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Abstract

This paper presents the dfki-mlst submission
for the DialAM shared task (Ruiz-Dolz et al.,
2024) on identification of argumentative and
illocutionary relations in dialogue. Our model
achieves the best results in the global setting:
48.25 F1 at the focused level when looking only
at the related arguments/locutions and 67.05 F1
at the general level when evaluating the com-
plete argument maps. We describe our imple-
mentation of the data pre-processing pipeline,
relation encoding and classification, evaluating
11 different base models and performing exper-
iments with, e.g., node text combination and
data augmentation. Our source code is publicly
available.1

1 Introduction

DialAM 2024 (Ruiz-Dolz et al., 2024) is the first
shared task in dialogue argument mining. It uses
the Inference Anchoring Theory (IAT) framework
(Budzynska et al., 2014) as data schema. IAT de-
scribes argument structure as graphs of proposi-
tions that are derived from the argumentative dis-
course units (ADUs; the basic units of argumen-
tative analysis). The shared task focuses on the
detection and classification of the relations that (1)
argumentatively link these propositions with each
other (ARI) and that (2) anchor them in the corre-
sponding ADUs (ILO).

The DialAM dataset is based on the QT30 cor-
pus (Hautli-Janisz et al., 2022), which is a collec-
tion of 30 episodes of the show Question Time by
the BBC. The dataset includes transcriptions of
dialogues between a moderator and several pan-
elists and audience members annotated according
to the IAT. Figure 1 visualizes the structure of the
data. In simplified terms, IAT models argumenta-
tion information as a bipartite graph.2 One side

*Equal contribution.
1github.com/ArneBinder/dialam-2024-shared-task
2There are several exclusions to this, e.g., reported speech.
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Figure 1: Extract of an example DialAM data point.
Argumentative structure (left side; I and S nodes) is
anchored in the dialogue structure (right side; L and TA)
by illocutionary relations (middle; YA nodes) that are
based on speech acts. The DialAM 2024 shared task
requires identification as well as classification of (1) S
node relations (ARI) and (2) YA node relations (ILO).

consists of the ADUs as they occur in the original
text, called locution (L) nodes, and transition (TA)
nodes that link them in the direction of the dialog
flow. The other side consists of information (I)
nodes which encode the propositions derived from
the locutions and the argumentative relation (S)
nodes (e.g., Inference, Conflict, or Rephrase)
that connect them in the direction of argumenta-
tive reference. Finally, I and S nodes are anchored
by illocutionary relation (YA) nodes in L and TA
nodes, respectively, i.e. they encode from which L
and TA nodes they are derived. The relation nodes
connect to their arguments via two distinct roles:
incoming (edges point towards the relation node)
and outgoing (edges point away from it). The
shared task data are organized in nodesets where
each nodeset is a collection of annotated nodes and
edges in Argument Interchange Format (Rahwan
and Reed, 2009) extracted from an episode.

DialAM poses some unique challenges because
it requires three different types of relations to be
extracted (see Figure 1): argumentative relations
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between propositions (S nodes; subtask 1), illocu-
tionary relations modeling speech acts (YA:L-to-I
nodes; subtask 2.1) and, relations between argu-
mentative relations and dialogue turn transitions
(YA:TA-to-S nodes; subtask 2.2). Note that all
relations have at least one incoming and outgoing
edge, but argumentative relations (S nodes) such
as Inference may have more than one incoming
edge. Thus, subtask 1 is an instance of n-ary re-
lation extraction. Furthermore, YA:TA-to-S rela-
tions link TA and S nodes which are both relation
nodes, so this is a meta-relation. Both aspects cir-
cumvent usual relation extraction approaches that
assume binary relations connecting spans over text.
There are 25 relation labels in total with a very
imbalanced distribution (see Appendix A and E.2).

