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Abstract

Generating high-resolution images with generative mod-
els has recently been made widely accessible by leveraging
diffusion models pre-trained on large-scale datasets. Various
techniques, such as MultiDiffusion and SyncDiffusion, have
further pushed image generation beyond training resolutions,
i.e., from square images to panorama, by merging multiple
overlapping diffusion paths or employing gradient descent to
maintain perceptual coherence. However, these methods suf-
fer from significant computational inefficiencies due to gener-
ating and averaging numerous predictions, which is required
in practice to produce high-quality and seamless images.
This work addresses this limitation and presents a novel
approach that eliminates the need to generate and average
numerous overlapping denoising predictions. Our method
shifts non-overlapping denoising windows over time, ensur-
ing that seams in one timestep are corrected in the next. This
results in coherent, high-resolution images with fewer over-
all steps. We demonstrate the effectiveness of our approach
through qualitative and quantitative evaluations, comparing
it with MultiDiffusion, SyncDiffusion, and StitchDiffusion.
Our method offers several key benefits, including improved
computational efficiency and faster inference times while
producing comparable or better image quality.

1. Introduction

The recent breakthrough of generative diffusion mod-
els [3, 17, 18] has enabled the generation of high-quality
images with high fidelity and diversity from simple text
prompts. These models are typically trained on a large-
scale dataset of fixed-size resolution. Training such models
for high-resolution image generation requires substantial
computational resources and large datasets. Therefore, sev-
eral attempts have been made to repurpose pre-trained diffu-
sion models to exceed the original training image resolution.
When initially trained on lower resolutions, innovative tech-
niques are required to overcome their original constraints

"a view of a beach with a bunch of logs on the shore, withering autumnal forest"

MultiDiffusion, stride=64, views=4, 0:07min/img
ﬁ : 4 jiiﬁv‘ e
Fast X s iml"/s Vi

Coherent v & — - Ay

Ours, stride=64, views=4, 0:07min/img

Figure 1. MultiDiffusion [1] can produce coherent panorama im-
ages by averaging overlapping denoising predictions. However,
this process introduces computational inefficiencies and requires
denoising many patch views. Without overlapping views, Mul-
tiDiffusion can not produce coherent panoramas. We introduce
an efficient method for high-resolution panorama generation that
eliminates the need for overlapping denoising predictions, resulting
in coherent and sharp images without border artifacts.

(fixed spatial size) and generate higher-resolution images.
Previous methods, such as MultiDiffusion [1] and SyncD-
iffusion [12], have made significant strides in this domain.
MultiDiffusion [ 1] achieves high resolution by fusing multi-
ple overlapping diffusion paths, which are then averaged to
create the final image. While effective, this technique intro-
duces computational inefficiencies due to the need to gener-
ate and average numerous predictions. SyncDiffusion [12]
builds on this by using gradient descent from a perceptual
similarity loss to produce coherent panoramas, yet it still
fundamentally relies on the principles of MultiDiffusion. A
major drawback of these current methods is the high com-



putational cost required to create overlapping predictions
during denoising and combine them through averaging. For
example, in practice, MultiDiffusion [ 1] requires an overlap
of 75% between adjacent windows, resulting in a large num-
ber of denoising predictions and thus significantly increased
computational demands.

In this paper, we present our novel approach, coined Spot-
Diffusion (seamless panorama over time), that addresses this
limitation and offers a more efficient and effective method for
high-resolution image generation. We argue that many of the
denoising predictions, like in MultiDiffusion [1], are redun-
dant and that averaging can decrease the quality of the final
image, in addition to incurring significant computational
costs. Furthermore, we identify that the key to producing
seamless panoramas is to ensure that the full denoising pro-
cess is applied uniformly over time across the entire image.
Our key insight is that this can be achieved without overlap-
ping denoising predictions within one timestep by simply
shifting the denoising windows over time. This ensures that
any seam in one timestep is corrected in the next, resulting
in coherent, high-resolution images with significantly fewer
steps. SpotDiffusion makes several key contributions:

¢ it introduces a fast method for coherent and sharp
panorama image generation without border artifacts.

* it eliminates the need for generating numerous overlap-
ping denoising predictions and subsequent averaging,
significantly reducing the computational complexity of
the denoising process.

* it can serve as a drop-in replacement for existing diffu-
sion models that previously relied on the MultiDiffusion
mechanism, making it a practical and efficient solution
for high-resolution image generation.

2. Related Work

This section provides an overview of the related work in
the field of high-resolution image generation, focusing on dif-
fusion models, text-to-image synthesis, and high-resolution
montage generation.

