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Abstract. Current approaches for 3D human motion synthesis generate
high-quality animations of digital humans performing a wide variety of
actions and gestures. However, a notable technological gap exists in ad-
dressing the complex dynamics of multi-human interactions within this
paradigm. In this work, we present ReMoS, a denoising diffusion-based
model that synthesizes full-body reactive motion of a person in a two-
person interaction scenario. Given the motion of one person, we employ
a combined spatio-temporal cross-attention mechanism to synthesize the
reactive body and hand motion of the second person, thereby completing
the interactions between the two. We demonstrate ReMoS across chal-
lenging two-person scenarios such as pair-dancing, Ninjutsu, kickboxing,
and acrobatics, where one person’s movements have complex and di-
verse influences on the other. We also contribute the ReMoCap dataset
for two-person interactions containing full-body and finger motions. We
evaluate ReMoS through multiple quantitative metrics, qualitative vi-
sualizations, and a user study, and also indicate usability in interactive
motion editing applications. More details are available on the project
page: https://vcai.mpi-inf.mpg.de/projects/remos.
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1 Introduction

Digital 3D character motion synthesis has emerged as the next frontier for anima-
tion pipelines [50], particularly through denoising diffusion probabilistic models
(DDPMs) [61]. While methods for generating character motion for various tasks
such as text or music conditioned motion synthesis [3,4,18,22,23,34,49,80], face
and gesture synthesis [5,6,25,47,48,73], human-scene interaction [19,71,82,84] ex-
ist, synthesizing interactions between humans is relatively under-explored. Mod-
eling such human-human interactions is essential for designing generative 3D
human motion synthesis frameworks supporting the complex physical and social
interplay of two interacting persons [66]. It offers new capabilities for character
animation tools and software, with applications in commercial and entertainment
media [26], interactive mixed and augmented reality [14], and social robotics [76].
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Fig. 1: Visualizations of reactive 3D motion sequences synthesized with the
proposed ReMoS approach. We synthesize the 3D full-body motion of the reactor
(blue) conditioned only on the 3D motion of the actor (red), thereby completing the
interactions between the two (Ninjutsu practice on the left and Lindy Hop dancing on
the right). The synthesized hand interactions are enlarged and highlighted with circles.

Toward this goal, we focus on the task of modeling reactive motions. We
aim to automatically generate realistic, temporally-aligned reactive motions of a
responding person given the continuous motion of a guiding person (see Fig. 1).
This alleviates a common overhead for animators, enabling them to design an
acting character and automatically obtain meaningful motions for a reacting
character. However, automating such a process poses two key challenges. First,
two-person interaction synthesis increases the dimensionality of the already chal-
lenging problem of single-person motion synthesis. In our case, the generated
reactive motions must align with the conditional signals provided in the form
of 3D motion sequences from the actor. Second, doing so in a generative setting
without any cues from text prompts or action labels (to obviate additional su-
pervision and data needs) requires a careful trade-off between generating diverse
motions and adhering to the narrow manifold of plausible reactions.

While existing methods for synthesizing interactions [10,20] and two-person
motions [42, 54, 65] are good at generating plausible motions, they rely on ad-
ditional annotations, such as action labels or text prompts, to specify the mo-
tion. Action labels typically depict actions at a high level, such as “high-five” or
“salsa”, but do not capture the fine-grained synchronization with the actor’s mo-
tions. Textual descriptions offer nuance for the motions, but collecting accurate
textual annotations is considerably cumbersome, particularly for contact-heavy
or fast-paced two-person motions, such as dancing and exercising. Further, per-
forming generative tasks through textual prompting remains challenging for non-
experts [79]. Apart from the data, contact-based motion generation also needs
to consider hand-based interactions to improve realism. This entails the need for
frameworks capable of synthesizing hand movements with higher degrees of free-
dom, which are challenging to model but crucial for improving motion realism.
Balancing focus between the broader full-body reactive movements and the finer
hand motions involves addressing motion at two significantly different scales —
a challenge exacerbated by the high degrees of freedom of the skeletons.

With this objective in mind, we present ReMoS, a novel approach for Reactive
Motion Synthesis with full-body articulations. Inspired by the advancements of
DDPMs in 3D human motion synthesis [50,54,65], we develop a DDPM frame-
work (Sec. 3.1) with a cascaded, two-stage generation strategy tailored to our
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problem setting (Fig. 2). In the first stage of our diffusion model, we generate
the reactive motion for the reactor’s body joints conditioned on the actor’s body
joints. In the second stage, we use the synthesized body motions as an additional
parameter to generate masking for appropriate hand motions (Sec. 3.2). We pro-
pose a combined spatio-temporal cross-attention (CoST-XA) mapping between
the actors’ and the reactors’ body motion embeddings, that learns the inter-
dependencies in their motions without needing additional annotations. Further,
to synthesize hand interactions, we introduce a hand-interaction-aware cross-
attention (H-XA) mechanism to ensure the relevant hand joints react to the
actors’ motions, thus allowing the network to distill localized hand interaction
features. We ensure accurate coordination between the actor and the reactor
by using contact-based reaction loss (Sec. 3.3) and an inference-time guidance
function (Sec. 3.4) that improves the plausibility of the body and hand interac-
tions. To explore reaction synthesis in complex and diverse two-person scenarios,
we contribute the ReMoCap dataset consisting of full-body and finger motion
sequences for fast-paced swing dance of Lindy Hop [63], and the martial art
technique of Ninjutsu [12] (Sec. 4). In summary, our technical contributions are:
• ReMoS. A novel method for reactive 3D human motion synthesis using a

cascaded diffusion framework to generate full-body and hand motions. Our
framework generates fine-grained reactive motions for complex and dynamic
contact-based interactions and derives the reactions directly from the actor’s
motions, without requiring explicit label or text annotations.

• Interaction-Based Attentions. A combined spatio-temporal cross atten-
tion (CoST-XA) mechanism to enforce coherence between the body move-
ments of the actor and the reactor, and a hand-interaction-aware cross-
attention (H-XA) mechanism to enforce the appropriate hand-based inter-
actions between the two characters.

• ReMoCap. A new dataset for two-person interactions under complex sce-
narios of Lindy Hop dancing and Ninjutsu. The dataset consists of ∼ 275.7K
motion frames with multiview RGB videos and 3D full-body motion capture
of the two interacting persons. It further includes finger-level articulations.

We evaluate our approach in different scenarios, including Lindy Hop dancing,
Ninjutsu, Acrobatics [24] and Kickboxing [55], and report state-of-the-art per-
formance (Sec. 5.3). We also report a user study on comparing the visual quality
of ReMoS compared to the ground truth and the baseline methods (Sec. 5.4).

