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Abstract
The growing use of speech-based cloud devices and services has
heightened the risk of identity theft and misuse of personal in-
formation. Speech anonymization techniques help exercise our
right to privacy and shield us from falling prey to such malprac-
tices. In this paper, we propose three speech anonymization
systems to be submitted to the Voice Privacy Challenge 2024
and describe them in detail. Voice anonymization systems of-
ten lack utility for downstream applications, resulting in issues
like poor emotion preservation or low intelligibility. This has
led to research focused on balancing the privacy-utility trade-
off. We propose two methods, that use the KNN-based voice
conversion (VC) system as a core anonymization method and
show improved intelligibility and emotion preservation. We
also propose to employ a vector quantized mutual information-
based VC system that learns to distinguish between speaker
and content features and alters speaker information during in-
ference time to achieve speaker anonymity. We evaluate these
two types of voice conversion systems within the framework of
speaker anonymization and analyze the utility-privacy trade-off
achieved by each system.
Index Terms: voice anonymization, privacy-utility tradeoff

1. Introduction
In recent times the proliferation of the use of voice-controlled
cloud devices or speech-based online services is distinctively
noticeable. This can be attributed to several things, but the most
significant one is the rapidly expanding field of generative AI
research for speech processing and human-computer interaction
in general [1]. These speech AI technologies have the potential
to significantly transform vital service sectors, such as health-
care. Some of the applications could be therapeutic support
for mental health patients, automatic language translation, con-
tinuous patient monitoring, automated transcription of patient-
doctor interactions for future reference, enhanced telemedicine
experiences for patients, and many more. Such voice technolo-
gies can be extremely beneficial to humans, but they also raise
certain privacy concerns. Voice biometrics, like fingerprints,
carry behavioral or physiological measurements of individuals
[2], which can lead to identity theft by ill-intentioned persons
to impersonate a person to acquire wrongful access to services
and information. Additionally, a person’s voice can be exploited
to create misinformation, disinformation, and hateful content,
which can disrupt society. To guarantee privacy and security,
protections against such malpractices are crucial.

In this context, voice anonymization can be helpful to pro-
vide speaker privacy [3]. It is a technique that modifies the
speech signal in such a way that linguistic features remain in-
tact, while the speaker’s characteristics are altered, preventing

the original speaker from being re-identified [3]. The foremost
goal of speaker anonymization is to ensure that the speaker can-
not be identified purely by their voice thus reducing the chances
of voice phishing, impersonation, and other voice-based fraud-
ulent activities. Nowadays, voice anonymization is not only a
choice but in some regions, it is mandated by law for data stor-
ing to ensure privacy for example the General Data Protection
Regulation (GDPR) in Europe [4]. In recent years, generative
AI-based voice anonymization research has advanced signifi-
cantly, and it is capable of producing high-quality anonymized
speech signals [1]. However, these deep-learning models em-
ployed for speaker anonymization to ensure privacy are often
criticized for generating speech signals that are of low natural-
ness and, intelligibility thus diminishing their utility for down-
stream applications [5]. This phenomenon, coined as privacy-
utility trade-off has resulted in a new research direction in the
speech privacy community. One challenge is to find appropri-
ate metrics to measure utility [5]. The Voice Privacy Challenge
(VPC ) initiative [6], founded in 2020, is leading efforts to de-
velop privacy-preserving solutions for voice technologies and
also providing necessary metrics for utility quantification [7].

