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Abstract—During the 20st century, millions of tons of munition
were dumped into the oceans worldwide. After decades of decay,
the problems these unexploded ordnance (UXO) are causing are
starting to become apparent. In order to facilitate more efficient
salvage efforts through e.g. autonomous underwater vehicles,
access to representative data is paramount. However, so far such
data is not publicly available. In this paper we present a dataset of
multimodal synchronized data for acoustic and optical sensing of
UXO underwater. Using an ARIS 3000 imaging sonar, a GoPro
Hero 8 and a custom design gantry crane, we recorded close
to 100 trajectories and over 74,000 frames of 3 distinct types
of UXO in a controlled environment. Included in this dataset
are raw and polar transformed sonar frames, annotated camera
frames, sonar and target poses, textured 3D models, calibration
matrices, and more. The dataset is publicly available at https:
//zenodo.org/records/11068046. The code for processing the raw
data is available at https://github.com/dfki-ric/uxo-dataset2024.

I. INTRODUCTION

Wars often leave countries riddled with unexploded ord-
nance (UXO) in the form of both duds and stocks beyond
the peacetime reserves. Maintaining or properly recycling
this surplus is costly and inefficient. The common policy
of previous decades was therefore to dump the no longer
required munitions into the oceans. In the German oceans
alone, an estimated 1.6 million tons lie dormant at the bottom
of the sea [1]. As the objects slowly rot away, UXO can
become unstable or release toxic agents into the environment,
affecting habitats and food chains [2]. These problems are
not new; however, with the growing interest in environmental
protection [3], [4] and marine infrastructure [5], policies are
now shifting towards recovery and disposal of munitions
without disturbing the environment whenever possible [6], [7].
An increase in munitions clearance operations at sea can be
expected in the near future.
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Fig. 1. Experiment setup in the test basin at DFKI RIC, Bremen, Germany.

UXO are usually handled by explosive ordnance disposal
(EOD) experts, who decide whether an UXO is safe to
transport, safe to handle, or has to be destroyed in situ [8].
Important risk factors are the munition type, its overall con-
dition, and the state of its fuse [9].

In air, this assessment could be mostly made by visual in-
spection. However, due to limited amounts of natural light and
turbidity, visibility underwater tends to be limited and a major
factor preventing UXO identification [10]. Turbidity can be
particularly high near river estuaries, after storm events [11],
and in harbor areas [12]. This is also true for underwater work
in general, and EOD operations in particular, as they often
lead to the mobilisation of sediments. For example, during
EOD, uncovering UXO by underwater jetting is discouraged
because they strongly disperse sediment even with suction
equipment [13], [14]. Lower visibility also impairs the actual
handling procedures, be it salvaging, underwater transfer, or
in situ destruction.

For initial localization and to get a first impression, EOD
experts have started using high-frequency sonars with large
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Fig. 2. Matched sonar and camera frames. From left to right: 100lb GP AN-M30, Phosphor bomb INC 30lb MK III, 120mm Mortar bomb DM81.

TABLE I
DIMENSIONS AND TYPES OF RECORDED UXO OBJECTS

US Bomb 100lb GP AN-M30 Phosphor bomb INC 30lb Mk III 120mm Mortar bomb DM81
Condition Heavily rusted Heavily rusted and deformed Good

Length 737 mm 442 mm 580 mm
Diameter 208 mm 127 mm 120 mm
Weight 51 kg 11.3 kg 12.8 kg

vertical apertures [7] like the ARIS Explorer 3000 for acoustic
imaging. The successful application of this sensor for EOD
has been reported both for experimental set-ups [15], and
in production [16]. However, sonars struggle to penetrate
the sediment for more than a few centimeters and are often
difficult to interpret by humans. EOD divers therefore still
rely on haptic feedback for their assessment [7], [14]. In a
profession that is already hazardous, this method of object
identification obviously constitutes a particularly high-risk
activity.

Chemical sensing has also been proposed for UXO lo-
calization by collecting water samples through divers [10]
or Niskin bottles [17]. However, due to the huge variety
and diverse material compositions, chemical sensing cannot
provide information on the munition type or state of the fuse
of an object.