2 Related Work

Multi-Person 3D Motion Synthesis. Synthesizing close interactions be-
tween two or multiple persons is a challenging task in animation. Early works in
multi-person interaction are based on motion graphs [59], interaction patches [58],
momentum-based inverse kinematics and motion blending [37], and topologically-
based pose representations [28, 29], to name a few. The increasing availability
of interaction datasets [16, 39, 43, 53, 55, 78] has led to a rise in data-driven ap-
proaches for synthesizing digital partners or opponents in multi-person inter-
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action settings. Mousas [46] uses a hidden Markov model to control the dance
motions of a digital partner in an immersive setup. Ahuja et al. [1] introduce
a residual-attention model to generate body pose in a conversation setting con-
ditioned on two audio signals and the opposite person’s body pose. Starke et
al. [64] propose a phase function-based network that learns asynchronous move-
ments of each bone and its interaction with external objects. Guo et al. [24]
propose the Extreme Pose Interaction dataset with a two-stream network with
cross-interaction attention modules for forecasting pose sequences of two inter-
acting characters. GAN-based models [20,45] generate motions for an interacting
person conditioned on an input character and class labels depicting the type of
reaction performed. These methods leverage the daily interaction datasets such
as SBU Kinect [78] and 2C [55]. InterFormer [11] uses an interaction transformer
with both spatial and temporal attention to generate reactive motions given some
initial seed poses of both characters. It can synthesize sparse-level interactions
based on the motions of the K3HI [32] and the DuetDance [39] datasets. Concur-
rent to our work, Duolando [60] uses an off-policy reinforcement learning model
to predict tokenized motion for a leader and follower conditioned on music. The
aforementioned methods either depend on seed motion as input or require addi-
tional conditions to drive the motion. In contrast, ReMoS focuses on synthesizing
well-synchronized full-body and hand motions for the reactor conditioned only
on the actor’s 3D motions, without using any additional labels or prompts.

Diffusion Based 3D Motion Synthesis. Denoising diffusion models [61]
have recently demonstrated their high potential in generative human motion
modeling, specifically in single-person conditional motion synthesis. Conditional
single-person motion generation has been performed using diffusion-based ap-
proaches for co-speech gestures [2, 86], audio-driven motion [13, 68, 85], and
text-driven motion [54,67,77,81] synthesis. Diffusion-based techniques have also
been extensively used for conditional synthesis for human-object interactions [38,
40, 41, 74], hand-object interactions [44, 75], and human-scene interactions [33].
Guided motion diffusion models such as GMD [35] and TraceAndPace [52] in-
corporate spatial constraints on motion trajectories, to guide the motion to-
wards a goal at inference time. OmniControl [72] proposes spatial and realism
guidance to control any joint for diffusion-based human motion generation. For
two-person interaction synthesis, RAIG [65] proposes a diffusion-based, role-
aware approach for two-person interactions, given separate textual descriptions
for each person. BiGraphDiff [10] uses graph transformer denoising diffusion to
learn two-person interaction conditioned on action labels. ComMDM [54] uses a
communication block between two MDMs [67] to coordinate two-person inter-
action generation. ContactGen [21] presents a diffusion-based contact prediction
module that adaptively estimates potential contact regions between two humans
according to the interaction label. Liang et al. [42] propose InterGen, a diffusion-
based model to synthesize two-person interactions given text descriptions as in-
put conditions. They also propose the InterHuman dataset that includes diverse
two-person interaction scenarios with rich text annotations. Inspired by these
recent approaches, we design our proposed method ReMoS as a DDPM-based
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Fig. 2: ReMoS Overview. Given the
motion of the actor (bottom-middle,
in red), we synthesize a plausible mo-
tion for the reactor (bottom-left, in
blue). We achieve this using a denois-
ing diffusion-based probabilistic model
(center) trained on reactive motion se-
quences (top-left, in blue).

3D motion-conditioned reaction synthesis method, consisting of a cascaded dif-
fusion model with a combined spatio-temporal cross-attention mechanism. This
allows ReMoS to implicitly learn the fine-grained synchronization between two
interacting persons from only one of the person’s motions, without any need for
additional prompts or labels, and synthesize the corresponding motions of the
second person. ReMoS further synthesizes plausible hand motions for the reactor
to incorporate realistic hand-based interactions.

3 Reactive Motion Synthesis

We consider a digital, two-person interaction setting where the motions of one
character, the actor, are known, and we need to synthesize the motions of the
other character, the reactor. ReMoS aims to synthesize the synchronized reac-
tive motions of the reactor in such a setting. We denote the reactor’s motion as
X = {XB , XH}, where XB ∈ RN×JB×3 denotes the 3D full-body joint positions
with JB body joints, XH ∈ RN×JH×3 denotes the 3D finger joint positions with
JH finger joints across both hands, and N denotes the number of frames in the
motion sequence. Likewise, we denote the actor’s motion as Y = {YB , YH}. Our
goal is to model the conditional probability distribution P(X|Y ) from which we
can sample plausible reactive motions. We model this distribution using condi-
tional denoising diffusion probabilistic models (DDPMs), owing to their unique
strengths in capturing temporal coherence of motion data and handling complex
motion dynamics [13,67,68]. We elaborate our methodology below.

3.1 DDPM for Reactive Motion Synthesis

The diffusion process consists of two steps: forward or destructive diffusion, and
reverse or denoising diffusion. In the forward process, we progressively corrupt
a clean reactive motion sequence X by adding Gaussian noise ϵ to it for T steps.
With sufficiently small noise and large T , we can get X(T ) ∼ N (0, I) following
closed-form formulation of Ho et al. [30]:

X(t) =
√
ᾱtX

(0) +
√
1− ᾱtϵ, ϵ ∼ N (0, I) , (1)

where ᾱt controls the rate of diffusion and t ∈ [0, T ]. Reversing this diffusion
process allows for sampling novel motion sequences from a multivariate Gaussian
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distribution p
(
X(T )

)
∼ N (0, I) as

p
(
X(0)

)
= p

(
X(T )

) T∏
t=1

p
(
X(t−1)|X(t)

)
. (2)

We approximate the computationally intractable term p
(
X(t−1)|X(t)

)
with a

learnable function fθ
(
X(t), t

)
, and optimize θ to encode the space of human reac-

tive motions. Our reactive motion X is also conditioned on the actor’s motion Y .
Therefore, we modify the learnable function as X(t−1) = fθ

(
X(t), t, Y

)
. Following

recent works [51,67], we estimate the original motion X(0) = fθ
(
X(t), t, Y

)
from

our diffusion model by iterating through all t denoising steps during inference.

3.2 ReMoS Framework

To generate fine-grained reactions with appropriate hand motions, ReMoS de-
codes the reactive motion of X in a cascaded fashion (Fig. 3). It first estimates
the full-body joints XB , and then the hand joints XH as

X
(0)
B = fθB

(
X

(t)
B , t, YB

)
, (3)

X
(0)
H = fθH

(
X

(t)
H , t, YH ,1HA

(YB)1HR

(
X

(0)
B

))
, and (4)

X(0) =
{
X

(0)
B , X

(0)
H

}
, (5)

where 1HA
and 1HR

are binary, spatio-temporal hand-interaction mask functions
that determine which hand joints of the reactor and actor interact at any given
frame. Our cascaded framework comes from the observation that full-body artic-
ulations occur at significantly different scales than hand articulations. Since the
body motions affect the hand articulations, our cascaded framework feeds the
generated body motions as an additional condition to the hand generation mod-
ule (Fig. 3). We also train the body and the hand generation modules separately,
with additional hand-interaction-aware attention mapping for the hand joints.
Previous work [19] used such disjoint training strategy on conditional motion
synthesis for single persons. To better accommodate for two-person interactions
in our case, we benefit from using a cascaded diffusion strategy [31].

