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Abstract— The task of detecting objects in sonar imagery is
challenging due to low image resolution, significant noise, and
the variable nature of the underwater environment. Artificial
Intelligence (AI) methods, such as convolutional neural
networks and transformers, can be applied to address these
challenges. However, the lack of transparent explanations for
the results of deep learning models is a major stumbling block
to building trust in these models. This paper evaluates You Only
Look Once (YOLO-v8) and DEtection TRansformers (DETR)
models, as two prominent tools for object detection, using two
sonar datasets as a part of the Hybrid Artificial Intelligence
eXplainer (HAI-x) project. The selected datasets include a
dataset of sonar raw images and another with pre-processed
sonar images. Contrary to the claim that sonar raw images do
not require preprocessing for efficient object detection using
deep learning techniques, the experiments conducted
demonstrate that such preparatory steps can indeed improve
the performance of object detectors. Furthermore, they can
provide an understandable common ground for explaining the
detection process to end users.

Keywords—Object Detection, SONAR, XAI, YOLOv8, DETR,
ViT.

I. INTRODUCTION

The HAI-x project aims to equip hybrid AI models with
explanation facilities to build user trust in these models [1].
Optimizing the aquatic weed harvester's operation on Lake
Maschsee is a use case for this project in a marine
environment. To enhance the efficiency and effectiveness of
the harvester operations, a hybrid artificial intelligence system
is to be developed. This system utilizes a combination of
artificial intelligence techniques to optimize the harvester's
path, ensuring thorough coverage of the overgrowth weed
areas to enable mowing them while minimizing fuel
consumption, time, and environmental impact. In defining the
optimal path, the system uses sensors to capture and develop
a map of the current situations. Among the sensors that the
system utilizes are SONAR sensors. The intention is to use a
Side-Scan Sonar (SSS), which emits the sound wave to the
sides of the sonar device and thus provides a horizontal view
of the seafloor and underwater objects. However, the option
of using a Forward-Looking Sonar (FLS), which emits sound
waves in the direction the sonar is facing to provide a forward
view of the underwater features, has not been excluded. Both
sonars visualize sonar data as sonar imagery. Sonar imagery
can be used to detect areas of avoidance and areas of interest.
In line with the project’s aim, the system should provide
explanations to the users in addition to detecting these areas.
One method to achieve this is to provide extra information

about such areas to convince the users with the reasons for the
classifications of the different areas. Such information can be
provided by classifying and locating different entities in the
lake and visualizing them on the situation map. In other words,
using the sonar imagery to detect the different objects in the
lake as a base for defining areas of walk, interest, and
avoidance.

In spite that fact that object detection models in general
provide to some extent enough information to convince the
end users with correctness of their predictions. By displaying
the bounding boxes together with classifications and
confidence scores, the user can judge and evaluate the object
detector’s prediction and take an action accordingly.
However, the situation may differ in case of using sonar
imagery due to their nature. When it comes to implementing
cutting-edge AI methodologies in the field of sonar, the
research community lags behind by a few years [2]. However,
different object detectors have been utilized using sonar
imagery [2]. Most researchers apply image enhancement
techniques as a preprocessing phase to sonar images to make
them recognizable to the bare eye and akin to natural RGB
images that are usually presented to object detection models.
In contrast, Xie et. al [3] proposed a sonar imagery dataset that
consists of raw sonar images captured by FLS claiming that
preprocessing sonar images to enhance their visual perception
can lead to losing meaningful data and introduce inaccurate
information. The scarcity of open-access datasets is notable,
and releasing this dataset to the public can be viewed as a
positive contribution. The dataset, which is known as
underwater acoustic target detection (UATD), was
benchmarked on state-of-the-art (SOTA) object detection
models considering the efficiency and accuracy measures but
ignoring explainability measures. Contrary to Xie et. al [3],
this paper emphasizes that visual perception of sonar images
is crucial for object detection and explanations of prediction.
In addition to enabling the user to visually validate the model
predictions, the work presented in this paper facilitates
utilizing other XAI methods that rely on samples of training
data to rationalize predictions.