To achieve the objective of speaker anonymization, the
baselines provided by VPC mainly follow two major tracks
- signal processing techniques and deep learning (DL) based
speech synthesis with a mechanism to alter speaker encodings
[5], though the results from earlier challenge instances show
that the later can produce better results. Signal processing meth-
ods include anonymization techniques using McAdams coeffi-
cients [8], which adjusts the pole locations generated by linear
predictive coding (LPC) analysis of speech input. In this cat-
egory, another method was proposed in [9], where pitch shift-
ing by timescale modification (TSM) is used for anonymization.
These methods don’t require any prior training. The second ap-
proach follows a generic scheme of extracting linguistic content
feature, speaker embedding and a temporal pitch feature from
the input speech signal and reconstructing back anonymized
speech after manipulating the speaker embeddings [5]. Follow-
ing this scheme, [10] proposes a method where the X-vector
[11] embedding of the speaker is altered from a pool of speak-
ers to achieve necessary anonymization. [12] uses an extension
of ECAPA-TDNN (Time Delay Neural Network) [13] speaker
features instead of x-vectors. Alternatively, [5] tries to learn the
latent speaker embedding distribution using a generative adver-
sarial network (GAN) [14], and during anonymization gener-
ates sufficiently distant pseudo speaker by sampling the learned
distribution. These methods show continuous improvement
in speaker anonymization when measured objectively however
they still lack sufficient intelligibility with high word error rates
(WER). Additionally, [15, 16] explore methods involving voice
conversion (VC) techniques and show significant improvement
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Figure 2: System architecture diagram for KNND

regarding utility measurements.
In line with this, in this paper, we compare two genres

of voice conversion techniques to improve upon the utility of
anonymized speech. We propose two systems involving knn-vc
[17], where the VC component doesn’t require any pertaining
and built upon speech feature extracted by pre-trained founda-
tion audio models. The third system is built upon VQMIVC
[18], which relies on disentangled orthogonal feature decom-
position by minimizing mutual information in each pair of fea-
tures. This method also used vector quantization as a further
means of bottleneck for linguistic content features. We dis-
cuss these methods in detail in Section 2 and then in Section
4 we present and discuss the results achieved by VPC evalua-
tion scripts.

2. System Description
We propose three anonymization systems for VPC 2024. As
described in the VPC 2024 evaluation plan all of the proposed
systems are designed to achieve utterance level anonymization.

2.1. Anonymization using single layer knn-vc: KNNS

The core idea of this system is based on knn-vc as proposed in
[17]. The system architecture diagram is depicted in Figure 1.

The source utterance is first processed via WavLM Large [19],
which outputs speech representation of size F × 24 × 1024,
where F is the number of frames, 1024 is the latent dimension
and 24 signifies the output of all transformer layers. WavLM
outputs 50 frames from a 1 s long waveform sampled at 16 kHz
rate. Then as advised in knn-vc, only the output of the 6th

layer is selected, which makes the speech representation of size
F × 1 × 1024, called as query set. For anonymization, first, a
random target speaker is chosen from all the English speakers
present in the emotional speech database (ESD)[20]. Conse-
quently, all the utterances of the chosen target speaker are pro-
cessed through WavLM, which gives rise to a large feature array
of size N × F × 24 × 1024, where N is the number of utter-
ances for the chosen random target speaker. Again we chose
only the output of the 6th, which makes the feature array of
size N × F × 1× 1024. This is called the matching set. Then
a KNN operation is performed for each frame of the query set
to the matching set and the top-4 nearest neighbors are selected,
producing a matched set of size F × 4 × 1024. Then it goes
through an average pooling operation to average the top 4 neigh-
bors bringing down the matched set size to F × 1024. Finally,
a HiFiGAN [21] is applied to reconstruct back the audio sig-
nal in the time domain. The HiFiGAN is pre-trained on Lib-
rispeech: train-clean-360 [22], ESD [20], CREMA-D [23] and



Table 1: Modules and training corpora for the anonymization system VMC

Module Description Output Training Data
F0

Extractor
Pyworld dio and stonemask
Input: Raw waveform Normalized F0 contour of shape F × 1 -

Speaker
Encoder

Convolution Layers +
temporal global pool
Input: Mel Spectrogram of shape
F × 80,
with hop length 160 and
80 Mel bands

1× 256 speaker feature LibriSpeech:train-clean-360
ESD
RAVDESS
CREMA-D

Content
Encoder

Convolution Layers +
vector quantization
Input: Mel Spectrogram of shape
F × 80

F/2× 512
vector quantized content feature

RAVDESS [24] datasets.