Body Synthesis Module. In the first stage of our cascaded framework, we
diffuse the reactor’s body motion, X(t)

B , at each diffusion step t, and feed it into
a transformer decoder [69] block. To condition the reactor’s body motion on
the actor’s body motion YB , we introduce a combined spatio-temporal cross-
attention (CoST-XA) mapping. CoST-XA combines the spatial and temporal
features of the actor’s and the reactor’s motions through an attention matrix
to simultaneously learn the inter-dependencies between each pair of reactor and
actor body joints (xn,j , yn,j), xn,j ∈ X

(t)
B and yn,j ∈ YB , respectively, at each

frame. Denoting the query from the reactor’s motion features as QB ∈ RNJB×3
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Fig. 3: ReMoS Framework. Given the full-body sequence of the actor (left, in red),
we input noisy body and hand samples (from below) in a cascaded fashion. We synthe-
size the body samples first, and use them for hand-interaction-aware attention masking
(top-center) to synthesize the denoised hand samples (top-right). The full-body reac-
tive motion is a concatenation of the denoised body and hand samples (right, in blue).

and the key-value pair from the actor’s motion features as KB ∈ RNJB×3 and
VB ∈ RNJB×3, respectively, we formulate an attention matrix of dimensions
NJB ×NJB . In contrast, most previous approaches [42, 65] use cross-attention
only on the temporal features of the motion using an attention matrix of shape
N ×N . InterFormer [11] sequentially uses spatial and temporal cross-attention
modules instead of combining them, which may result in a partial loss of infor-
mation on fine-grained, inter-person interactions across time, especially in the
absence of additional annotations (prompts or action labels) to condition the
reactions. Our proposed cross-attention module, which we define as

CoST-XA = softmax

(
QBK

T
B√

dKB

)
VB , (6)

crucially considers combinations of spatial and temporal interaction features
between different body segments of the actor and the reactor to efficiently syn-
chronize their motions. We simultaneously project the diffusion timestep t at
each denoising step into the transformer block after the attention blocks and
use a final layer of fully-connected network with SiLU activations [15] and batch
normalization [7] to generate the body motions. The first stage output is a vector
X

(0)
B ∈ RN×JB×3 representing the reactor’s clean, synthesized body motion.

Hands Synthesis Module. The second stage of our cascaded framework syn-
thesizes the reactor’s hand joints. We input noisy samples X

(t)
H into a similar

transformer decoder block conditioned on the actor’s hand motions YH . Here,
we require the attention weights to be high for the hands used in the hand-based
interactions and low for the passive hands. We explicitly enforce this using a
spatio-temporal hand-interaction-aware cross-attention mapping (H-XA) to en-
courage learning localized interaction features. For H-XA to work, we introduce
binary hand-interaction masks 1HA

and 1HR
∈ RN×JH . Its entries are calculated

by thresholding the distances of the actor’s and reactor’s wrist joints in YB and
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X
(0)
B , respectively, to the nearest body joints of the other person. The active

entries of 1HA
and 1HR

determine which of the actor’s and reactor’s hands are
sufficiently close to the body of the other person (and hence interacting). We
then project the encoded YH features into each decoder layer using H-XA, as

H-XA = softmax

(
(1HR

⊙QH) (1HA
⊙KH)

T√
dKH

)
VH , (7)

where KH and VH are the hand motion features from the actor, QH are the hand
motion features from the reactor with dKH

channels, and ⊙ denotes element-wise
product for masking the query and key values. We project the diffusion timestep
t at each denoising step into the transformer block and use fully-connected net-
works with SiLU activations to generate the clean, synthesized reactor hand
motions X

(0)
H ∈ RN×JH×3. At the end, to obtain the full reactive motion X(0),

we concatenate
{
X

(0)
B , X

(0)
H

}
as in Eqn. 5.

3.3 Losses and Training Details

We train ReMoS to minimize a weighted sum of three loss terms, the reconstruc-
tion loss Lc, the reaction loss Lr, and the kinematic loss Lk, as

L = λcLc + λrLr + λkLk, (8)

where λc, λr and λk are scalar weights to balance the individual losses.

Reconstruction Loss Lc. This is the standard diffusion data term that min-
imizes the ℓ2-distance between the ground truth and the synthesized reactive
motion, as Lc =

∥∥X −X(0)
∥∥
2
. While the reconstruction loss provides the vital

data term to drive the training, it does not enforce interaction synchronization
between the actor and the reactor, or any kinematic constraints on the motion.

Reaction loss Lr. We introduce the reaction loss to ensure accurate timing and
spatial positioning of the reactor’s motion with respect to the actor’s motion.
We calculate the ground-truth Euclidean distance d (·, ·) between each joint of
the actor and the reactor at each frame and minimize the deviations from these
distances for the actor and the synthesized reactor’s motions. We note that this
distance term also implicitly constrains the reactor’s joints in frames that are
less relevant for interactions, i.e., where the reactor’s joints are far from the
actor’s joints. Further, the Euclidean distances for their hand joints in frames
with no hand-based contact become drastically high. To mitigate these concerns,
we use an exponentially decaying distance-aware weight exp (−d (xn,j , yn,j)) at
each frame n to focus more on the reactor’s joints that are closer to the actor,
and therefore more relevant for interaction (see Fig. 4). Thus, we get our reaction
loss term as

Lr =
1

NJ

N∑
n=1

J∑
j=1

exp (−d (xn,j , yn,j)) ·
∣∣∣d (xn,j , yn,j)− d

(
x
(0)
n,j , yn,j

)∣∣∣ . (9)
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Table 1: Dataset Comparisons. Compar-
ing ReMoCap with existing multi-person inter-
action datasets.

Dataset Motion Duration Multi-view Finger
(Chronologically) Frames (hours) RGB Videos Articulation

SBU [78] ∼ 7K 0.13 ✗ ✗
NTU-26 [43] ∼ 22K 0.47 ✓ ✗
2C [55] ∼ 13K 0.06 ✗ ✗
DanceDB [53] ∼ 1.44M 4.00 ✗ ✗
DuetDance [39] ∼ 196K 1.09 ✗ ✗
CHI3D [16] ∼ 486K 2.70 ✓ ✗
ExPI [24] ∼ 30K 0.33 ✓ ✗
InterHuman [42] ∼ 107M 6.56 ✗ ✗
DD100 [60] ∼ 200K 1.92 ✗ ✓

ReMoCap (ours) ∼ 275.7K 2.04 ✓ ✓

Fig. 4: Visualization of Dis-
tance Aware Reaction Loss.
We use an exponentially decaying
distance-aware reaction loss to fo-
cus more on the reactor’s joints
that are closer to the actor.

Kinematic Loss Lk. To maintain the kinematic plausibility of the generated
motions, we follow existing literature on regularizers for bone length consistency,
foot contacts, and temporal consistency [56,57,68]. Our kinematic loss term is a
weighted sum of the joint velocity loss Lvel, the joint acceleration loss Lacc, the
bone length consistency loss Lbone, and the foot sliding loss Lfoot, as

Lk = λvLvel + λaLacc + λbLbone + λfLfoot, (10)

where λv, λa, λb and λf are scalar weights (more details in the appendix).