Previous approaches to dialogue argument min-
ing, such as Ruiz-Dolz et al. (2021), have shown
that Transformer-based models work well on the ar-
gument relation identification task, with RoBERTa
(Liu et al., 2019) significantly outperforming BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019),
DistilBERT (Sanh et al., 2019) and ALBERT (Lan
et al., 2020). They have found that in many cases
misclassified relations were due to the lack of con-
text or multiple valid interpretations of a relation.
However, Ruiz-Dolz et al. (2021) address a simpler
task compared to the DialAM setup because they
classify only propositional relations while DialAM
involves n-ary relations between different types of
nodes (propositions, locutions and meta-relations).

Our contributions are as follows: (1) we intro-
duce a unified approach towards dialogue argument
mining based on n-ary relation classification and
train a single model that can handle all three types
of relations to get the most out of the data, (2) our
dfki-mlst submission achieves the best scores in
the global setting of the shared task, and (3) we con-
duct a comparative analysis of different types of
base models, explore data augmentation, weighted
loss and node text combination.

2 System Architecture

We handle all three subtasks by framing them as
n-ary relation classification. Let rA = {(l, a)|l ∈
L, a ∈ A} be a n-ary relation with L the set of
possible argument roles and A the set of possible
relation arguments such as the set St = {(i, j, l)}
of labeled spans over a text t with i and j start and
end indices with respect to t and l the label. We de-
fine n-ary relation classification as assigning a class
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if gold data is available normalized 
nodeset

Figure 2: Nodeset normalization. Dashed boxes indicate
steps that are only relevant for model training.

c ∈ C to r where C is the set of possible classes.
In the following we explain how we construct re-
lations rSt , i.e. sets of argument-role – text-span
pairs over a single text, and the relation classes c
from the individual relation nodes. In detail, we
describe how we normalize the data (2.1), encode
each task data as n-ary relations (2.2), and, finally,
how we implement the relation classification (2.3).

2.1 Nodeset Normalization

To encode the data as relations, we use some heuris-
tics to construct a full nodeset from the provided
nodes (L, I, and TA). This will include already all
edges, but we assign a dummy NONE label to all
relation nodes that we add. We achieve this by
exploiting the following observations.

First, each I node is usually anchored by exactly
one L node. Since the I node text is derived from
the corresponding L node, their text contents are
very similar. We use this to find an alignment of L
and I nodes by computing their textual similarity
using longest common substring and calculate a
pairwaise assignment. This alignment allows us to
construct the YA:L-to-I nodes.

Second, the incoming and outgoing edges of the
S nodes usually mirror their counterparts at the
anchoring TA node, but in reversed direction (i.e.
outgoing edges of the TA nodes mirror incoming
edges of the S nodes and the other way around).
This allows us to construct S nodes by reversing
the TA arguments and mirroring them to I nodes
by following the L-I-alignment. However, there
is one prominent edge case. The S nodes with la-
bel Inference may point in the opposite direction.
We can normalize that by swapping the incoming
and outgoing edges of all such Inference nodes
in the gold data and assigning a special node label
Inference-rev(ersed) to maintain the original se-
mantics. We can determine if an Inference node
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needs to be swapped by looking at the direction of
the anchoring TA node.3

Finally, we assign gold labels to all constructed
relation nodes for which we find matching gold
nodes by considering only the arguments and their
roles.

We found several issues with the data (e.g. iso-
lated nodes, self-loops, relations with invalid com-
binations of arguments) that we fix before applying
the normalization steps. Also, there are valid cases
that contradict the above assumptions (I nodes of
reported speech may have no directly anchoring L
node; I and S nodes with multiple anchors; etc.),
but since they are very rare we discard such nodes.
Figure 2 visualizes the full normalization pipeline.

2.2 Encoding as Relations

To encode all task relevant relation nodes as rela-
tions rSt , we first convert them to n-ary relations
over locutions (L nodes) rL and then construct a
common base text t from all locutions.