2.1. Diffusion Models

Diffusion models [9, | 8-20] are powerful generative mod-
els. A key difference between them and earlier generative
models, such as GANSs [0], is their iterative process. During
training, diffusion models employ a forward and backward
process. The forward process starts from a clean image and
iteratively adds small amounts of noise until the image is in-
distinguishable from random noise. In the backward process,
they learn to generate real-looking data by progressively re-
verting the forward process, i.e., removing the added noise.
As aresult, they can gradually approximate a complex target
data distribution from a normal noise distribution [3, 21].
These models have been shown to produce high-quality im-
ages and have been used in various applications, including

image generation, inpainting, super-resolution, and across
various data modalities, including audio, video, and 3D ob-
jects, showcasing their broad applicability [2,4, 13, 14,24].

2.2, Text-to-Image Synthesis

Text-to-image [5,25] synthesis has gained significant at-
tention for its impressive generation performance. Diffusion
models, particularly latent diffusion models [18], have be-
come popular due to their high-quality generation capabili-
ties. Stable Diffusion, built upon latent diffusion models [ 18],
has been shown to produce high-resolution images with high
fidelity and diversity making it a popular choice for text-to-
image synthesis and enabling researchers as well as artists
to generate creative images from text prompts. Despite their
strengths, these models are limited by their training reso-
lution, necessitating innovative techniques to exceed their
original training limits and produce high-resolution outputs.

2.3. High-Resolution Image Generation

High-resolution image synthesis presents significant chal-
lenges due to the high-dimensional data and substantial com-
putational resources required. Previous approaches include
training from scratch or fine-tuning, which can be computa-
tionally expensive and time-consuming. Training-free meth-
ods like MultiDiffusion [!] repurpose pre-trained models
on low-resolution to generate high-resolution images. To
that end, multiple overlapping diffusion paths are fused by
averaging the denoising predictions to produce seamless im-
ages. SyncDiffusion [12] improves upon these methods by
synchronizing multiple diffusions through gradient descent,
achieving more coherent outputs. However, these methods
introduce a significant computational overhead due to the
need for generating and averaging numerous predictions,
especially because large overlaps are required to produce
seamless images. Our work aims to address these limitations
by introducing a novel approach that eliminates the need for
overlapping denoising predictions and subsequent averaging
by shifting non-overlapping denoising windows over time.

3. Methodology

We propose SpotDiffusion, a new diffusion process for
fast panorama image generation. Contrary to previous meth-
ods, SpotDiffusion uses randomly shifted, non-overlapping
windows through time to ensure coherent transitions. This
section details the mathematical formulation of our method
and presents the algorithm for seamless panorama genera-
tion.

3.1. Preliminaries

Consider a pre-trained diffusion model ® that operates in
image space Z € R" < *C and condition space ). Given
a noisy image I1 ~ /\/(0, I) and a condition y € ), the
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Figure 2. MultiDiffusion [1] generates coherent panorama images by averaging overlapping denoising predictions with a stride that is smaller
than the denoising window. Our method eliminates the need for overlapping denoising predictions and introduces a more efficient shifting
denoising method. Instead of relying on a fixed denoising path with overlapping views, our method shifts the denoising windows over time,
ensuring that seams in one timestep are corrected in the next. This results in fast, seamless, high-resolution images with fewer overall steps.

model produces a sequence of images starting from /7 and
gradually denoising it towards the clean image /j:

such that (D

Our goal is to generate images Jr, Jr—_1, ..., Jyin anew
image space J € RW'XH'XC \with W' > W,H' > H,
using the same reference model ® without any re- or fine-
tuning. Traditionally, models pre-trained on fixed-size im-
ages cannot be directly used to produce images of arbitrary
sizes. To that end, MultiDiffusion [1] addressed this limi-
tation by using a joint diffusion approach where multiple
overlapping windows are merged via averaging. More for-
mally, n mappings F; : J € RW'xH'xC _, 7 ¢ RWxHxC
with i € {1,2,...,n} are defined that map (crop) the image
space J into n images of the original space Z. The value of
n, and thus the number of individual image crops, is defined
asn = W=W + 1, where w is the stride between adjacent
cropping windows. With these mappings, the denoising pro-
cess is applied to each cropped image, and the results are
averaged to produce the final image Jy.

Notably, the stride w is typically chosen such that the
cropped windows overlap, ensuring that the denoising pro-
cess is applied uniformly across the entire image. In practice,

it is common to choose w = % or even w = % such that

IT,IT717...,I() Itfl :(P(It | y)

the cropped windows overlap by 75% or 87.5%, respectively
to produce seamless transitions. However, this approach
dramatically increases the computational complexity of the
denoising process, as each overlapping window requires a
denoising prediction. Strides w > % are known to produce
visible artifacts and seams in the final image. In the extreme
case of w = W, the cropped windows are disjoint, and the
denoising process is applied independently to each window,
resulting in a disjoint image.