3.4 Inference Time Spatial Guidance

While our method synthesizes plausible reactive motions, it can sometimes spa-
tially misalign the reactor’s body to the actor’s, espeically at the arm joints,
for fast-paced, contact-heavy interactions. This, in turn, affects finger-joint syn-
thesis in the second stage of our cascaded diffusion. To improve spatial align-
ment, we leverage guidance functions [35, 52] that can provide gradients to
nudge the sampling process towards a certain direction. We design a guidance
function G

(
ϕ, ϕ̂

)
∈ RN×JA×3, which minimizes the distance between the JA

arm joints of the actor (ϕ) and the JA arm joints of the synthesized reactor
(ϕ̂). Specifically, we re-apply our interaction masks 1HA

and 1HR
to determine

which of the reactor’s hands are more likely to be interacting with the actor,
and minimize the distances between the arm joints of the corresponding sides
as G = argminϕ̂

(∥∥∥1HA
⊙ ϕ− 1HR

⊙ ϕ̂
∥∥∥). We then plug G into the denoising

pipeline of our body diffusion module, as

X
(0)
B = X

(0)
B − γ∇

X
(0)
B

G
(
ϕ, ϕ̂

)
, γ = guidance scale. (11)
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4 ReMoCap Dataset

We propose the ReMoCap dataset to facilitate research on contact-based two-
person interactions with finger-level articulations. It contains complex two-person
interactions in two separate scenarios: the fast-paced, swing-style Lindy Hop
dancing, and the martial arts of Ninjutsu. We consider these two types of motions
for studying physical interactions for two main reasons. First, these motions en-
compass a significantly diverse spectrum of motions in terms of intensity, speed,
and style. Second, choreographed motion generation is developing as an active
field of research and we envision this dataset to facilitate research in interactive
applications such as performing in virtual reality [9] and remote tutoring [53].

Data Collection. We invited 4 trained Lindy Hop dancers and 5 trained
Ninjutsu artists to perform diverse interactions in a multi-view capture studio.
We tracked their motions using a commercially available markerless, multi-view
motion-capture system [8], which tracks 93 degrees-of-freedom driving 69 body
joints. Capturing motions in a markerless setting enables the performers to move
uninhibited, while also making the data suitable for training monocular or multi-
view motion capture methods under severe inter-person occlusions. We also cap-
ture RGB videos from 120 camera views for each sequence. The dataset includes
3D skeleton poses with full-body and finger annotations, foreground-background
segmentation masks, and 3D surface reconstructions of the subjects. We capture
sequences of multiple lengths totaling ∼275.7K frames (2.04 hours) of motion
data from each view at a frame rate of 50 fps for the Lindy Hop and 25 fps
for the Ninjutsu. Out of all the frames, around 150K frames have hand-based
interactions between the two characters where the closest distance between the
finger joints of the actor and the reactor is within 50 mm. We present more
dataset statistics in the appendix.

Dataset Comparison. Table 1 shows a comprehensive comparison of ReMo-
Cap with existing multi-person interaction datasets. Existing datasets consisting
of two-person interactions, such as SBU [78], K3HI [32], NTU-26 [43] and 2C [55],
are limited in size and motion capture quality. They typically feature simple
actions, such as handshakes, punching, pushing and kicking, with weak interac-
tions, and do not capture hand motions. The recent ExPI [24] dataset captures
Lindy Hop aerial sequences to model more complex interactions, and the Inter-
Human [42] dataset features both daily motions (e.g., passing objects, greeting,
communicating) and professional motions (e.g., Taekwondo, Latin dance, box-
ing). However, these datasets do not provide finger-level motion capture data,
which is a key requirement to intricately model inter-human activities. Two-
person dance datasets, such as DuetDance [39] and DanceDB [53], also lack the
hand motion data needed for modeling interactions. Only the concurrent work,
Duolando [60]∗ proposes the DD100 dataset with strong interactions between
two dancers and provides hand motion data.

∗unpublished at the time of our paper submission
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5 Experiments and Results

We conduct comprehensive experiments to evaluate ReMoS on multiple two-
person datasets covering a wide range of interaction scenarios. We perform train-
ing and evaluation on multiple large-scale datasets, including 2C [55], ExPI [24],
and our proposed ReMoCap. We provide the implementation details, report
quantitative and qualitative comparisons on standard evaluation metrics and
through a user study, report ablations, and show how to apply ReMoS as a mo-
tion editing tool. We provide details on the dataset preparation in the appendix.

5.1 Implementation Details

As a pre-processing step, we normalize the two-person body poses by translating
the actor’s motion Y and the reactor’s motion X together, such that the root
joint of Y is at the global origin for all N frames. We then compute the relative
3D joint coordinates of XB and YB w.r.t. the root joint of YB . For each hand, we
compute the relative 3D joint coordinates of XH and YH w.r.t. the corresponding
wrist joints of XH and YH . Using normalized inter-person, root-relative joint
positions benefits the stability and convergence of our model. ReMoS uses T =
500 diffusion steps where ᾱ changes linearly from 0.0002 to 0.02. We train for
about 64K iterations on both sequences of ReMoCap using Adam [36] with a
base learning rate of 10−5 and a batch size of 64. We decay the learning rate
using a Step LR scheduler with a step size of 5 epochs and a decay rate of 0.99.
We use d = 256 for our latent embedding representation and use 6 layers in
our transformer decoder with 4 heads for calculating the attention. The training
takes around 8 and 11 hours on an NVIDIA RTX A4000 GPU for Lindy Hop
and Ninjutsu, respectively. The inference time is ∼24s to generate 50 frames of
full-body and finger motions (12.5s for body synthesis and then 11.5s for hand
synthesis). We set λc, λr, λv = 10.0, λa, λk, λb = 1.0 and λf = 20.0 (only applied
after 100 training epochs) as the loss term weights in Eqns. 8 and 10. We set the
guidance scale γ = 10−3 in Eqn. 11.

5.2 Baselines and Ablated Versions

For baselines, we choose the closest motion synthesis methods in a two-person
setting, namely, MixNMatch [20], InterFormer [11], ComMDM [54], Role-Aware
Interaction Generation (RAIG) [65], and InterGen [42]. InterFormer [11] was
originally trained in a reactive motion synthesis setting without additional an-
notations, such as action labels or text descriptions, and we maintain this setup.
For the other methods, we mask out their input text/label embeddings to comply
with our annotation-free setting. We re-train these methods on ReMoCap with
a thorough hyper-parameter search and report their best performances. We pro-
vide more training details in the appendix.

We also compare our proposed ReMoS model with five of its ablated versions:
• w/o diffusion. Training ReMoS using a transformer encoder-decoder network

without using DDPM strategy.
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Table 2: Quantitative Evaluation on ReMoCap. We compare ReMoS with our
baselines and ablated versions (Sec. 5.2) on the ReMoCap dataset. We evaluate these
methods on metrics such as MPJPE, MPJVE, FID, and Diversity. ↓: lower is better,
↑: higher is better, →: values closer to GT are better. Bold indicates best.