We encode the YA:L-to-I nodes (subtask 2.1)
as unary relation classification where we use the
anchoring L node as single argument with its role
(outgoing). For YA:TA-to-S nodes (subtask 2.2),
we use the arguments of the related TA relation
with their respective roles. We encode the S nodes
(subtask 1) by using the L nodes that anchor their
arguments, but with the S node roles. In all three
cases, we use the relation node label as label, but
prefix it as well as the argument roles (incoming
and outgoing) with the respective task identifier
(S, YA:L-to-I, or YA:TA-to-S).

To get a contiguous base text t, we concatenate
all locutions in the direction of the dialogue flow.4

Note that the L nodes do not form a sequence, but
a directed graph. Since there are no reliable time
stamps, we linearize this graph in such a way that
the ordering of the nodes is preserved.5 We use
the start and end offsets of the L node texts in t to
construct rSt from rL.

Using distinct roles and a common base text
allows us to use a single model to solve all subtasks.

3We can use the L-I-alignment to get all anchoring L nodes
for the arguments of the S node at hand. Then, we can check
if there is a TA node with these anchor nodes as arguments or
with the swapped arguments.

4This means, that we completely ignore I node text.
5i.e. for all node pairs (x, y) where there is a path from x

to y, x must occur before y in the linearized nodes.

2.3 Classification Model

We use a deep learning based text classification
model consisting of a contextual text encoder and
a one layer classification head implemented within
the PyTorch-IE framework (Binder et al., 2024).
First, role specific begin- and end-marker tokens
are inserted into the base text for all arguments of
the relation to classify. Then, the modified text is
classified by the model.

We use the cross entropy loss and the Adam
optimizer to train it. The source code is publicly
available.1

3 Experiments and Results

With the relation classification approach described
in Section 2 we train our model on the DialAM data.
We split the original training set into training (1259
nodesets) and validation (140 nodesets) partitions
and repeat the training procedure three times with
different seeds. The best model is selected based
on the validation set performance. Our dfki-mlst
submission uses DeBERTa-v36 (He et al., 2021)
as text encoder trained with a learning rate 1e-4
and a window size of 512 tokens7 for 20 epochs
on a single GPU NVIDIA H100 80GB HBM3. We
evaluate our model with the official script that out-
puts precision, recall and F1 scores for the ARI and
ILO tasks, and the GLOBAL metrics represent the
combined scores. All scores are calculated at two
levels: focused (only related arguments/locutions)
and general (complete argument maps).

Table 1 shows the comparison of F1 scores on
the gold test data between the official RoBERTa
baseline, our dfki-mlst submission and the best-
performing competitor model in each setting.
Our approach shows overall strong performance
in the GLOBAL setting when complete argu-
ment maps are taken into account (+0.8% F1
in GLOBAL-Focused and +3.35% in GLOBAL-
General). dfki-mlst also outperforms other mod-
els on the ARI-General task for propositional rela-
tions (+9.11% F1).

3.1 Error Analysis

Since the nodeset normalization plays a major role
in our setup, we evaluate its impact based on our
validation set with 140 nodesets. To make the nor-
malized nodesets comparable with the original data,

6huggingface.co/microsoft/deberta-v3-large
7For each relation classification pass, the window is cen-

tered at the minimal span covering all its relation arguments.
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Model
ARI ILO GLOBAL

Focused General Focused General Focused General

baseline 22.80 26.46 72.09 45.75 47.45 36.10
best-competitor 35.89 46.22 69.95 81.17 45.23 63.70
dfki-mlst (ours) 30.40 55.33 66.10 78.78 48.25 67.05

Table 1: F1 scores of the official baseline, best competitor model, and dfki-mlst (ours) per task.

we reverse all Inference-rev relations back as
well as remove the NONE nodes. We observe a lower
performance, i.e. higher impact, on ARI (78.61 fo-
cused F1, 93.04 general F1) when compared to ILO
(83.05 focused F1, 95.61 general F1). See Table 2
in Appendix C.1 for the complete results.