3.2. SpotDiffusion

Our goal is to efficiently generate high-resolution, seam-
less images and speed up the total inference time. Thus,
we aim to eliminate the need for many overlapping denois-
ing windows. We hypothesize that many of the denoising
predictions are redundant and that averaging may decrease
the quality or alignment of the final image. To that end, we
identify that the key to producing seamless panoramas is
to ensure that the denoising process is applied uniformly
across the entire image over time. We recognize that the
static mappings F; in MultiDiffusion [ 1] are fixed and do
not change over time, which we believe is a critical limita-
tion of the method. Therefore, in this paper, we propose a
shifted windows diffusion approach. Specifically, we use



time-dependent mappings F{; ;) using s(t), which applies
random shifts of size s(t) at every timestep to the mapping
such that the entire image is denoised uniformly. Our core
insight is that using non-overlapping windows that shift ran-
domly over time effectively corrects discontinuities at the
seams in subsequent time steps. Given sufficient timesteps,
our shifted windows ensure that each pixel is processed
through various windows, achieving a uniformly denoised
and perfectly coherent image. See Figure 2 for a conceptual
illustration of our method and comparison to MultiDiffu-
sion [1].

More formally, for each timestep ¢, a shift function with a
shift size of s(t) is applied to the mappings F{; ;). The shift
size s(t) ~ U(0, W) is drawn from a uniform distribution
over the entire mapping sequence, ensuring that each pixel
in the image J is included in multiple windows over time.
In our method, the stride equals the width of the denoising
window w = W, so the windows are non-overlapping. To
handle cases where a window mapping exceeds the image
boundaries, F{; ;) maps it back to the beginning of the image
(wrap-around). In practice, our method can efficiently be
implemented by shifting the input image .J; of the mapping
functions F; with a translate operator that incorporates a
wrap-around, as shown in Algorithm 1. The denoised image
J¢_1 is obtained by concatenating the denoised windows and
reverting the shift by re-applying translate with —s(¢).
Due to the random shifts, any artifacts or seams produced in
one timestep are corrected in subsequent timesteps, leading
to a coherent and seamless final image.

The key advantage of our method lies in its ability to
produce coherent transitions without the need for overlap-
ping windows, which simplifies the method and significantly
reduces the time complexity of the denoising process. Fur-
thermore, our approach can be easily integrated into exist-
ing diffusion models, especially as a drop-in replacement
for MultiDiffusion [1], without the need for retraining or
fine-tuning, making it a practical and efficient solution for
high-resolution image generation.

4. Experimental Setup

We choose three models to evaluate our method. First,
we compare our approach with MultiDiffusion [1] using
the Stable Diffusion 2.0 backbone. The Stable Diffusion
model operates in a latent space of R64*64X4 and generates
images of R512X512x3 We yse it to generate panorama im-
ages of resolution 512 x 2048 (64 x 256 in the latent space),
where the width is four times the width of the output of
Stable Diffusion. Each window crop in the panorama has an
image resolution of 512 x 512. We compare against Mul-
tiDiffusion [1] with various strides along the width in the
image space. In the case of no overlaps, the stride equals the
window size of 64 resulting in a constant compute compar-
ison with our method. Second, we apply our method as a

Algorithm 1 SpotDiffusion

Require: ® {pre-trained diffusion model}
{F;}?_, {non-overlapping mappings}
{yi}—, {conditions for each window}
Jr ~ N(0,I) {noisy initialization}
translate(:, ¢) {translate by c function}
1. fort=T,T—1,...,0do

2. s(t) ~U(0,W) {sample a random shift size}
3 J, « translate(Jy, s(t)) {shift panorama}
4:  for each window i =1,...,n do

5: I < ®(F;(J;) | yi) {denoise window}
6: end for

7:

Ji_1 « concat({I!_,}" ) {combine windows}
8¢ J,_1 < translate(J;_;,—s(t)) {revert shift}
9: end for

10: return Jy

drop-in replacement for the inner MultiDiffusion [ 1] loop in
SyncDiffusion [12]. SyncDiffusion [12] synchronizes multi-
ple diffusions through gradient descent to produce coherent
panoramas, but requires subsequent MultiDiffusion [1] to
merge all predictions. We replace it with SpotDiffusion to
speed up the image generation process. Finally, we compare
our method with StitchDiffusion [22], a method for spherical
image synthesis, which generates 360-degree panoramas by
averaging overlapping denoising predictions. StitchDiffu-
sion [22] customizes a pre-trained T2I diffusion model for
360-degree panorama synthesis by fine-tuning a Low-Rank
Adaptation (LoRA) [10] matrices. Here, we also replace
the overlapping denoising predictions with our method to
demonstrate the efficiency of our approach and show the
qualitative results and image generation time.

