7) 137.64 5.93 133.35 90 128.54 4.89 116.57 100
(128, 8) 179.18 5.22 181.73 98 148.16 4.74 136.43 100
(128, 9) 214.43 4.8 232.81 98 159.65 4.91 151.1 98
(128, 10) 251.77 5.29 294.71 94 179.27 4.34 172.01 98
(256, 2) 23.52 2.44 30.01 100 33.42 2.4 40.75 100
(256, 3) 51.31 3.92 49.09 98 50.52 3.11 45.01 100
(256, 4) 72.76 4.52 67.19 100 69.56 4.33 63.65 100
(256, 5) 86.71 4.95 79.88 98 84.71 4.14 77.23 98
(256, 6) 107.24 4.51 102.95 92 98.55 3.94 90.51 98
(256, 7) 138.79 6.7 138.27 94 119.44 4.14 111.61 96
(256, 8) 172.15 4.65 179.9 92 138.16 4.21 131.36 98
(256, 9) 218.28 5.79 238.54 92 148.18 4.9 145.65 100
(256, 10) 260.3 5.52 314.51 92 159.38 4.22 157.88 96
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erations until convergence, rel. DG: mean relative 
age of converged runs within tmax iterations.

BTM
t rel. DG Tcomp %c

80.52 1.66 65.41 100
29.3 0.81 23.72 100
66.1 1.67 53.59 100
98.7 4.71 80.04 100
124.0 9.64 100.67 100
57.6 0.5 46.54 100
57.6 0.86 46.56 100
157.5 2.98 127.89 100
124.6 2.94 101.29 100
44.7 0.32 36.24 100
51.9 0.58 42.15 100
86.0 1.23 69.97 100
110.8 1.53 90.18 100
34.7 0.16 28.15 100
99.7 0.76 80.91 100
84.2 1.06 68.55 100
93.9 1.15 76.49 100
55.2 0.18 44.75 100
42.6 0.28 34.56 100
75.4 0.63 61.44 100
115.9 1.21 94.52 100
Table D.8
Results for the coordination of MIQPs (mean values of the converged instances only), t: mean number of 
duality gap of converged runs (in %), Tcomp: mean computation time of converged runs (in s), %c: percen

MIQP SG ADMM
t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 86.69 1.66 69.88 99.5 25.06 2.22 21.16 10
(100, 2) 58.1 0.78 46.73 100 23.4 1.11 18.95 100
(100, 3) 73.4 1.65 59.11 100 21.2 1.69 17.15 100
(100, 4) 60.7 4.81 48.85 100 23.5 5.2 19.24 100
(100, 5) 51.6 9.76 41.61 100 22.7 10.09 18.43 100
(200, 2) 113.33 0.35 90.94 90 25.6 1.08 20.8 100
(200, 3) 66.6 0.84 53.5 100 24.5 1.06 20.07 100
(200, 4) 146.5 2.9 118.08 100 23.7 3.91 19.66 100
(200, 5) 65.1 2.97 52.54 100 23.2 3.61 19.11 100
(300, 2) 129.9 0.31 104.55 100 27.0 0.88 22.31 100
(300, 3) 66.2 0.58 53.34 100 25.4 0.79 21.19 100
(300, 4) 71.2 1.25 57.54 100 24.3 1.49 20.39 100
(300, 5) 61.1 1.56 49.37 100 24.7 1.82 20.82 100
(400, 2) 89.4 0.13 72.04 100 28.4 0.59 23.93 100
(400, 3) 165.2 0.76 133.14 100 26.9 2.26 23.16 100
(400, 4) 77.0 1.06 62.28 100 25.4 1.99 21.89 100
(400, 5) 54.3 1.17 43.94 100 24.2 1.63 21.03 100
(500, 2) 170.3 0.16 137.18 100 29.9 1.17 25.84 100
(500, 3) 58.9 0.28 47.55 100 26.3 0.57 23.37 100
(500, 4) 76.4 0.63 61.81 100 25.6 1.31 22.85 100
(500, 5) 78.5 1.21 63.56 100 25.4 2.08 22.97 100
it
t

0
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QADA-BTM
t rel. DG Tcomp %c