2.2. Anonymization using multi-layer knn-vc: KNND

The working principle of this KNND system is similar to the
previously discussed KNNS system in 2.1 and the system dia-
gram is shown in Figure 2. The difference is, that instead of
selecting only the output of the 6th layer of WavLM, we select
the output of both 6th and 12th layer. In our experiments, we
discovered that the 12th layer encodes emotional cues more ef-
fectively than the 6th layer. Therefore, we opted to incorporate
both layers to enhance emotion preservation. This increases the
size of the query set and matching set to F × 2 × 1024 and
N × F × 2 × 1024 respectively. Consequently, the matched
feature also becomes an array of size F × 2× 1024. To accom-
modate this additional dimension, the HiFiGAN is augmented
with a convolutional PreNet module, which gets pre-trained
jointly with the HiFiGAN before applying to the anonymiza-
tion pipeline. In both KNNS and KNND, except the HiFiGAN
component nothing else is trainable.
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Figure 3: System architecture diagram for VMC

2.3. Anonymization by disentangled representation using
vqmivc: VMC

The core of the vqmivc-based (in short VMC) anonymization
systems is a VC system proposed in [18] which disentangles
speech representations using vector quantization and lowering
mutual information in an unsupervised way. The anonymization
pipeline for the VMC system is depicted in Figure 3. The core
VC framework has four major components, an F0 extractor, a
speaker encoder, a content encoder, and a decoder.

Step I - Training: During training the F0 extractor receives
the raw source waveform and uses the pyworld-dio algorithm
to extract temporal F0 features of share F × 1, where F is the
number of frames. The speaker encoder takes input from a Mel
spectrogram of the source utterance of share F × 80 and pro-
duces a global speaker feature vector of shape 1 × 256. The
content encoder also receives the same Mel spectrogram and
produces content feature representation of size F/2×512. The
content encoder comprises convolution layers and a codebook
to quantize the content features. The disentanglement of F0
features, speaker features, and content features is achieved by
minimizing parameterized mutual information as described in
[18]. Afterward, the content feature is upsampled to achieve
the shape F × 512 and the global speaker feature is repeated
in temporal dimension to achieve the shape of F × 256. Con-
sequently, the three speech features are concatenated and fed
to a decoder which outputs the original Mel spectrogram. The
whole VC framework is trained unsupervised by optimizing re-
construction loss. We have kept the architecture of each module
the same as recommended in [18]. Implementation details of
individual components are outlined in Table 1. Finally, a Hi-
FiGAN is applied to reconstruct back the waveform from the
Mel spectrogram. Similar to KNNS and KNND systems, the
HiFiGAN is pre-trained on Librispeech: train-clean-360, ESD,
CREMA-D, and RAVDESS datasets.

Step II - Inference: During the anonymization, a random tar-
get utterance is selected from the ESD utterance pool, and the
speaker encoder is fed with the Mel spectrogram of the target
utterance whereas the other two components F0 extractor and
the content encoder receive the source utterance. This produces
the output utterance in the target speaker’s voice thus effectively
archiving anonymization.



Table 2: Objective evaluation results for privacy metric - EER
using the semi-informed scenario. Among the proposed sys-
tems, the best scores are in bold, and the second-best scores are
underlined per gender.