4.1. Dataset & Metrics

To compare with MultiDiffusion [I1] and SyncDiffu-
sion [12], we follow their evaluation setup which is based
on 6 prompts from MultiDiffusion [1]. We generate 500
panorama images of resolution 512 x 2048 for each prompt
and crop each panorama into 6 random 512 x 512 patches for
quantitative evaluation. To evaluate our method and compare
it with baselines, we use several metrics. To measure the
image quality and diversity, we use the clean FID [8, 11, 15]
implementation with CLIP [16] backbone. CLIPScore [7]
measures the alignment between the generated images and
the prompts. Furthermore, we use ImageReward [23] to
evaluate the quality and alignment of the generated images.
ImageReward is a general-purpose text-to-image human pref-
erence ranking model, which is trained on a total of 137k
pairs of expert comparisons and thus serves as a good proxy
to human evaluation. We report the reward scores for all
generated images and their corresponding prompts. Finally,
we measure the time required to generate an image to demon-
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Figure 3. Comparison of MultiDiffusion [ 1] with varying stride sizes and our approach. MultiDiffusion with stride=64 (no overlap between
views) matches our image generation times but produces strong border artifacts and visible seams due to disjoint diffusion paths. With
stride=32 (50% overlap), MultiDiffusion still shows visible seams, and only with stride=16 (75% overlap) does MultiDiffusion produce
seamless panoramas, but at the cost of increased computation. In contrast, our method consistently achieves seamless panoramas, reducing
inference time by 6x without overlapping denoising views, making it more efficient for high-resolution image generation.
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Figure 4. Our method can also replace the inner MultiDiffusion [1] loop in SyncDiffusion [12], leading to a 3x speedup in inference
time without noticeable degradation in image quality. The generated panorama images are coherent and sharp without border artifacts,
demonstrating the effectiveness of our shifted window denoising approach instead of requiring many overlapping patches.

strate the efficiency of our method and compute the number
of windows required to denoise at every timestep.

5. Results

This section presents qualitative and quantitative results
of our method compared to MultiDiffusion [ 1], SyncDiffu-
sion [12], and StitchDiffusion [22].

5.1. Qualitative Results

We start by demonstrating that MultiDiffusion [1] re-
quires large overlap between denoising windows to produce
coherent panorama images in Figure 3. However, this large
overlap results in an increased number of required denois-
ing predictions and thus slow image generation time. For
example, with a stride of 64, which equals the window size,
MultiDiffusion [ 1] produces disjoint diffusion paths and vis-
ible seams in the generated images. Even with a stride of
32, MultiDiffusion [ 1] still shows visible seams while being
3x slower and requiring 7 instead of 4 denoising windows.

Only with a stride of 16, and thus 13 windows, does Multi-
Diffusion [ ] produce seamless panoramas. In contrast, our
method produces seamless panoramas without overlapping
denoising windows, reducing inference time by 6x.

In Figure 4, we compare our method with SyncDiffu-
sion [12]. More specifically, we replace the inner Multi-
Diffusion [1] loop in SyncDiffusion [12] with our method
to demonstrate the benefit of our approach. Our method
achieves a 3x speedup in inference time without noticeable
degradation in image quality. The panorama images gener-
ated by our method are coherent, sharp and without border
artifacts, demonstrating the effectiveness of our shifted win-
dow denoising approach.

Finally, we use our method to speed up the inference time
of StitchDiffusion [22], see Figure 6. Our method produces
seamless and plausible 360-degree panoramas based on the
input text prompts. To demonstrate the continuity between
the leftmost and rightmost sides of the 360-degree image,
we copy the left area and paste it onto the rightmost side.