We also evaluate dfki-mlst performance per
label based on our validation set (see Figure 5 in
Appendix C for statistics). Unsurprisingly, the most
common YA node relation Asserting achieves the
highest F1 score (99%) since this label is also well-
represented in the training set (see Appendix A
for label distribution). We also observe that NONE
relation between different types of nodes can be
classified reliably in most cases. We found that
some classes are distinctive and easy to classify.
E.g., Pure Questioning between I and L nodes
with the support of 120, and 1.86% representation
in the training data, has 81% F1. Other categories
are more challenging and result in worse scores
even when they have more training samples, e.g.,
Default Inference constitutes 3.85% of the train-
ing set with the support of 246 but the classifier
achieves only 43% F1.

3.2 Base Model Comparison

We explore different LLMs as text encoders in
our classification model and evaluate them on
the released gold test data. The results show
that although DeBERTa-v3 is the best-performing
model on the validation set (+0.85% on GLOBAL-
General and +0.5% on GLOBAL-Focused com-
pared to the second best model DeBERTa-v1), it
shows slightly worse performance than DeBERTa-
v1 on the test data. Interestingly, BART (Lewis
et al., 2019) demonstrates the best F1 scores in both
ILO-Focused (72.28 F1) and ILO-General (83.68
F1) settings. However, its performance on the ar-
gument relation identification task is considerably
worse (-7.98% F1 in Focused and -9.84 % F1 in
General). Also, models such as Mistral (Jiang et al.,
2023) and Llama (Touvron et al., 2023) do not
achieve very good results when fine-tuned on the
relation classification task (see Appendix B for the
training details). We compare Mistral and Llama

fine-tuning to the setting where we freeze the base
model and fine-tune only the adapter weights with
LoRA (Hu et al., 2022). In both cases LoRA
outperforms the fine-tuned models but still under-
performs DeBERTa. The results of the full analysis
are shown in Tables 3 and 4 in Appendix D.

3.3 Experiments with Input Data
Modification and Weighted Loss

Although our dfki-mlst submission uses only L
node texts we experimented with combining both L
and I node texts when encoding relations and this
setup achieves the best scores in the GLOBAL set-
ting and also improves our performance on the ILO
task compared to the original submission. Further
details can be found in Section E.3 in Appendix.

After nodeset cleaning and normalization we
were left with only 1259 documents (compared
to the original 1478). Hence, we decided to ex-
periment with data augmentation to increase the
amount of available data and train a more robust
model. We modify L node texts using two different
approaches: paraphrase-based data augmentation
and token-level perturbations based on Easy Data
Augmentation (EDA) (Wei and Zou, 2019). Com-
bining EDA-augmented and original data improves
F1 scores for ARI-Focused and ARI-General tasks
but results in worse performance on the ILO task.
More details can be found in Section E.1.

Given that the dataset has imbalanced distribu-
tion, we also experimented with weighted loss (see
Section E.2) and found that with this approach we
get some improvements on the ARI task but overall
worse performance compared to vanilla DeBERTa.

4 Conclusion

This paper introduces the dfki-mlst submission
that achieves the best scores in the global evalua-
tion setting of the DialAM shared task. We describe
our nodeset pre-processing pipeline and the system
architecture. We also present the comparison of dif-
ferent base models (DeBERTa, BART, Mistral etc.)
as well as our experiments with data augmentation,
class distribution and node text combination. We
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observe that some models (e.g., DeBERTa) demon-
strate better performance on the argument relation
task while other models (e.g., BART) are better at
detecting illocutionary relations.
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A Relation Label Distribution

Figure 3 and 4 show the overall and per relation
node type label distribution in the train data.

B Training Details for Large Models

Since LLMs such as Mistral and LLama have a
large number of parameters and fine-tuning all of
them would require a lot of GPU memory, we
freeze the first 30 layers and fine-tune only the
last two layers together with the classification head
(see Mistral-30 and Llama-30 in Tables 3 and 4).