Systems

ASV EER ↑
Librispeech

Dev Test
Female Male Female Male

McAdams - B2 [7] 12.91 2.05 7.48 1.56
GAN - B3 [7] 28.43 22.04 27.92 26.72
KNNS 12.64 4.19 9.51 4.45
KNND 17.07 8.54 10.77 9.36
VMC 19.462 8.54 16.79 11.8

3. Experiment Setup

3.1. Datasets

For training the HiFiGAN modules in all three systems and the
VQMIVC voice converted for the VMC systems we used in to-
tal of four datasets - Librispeech: train-clean-360 [22], ESD
[20], CREMA-D [23] and RAVDESS [24]. The train-clean-
360 subset contains more than 960 hours of clean speech data
from 921 speakers (439 female and 482 male) with an average
of 25 minutes of speech per speaker. The ESD database in-
cludes parallel utterances conveying 5 emotion categories (neu-
tral, happy, angry, sad, and surprised), spoken by 10 native En-
glish (gender-balanced) speakers. CREMA-D dataset contains
> 7000 clips from 91 actors (48 male and 43 female) cover-
ing 6 different emotions - Anger, Disgust, Fear, Happy, Neutral,
and Sad. In RAVDESS, 24 professional actors (12 females and
12 males) uttered parallel emotional contentment depicting 7
different emotions - calm, happiness, sadness, anger, fear, sur-
prise, and disgust. The evaluation of the proposed systems is
performed on the dev-clean and the test-clean subsets from the
Librispeech corpus and the IEMOCAP [25] dataset is used as
prescribed by the VPC challenge.

3.2. Objective metrics

The anonymization systems are evaluated using the models sug-
gested by the VPC challenge. To objectively measure the pri-
vacy benefits, an attack using automatic speaker verification
(ASV) is applied and an equal error rate (EER) score is com-
puted. The attack uses both a semi-informed scenario alterna-
tive to an ignorant one. In the ignorant case, the ASV model is
trained on real utterances and applied to anonymized utterances.
Alternatively, in the semi-informed scenario, the ASV model is
trained on the anonymized utterances from the training subset
and then applied to the utterances from dev-clean and test-clean
subsets. Both of these scenarios consider the anonymization
system as a black box. Evidence shows that a semi-informed
attack is stronger than an ignorant one.

To measure the utility of the anonymized utterances, auto-
matic speech recognition (ASR) and speech emotion recogni-
tion (SER) models are applied to judge the intelligibility and
amount of emotion preservation respectively. For intelligibil-
ity, word error rate (WER), and for emotion preservation un-
weighted average recall (UAR) is reported.

Table 3: Objective evaluation results for utility metrics - WER
for ASR and mean UAR (5 folds) for SER. Among the proposed
systems, the best scores are in bold, and the second-best scores
are underlined.

Systems
SER UAR [%] ↑ ASR WER [%] ↓

IEMOCAP Librispeech
Dev Test Dev Test

Original [7] 69.08 71.06 1.8 1.85
McAdams - B2 [7] 55.61 53.49 10.44 9.95
GAN - B3 [7] 38.09 37.57 4.29 4.35
KNNS 46.94 47.69 2.6 2.52
KNND 43.2 45.54 2.47 2.49
VMC 35.14 33.92 20.75 18.25

4. Results & Discussion
The results for objective evaluation to measure privacy strength
are summarized in Table 2. We compare our proposed systems
with the signal processing dependent McAdams (system ID -
B2) baseline and DL model dependent GAN-based anonymiza-
tion (system ID - B3) baseline system as reported in [7]. The
attack scenario is semi-informed as the ASV system is trained
on anonymized data. B2 archives EER scores of 12.91 and
2.05 in the dev subset for female and male trail utterances re-
spectively. On the test subset, the EER scores are even lower,
7.48 and 1.56 respectively for female and male trials. GAN-
based B3 baseline archives much higher EER scores indicating
stronger anonymization. For B3, EER scores in the dev subset
are 28.43 and 22.04, whereas for the test subset, the scores are
27.92 and 26.72 for female and male trials. Among the 3 pro-
posed systems, VMC achieves the highest EER scores for both
the subsets and KNND EER scores are the second best. For
the dev subset, VMC archives EER scores of 19.462 and 8.54,
closely followed by the KNND system, which archives 17.07
and 8.54 EER scores for female and male trail utterances. For
the test subset, EER scores for the VMC system are 16.79 and
11.8 and for the KNND system the scores are 10.77 and 9.36
Comparatively, EER scores for the KNNS system are a bit
low. It achieves EER scores of 12.64 and 4.19 on the dev sub-
set and for the test subset, the scores are 9.51 and 4.45. So
in terms of anonymization strength, all the proposed systems
beat the B2 baseline but are somewhat inferior to the B3 base-
line. Noticeably, for all the systems including the baseline EER
score for Female trial utterances are higher than that of males,
which indicates it’s easier to anonymize female speakers than
male speakers.