In this paper, the performance of YOLOv8 [4] and DETR
[5] object detectors are evaluated using UATD dataset. The
results are then compared with the performance of both
detectors with the marine-debris-fls dataset [6], which
contains pre-processed sonar images. Different experimental
scenarios have been followed to explore the impact of
enhancing the visual perception of sonar data on the
performance object detectors considering explainability as a
key factor in the evaluation process.

On Object Detection and Explainability with Sonar
Imagery

2
0
2
4
IE
EE

4
th

In
te
rn
at
io
n
al
M
ag
h
re
b
M
e
et
in
g
o
f
th
e
C
o
n
fe
re
n
ce

o
n
Sc
ie
n
ce
s
an
d
Te
ch
n
iq
u
es

o
f
A
u
to
m
at
ic
C
o
n
tr
o
la
n
d
C
o
m
p
u
te
r
En

gi
n
e
er
in
g
(M

I-
ST
A
)
|
9
7
9
-8
-3
5
0
3
-7
2
6
3
-2
/2
4
/$
3
1
.0
0
©
2
0
2
4
IE
EE

|
D
O
I:
1
0
.1
1
0
9
/M

I-
ST
A
6
1
2
6
7
.2
0
2
4
.1
0
5
9
9
6
7
0

Authorized licensed use limited to: Universitaet Osnabrueck - Bibliothek. Downloaded on August 07,2024 at 10:07:17 UTC from IEEE Xplore.  Restrictions apply. 



This paper is organized into six sections. The second
section offers a short introduction to object detection models.
The third section briefly reviews their applications in
conjunction with sonar imagery. In the fourth section, the
explainability of object detectors is discussed. EXplainable
Artificial Intelligence (XAI) methods are also examined. The
fourth section delves into the details of the different
experiments conducted and discusses the outcomes of these
experiments. The paper concludes by providing a summary
and exploring potential directions for future research.

II. OBJECT DETECTION USINGMACHINE LEARNING

SOTA AI-based object detectors can be categorized into
one-stage and two-stage models [7,8]. The object detection
problem can be seen as finding an arbitrary number of objects
in an image through extracting its visual features, followed by
classifying these objects and estimating their sizes within
bounding boxes. Two-stages detectors tackle this problem by
separating the previous two tasks into stages. Variants of
Regions with Convolutional Neural Network (R-CNN),
Spatial Pyramid Pooling deepNetwork (SPPNet) and Pyramid
Networks/FPN follow the two-stages approach. Meanwhile,
single-stage detectors combine both tasks into one step.
Examples of single-stage detectors are different versions of
YOLO, different variants of Single Shot Multibox Detector
SSD, RetinaNet and Fully Convolutional One-Stage FCOS.
Single-stage detectors are generally characterized by a faster
detection speed and greater structural simplicity compared
with two-stages detectors. However, their performance trailed
that of two-stages detectors, notably for small and dense
objects [7].

In addition to single-stage and two-stages detectors,
advancements in transformer architecture have shown great
promise in achieving competitive results in tackling computer
vision problems, including object detection [9]. The Detection
Transformer (DETR) [5] employs attention mechanisms to
selectively assign importance to various segments of the input
data sequence, facilitating object detection. It is usually
described as a simple and effective high-level vision
framework. In DETR, the object detection problem is defined
as a direct set prediction problem to predict a fixed number of
bounding boxes and their corresponding class labels in a
single pass using a transformer. As other transformers, DETRs
are composed of multiple self-attention layers.

A. You Only Look Once (YOLO)

YOLO [10] uses a single-stage architecture to make
predictions for bounding boxes and class probabilities. In
YOLO, the input image undergoes grid partitioning. For each
grid cell, the model predicts multiple bounding boxes along
with confidence scores, indicating potential object locations.
YOLO also predicts the class probabilities for each bounding
box. YOLO uses Non-Maximum Suppression (NMS) to
remove redundant or intersecting bounding box predictions
and ensure only the most confident and non-overlapping
predictions are kept. This single-stage architecture enables
efficient and quick predictions, making YOLO suitable for
real-time applications. YOLO can tackle reverberation noise
in sonar images [11]. Nevertheless, the resolution of the grid
of YOLOv1 is not sufficient high, which can cause degrading
the prediction accuracy. Various enhancements have been
introduced to YOLO producing updated versions. These
enhancements include introducing Darknet53, Feature
Pyramid Network (FPN), Cross Stage Partial Network

(CSPNet), focus layers, Path Aggregation Network (PANet),
C3 modules, Extended Efficient Layer Aggregation Network
(E-ELAN), Spatial pyramid pooling (SPP) in addition to
others.