One idea to support UXO identification and alleviate risks
to EOD divers is to use artificial intelligence (AI) to discover
features where humans are struggling [18], [19]. In recent
years, AI has particularly excelled in environmental percep-
tion, notably in camera-based image understanding such as
object identification and classification.

However, a problem most of today’s AI algorithms are
facing is the large amount of data required to train a model,
often consisting of millions of images for general vision
based tasks [20]. While general object recognition models can
be used as a basis for more specific recognition tasks, this
specialization typically still requires hundreds to thousands
of images [21]. Variations in lighting conditions can further
exacerbate this issue [22]. The domain of underwater UXO is
particularly affected by this scarcity; no high-quality dataset
has been published thus far. The topic is inherently sensitive
due to security concerns, and most of the data is acquired by

private companies and not made available to the public, which
impedes research in this area. Additionally, in-situ data often
lacks critical information, like the type and state of scanned
objects, object pose information, coverage gaps [23], etc.

This issue can be solved to some degree by employ-
ing generative AI methods, e.g. generative adversarial net-
works (GANs) to generate fake data resembling a reference
dataset [24], [25]. Conditional GANs, for instance, have
been employed to generate camera-like images from acous-
tic information sourced from imaging sonars or multibeam
echosounders in low visibility underwater environments [26],
[27]. However, a reference dataset is still required to guide
generation in the right direction. On one hand, this approach
can enhance the available dataset by introducing more vari-
ability. On the other hand, it is of course limited by what is
included in the reference dataset and can therefore never cover
features not already present.

AI models have also been used in more specialized scenarios
like underwater robots [28]. Current work at DFKI focuses on
developing and adapting methods for combined 3D reconstruc-
tion and pose estimation of UXO. The goal is to enable an
intervention AUVs like the underwater robot Cuttlefish [29] to
locate, identify, and prepare UXO for EOD.

In summary, visual inspection is not always possible, and
methods to obtain additional information are either very risky
for humans or insufficient for UXO identification. To lower
the risk for humans and extend handling capabilities, the use
of AI models and intervention AUVs seems opportune, yet is
hindered by the availability of usable training data.

To facilitate further research, we created a dataset of
acoustic and optical scans of UXO underwater, recorded in
a controlled experimental environment. It has the following
properties:



• Sonar scans of multiple UXO using an ARIS Explorer
3000 imaging sonar.

• Matched GoPro UHD frames for most sonar frames.
• Known and accurate transforms between sonar and tar-

gets.
• Known details UXO targets including munition types,

dimensions, and 3D models.
• Tracked scan trajectories that are typical and achievable

for non-experimental environments.
• Publicly available at https://zenodo.org/records/

11068046.
• Export scripts available at https://github.com/dfki-ric/

uxo-dataset2024.

II. RELATED DATASETS

Since many off-shore dumping sites were not properly
documented, the first challenge for recovery and disposal
is localization. This usually involves ships equipped with
mutlibeam echosounders (MBES) and sidescan sonars (SSS).
Collecting this kind of data has been standard practice over
many years for any kind of seafloor construction. However,
these recordings are usually considered sensitive, as they cover
critical infrastructure sites and company secrets. UXO can also
be recovered for nefarious means and pose a high risk for
civilians [30]. As a result, most of this data is not publicly
disclosed [31].

Even if these datasets were made public, their usefulness for
e.g. EOD divers would be limited due to the limited amount
of information that can be collected from a sonar survey.
Known problems include limited resolution, fixed viewing
angles, digital elevation models (DEM) instead of 3D models,
and missing information on detected objects.

Brown et al. [32] have circumvented this issue in their Syn-
thethic Aperture Sonar (SAS) dataset by generating sensor data
both from physics simulations and recordings of a prepared
test site. This dataset has a strong focus on buried or otherwise
covered UXO.

Singh et al. [33] provide a forward looking sonar (FLS)
dataset with marine debris as targets. For target detection they
used Faster-RCNN [34] and YOLOv3 [35] successfully. Ge et
al. [36] developed a method based on YOLOv7 and applied it
to the same dataset.

Similar datasets exists for the purpose of identifying fish
[37] or targets like cylinders and tires [38]. While perfectly
suited for sonar semantic segmentation, the lack of navigation
data and viewing angles limits their usability for our purposes.