Model Stride Views] FID] CLIPScore{ ImageReward! Time[min])
MultiDiffusion [1] 16 13 3.21 31.67 0.75 0:44
MultiDiffusion [ 1] 32 7 3.50 31.65 0.57 0:23
MultiDiffusion [ 1] 64 4 7.25 30.83 -0.09 0:07
Ours 64 4 3.59 31.67 0.76 0:07
SyncDiffusion [12] 16 13 1.86 31.85 0.62 1:44
SyncDiffusion [12] 32 7 2.08 31.79 0.57 0:57
SyncDiffusion [12] 64 4 5.22 30.97 0.01 0:33
Ours 64 4 2.32 31.93 0.65 0:33

Table 1. Quantitative results on 512 x 2048 panorama generation. Fast inference with non-overlapping windows comparison is marked in
gray. Our method consistently produces high-quality images as measured by FID with good image-text alignment as measured by CLIPScore
and ImageReward. In contrast to the baselines, our method does not require overlapping denoising windows, thus significantly reducing the
number of required denoising views and inference time. We reach similar performance as the baselines but with a fraction of the time.
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Figure 5. Left: The number of total required denoising steps and thus image generation time depends on the stride of denoising windows.
Given a default window size of 64, a stride of [64, 32, 16] corresponds to [0%, 50%, 75%] overlap between denoising windows, respectively.
Middle: CLIPScore comparison of the base StableDiffusion model with MultiDiffusion [1] and our method. As can be seen, our method

reaches similar performance as MultiDiffusion [ 1] but significantly faster. Right: FID comparison of SyncDiffusion [
] but with a fraction of the time. Notably, our method does not require

Our method achieves similar FID scores as SyncDiffusion [

] with our method.

overlapping denoising windows (window size = stride = 64) and subsequent averaging, making it more efficient.

5.2. Quantitative Results

To thoroughly evaluate our method, we compare it with
MultiDiffusion [!] and SyncDiffusion [12] using various
metrics. The results are summarized in Table 1 and Figure 5.

In Figure 5, we show that the number of required de-
noising steps and thus image generation time depends on
the stride of denoising windows. Next, we compare the
CLIPScore of the base StableDiffusion model with Multi-
Diffusion [1] and our method. Our method reaches similar
performance as MultiDiffusion [1] but significantly faster.
Only with a stride of 16, corresponding to 75% overlap be-
tween denoising windows and roughly 6x more compute
time, does MultiDiffusion [ 1] reach similar CLIPScore. Fi-
nally, we compare the FID scores of SyncDiffusion [12]
with our method. As already shown in the qualitative results,
our method achieves similar image quality in terms of FID
scores as MultiDiffusion [ 1] and SyncDiffusion [ 2] but with
a fraction of the time. Interestingly, our method achieves

better image-text alignment as measured by CLIPScore and
ImageReward while being significantly faster. We hypothe-
size this is due to reduced following of the text guidance by
averaging separate overlapping denoising predictions within
each timestep.

6. Limitations & Future Work

Our method relies on random shifts of non-overlapping
denoising windows over time to ensure coherent transitions
across the panorama image. While this approach signifi-
cantly reduces the computational complexity of the denois-
ing process and speeds up image generation time, it does not
guarantee the same level of image quality as measured by
FID as dense MultiDiffusion [ 1] with a very small stride of
16. In future work, we plan to investigate the impact of dy-
namically adjusted different stride sizes during the denoising
process on image quality and generation time to combine
the benefits of both methods.
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Figure 6. Our method can also replace the inner MultiDiffusion [1] loop in StitchDiffusion [22], a method for spherical image synthesis,
leading to a 2x speedup in inference time without noticible degredation in image quality. To show the continuity between the leftmost and
rightmost sides of the generated image, we copy the left area, indicated by the red dashed box, and paste it onto the rightmost side. This
demonstrates that both methods produce seamless and plausible 360-degree panoramas based on the input text prompts.

7. Conclusion

This paper presents a novel approach for coherent high-
resolution image generation using diffusion models. Instead
of relying on overlapping denoising windows, our method
shifts the denoising windows over time, ensuring that seams
in one timestep are corrected in the next. This results in
coherent, high-resolution images with fewer overall steps,
enhancing the quality and efficiency of the generation pro-
cess. We demonstrate the effectiveness of our approach
through qualitative and quantitative evaluations, comparing
it with MultiDiffusion [ 1], SyncDiffusion [12], and StitchD-
iffusion [22]. Our method consistently produces high-quality
images with good image-text alignment while significantly
reducing the number of required denoising views and infer-
ence time. By eliminating the need for overlapping denoising
windows, our approach offers a more efficient and practical
solution for high-resolution image generation, advancing the
state of the art in the field.

8. Societal Impact

Generative image models can be misused to create deep-
fakes, infringe on copyrights, and produce biased images.

These problems can lead to fake news, privacy invasion, and
reinforcing stereotypes. Our method builds on existing foun-
dational models and thus shares these risks. To reduce them,
it’s important to develop better deepfake detection, protect
intellectual property, and follow ethical guidelines. Label-
ing synthetic content and learning to use generative models
responsibly is essential. By focusing on these protective
measures, we can use generative models effectively while
minimizing their negative impacts.
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