YOLOv8 is the latest version of YOLO by Ultralytics. It
supports classification, segmentation, tracking and pose
estimation in addition to object detection. The architecture of
YOLOv8 is improved through an anchor-free detection,
replacing C3 module with C2f module, using a decoupled
head, modifying loss function, and utilizing mosaic data
augmentation. Via anchor-free detection, the model needs to
anticipate the centre of an object rather than the bounding box
coordinates. Such anchor-free detection improves
generalization and speed both learning speed and NMS
process. In YOLOv8, each bottleneck consists of residual
blocks for computation cost reduction during training and C2f
module concatenates the output of these bottleneck modules.
Through decoupled head by separating classification and
regression tasks, the performance is further improved. To
avoid the misalignment possibility due to decoupled heads,
the loss function of YOLOv8 has been modified by
introducing alignment scores. Mosaic augmentation that has
introduced in YOLOv4, has been changed in YOLOv8 by
stopping it the last 10 training epochs for the sake of
performance improvements.

YOLOv8 comes in five variants based on the number of
parameters. In this paper, when referring to YOLOv8 in the
following sections, it refers to the nano-model, which is the
smallest variant.

B. Detection Transformers (DETR)

The Detection Transformer (DETR) [5] introduces a novel
object detection approach based on transformers. It employs a
transformer encoder-decoder framework, eliminating the need
for NMS, and incorporating the Hungarian loss to anticipate
sets of objects in a one-to-one mapping, facilitating end-to-
end optimization. DETR reframes object detection as a
problem of anticipating a set of unordered variables with
uncertain relationships. Instead of predicting bounding boxes
independently and then applying NMS to remove duplicates,
DETR directly outputs a fixed number of bounding boxes for
all objects in an image. It utilizes a set of object queries, to
interact with image features for predicting the objects and their
locations. By restricting the number of object queries to 100
queries, it avoids producing redundant and near-duplicate
results, thus eliminating the need for NMS post-processing
component. DETR uses the Hungarian algorithm for bipartite
graph matching to link forecasted bounding boxes to ground
truth objects. This algorithm enables finding the optimal one-
to-one mapping between predicted boxes and ground truth
boxes based on a similarity metric, often a negative IoU
(Intersection over Union) score. The Hungarian matching is
incorporated into DETR’s loss function, i.e. Hungarian loss,
to penalize the model based on the correctness of the
associations between forecasted and ground truth bounding
boxes. This encourages the model to produce accurate and
well-matched predictions.

In addition to DETR, several object detection models
based on transformer architectures have been proposed [9].
Deformable-DETR seeks improving the performance of
DETR through reducing the density of reference points in the
feature space. Sparse R-CNN combines elements of both
traditional region-based CNNs and transformers. Pyramid
Vision Transformer (PVT) introduces the initial hierarchical
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architecture for vision transformers and proposes a gradual
reduction pyramid and attention mechanism with spatial
reduction. Swin Transformers produce hierarchical feature
maps, instead of single feature map, through assimilation of
image patches in deeper layers. It also restricts self-attention
only within each local window, which is partitioned into
multiple sub-patches. Focal Transformers introduces focal
self-attention to instantaneously grasp both short- and long-
range visual relations efficiently and effectively. CrossFormer
employs a Cross-scale Embedding Layer (CEL) and Long
Short Distance Attention (LSDA) with dynamic position bias
to effectively comprehend both local and global visual clues.
RegionViT introduces regional-to-local attention to encode
hierarchical features. For efficient vision 2D attention, a
model structure that enables image encoding at various scales
while maintaining a manageable computational cost and
adopts the efficient Longformer is incorporated inMulti-Scale
Vision Longformer. CrossViT introduces a dual-branch
transformer that merges patches with varying sizes of an
image to generate more robust features.