20.78 3.53 18.62 100
17.6 0.99 26.82 100
17.4 2.8 18.07 100
26.1 5.58 22.19 100
32.1 27.97 27.19 100
12.5 0.83 11.05 100
16.9 1.03 15.03 100
27.0 7.36 23.07 100
29.4 3.79 24.91 100
10.5 0.38 9.22 100
15.7 0.85 14.18 100
22.1 2.55 18.53 100
28.9 2.85 24.28 100
12.4 0.18 12.49 100
18.6 1.64 15.97 100
23.3 1.66 19.6 100
29.5 5.01 24.96 100
12.2 0.29 10.64 100
15.0 0.5 13.3 100
19.2 1.53 16.23 100
29.1 2.78 24.57 100

(continued on next page)
Table D.8 (continued)

MIQP QAC QADA-SG
t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 59.4 2.13 52.83 86.0 19.37 2.54 18.37 100
(100, 2) 63.0 0.03 56.64 20 23.4 1.59 34.3 100
(100, 3) 81.0 1.66 71.81 60 23.4 2.1 32.31 100
(100, 4) 82.14 4.49 74.82 70 19.8 5.09 17.21 100
(100, 5) 55.6 11.16 47.98 100 22.7 13.42 19.53 100
(200, 2) 101.17 0.44 92.76 60 15.2 1.01 17.43 100
(200, 3) 95.5 0.92 85.42 100 18.3 1.46 17.62 100
(200, 4) 59.22 4.91 52.42 90 23.3 4.56 19.73 100
(200, 5) 42.2 3.29 36.12 100 23.5 6.08 19.94 100
(300, 2) 89.2 0.37 80.62 100 15.6 0.4 14.61 100
(300, 3) 48.6 0.74 42.99 100 17.3 0.92 16.6 100
(300, 4) 34.89 2.26 29.85 90 18.8 2.04 15.88 100
(300, 5) 35.5 1.61 29.91 100 22.9 2.04 19.14 100
(400, 2) 65.0 0.2 59.38 80 12.5 0.19 10.87 100
(400, 3) 30.57 2.98 26.28 70 19.4 2.44 16.9 100
(400, 4) 27.6 1.81 23.37 100 18.9 1.29 15.97 100
(400, 5) 39.8 1.57 33.7 100 23.0 1.45 19.08 100
(500, 2) 51.33 0.43 46.84 90 13.0 0.56 11.32 100
(500, 3) 79.4 0.36 71.45 100 16.7 0.49 15.42 100
(500, 4) 30.3 1.6 25.99 100 16.6 1.44 13.93 100
(500, 5) 76.0 1.71 68.26 90 23.1 2.14 19.67 100
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c

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
Table D.8 (continued)

MIQP QADA-QNDA QNDA
t rel. DG Tcomp %c t rel. DG Tcomp

Mean 22.2 2.86 22.76 100 79.9 1.73 74.91
(100, 2) 43.7 0.95 77.42 100 29.4 0.78 26.3
(100, 3) 23.8 1.82 29.72 100 65.5 1.65 60.62
(100, 4) 30.9 5.94 30.3 100 100.4 4.92 91.62
(100, 5) 29.6 19.24 26.36 100 122.0 9.1 115.9
(200, 2) 13.0 0.95 12.22 100 58.2 0.5 52.43
(200, 3) 16.1 1.02 15.2 100 57.7 0.88 52.75
(200, 4) 27.9 6.39 26.16 100 152.3 4.67 143.7
(200, 5) 29.4 4.59 26.34 100 122.9 2.98 116.56
(300, 2) 10.3 0.33 9.17 100 45.0 0.32 40.4
(300, 3) 16.9 1.02 15.91 100 51.4 0.57 47.45
(300, 4) 21.0 2.39 18.86 100 84.7 1.21 79.91
(300, 5) 28.5 2.4 25.83 100 109.4 1.55 103.82
(400, 2) 11.9 0.21 11.88 100 35.1 0.15 31.74
(400, 3) 19.0 1.67 17.62 100 99.4 0.76 92.27
(400, 4) 22.8 2.01 20.92 100 84.0 1.06 79.31
(400, 5) 27.1 1.43 24.91 100 92.8 1.14 89.43
(500, 2) 12.5 0.38 11.54 100 55.8 0.19 50.58
(500, 3) 14.9 0.51 14.15 100 42.8 0.28 39.82
(500, 4) 18.4 1.26 16.71 100 74.2 0.63 71.13
(500, 5) 26.3 2.73 23.92 100 115.1 1.22 112.45
%
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



V
.
Y

fantis
et

al.
/

E
U

R
O

Journal
on

C
om

putational
O

ptim
ization

11
(2023)

100058
73

ber of iterations until convergence, ‖wp‖2: mean 
rcentage of converged runs within tmax iterations.