C Error Analysis

C.1 Impact of Preprocessing

Experimental results regrading the impact of the
nodeset normalization measured on the validation
data can be found in Table 2.

C.2 Performance per Label

Figure 5 compares the amount of support with the
per label performance.

D Model Comparison

Figure 3 and 4 show the focused as well as the
general metric scores for all analysed models on
the test data.

E Additional Experiments

E.1 Data Augmentation Experiments

Our experiments with data augmentation do not
modify the original relations and nodeset structure,
we change only the L node text by either paraphras-
ing it with a T5-based model trained on Chat-GPT
paraphrases8 or using an Easy Data Augmentation
(EDA) (Wei and Zou, 2019) approach based on
textaugment (Marivate and Sefara, 2019). In case
of EDA we randomly choose whether to replace
a token with a synonym from WordNet (Miller,
1995), delete it, add a new token, or swap one to-
ken with another. Ideally, such changes introduce
surface perturbations without changing the original
meaning, therefore annotations remain the same.
E.g., for the original L node text “Claire Fox: that
will show how virtuous I am” we have the fol-
lowing paraphrase-based augmentation: “Claire
Fox: My goodness will be demonstrated to others
through this.” and the EDA-based augmentation:

8huggingface.co/humarin/chatgpt_paraphraser_on_T5_base

“Claire Fox: appearance that will show how virtuous
I am”.

Tables 3 and 4 in Appendix D show the results
for the augmented models in the lower section of
each table. In case of DeBERTa-v1+paraphr_data
we fine-tune DeBERTa-v1 model on the
paraphrased data and then continue fine-
tuning on the original DialAM training set.
DeBERTa-v3+EDA_sequential follows the same
strategy but instead of using paraphrased text it
applies token-level perturbations (EDA). Note that
we changed our base model from DeBERTa-v1 to
DeBERTa-v3 in the latest experiments since it gave
us the best scores on the validation set. Finally,
DeBERTa-v3+EDA_combined simply extends the
dataset by combining both original and augmented
documents. The results show that among these
three strategies combining the data brings some
improvement compared to vanilla DeBERTa-v3 on
ARI-Focused (+3.76% F1), GLOBAL-Focused
(+1.23% F1), ARI-General (+1.53% F1) and
GLOBAL-General (+0.36% F1) tasks but leads
to worse scores on ILO-Focused (-1.3% F1) and
ILO-General (-0.83% F1).

E.2 Experiments with Class Distribution

As shown in Appendix A (Figures 3, 4a, 4b, 4c), Di-
alAM training data has an imbalanced class distri-
bution with 12 labels representing less than 1% of
all the data. Especially YA relations connecting lo-
cutions with propositions (see Figure 4c) have very
imbalanced distribution. E.g., Asserting appears
in more than 90% of S node annotations, while
labels such as Restating, Arguing and Agreeing
all together make up less than 1%, which poses
a challenge for the classifier. Therefore, we test
whether using a weighted loss adjusted with re-
gards to label distribution or restricting classifica-
tion only to more frequent classes (with at least
10 samples per label) can help mitigate this issue.
In the experiments with weighted loss we (1) col-
lect statistics from the training set on label distri-
bution and (2) compute each class weight as fol-
lows: wc =

|D|
|Dc|·|C| with D the set of all samples

(relation-class-pairs), Dc = {(r, c) ∈ D} and C
the set of all labels, and then (3) restrict the range
of weight values by using 1 as the lower and 20 as
the upper bound to avoid over-penalizing classifier
on the truly rare classes.

The evaluation results in Tables 3 and 4 demon-
strate that training with weighted loss improves the
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Figure 3: Overall label distribution in the DialAM training set.

(a) S relations between I nodes. (b) YA relations between TA and S nodes. (c) YA relations between L and I nodes.