Despite various efforts to enhance DETR, the persistent
challenge of high computational cost hinders its practical
application, limiting its advantages. Although DETR
simplifies object detection, its demanding computational
requirements make achieving real-time detection challenging.
However, in HAI-x project, real-time detection is not an issue
and exploring DETR explanation capabilities worth
evaluation.

III. OBJECT DETECTORS FOR SONAR IMAGERY

Researchers have investigated utilizing machine learning
for underwater object detection using sonar imagery generated
from FLS and SSS systems. Key obstacles to achieving
precise object detection in sonar imagery include interference
from sonar seabed reverberation noise, a limited proportion of
pixels depicting foreground object areas, and inadequate
imaging resolution [2].

A. Forward-Looking Sonar (FLS)

A CNN-based method is utilized for object detection in
FLS images [12]. In this method, objects are separated from
the background to estimate their presence while sliding a
window over the sonar image. The same concept has been
utilized to build object detector for FLS images through using
CNN to extract features and then feeding these features into
“object classifier” and “object detector” [13]. Pretrained
YOLO model has been applied as real-time object detector for
localizing an AUV agent using FLS images [14]. The
CoordConv has been incorporated in YOLOv5 to introduce
the coordinate information of the pixels for improving the
accuracy of the object detection in Multi-beam FLS (MFLS)
images [15].

The multi-branch shuttle neural network has been
incorporated in YOLOv5 to improve its ability to detect small
and weak targets using MFLS images [16]. A modified Mask
RCNN with less training parameters through replacing the
Resnet50/101 with Resnet32 has been proposed for detecting
and segmenting objects in MFLS images [17]. Three self-
supervised learning methods, which are RotNet, Denoising
Autoencoders, and Jigsaw are proposed to classify pre-
processed FLS images [18]. RBoxNet as a single model and
combined with YOLOv2 are proposed and utilized in a multi-
object detection system to locate objects and determine their
rotation from sonar imagery for autonomous underwater

vehicle (AUV) navigation [19]. The YOLOv3 model has been
used to detect obstacles in pre-processed FLS images together
with deep reinforcement learning (DRL) for planning a path
for AUV [20].

B. Side-Scan Sonar (SSS)

Different ML object detection models have been proposed
for dealing with SSS imagery. A CNN based on VGG-16 was
proposed for automatic image recognition in SSS images [21].
An improved faster R-CNN detector based on VGG-16 has
been developed for automatic wreckage recognition using
SSS images [22]. A Self-Cascaded CNN (SC-CNN) detector,
which exhibits resilience to speckle noise and variations in
intensity, has been proposed to segment the objects, their
shadow and seafloor in pre-processed SSS images [23].
YOLOv3 with Darknet-53 network has been used for
detecting shipwreck targets in SSS images utilizing multi-
scale features fusion with FPN [24]. Inspired by YOLOv3, a
Gabor-based detector, which extract features different levels,
has been proposed to detect mine like objects in SSS images
[25]. A differentiable Architecture Search algorithm with a
flexible search space and large inputs (FL-DARTS) has been
proposed and used to build self-trained AutoDL object
detectors [26]. These detectors have been evaluated on an SSS
dataset.