The results of the objective utility evaluation are presented
in Table 3. In terms of UAR for the SER task, the scores are
69.08% and 71.06% for the dev and test subsets of IEMO-
CAP data respectively when tested on original utterances. How-
ever, the B2 baseline archives UAR scores of 55.61 and 53.49
whereas the scores achieved by the B3 baseline are way lower,
38.09 and 37.57 for the dev and test subset respectively as re-
ported in [7]. Among the proposed systems, KNNS achieves
the highest UAR scores for the SER task closely followed by
the KNND system. The KNNS system archives 46.94% and
47.69% on the dev and test subset respectively whereas the
KNND system achieves 43.2% and 45.54%. The emotion
preservation capability for the VMC system is comparatively
lower as it achieves 35.14% and 33.92% on the IEMOCAP dev
and test subsets respectively.

In terms of intelligibility evaluation, the original data get



WER scores of 1.8% and 1.85% on Librispeech dev and test
subsets respectively. For the B2 baseline the scores are 10.44%
and 9.95% however the B3 baseline achieves better intelligi-
bility as the WER scores are 4.29% and 4.35%. This shows
that even though the B3 baseline is not as good as B2 in terms
of emotion preservation for intelligibly of anonymized speech
B3 is much better than B2 Among the proposed systems, both
KNND and KNNS systems significantly beat both the baseline
systems as the WER scores are very low and almost analogous
to the original data. The best WER scores are achieved by the
KNND system, 2.47% and 2.49% respective on the dev and
test subset, whereas KNNS achieves 2.6% and 2.52%. Similar
to the SER task, VMC is lacking on the ASR task as well, as it
achieves high WER scores of 20.75% and 18.25%.

The privacy and utility results presented in Table 2 and Ta-
ble 3 clearly show that we get higher privacy at the cost of lower
utility of the anonymized speech. For the GAN-based B2 base-
line system the privacy scores are high but the utility scores
are low, especially for the emotion preservation task. Our pro-
posed KNND system achieves a good balance of privacy and
utility dimensions, as evidenced by significantly lower WER
scores than all other systems, higher emotion preservation com-
pared to the B3 baseline, and higher privacy compared to the
B2 baseline. The proposed KNNS is also capable of produc-
ing high utility scores for the anonymized data as it beats the
B3 baseline in both SER and ASR tasks however in terms of
speaker privacy the performance is a bit lower than the KNND
system. The VMC system, which archives anonymization by
disentangling content and speaker features, can archive high
privacy for anonymized speech compared to KNNS and KNND
but has poor utility.

5. Conclusion
In this paper, we proposed three anonymization systems by VC,
two of them are based on learnable parameters less knn-vc, and
the last one is based on VQMIVC with learns to disentangle
speaker and content features. Our proposed knn-vc based sys-
tems use pre-trained WavLM features as speech encoding and
the results show that they achieve a very good balance between
the privacy and utility of the anonymized speech, especially the
KNND system. Both the KNNS and KNND systems are capa-
ble of producing highly intelligible anonymized speech, as their
WER scores are marginally shy of the WER scores of the orig-
inal speech and significantly better than the baseline systems.
The third system shows that the feature disentanglement can
provide higher privacy against an attacker but the anonymized
speech lacks utility as both emotion preservation and intelligi-
bility are poor. We will take this up as future work to improve
the utility of such an end-to-end feature disentanglement-based
anonymization system without losing its capability of providing
good privacy.
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