Method Lindy Hop Ninjutsu

MPJPE MPJVE FID ↓ FID ↓ Div MPJPE MPJVE FID ↓ FID ↓ Div
(mm) ↓ (mm) ↓ (body) (hands) → (mm) ↓ (mm) ↓ (body) (hands) →

GT - - - - 7.57 - - - - 10.51
InterFormer [11] 66.6 8.26 0.53 0.65 4.54 270.2 3.4 0.57 0.68 6.48
MixNMatch [20] 70.2 10.3 0.77 0.78 2.48 257.2 5.2 0.74 0.72 4.83
ComMDM [54] 59.4 4.41 0.32 0.53 7.48 201.2 4.1 0.34 0.58 9.98
RAIG [65] 71.2 4.32 0.47 0.63 8.45 199.1 5.1 0.21 0.63 10.11
InterGen [42] 62.6 3.92 0.30 0.61 7.21 172.6 3.9 0.32 0.57 9.98

ReMoS (ours) 40.7 2.26 0.12 0.26 7.62 139.2 3.3 0.16 0.35 10.26
w/o diffusion 72.5 4.91 0.58 0.74 4.04 224.5 4.1 0.52 0.64 6.06
w/o cascading 63.9 4.95 0.51 0.55 7.12 223.6 4.2 0.42 0.75 6.62
w/o CoST-XA 44.2 3.62 0.21 0.39 7.45 176.6 3.6 0.27 0.41 8.91
w/o reaction loss 44.6 3.51 0.22 0.38 7.31 144.6 3.7 0.23 0.39 8.99
w/o spatial guidance 41.9 2.34 0.12 0.26 7.62 139.4 3.4 0.16 0.35 10.26

• w/o cascading. Training ReMoS with an integrated transformer for all the
joints instead of a cascaded strategy for body and hand generation.

• w/o CoST-XA. Using a spatial followed by a temporal cross-attention map-
ping instead of the combined spatio-temporal features for body synthesis.

• w/o reaction loss. Removing the reaction loss (Eqn. 9) in training.
• w/o spatial guidance. Removing spatial guidance GA (Sec. 3.4) in inference.

5.3 Quantitative Evaluation

We evaluate ReMoS on standard evaluation metrics. We measure the temporal
consistency deviation from the ground truth 3D pose following [57] to report the
mean per-joint positional error (MPJPE) and the mean per-frame, per-joint ve-
locity error (MPJVE), both in mm, on the synthesized motions. We measure the
Fréchet Inception Distance (FID) [27] to compare the distribution gap between
the embedding spaces of the generated and ground-truth motions. As part of our
method focuses on generating hand motions, we measure the FID score of body
and hands separately for ReMoCap. We also compute the latent variance of the
generated motions (Diversity) [67, 81]. Table 2 reports the quantitative evalua-
tion of ReMoS with its baselines and ablations on ReMoCap. ReMoS achieves
state-of-the-art performance for both the Lindy Hop pair-dance setting and the
Ninjutsu setting. We observe that methods using denoising diffusion have higher
Diversity compared to transformer-based [11] or GAN-based [20] methods. This
enforces the variability claims of denoising diffusion models. We note at least
20% improvement in the MPJPE and around 40% improvement in the FID
score for the reactor’s body motion when using the proposed CoST-XA mech-
anism, confirming its benefit in learning fine-grained, inter-person dependencies
across time. We also note an almost 50% improvement in the FID scores of
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Table 3: Quantitative Evaluation on the ExPI and
2C datasets. We compare ReMoS with state-of-the-
art motion synthesis methods on the ExPI [24] and 2C
datasets [55]. ↓: lower is better, ↑: higher is better, →:
values closer to GT are better. Bold indicates best.

Method ExPI 2C

MPJPE MPJVE FID ↓ Div MPJPE MPJVE FID ↓ Div
(mm) ↓ (mm) ↓ (body) → (mm) ↓ (mm) ↓ (body) →

GT - - - 2.01 - - - 2.22
InterFormer [11] 99.1 3.56 0.42 1.31 90.7 5.11 0.52 1.45
MixNMatch [20] 122.4 5.56 0.48 1.18 62.4 6.01 0.47 1.24
ComMDM [54] 121.4 5.41 0.45 2.48 69.9 3.34 0.49 2.86
RAIG [65] 131.2 3.96 0.53 2.51 91.6 4.92 0.67 4.45
InterGen [42] 100.6 3.91 0.43 2.09 67.6 4.01 0.47 2.91

ReMoS (ours) 97.9 3.52 0.41 1.98 59.1 3.33 0.34 2.07

Table 4: User Study
Results. Mean scores on
a five-point Likert scale
(scores 1− 5).

Method Motion Reaction
Quality Plausibility

↑ ↑
GT 4.86± 0.54 4.72± 0.56
InterFormer 2.52± 0.61 2.28± 0.57
MixNMatch 1.92± 0.71 2.18± 0.57
ComMDM 3.02± 0.47 3.12± 0.52
RAIG 2.83± 0.67 2.48± 0.65
InterGen 3.18± 0.57 3.19± 0.53

ReMoS 3.79± 0.55 3.88± 0.54

the reactor’s hand motion when using the cascaded strategy and the reaction
loss. Further, the spatial guidance function fine-tuning improves MPJPE and
MPJVE. The MPJPE values are overall higher in Ninjutsu than in Lindy Hop
as the trajectory of the reactor is more diverse for Ninjutsu. We also report the
evaluation of ReMoS with its baselines on the ExPI [24] and the 2C [55] datasets
in Table 3. These datasets do not provide hand motions, so we only evaluate the
reactor’s body motions, and report state-of-the-art performance of ReMoS.

5.4 User Study

We evaluate the visual quality of our captured ground truth data and the gen-
erated reactive motions through a user study. We show participants 26 different
interaction sequences across the ground truth, our method, and its baselines.
For each sequence, we randomly show them three methods side-by-side and ask
them to rate the 3D motions they observe in terms of (a) the reactor’s motion
quality, irrespective of the actor’s motion (Motion Quality), and (b) the plausi-
bility of the reaction given the actor’s motion (Reaction Plausibility). We ask
the participants to rank these motions from ‘1’ (worst score) to ‘5’ (best score)
in a five-point Likert scale. Table 4 reports the mean scores from the responses of
40 participants, excluding the responses that did not pass our validation checks.
We notice the ground truth motions in ReMoCap achieve the highest score of
around 96%, indicating that participants perceive our captured ground truth
motions to be natural-looking, with realistic interactions. ReMoS has the second
best ranking of around 78%, which is almost 21% higher than the baselines,
showing that it is preferred more over the baselines.

5.5 Qualitative Results and Applications

Fig. 1 shows qualitative results of ReMoS on ReMoCap and highlights the syn-
thesized hand interactions. We note that our actor and reactor are interchange-
able, i.e., depending on the character driving the interaction at a given time,
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(a) Visual comparison of ReMoS with GT and baselines.

(b) Pose-completion application. (c) Motion in-betweening application.