To tackle the target-sparse and feature-scarce attributes of
SSS imagery, a transformer model is integrated with
YOLOv5s in a real-time TR-YOLOv5s object detector [11].
[21] refers to a lightweight DETR-YOLO model, which
combines the global view of the complex marine environment
with the lightweight requirements to solve the same problem.
To tackle the high false and missed detection rates in the case
of multiple densely and overlapping underwater targets in SSS
images, a segmentation model that utilizes the blended hybrid
dilated convolution and pyramid split attention UNet (BHP-
UNet) algorithm is proposed [21]. The multilevel feature
fusion network (MLFFNet) [27] has been proposed for
accurate underwater object detection. Multiscale convolution
(MS-Conv), multilevel feature extraction (ML-FEM),
multilevel feature fusion (ML-FFM), multiscale feature
pyramid (MS-FPN), and feature association (FA) models
together with neighbourhood channel attention mechanism
(N-CAM) are combined in the MLFFNet detector to
overcome SSS challenges. YOLOv3-DPFIN combined
YOLOv3, Dual Path Network (DPN), the fusion transition
module, and dense connection method to improve object
detection in SSS images [28]. The model has been evaluated
on images of a simulation generated dataset and on pre-
processed images of a real dataset. Three active-learning-
based algorithms have been proposed to reduce the annotation
cost through selecting the images, which have the most
valuable information, from unlabelled data and continuous
retraining to enhance the object detector’s performance on
pre-processed SSS images [29].

An adaptive global feature enhancement network
(GFFNet) has been proposed to detect objects in sonar images.
This model combines multi-scale convolution with attention
mechanisms and a global receptive field, for extracting multi-
scale semantic features from sonar images and improve
feature correlation. The detector has been evaluated using SSS
and FLS datasets [30]. YOLOv7-based models together with
multi-scale information fusion and attention concepts have
been utilized for object detection in SSS images. The result of
the detection then is passed to an algorithm to determine the
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target latitude and longitude location [31]. A CNN with
bilinear pooling is used to classify objects in SSS images and
use a positioning algorithm to determine their locations in an
SSS image [32].

IV. EXPLAINABILITY OF OBJECT DETECTORS

In addition to optimize the performance of these detectors
taken into account the specific nature of the problem to solve,
building trust in these detectors as in any other AI models
becomes an essential requirement for efficient deployment
[33]. In spite of the fact that the results of object detection
models can be viewed as a kind of self-explainable by
providing the size of each object within a bounding box in
addition including the name of the object. By highlighting the
part of the image that contains the object (i.e. emphasizing the
visual features of the object), the end user can understand the
detector decision. The results of instance segmentation task
can be also considered as self-explainable results. They
include extra information that enables the end user to
understand the reasons for the model decision. Through
highlighting the exact boundaries of an instance in addition to
the instance name, the instance segmentation model precisely
defines the visual reasons for their predictions. A fundamental
requirement for self-explainable results of object detection
and instance segmentation is that the objects and instances in
the input image or frame are recognizable for bare eyes, which
is the case for most computer vision problems.

In addition to self-explainable results mentioned above,
different AI explanation facilities can be used to build trust in
AI models in general. However, the key to offering effective
explanations to end users lies in aligning the explanation with
both what the end-user can observe and what the model
perceives and predicts. Among these explanation approaches,
a set of approaches that rely on training examples to reason
the model behavior for a given input. Explanations that are
based on prototyping and case-based reasoning [34],
counterfactual [35] and estimation training data influence [36]
are examples of this set. In prototyping and case-based
reasoning, a subset of prototypes is chosen from the training
dataset. These prototypes are utilized to provide explanations
for the model’s classification using case-based reasoning.
Counterfactual explanation highlights minimum changes in
features that lead to a change in the model’s outcome. To
explain image classifications and object detection algorithms,
this approach usually utilizes a subset of the training set to
provide such explanations. Estimation training data influence
involves identifying a set of training examples that have the
greatest influence on the outcome of the model for a specific
input. This approach also relies on the training set to identify
the proponents and opponents of a given input.

These explanation tools can help to provide efficient
explanations for different computer vision tasks. However,
this can an obstacle for explaining the prediction models when
dealing with sonar data, which is usually presented as an
image to ML models for the sake of benefiting from the
advances in solving computer vision problems. Typically,
sonar data images undergo pre-processing to render them
recognizable to the naked eye and to align them to some extent
with the images typically processed by computer vision
models. Despite the pre-processing and image enhancements
phase, the quality of sonar images cannot approach that of
camera images due to low resolution, significant noise, and
the variable nature of underwater environment. Furthermore,
with the continuing roll-out of more powerful deep learning

methods, the general thrust has increasingly been to present
the model with the raw data, the assumption being that the
model is better equipped to recast the raw data into some
learned latent space.