Figure 4: Label distribution for different types of relations: S nodes for argumentative relations and YA nodes for
illocutionary ones.

Model
ARI ILO GLOBAL

Prec Rec F1 Prec Rec F1 Prec Rec F1

preprocessing only 82.85 76.60 78.61 84.17 82.27 83.05 83.51 79.44 80.83
Focused full pipeline 49.02 31.74 36.33 71.75 69.82 70.35 60.39 50.78 53.34

full pipeline, normalized 59.17 41.44 46.22 85.24 84.87 84.71 72.31 63.93 65.99
preprocessing only 97.12 91.18 93.04 96.71 94.86 95.61 96.92 93.02 94.33

General full pipeline 66.43 58.91 60.06 86.23 84.71 85.11 76.33 71.81 72.59
full pipeline, normalized 68.40 64.61 64.55 89.16 89.30 89.02 78.76 77.20 76.95

Table 2: Impact of nodeset normalization on the performance, evaluated on the validation data. The values for full
pipeline are the scores of our model (dfki-mlst). preprocessing only values are computed by first normalizing
the data as described in section 2.1, then reverting Inference-rev relations back as well as removing NONE relation
nodes to make the normalized nodesets comparable with the original data and, finally, calculating the metrics with
the official evaluation script. Values for full pipeline, normalized are the ones of full pipeline divided by
preprocessing only.
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Model
ARI-Focused ILO-Focused GLOBAL-Focused

Prec Rec F1 Prec Rec F1 Prec Rec F1

baselineRoBERTa 37.10 18.42 22.80 73.10 72.55 72.09 55.10 45.49 47.45
best-competitor 46.26 32.43 35.89 71.18 69.23 69.95 50.68 43.41 45.23
dfki-mlstDeBERTa-v3 43.87 24.82 30.40 69.12 66.25 66.10 56.50 45.53 48.25
DeBERTa-v1 50.98 27.98 33.82 66.04 64.32 64.63 58.51 46.15 49.22
RoBERTa 48.11 20.45 26.62 63.64 60.66 61.24 55.88 40.55 43.93
RemBERT 41.02 18.35 24.20 62.33 59.49 60.20 51.67 38.92 42.20
ELECTRA 37.46 14.65 20.25 68.76 67.54 67.37 53.11 41.10 43.81
BART 34.09 18.14 22.41 73.50 72.12 72.28 53.80 45.13 47.34
XLNet 36.75 19.90 24.04 60.63 58.89 58.22 48.69 39.39 41.13
Mistral-30 33.40 16.50 19.66 67.91 69.08 68.02 50.66 42.79 43.84
Llama-30 21.75 13.25 14.28 60.68 60.10 59.61 41.22 36.67 36.95
Mistral-LoRA 33.62 18.90 23.08 68.36 64.89 65.55 50.99 41.89 44.31
Llama-LoRA 39.07 16.56 22.08 64.68 62.40 63.16 51.88 39.48 42.62
DeBERTa-v1+l_and_i_node_text 44.32 23.39 29.24 75.17 73.51 74.10 59.75 48.45 51.67
DeBERTa-v1+freq_classes 48.04 24.44 30.37 68.09 64.24 64.81 58.06 44.34 47.59
DeBERTa-v1+weighted_loss 47.35 28.98 34.22 59.48 59.75 58.85 53.41 44.37 46.53
DeBERTa-v1+paraphr_data 43.99 22.03 27.69 68.35 66.01 66.31 56.17 44.02 47.00
DeBERTa-v3+EDA_sequential 48.08 25.26 30.66 65.72 62.21 62.71 56.90 43.73 46.69
DeBERTa-v3+EDA_combined 47.73 29.11 34.16 65.92 64.53 64.80 56.83 46.82 49.48

Table 3: Focused scores represent the performance on the existing relations in the gold standard maps (excluding
non related propositions). The scores were computed with the official evaluation script using the gold test data.