Fig. 5: Qualitative Results and Applications. We show some visual results and
the application of ReMoS as a motion editing tool. (a) The reactor (in blue) synthe-
sized by ReMoS has the most plausible alignment with the actor (in red) compared to
the baselines. (b) We manually control the right-hand wrist joint of the reactor and let
ReMoS synthesize the remaining body joints conditioned on the actor. (c) ReMoS syn-
thesizes the reactor’s motion in-between the start and end frames.

we can swap the actor and the reactor to produce the relevant reactive mo-
tions. Fig. 5a shows a visual comparison of ReMoS with the baselines for one
frame of Lindy Hop motion. ReMoS synthesizes reaction with the most plausi-
ble alignment with the actor’s motion. We provide detailed visual results in our
supplementary video. Inspired by the applicability of diffusion-based methods
for motion editing and controlling, we demonstrate how ReMoS can also be used
as an interactive motion editing tool to control the reactor’s motion as desired.
In Figs. 5b and 5c, we show results from two different motion editing applica-
tions, namely, pose completion with controlled joints and motion in-betweening.
We discuss more details in the appendix.

6 Conclusion

ReMoS brings 3D motion conditioned reaction synthesis to a qualitatively new
level by generating diverse, well-synchronized reactions for complex movements
and plausible hand motions for contact-based interactions. It outperforms the
existing baselines both quantitatively and in a user study. We also highlight
some practical applications of our model, such as pose completion and motion
in-betweening, which can lead to the development of useful generative assistants
for animators, designers, and creative artists. Even though we utilize joint po-
sitions as parameterization due to their ready availability, we can adapt our
approach to accommodate mesh-level inter-person contacts by introducing an
offset to the contact threshold between the two bodies, thus simulating skin-
to-skin interactions. We believe there is scope for improvement in the inference
speed, where approaches such as Pro-DDPM [17] and DDIM [62] have shown
success. Future directions also involve scaling the problem towards multi-person
motion prediction [70] and considering scene-aware interactions for the charac-
ters, which would further enhance immersive user experiences.
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We provide additional details on the loss functions used for training ReMoS,
more statistics on the ReMoCap dataset, and describe how the datasets and
baselines are prepared for evaluation. We also show some additional results.

A Additional Details of Loss Functions

Kinematic Loss Terms. We describe the details of the velocity, acceleration,
bone length and foot sliding losses loss terms from Eqn. 10 in the main paper.
To improve the temporal consistency of the motion [68], we minimize the joint
velocities and joint accelerations between two consecutive frames of the ground-
truth reactive motions, X, and the synthesized reactive motions, X̂, defined as

Lvel =
1

N − 1

N−1∑
n=0

∥∥∥(Xn+1 −Xn)− (
X̂n+1 − X̂n

)∥∥∥2

2
, (A.1)

Lacc =
1

N − 2

N−2∑
n=0

∥∥∥(Xn+2 − 2Xn+1 +Xn)− (
X̂n+2 − 2X̂n+1 + X̂n

)∥∥∥2

2
, (A.2)

where N is the total number of frames.
Additionally, we introduce a bone length consistency loss, Lbone, to ensure

that the synthesized reactor joint positions satisfy the skeleton consistency [42].
We define this loss as

Lbone =
∥∥∥B (X)−B

(
X̂
)∥∥∥2

2
, (A.3)

where B represents the bone lengths in a pre-defined human body kinematic
tree.

Further, foot sliding is a common artifact in motion synthesis [56, 57]. We
constrain this by ensuring that the toe joint in contact with the ground plane
has zero velocity. We use a binary foot contact loss [67, 68] on the foot joints of
the synthesized pose to ensure that the output motion does not slide across the
ground plane, defined as

Lfoot =
1

N − 1

N−1∑
n=0

∥∥∥(X̂n+1 − X̂n
)
· 1̂n

foot

∥∥∥2
2
, (A.4)
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where 1̂
n
foot ∈ {0, 1} is the foot-ground contact indicator for the synthesized

reactive motion X̂n at each frame n.

B ReMoCap Dataset Analysis

Our proposed ReMoCap dataset covers two types of motion, namely the Lindy
Hop dance and the martial art technique of Ninjutsu (see Sec. 4 in the main
paper).

Lindy Hop motion capture. The Lindy Hop part of the dataset consists of 8
dance sequences captured at 50 fps, each around 7.5 minutes long, resulting in
around 174.2K motion frames. We had 4 trained dancers, 2 males (denoted A
and B) and 2 females (denoted C and D), participate in the Lindy Hop motion
capture. We pair the dancers as (A, C), (B, D), (A, D), and (B, C). Of these
pairings, (A, D) contains dance sequences not performed by the other three pairs
(in terms of twists and maneuvers). We also capture multiview RGB videos at
50 fps from 116 camera views for each sequence, which can benefit two-person
pose reconstruction work in the future. We show samples from these videos
in Fig. B.1. From these sequences, almost 145.2K frames have a hand-in-hand
contact between the two dancers with a contact threshold of 50 mm between the
finger joints of the two dancers. By increasing the contact threshold to 100 mm,
the number of frames where the two dancers have contact increases to 147.5K.

Ninjutsu motion capture. The Ninjutsu part of the dataset consists of 79
sequences each captured at 25 fps. The sequences vary in length with a total
number of around 99.8K motion frames resulting in around 66.5 minutes of
motion. We had 5 trained, male Ninjutsu artists participate in the Ninjutsu
motion capture. We pair them in all possible combinations and ask them to
perform different variations of motion. Along with the 3D pose, we also capture
multiview RGB videos at 25 fps using 116 cameras. We show samples from these
videos in Fig. B.2. From these sequences, almost 81K frames have contact-based
interactions between the two performers, where the closest distance between any
joints is 50 mm.

C Dataset and Baseline Preparation

We discuss the preparation of the different datasets and the baseline methods
for our evaluation purposes.

C.1 Dataset Preparation

Preparing the Lindy Hop data in ReMoCap. We split the dataset such
that motions captured from dancer pairs (A, C), (B, D), and (B, C) are in our
training set, and motions captured from pair (A, D) are in our test set. We
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Fig. B.1: Samples from the Lindy Hop motion capture for the ReMo-
Cap dataset. We show multi-view RGB samples with corresponding 3D poses from
our Lindy Hop motion capture performed by trained dancers. Lindy-hop requires coor-
dination between the two dancers, while also allowing individual dancers the freedom
to perform their own motions. This makes it suitable for testing our reactive motion
synthesis approach.

downsample each motion sequence to 20 fps and filter the frames where the
dancing partners have hand-to-hand contact between the actors’ and reactors’
finger joints. We represent each character using 27 body joints and 22 hand joints.
We convert the 3D joint angle representations into joint positions using forward
kinematics and then convert them to root local representations, as explained in
Sec. 5.1 in the main paper. For training, we use a sequence length of 20 frames.

Preparing the Ninjutsu data in ReMoCap. We divide the whole dataset
into roughly 3 : 1 train-test ratio and take 28 sequences of diverse attacking and
maneuvering motions for testing, and the rest for training. We downsample each
motion sequence to 10 fps, and filter out the frames where the pairs are more
than 1 meter of each other. We represent each character using 27 body joints and
22 hand joints. We convert the 3D joint angle representations into joint positions
using forward kinematics and then convert them to root local representations, as
explained in Sec. 5.1 in the main paper. For training, we use a sequence length
of 50 frames.