V. EXPERIMENTS AND DISCUSSION

Different scenarios were conducted for evaluating the
performance YOLOv8 and DETR models on sonar images
using two different datasets.

A. Datasets

While sonar image analysis has gained significant research
interest, the availability of publicly accessible sonar datasets
remains relatively limited. In this paper, two publicly
accessible datasets, which are collected in underwater
environments, are used in this paper.

The datasets are UATD and marine-debris-fls. Both are
collected using FLS. The UATD data set consists of images
of 10 objects with larger sizes compared to those of the
marine-debris-fls data set, which consists of household
objects. Tritech Gemini 1200ik sonar was used to acquire the
images of the UATD dataset, whereas marine-debris-fls were
acquired using the ARIS Explorer 3000. The UATD collected
in real underwater environment from a shallow water lake. On
the other hand, marine-debris-fls data are collected in a water
tank.

The raw data received from the FLS is presented in polar
coordinates, organized into a matrix where rows denote
distance, and columns denote direction. However, in this raw
data format, object shapes appear distorted. To maintain the
accuracy of object shapes, a conversion to Cartesian
coordinates is required. This transformation facilitates a more
straightforward interpretation of sonar data for individuals, as
it represents the shapes of objects without distortion.

The UATD data set consists of raw data of sonar images,
while the marine-debris-fls data comprises sonar images that
underwent an initial processing phase. The initial processing
of phase marine-debris-fls includes image enhancements,
such as histogram equalization or logarithmic transformation,
in addition to mapping to Cartesian coordinates. This makes
them more recognizable for a naked eye than that of UATD
images (Fig. 1).

.

Fig. 1. Two sample images, the one to the left is an image from UATD
with BlueRov object [3], while the image on the right is from marine-debris-
fls with a standing bottle object [6].

B. Scenarios for Experimentation

A set of experiments has been conducted to
evaluateYOLOv8 and DETR on the selected datasets. The aim
of these different scenarios is to evaluate the performance of
these algorithms in terms of Precision (P), Recall and mean
Average precision, as a standard metrics of effectiveness
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evaluation of object detection models. In the evaluation
process, the efficiency was not considered as the object
detection process aims to generate a situation map off-line.
However, especial attention is paid to the explanation means
of the different models using UATD and marine-debris-fls
datasets.

1) YOLOv8
Several experiments have been conducted, as shown in

Table 1. In experiment E1, A COCO pretrained YOLOv8n
model, was fine-tuned trained on the whole dataset of UATD
and in a second experiment E2, the same pretrained model was
fine-tuned on marine-debris-fls dataset. The experiments
show that the model produced a better performance on
marine-debris-fls dataset than on UATD dataset as shown in
Table 2. Sample of a validation batch of E1 and E2 are shown
in Fig 2 and Fig 3. These figures clearly shows that figures
produced by E2 can help the user in validating the detection
decision, while is quite difficult to use the figures of E1 for
such validation.

TABLE I. LIST OF YOLOV8 EXPERIMENTS.

Experiment Dataset Dataset
size

Pretrained Pretrained
Data

E1 UATD 9200 Yes COCO
E2 Marine-

debris-fls
1870 Yes COCO

E3 UATD 1840 Yes COCO
E4 UATD +

logarithmic
transformation

9200 Yes COCO

E5 UATD 9200 No -
E6 Marine-

debris-fls
1870 No -

E7 UATD 1840 Yes marine-
debris-fls

E8 Marine-
debris-fls

1870 Yes UATD

TABLE II. PERFORMANCE OF YOLOV8.

Experiment P R mAP50 mAP50-95
E1 0.859 0.79 0.808 0.36
E2 0.938 0.955 0.971 0.719
E3 0.745 0.724 0.768 0.345
E4 0.803 0.804 0.826 0.371
E5 0.822 0.825 0.827 0.363
E6 0.96 0.982 0.987 0.789
E7 0.721 0.703 0.73 0.326
E8 0.915 0.931 0.962 0.669

To check whether the difference in the performance is
related to the differences in the sizes of datasets, another
experiment, E3, was conducted. In this experiment, a random
selection was made, choosing 20% of the UATD dataset to
create a subset with a similar size to that of the marine-debris-
fls dataset. The results of this experiment do not show a
significant change in the performance compared to that on the
complete dataset.