BTM

t ‖wp‖2 Tcomp %c

160.29 7.8 139.29 78.26
128.2 6.61 105.05 100
98.0 7.62 86.08 100
107.44 7.25 89.48 90
148.1 6.89 123.98 100
74.0 5.83 61.39 80
99.4 5.88 82.6 100
108.6 7.45 90.65 100
103.9 7.66 86.58 100
145.6 6.87 121.68 100
199.5 8.29 167.84 100
220.8 8.37 185.82 100
46.9 4.8 39.15 100
88.7 5.79 74.66 100
109.7 7.73 92.0 100
110.9 7.96 92.33 100
172.5 8.06 144.77 100
191.67 8.07 161.48 90
209.3 8.34 176.79 100
225.88 8.97 191.94 80
333.67 9.13 286.26 60
56.6 6.08 47.84 100
62.9 5.82 53.21 100
84.5 8.2 71.58 100
138.3 8.1 117.08 100
148.11 8.29 125.71 90
239.83 8.33 203.34 60
280.0 8.85 239.04 60
344.0 8.89 293.6 50
331.5 9.43 284.68 20
68.5 6.61 58.72 100
106.7 8.31 93.44 100
101.56 7.6 87.82 90

(continued on next page)
Table D.9
Results for the coordination of convex problems (mean values of the converged instances only), t: mean num
primal residual of converged runs (×10−3), Tcomp: mean computation time of converged runs (in s), %c: pe

Conv SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 342.51 9.72 310.45 46.07 117.44 7.44 104.97 93.0
(2, 2) – – – 0 27.2 8.2 22.26 100
(4, 2) – – – 0 25.8 6.92 21.31 100
(4, 3) – – – 0 37.6 7.04 31.05 100
(4, 4) – – – 0 38.6 7.34 31.69 100
(8, 2) – – – 0 42.8 7.15 35.25 100
(8, 3) – – – 0 51.7 8.39 42.51 100
(8, 4) – – – 0 50.1 7.67 41.44 100
(8, 5) – – – 0 55.0 5.93 45.93 100
(8, 6) – – – 0 64.0 6.26 53.24 100
(8, 7) – – – 0 83.8 5.54 69.81 100
(8, 8) – – – 0 96.6 6.59 80.13 100
(16, 2) 464.0 9.92 381.03 10 35.4 7.66 29.7 100
(16, 3) 345.0 9.87 287.14 10 49.6 8.25 41.39 100
(16, 4) – – – 0 66.5 7.91 55.52 100
(16, 5) – – – 0 54.5 7.68 45.43 100
(16, 6) – – – 0 67.8 7.55 56.55 100
(16, 7) – – – 0 72.2 7.2 60.33 100
(16, 8) – – – 0 77.5 7.73 65.06 100
(16, 9) – – – 0 83.0 7.55 69.74 100
(16, 10) – – – 0 107.5 7.17 90.01 100
(32, 2) 229.0 9.57 191.38 20 71.9 7.91 60.72 100
(32, 3) 429.5 9.94 361.66 20 51.4 8.22 43.72 100
(32, 4) 432.0 9.91 364.56 10 54.8 8.7 46.59 100
(32, 5) – – – 0 50.4 8.16 42.87 100
(32, 6) – – – 0 55.4 8.48 47.0 100
(32, 7) – – – 0 69.7 8.5 59.0 100
(32, 8) – – – 0 94.9 8.7 82.04 100
(32, 9) – – – 0 88.22 8.15 74.93 90
(32, 10) 469.0 9.51 395.54 10 98.8 7.62 84.84 100
(64, 2) 332.0 9.92 281.45 20 88.0 6.59 75.52 100
(64, 3) 361.0 9.93 308.74 20 101.9 6.81 89.45 100
(64, 4) 332.0 9.92 285.71 20 62.0 8.0 53.59 100
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BTM

t ‖wp‖2 Tcomp %c

138.0 8.36 119.09 80
153.0 8.69 131.54 20
231.5 8.77 201.97 40
262.0 9.68 227.68 30
– – – 0
– – – 0
38.7 6.5 34.32 100
153.8 7.22 139.38 100
140.75 8.39 128.16 40
163.0 8.94 146.74 30
210.0 7.81 186.94 30
269.0 8.85 238.95 10
– – – 0
– – – 0
– – – 0
41.67 7.48 40.3 90
188.5 7.9 186.54 100
270.75 8.12 266.69 40
227.5 9.8 222.26 20
– – – 0
– – – 0
– – – 0
– – – 0
– – – 0
Table D.9 (continued)