Preparing the Extreme Pose Interaction (ExPI) Dataset [24]. The
ExPI dataset consists of 2 pairs of professionals performing acrobatics and Lindy
Hop aerial sequences. It consists of 16 different acrobatic actions. Each couple
consists of a leader and a follower. We aim to synthesize the motions of the
followers as they react to the leaders’ movements. We use the common action
split proposed by the original authors [24], and split the dataset into train and
test sets such that all the actions performed by (A, B) are in the train set and all
the actions performed by (C, D) are in the test set. We represent each subject
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Fig. B.2: Samples from the Ninjutsu motion capture for the ReMo-
Cap dataset. We show multi-view RGB samples with corresponding 3D poses from
the Ninjutsu motion capture performed by trained artists. In contrast to existing mar-
tial arts datasets [55,83], we include finger joint motion capture and moves of varying
interaction complexity.

using 16 joints (omitting the ‘lhead’ and ‘rhead’ joints) and convert the global
3D joint positions given in the dataset to root relative joint representations, as
explained in Sec. 5.1 in the main paper. Since the ExPI dataset does not have
hand motions, we only train with body motions and forego the hand diffusion
stage. We train ReMoS for about 20K iterations on the ExPI dataset using the
Adam optimizer [36], with a base learning rate of 10−5 and a batch size of 32.

Preparing the Character-Character Dataset (2C) [55]. The 2C dataset
consists of full-body motions of kickboxing actions performed by pairs of par-
ticipants. The interactions include motions such as kicking and punching, with
diverse reactions such as avoiding and being hit. We use the pose sequence of
the leading character, who throws the punches and kicks, as the acting sequence
for our model. We aim to synthesize the full body motion of the reacting char-
acter, who is blocking or avoiding the moves, as our output. Following the split
of MixNMatch [20], we use a roughly 3 : 1 train-test ratio to train our method.
Each character contains 25 joints and we convert the 3D joint angle represen-
tations into joint positions using forward kinematics and then convert them to
root relative joint position representations, as explained in Sec. 5.1 in the main
paper. Since the 2C dataset does not have hand motions, we only train with
body motions and forego the hand diffusion stage. We train ReMoS for about
25K iterations on the 2C dataset using the Adam optimizer [36], with a base
learning rate of 10−5 and a batch size of 16.

Preparing the InterHuman Dataset [42]. We report additional results on
the InterHuman dataset in this appendix. It consists of human-human interac-
tions for daily motions, such as passing objects, greeting, and communicating,
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and professional activities, such as, Taekwondo, Latin dance, and boxing. It con-
sists of a total of 7, 779 motions with 22 joints per person. We randomly select the
pose sequence of one of the characters as the acting sequence for each motion to
train our model. We aim to synthesize the full body motion of the corresponding
other character in each motion as our output. We follow the split of InterGen [42]
for our experiments. Since the InterHuman dataset does not have hand motions,
we only train with body motions and forego the hand diffusion stage. We train
ReMoS for about 45K iterations on the InterHuman dataset using the Adam
optimizer [36], with a base learning rate of 10−5 and a batch size of 64.

C.2 Baseline Preparation

As we mention in Sec. 5.2 in the main paper, we use InterFormer [11], MixN-
Match [20], ComMDM [54], RAIG [65] and InterGen [42] as baselines. We de-
scribe how we use each of these methods in our setting.

InterFormer [11]. InterFormer consists of a transformer network with tem-
poral and spatial attentions. It takes an input acting sequence Y and encodes
it with spatial and temporal self-attention. It also needs the initial pose of the
reactor X and predicts the subsequent frames of the reactor in an autoregressive
manner. It uses information from skeletal adjacency matrices and an interaction
distance module that provides information on the interactions. We use the nor-
malization technique mentioned in Sec. 5.1 in the main paper to normalize the
actor’s and the reactor’s body poses. We train InterFormer on an NVIDIA RTX
A4000 GPU for about 20K iterations for both the LindyHop and the Ninjutsu
sets of ReMoCap, using the Adam optimizer [36] with a base learning rate of
10−5 and a batch size of 128. We use 207 dimensional latent embedding and 6
layers in the transformer decoder with 3 heads to calculate the attention.

MixNMatch [20]. MixNMatch proposes an end-to-end framework to synthe-
size stylized reactive motion informed by multi-hot action labels. It operates
in one of two settings, interaction mixing and interaction matching. In interac-
tion mixing, it generates a reaction combining different classes of reactive styles
according to the multi-label indicator. In interaction matching, it generates the
reactive motion corresponding to the interaction type and the input motion. Our
setting is similar to interaction matching, where we input the acting sequence
into the model and synthesize the reactive sequence. We mask out the action
label defining the interaction type from the input and train the reactor’s motion
X based on the actor’s motion Y . We use the normalization technique mentioned
in Sec. 5.1 in the main paper to normalize the actor’s and the reactor’s body
poses. We train MixNMatch on an NVIDIA RTX A4000 GPU for about 3.6K
iterations for both the LindyHop and the Ninjutsu sets of ReMoCap, using the
Adam optimizer [36] with a base learning rate of 10−5 and a batch size of 16. We
use 256 LSTM neurons for each spatial slice and 1,200 for the attention layer.
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ComMDM [54]. ComMDM is proposed as a communication block between
two MDMs [67] to coordinate interaction between two persons. It uses single-
person motions from a pre-trained MDM as fixed priors, and a parallel composi-
tion with few-shot training that shows how two single-person motions coordinate
for interactions. ComMDM is a single-layer transformer model that inputs the
activations coming from the previous layer from the two MDM models, and
learns to generate a correction term for the MDM models along with the ini-
tial pose of each person. ComMDM was originally trained for two motion tasks:
prefix completion and text-to-motion synthesis. We follow the prefix completion
setting of ComMDM which does not use textual annotations as a condition and
was trained to complete 3 seconds of motion given a 1 second prefix. We train
ComMDM on an NVIDIA RTX A4000 GPU for about 24K iterations for both
the LindyHop and the Ninjutsu sets of ReMoCap, using the Adam optimizer [36]
with a base learning rate of 10−5 and a batch size of 64. We use 256 dimensional
latent embedding for the ComMDM block. During inference, we provide the full
ground truth motion of actor Y into the first MDM module. Thus, the Com-
MDM block takes in the ground truth features from the first MDM module and
the learned features from the second MDM module. In turn, the output of the
second MDM module is the reactive motion X for our setting.