In experiment E4, a simple image enhancement is
conducted though applying logarithmic transformation to the
images of UATD before fine-tuning a COCO pretrained
model on the resulting dataset. This transformation is selected
as it can be applied on raw sonar images to make them more
recognizable. However, even with this transformation the
images still suffer from deformation as they are in the polar
coordinates and not in the Cartesian coordinate. Fig 4 shows
the impact of applying the logarithmic transformation on a

sample image of UATD dataset with an airplane object. The
aim of E4 is to evaluate the cost of enhancing the visibility of
sonar images in terms of degrading the detection capabilities
of YOLOv8n. The results indicate that image enhancement
does not incur significant costs in terms of Precision, Recall,
and mAPs, as depicted in Table II. In contrast, there are slight
improvements in terms of Recall (R) and mean Average
precision (mAP50, mAP50-90) compared to E1. In addition
to the improvement in appearance of the sonar images that
serves explaining the detector behavior as shown in Fig. 4
compared to Fig. 2.

Fig. 2. A sample of a validation batch on marine-debris-fls.

Fig. 3. A sample of a validation batch on UATD.
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Fig. 4. The image on the left is a raw sonar image with an airplane in polar
coordinates, and the image on the right is the same image after applying
logarithmic transformation to enhance it appearance.

Fig. 5. A sample of a validation batch on UATD with logarithmic
transformation.

To fully remove the deformation of the objects in raw
sonar images due to polar representation, the images should
be represented in Cartesian coordinates. However, since the
bounding boxes in UATD are given with reference to these
raw images, mapping them to Cartesian can lead to producing
images that are outside the boundaries of these. In order
words, at least part of the labelling process, which a time-
consuming task, needs to be repeated to avoid such
possibilities. Hence, despite the considerable potential for
enhancing performance and elucidating detector behavior by
transforming UATD images into Cartesian coordinates, no
additional experiments were conducted.

Two experiments have been carried out, E5 and E6, with
the aim of evaluating the impact of the pretrained model on
the YOLOv8n performance on both datasets. In E5 and E6,
YOLOv8n model was trained from scratch on UATD and
marine-debris-fls from scratch. The performance of the model
showed similar behavior to that of E1 and E2, with a
superiority on marine-debris-fls. Training the YOLOv8n on
the sonar datasets produced slightly better detection
performances compared with fine tuning a COCO pretrained
model, as shown in Table I.

In the last set of experiments, E7 and E8, with YOLOv8n,
a marine-debris-fls pretrained model was fine-tuned on
UATD and a UATD pretrained model was fine-tuned on
marine-debris-fls, respectively. The results of evaluation of
the models demonstrate that a UATD pretrained model
produced a better performance on marine-debris-fls than that
of a marine-debris-fls pretrained on UATD. The superior
performance of different YOLOv8n models on marine-debris-
fls can be due to the impact of simplifying the detection
problem for the model and bare eyes through enhancing the
visibility of sonar dataset.

2) DETR
In the first experiment of using DETR, E9, the model from

(https://huggingface.co/docs/transformers/model_doc/detr)
was fine-tuned on the marine-debris-fls dataset for object
detection without any augmentations. The pretrained deter-
resnet-50 fine-tuned on marine-debris-fls dataset. Steps
defined in (https://github.com/NielsRogge/Transformers-
Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDet
ection_on_custom_dataset_(balloon).ipynb) were followed to
fine-tune DETR.

The same steps followed previously were done to fine-tune
a pretrained detr-resnet-50 on UATD in another experiment.
The generated models were evaluated using CoCoEvalutor.
The results of the evaluation of both experiments are shown in
Table III. The model shows a poor performance when fine-
tuned on UATD and a good performance when tuned on
marine-debris-fls. The poor performance of DETR on UATD
can be explained based on the general poor performance of the
model in detecting small objects. The objects in UATD
images are small compared to that in marine-debris-fls
images. In terms of similarities to the images that DETR
pretrained on, the image enhancements introduced on marine-
debris-fls images make them to some extent similar to the
optical images that the model trained on.