Conv SG ADMM

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
(64, 5) – – – 0 98.2 7.56 84.45 10
(64, 6) – – – 0 69.3 8.48 62.24 10
(64, 7) 411.5 9.93 353.78 20 94.5 8.53 83.29 10
(64, 8) – – – 0 81.78 8.0 70.77 90
(64, 9) – – – 0 106.22 8.16 91.6 90
(64, 10) – – – 0 135.71 6.38 118.44 70
(128, 2) 268.5 9.84 238.85 60 172.89 5.99 153.89 90
(128, 3) 309.2 9.74 277.81 50 188.2 5.16 170.22 10
(128, 4) 268.0 8.92 252.23 30 200.1 6.92 184.32 10
(128, 5) 289.0 9.81 259.23 60 219.6 6.81 200.39 10
(128, 6) 409.0 9.94 360.74 20 238.4 7.7 211.37 10
(128, 7) 340.0 9.67 317.57 40 291.0 7.92 272.24 80
(128, 8) 323.2 9.71 289.48 50 283.88 8.26 259.66 80
(128, 9) 375.5 9.86 335.07 40 278.71 7.62 255.45 70
(128, 10) 429.0 9.4 397.06 40 185.86 8.79 167.21 70
(256, 2) 175.29 9.66 169.3 70 258.25 3.87 249.57 40
(256, 3) 243.38 9.63 238.09 80 441.57 6.63 427.84 70
(256, 4) 306.86 9.69 312.87 70 – – – 0
(256, 5) 256.7 9.46 257.95 100 453.0 7.61 437.14 10
(256, 6) 346.0 9.71 339.83 90 – – – 0
(256, 7) 339.75 9.73 332.69 80 – – – 0
(256, 8) 348.1 9.69 345.85 100 – – – 0
(256, 9) 358.62 9.7 362.9 80 – – – 0
(256, 10) 399.29 9.51 393.96 70 – – – 0
c

0
0
0

0
0
0
0
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Table D.9 (continued)

QNDA

t ‖wp‖2 Tcomp %c

97.13 4.58 114.71 97.14
98.12 4.06 84.55 80
70.7 2.34 66.92 100
132.56 3.88 127.71 90
129.5 3.78 120.74 100
71.12 3.54 65.38 80
93.33 3.34 89.99 90
90.1 3.84 87.91 100
82.6 5.79 83.3 100
104.7 3.7 103.46 100
135.0 4.97 130.73 100
142.5 4.49 143.87 100
54.67 2.08 51.27 90
100.3 2.55 100.26 100
95.5 4.44 97.24 100
82.8 4.26 81.0 100
116.3 3.94 120.19 100
125.8 5.37 127.2 100
105.5 5.07 109.11 100
137.6 3.87 151.06 100
176.22 6.27 203.63 90
66.9 2.07 64.47 100
83.6 2.99 93.87 100
64.2 4.81 68.41 100
84.3 3.37 88.93 100
96.0 4.99 100.6 100
103.4 4.53 111.76 100
108.2 4.32 137.21 100
111.6 4.93 125.65 100
164.1 6.41 222.04 100
111.67 2.97 117.66 90
73.7 4.21 89.08 100
54.1 2.68 58.95 100
92.5 5.01 109.2 100
81.0 6.34 95.44 100
115.2 5.31 163.71 100
108.2 4.84 127.24 100

(continued on next page)
Conv QAC QADA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %c