RAIG [65]. Role-Aware Interaction Generation (RAIG) is a diffusion-based
model that learns two-person interactions by generating single-person motions
for a designated role. The role is supplied in the form of textual annotations,
which are translated into active and passive voices to ensure the text is con-
sistent with each role. The model generates interactions with two transformers
that share parameters, and a cross-attention module connecting them. The ac-
tive and passive voice descriptions are proveded as inputs to the corresponding
transformers responsible for generating the actor and the reactor. The trans-
formers consist of cross-attention modules both for language and motion. To
use RAIG as a baseline for our annotation-free setting, we mask out the cross-
attention module for the language in both the transformers and train to generate
two-person motions unconditionally. We normalize the interactions as described
in the original paper [65]. We train RAIG on an NVIDIA RTX A4000 GPU for
about 20K iterations for both the LindyHop and the Ninjutsu sets of ReMoCap,
using the Adam optimizer [36] with a base learning rate of 2−4 and a batch size
of 32. We use 512 dimensional latent embedding and 8 attention blocks. During
inference, we freeze the transformer that learns the actor’s motion Y . The other
transformer generates the reactor’s motion X, being influenced by the actor’s
ground truth motion.

InterGen [42]. InterGen is a diffusion-based approach that generates two-
person motions from text prompts. It was originally trained by conditioning on
rich textual annotations. It uses cooperative denoisers with novel weight-sharing
and a mutual attention mechanism to improve interactions between two persons.
To use it as a baseline in our annotation-free setting, we mask out the text
embeddings from the model input, and train InterGen to generate two-person
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Table D.1: Quantitative evaluation on the In-
terHuman dataset [42]. We compare ReMoS with
state-of-the-art motion synthesis methods on the Inter-
Human [42] dataset. ↓: lower is better, ↑: higher is better,
→: values closer to GT are better. Bold indicates best.

Methods MPJPE MPJVE FID Div Multi-modality
(mm) ↓ (mm) ↓ (body) ↓ → ↑

GT − − − 7.74 −
ComMDM [54] 76.4 2.75 0.72 7.17 1.71± 0.5
RAIG [65] 83.2 2.76 0.67 7.26 2.01± 0.6
InterGen [42] 69.5 2.61 0.59 7.32 2.11± 0.6

ReMoS (ours) 66.7 2.56 0.56 7.33 2.13± 0.3

Table D.2: Trainable
parameter counts.

Method Params
(full model)

InterFormer 8.2M
MixNMatch 6.5M
ComMDM 22.2M
RAIG 81.2M
InterGen 170M

ReMoS (ours) 17.4M

motions (both actor and reactor) unconditionally. We use the non-canonical
motion representation proposed in the original paper [42]. During inference, we
use the customization used in InterGen for person-to-person generation. We take
a single-person motion (the actor’s motion Y ) as input, and freeze it during the
forward diffusion process. The frozen weights from the first person propagate
into the model, which then uses the ground truth actor’s motions to reconstruct
the second person’s motion (the reactor’s motion X). We train InterGen on
an NVIDIA RTX A4000 GPU for about 30K iterations for both the LindyHop
and the Ninjutsu sets of ReMoCap, using the Adam optimizer [36] with a base
learning rate of 10−4, a cosine LR scheduler, and a batch size of 64.

D Additional Results

We provide additional results and the trainable parameter counts of all models.
We further show how ReMoS can be used as a motion editing tool for character
control applications.

D.1 Quantitative Evaluation on the InterHuman Dataset [42]

We report additional evaluation of ReMoS compared to its diffusion-based base-
lines on the InterHuman [42] dataset in Table D.1. We report performance on
the standard evaluation metrics, including MPJPE, MPJVE, FID, Diversity and
Multi-modality. For Multi-modality, we generate each sequence 5 times and re-
port numbers with a 95% confidence interval. InterHuman dataset does not
provide hand motions, so we only evaluate the reactors’ body motions. Re-
MoS achieves state-of-the-art performance in the aforementioned metrics in the
InterHuman dataset, highlighting the utility of our method for diverse forms of
two-person interactions.
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Table D.3: Quantitative evaluation on body joints. We compare the body syn-
thesis module of ReMoS with state-of-the-art motion synthesis methods on body joints
only. Bold indicates the best.

Methods Lindy Hop (body only) Ninjutsu (body only)

MPJPE ↓ MPJVE ↓ FID ↓ Div → MPJPE ↓ MPJVE ↓ FID ↓ Div →
GT - - - 7.62 - - - 11.5
MixNMatch 69.8 10.5 0.74 2.52 260.1 5.14 0.72 4.94
InterFormer 63.2 8.91 0.52 4.64 262.5 3.53 0.51 6.27
ComMDM 50.2 4.42 0.23 7.51 192.4 3.45 0.25 9.83
RAIG 68.5 4.01 0.26 9.02 188.3 4.25 0.19 10.14
InterGen 55.1 2.87 0.22 7.49 165.5 3.82 0.23 9.87

ReMoS (ours) 40.2 2.21 0.12 7.52 137.2 3.19 0.16 10.26

D.2 Trainable Parameters

We report the total number of trainable parameters of ReMoS as compared to the
baseline methods. Table D.2 shows that ReMoS has lesser trainable parameters
than the existing diffusion-based two-person synthesis models [42,54,65].

D.3 Comparison with baselines without hand motions.

We compare the body synthesis module of ReMoS with baselines trained only
on the body joints (Table D.3). We report state-of-the-art performance for Re-
MoS even when finger joints are not included.

D.4 Motion Editing Applications of ReMoS

We describe how to use ReMoS as an interactive motion editing tool, providing
control to animators for tasks such as pose completion and motion in-betweening.
These are crucial applications that are possible due to the strong generative
abilities of DDPMs. We provide visual results of these applications in our sup-
plementary video.

Pose Completion with Controlled Joints. When an animator manually
customizes some of the reactor’s body joints to align with specific animation
tasks, ReMoS can automatically synthesize the reactor’s remaining body joints
to complete the reactor’s motion. We achieve this by providing the forward-
diffused values of the controlled joints as the network input at each diffusion step.
For example, to synthesize the motions of the remaining joints of the reactor’s
body given customized motions for some joints Ji and Jk, we set

X
(0)
B = fθB

(
X

(t)
B , t, YB ,1{Ji,Jk}

)
, (D.1)

where 1{Ji,Jk} is a mask we use at each denoising step on all frames to ensure
that the joints Ji and Jk are not denoised. Instead, we populate Ji and Jk with
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the identical noise vectors as the ones used during forward diffusion, while in-
troducing random noise to the rest of the joints throughout the sequence. Thus,
animators can incorporate flexible spatial control over chosen joints while Re-
MoS synthesizes the remaining joints of the reactor to faithfully capture the in-
teraction. In Fig. 5b in the main paper, we show the results of a pose-completion
application where we manually control the right-hand wrist joint of the reactor
and let ReMoS synthesize the remaining body joints conditioned on the actor.

Motion In-Betweening. Likewise, we can use the existing framework to per-
form motion in-betweening for the reactive sequence. We achieve this by pro-
viding some keyframes of the reactive motion and letting ReMoS synthesize the
intermediate frames using a motion in-betweening routine. To synthesize the re-
actor’s motion between two given keyframes Na and Nb through reverse diffusion,
we set

X
(0)
B = fθB

(
X

(t)
B , t, YB ,1{Na,Nb}

)
, (D.2)

where 1{Na,Nb} is a mask we use at each denoising step to ensure that all joints
at frames Na and Nb are not denoised. Thus, ReMoS can fill in the motions
between the two seed frames as shown in Fig. 5c in the main paper.
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