TABLE III. PERFORMANCE OF DETR.

Experiment AR50-90 mAP50 mAP50-95
E1 0.240 0.058 0.017
E2 0.708 0.869 0.616

Fig. 5. depicts the attention weights of the final decoder
layer. This entails illustrating, for each identified object, the
specific region of the image that the model focused on to
predict the corresponding bounding box and class. Fig. 5
shows the queries ids that led to the model prediction together
bounding box of prediction on the input image. It also shows
the pixels that have a strong impact on detecting each object.

The attention mechanism can also be used to show parts of
the image that are highly related, which usually belongs to the
same object in the case of object detections. In Fig. 6., the
model's self-attention mechanism is visualized. This can
provide insight into how the model represents objects.
Specifically, by examining the attention response maps, the
involvement of the encoder in the process of distinguishing
between individual objects can be observed. The visualization
provides insight suggesting that the encoder may already be
engaged in some form of object separation through the self-
attention mechanism. Fig. 6. visualizes relations between
different area learned by DETR in an image from marine-
debris-fls. In this graph, the areas that highly related to four
selected points are visualized. The red points indicate the
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selected points, and the four images around the marine-debris-
fls image visualize the parts that related to each point.

Fig. 6. The upper graphs highlight the areas of the image that lead to the
prediction with the query id that is activated in the prediction. The DETR
here detects the tire and the propeller as indicated in the lower images but
fails to detect a chain which is located above the tire.

The graphs in Fig. 6 show that attention point (220,272),
which is on a chain object that DETR failed to detect, is related
to the tire object, which DETR has been detected. This can
indicate that a static configuration of objects during dataset
collection, as the case in marine-debris-fls, can misguide
DETR leading to paying attention to correlation between the
locations of different objects and such correlation can lead to
wrong prediction.

Despite the high computation cost associated with vision
transformers, the attention mechanism can be used to explain
behaviour of their detection.

VI. CONCLUSIONS AND FUTURE WORK

To gain user’s trust in object detection models,
explainability should be taken into consideration in the
various stages of detector development and deployment.
Consideration of explanatory aspects should commence from
the initial stages of data collection and preparation, extending
through to the final deployment stage. As state-of-the-art
detectors are data driven models, special attention should be
paid to prepare and present these data to the model. In addition
to presenting the data in a way that enables efficient and
effective utilization of the data in the development process, the
presentation should be aligned with the user perception of the
model input to facilitate a better perception of the model
behavior. In this paper, two prominent object detectors are
evaluated with two datasets. One dataset is presented more
recognizable for a naked eye than the other. The performance
of the two detectors on this dataset whose objects are
presented in a form that is aligned with human’s perception of
these objects outperforms their performance on the other

dataset. It is worth mention that in the UATD dataset, the
bounding box is defined as a rectangle in the polar
coordinates, which is mapped to a disk in the Cartesian
coordinate system. Such mapping can result in having objects
outside the defined boundaries when mapping is not
considered while defining the bounding box. The attention
mechanism in vision transformers can be utilized to explain
the detector behavior and shed light onto their internal work.
This mechanism can be used to visualize relations between
different parts of an image, which can be compositional or
correlation relations. Such visualization can help the end-user
to verify the model predictions and the model developer to
take any correction actions in the case of correlation relations.
Visualizing the self-attention of DETR on marine-debris-fls
raised the authors’ concerns regarding the existence of
location correlation relations as a result of collecting the sonar
images from a single configuration of the objects in a water
tank.

Fig. 7. The self-attention of four points are shown. The self-attention should
highlight related areas. A self-attention of a point should show strong
relations between points that belongs to the same object.

A possible direction of this research is to further explore
the existence of location correlation in marine-debris-fls
dataset. Another direction is to explore utilizing different
transformer-based detectors for better performance on sonar
data in terms of effectiveness, efficiency and explainability.
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