Mean 207.16 6.55 186.9 81.52 123.52 6.95 149.39 75.1
(2, 2) 134.0 4.87 114.82 50 132.62 5.58 129.93 80
(4, 2) 84.3 4.91 73.94 100 101.4 5.42 106.85 100
(4, 3) 146.0 6.12 127.36 90 115.7 5.37 120.47 100
(4, 4) 214.8 4.36 186.9 100 124.3 5.74 126.38 100
(8, 2) 89.88 4.42 78.25 80 122.88 5.12 128.55 80
(8, 3) 117.1 3.78 101.48 100 66.33 6.49 70.7 90
(8, 4) 157.2 5.31 136.01 100 125.1 6.73 128.81 100
(8, 5) 154.6 5.89 133.19 100 102.3 7.28 104.77 100
(8, 6) 300.0 6.57 258.93 70 121.8 6.22 127.86 100
(8, 7) 395.4 6.9 342.82 50 158.89 6.93 176.31 90
(8, 8) 333.4 6.88 286.44 50 184.6 8.11 224.27 100
(16, 2) 64.0 6.74 55.7 90 61.3 5.61 60.78 100
(16, 3) 138.1 5.51 121.15 100 80.6 5.17 86.59 100
(16, 4) 156.33 6.33 135.76 90 126.56 7.23 132.23 90
(16, 5) 178.1 8.52 153.3 100 90.6 7.46 94.26 100
(16, 6) 235.78 8.02 203.73 90 127.5 7.34 137.42 100
(16, 7) 354.75 8.14 307.39 80 144.3 7.64 161.92 100
(16, 8) 378.75 8.16 328.46 40 153.3 7.99 189.9 100
(16, 9) 439.5 7.08 382.58 20 185.78 7.94 256.69 90
(16, 10) – – – 0 246.86 8.03 360.54 70
(32, 2) 55.88 3.54 49.33 80 63.3 3.82 67.01 100
(32, 3) 73.6 6.85 65.25 100 45.4 7.66 49.21 100
(32, 4) 90.5 5.96 80.05 100 82.5 8.2 88.87 100
(32, 5) 145.0 6.9 127.45 90 88.6 7.69 97.37 100
(32, 6) 222.3 7.22 194.63 100 109.1 8.44 118.63 100
(32, 7) 344.56 7.17 300.29 90 166.43 8.59 197.02 70
(32, 8) 433.67 8.96 378.71 30 130.57 7.72 160.34 70
(32, 9) 458.0 7.81 406.43 10 161.71 8.35 217.13 70
(32, 10) – – – 0 150.33 7.8 200.96 30
(64, 2) 46.3 3.27 41.35 100 52.0 5.34 58.92 100
(64, 3) 64.0 5.64 57.8 90 61.11 7.37 69.24 90
(64, 4) 86.5 7.18 77.84 100 101.67 7.73 115.04 90
(64, 5) 190.5 6.76 171.24 100 198.62 7.03 228.11 80
(64, 6) 208.6 8.35 191.2 100 70.0 7.38 82.49 10
(64, 7) 371.2 9.12 339.08 100 161.75 9.4 207.02 40
(64, 8) 412.25 7.29 369.97 40 146.33 9.19 191.32 30
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QNDA

c t ‖wp‖2 Tcomp %c

107.2 6.18 124.94 100
121.5 5.09 149.86 100

0 63.5 1.84 68.96 100
66.9 3.59 81.81 100
88.44 4.97 110.79 90
62.89 4.35 70.19 90
73.6 6.21 88.67 100
94.8 6.06 123.52 100
85.11 5.76 96.92 90
119.1 6.2 181.47 100
126.67 7.44 194.22 90

0 46.3 3.62 60.89 100
81.7 4.91 116.57 100
68.8 5.36 99.93 100
51.3 5.47 74.96 100
65.56 5.74 85.24 90
99.3 6.04 174.23 100
93.7 6.46 144.96 100
121.78 5.5 198.38 90
137.67 4.54 257.37 90
Table D.9 (continued)

Conv QAC QADA

t ‖wp‖2 Tcomp %c t ‖wp‖2 Tcomp %
(64, 9) – – – 0 170.0 8.09 240.05 20
(64, 10) – – – 0 198.0 6.57 326.19 10
(128, 2) 32.33 6.87 30.23 90 40.8 6.33 44.26 10
(128, 3) 54.5 4.59 51.73 100 67.44 7.38 81.15 90
(128, 4) 82.7 6.3 79.4 100 257.2 7.03 318.01 50
(128, 5) 126.44 7.39 118.16 90 275.67 9.13 336.91 30
(128, 6) 322.5 7.16 297.78 100 96.0 5.98 114.36 30
(128, 7) 398.25 8.76 369.4 40 104.0 0.7 133.61 10
(128, 8) – – – 0 102.5 7.98 156.0 40
(128, 9) – – – 0 – – – 0
(128, 10) – – – 0 – – – 0
(256, 2) 33.8 4.87 34.64 100 36.8 6.5 43.9 10
(256, 3) 53.0 5.27 54.75 100 114.38 7.03 148.99 80
(256, 4) 90.89 6.78 96.88 90 170.5 8.73 227.01 40
(256, 5) 173.8 7.11 184.27 100 57.0 4.08 75.53 10
(256, 6) 388.1 8.39 400.16 100 – – – 0
(256, 7) 498.0 7.27 501.07 10 – – – 0
(256, 8) – – – 0 – – – 0
(256, 9) – – – 0 – – – 0
(256, 10) – – – 0 – – – 0
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