Model
ARI-General ILO-General GLOBAL-General

Prec Rec F1 Prec Rec F1 Prec Rec F1

baselineRoBERTa 28.59 34.69 26.46 39.11 62.07 45.75 33.85 48.38 36.10
best-competitor 49.21 46.32 46.22 81.99 80.79 81.17 65.60 63.55 63.70
dfki-mlstDeBERTa-v3 61.96 53.30 55.33 81.08 79.25 78.78 71.52 66.28 67.05
DeBERTa-v1 64.05 57.14 57.93 79.04 78.19 78.12 71.55 67.66 68.03
RoBERTa 64.86 49.55 52.73 76.83 75.05 75.17 70.84 62.30 63.95
RemBERT 54.79 46.00 47.56 75.92 74.28 74.49 65.36 60.14 61.02
ELECTRA 46.18 39.37 41.41 81.23 81.07 80.53 63.70 60.22 60.97
BART 49.78 44.3 45.49 84.22 83.97 83.68 67.00 64.13 64.59
XLNet 55.51 48.28 48.80 73.88 72.93 72.05 64.69 60.61 60.42
Mistral-30 47.20 43.14 42.33 82.15 83.91 82.62 64.68 63.52 62.48
Llama-30 39.59 38.38 37.10 74.93 75.01 74.22 57.26 56.70 55.66
Mistral-LoRA 54.41 47.06 49.03 82.07 79.78 79.99 68.24 63.42 64.51
Llama-LoRA 51.72 42.95 44.89 77.03 75.55 75.99 64.38 59.25 60.44
DeBERTa-v1+l_and_i_node_text 57.52 50.39 52.33 86.57 85.17 85.65 72.05 67.78 68.99
DeBERTa-v1+freq_classes 65.05 52.71 55.66 80.38 77.62 77.80 72.72 65.17 66.73
DeBERTa-v1+weighted_loss 63.81 55.97 58.20 73.81 74.73 73.65 68.81 65.35 65.93
DeBERTa-v1+paraphr_data 58.42 49.66 51.36 80.44 79.30 79.16 69.43 64.48 65.26
DeBERTa-v3+EDA_sequential 62.53 52.97 54.88 78.31 75.79 75.92 70.42 64.38 65.40
DeBERTa-v3+EDA_combined 60.21 56.75 56.86 78.50 78.12 77.95 69.36 67.44 67.41

Table 4: General scores consider complete argument maps including non related nodes. The scores were computed
with the official evaluation script using the gold test data.
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Figure 5: Performance of dfki-mlst with DeBERTa-v3 on the fixed validation set (140 documents). Blue bars
indicate F1 scores while red bars correspond to the support set (how many items per class are available).

scores on the ARI task (for both Focused and Gen-
eral), however, this approach leads to a drop in per-
formance for illocutionary relation identification.
Furthermore, using only samples from more fre-
quent classes results in overall worse performance
which shows that having even few examples of rare
labels is beneficial for the classifier.

E.3 Experiments with Combined Node Text
Since I and L nodes represent arguments and di-
alogue turns, they have slightly different texts. I
node text often includes more details “summariz-
ing” the content as an argument, while L node text
represents an unedited dialogue turn. dfki-mlst
uses only the L node texts to encode the relations
because this type of text is more similar to the data
used for pre-training of the base model (DeBERTa)
but we also test the setting that combines both texts
of the aligned L and I nodes separated by the “Ar-
gument:" token that indicates the transition. As
shown in Tables 3 and 4, this approach results in
the best performance on illocution identification
and achieves overall best scores in GLOBAL, out-
performing the version that uses only L node texts
by 3.4% F1 in Focused and 1.9% F1 in General
for DeBERTa-v3 and showing a similar trend for
DeBERTa-v1. However, it under-performs on the
argument relation identification task compared to
the dfki-mlst submission.
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