III. DATASET GENERATION

A. Enviroment and Equipment

Our UXO targets were recorded using an imaging sonar and
a camera, both mounted on a pan-tilt unit (PTU) attached to a
gantry crane. In particular, the following hardware was used:

• Sonar: SoundMetrics ARIS Explorer 3000
• PTU: SoundMetrics ARIS Rotator AR3
• Camera: GoPro Hero 8 (5.3k UHD)
• Gantry crane: custom built

The recordings were collected at the German Research Cen-
ter for Artificial Intelligence (DFKI) in Bremen, Germany, in
a test basin containing 20,000 L of freshwater and measuring
3.4 m x 2.6 m x 2.5 m. The basin is equipped with a gantry
crane, which can move freely in the xyz-axes and execute
pre-programmed trajectories with sub-millimeter precision at
an update rate of 10 Hz, thus allowing for precise repetition of
trajectories and recording of positioning ground truths. A PTU
was mounted on the gantry crane to hold the sensors, allowing
them to rotate freely. Fig. 1 depicts the complete setup used
for our recordings.

B. Targets

The recorded targets, shown in Fig. 3, are real UXO objects
provided by Eggers Kampfmittelbergung GmbH. Any warfare
agents were previously professionally removed. To cover some
variety in size and shape, we selected three targets for the
recordings: a rusted 100 lb general purpose bomb, a heavily
deformed phosphor bomb, and a mortar bomb with a propel-
lant charge case and tail fins. Table I lists their dimensions and
exact types. We also took several recordings of a test cylinder
for reference.

Fig. 3. The UXO targets available for our recordings.

C. Recordings

In total, the dataset includes 95 recordings and 74,437 sonar
frames with attached poses and calibration matrices. All data
is paired with the type of object, sonar pose, object pose,
and sonar parameters like gain and range, etc. For 48,462 of
these we also provide camera frames, most of which have
annotations in the form labeled bounding boxes. Matching
between sonar and camera frames was manually verified. The
sonar data is available in three different formats: point clouds,
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raw images, and polar-transformed images. Additionally, we
created and provide a program for viewing the recordings and
metadata in a synchronized manner.

The recordings mainly consist of half-orbit trajectories
at three different depths. For some configurations, we also
conducted linear flyovers at two different angles. The latter
are intended to mimic the perspective typically achieved
when scanning larger areas for UXO. In order to keep our
recordings consistent and improve the signal-to-noise ratio
against the background, the targets were mounted on a narrow
stand. However, we also recorded complete 360° scans at two
different depths for the US Bomb 100lb GP AN-M30 placed
on the ground.

During the execution of half- and full-orbit trajectories,
pitch and roll were fixed, while the yaw was controlled manu-
ally to keep the target in frame. The trajectory was not a perfect
circle due to space limitations in the basin. Sonar settings were
selected to cover different ranges, gains, and resolutions while
still avoiding reflections. We also reconstructed high-fidelity
textured 3D models using Agisoft Metashape from more than
150 images per target, recorded in-air with a Canon EOS 80D.
The textured 3D models and processing scripts are released
alongside the dataset.

D. Data Processing

Our focus for this dataset was on collecting accurately
tracked sonar footage. Collecting camera footage was therefore
more of an afterthought, albeit a valuable one. However, our
decision to use a GoPro resulted in significant overhead in the
post processing. There were several issues contributing to this:

• We let the GoPro record continuously over multiple
recording instances/trajectories.

• The GoPro’s internal clock was not properly synchro-
nized with the rest of our setup.

• GoPro and ARIS recorded data unsynchronized and with
different frame rates.

• The transform between GoPro and ARIS was not fixed
and slightly moved each battery change.

• Due to low battery, some recordings don’t have GoPro
footage.

When matching the footage, we found that the GoPro’s
audio track captured easily identifiable features whenever the
crane’s motors were engaged, helping us split the footage into
one clip per trajectory. Solving the timing issues proved more
challenging, and was ultimately done by hand based on visual
movement and changes in the optical flow. Since the GoPro
recorded at a higher frame rate than the ARIS (30 Hz vs.
15 Hz), we could always select a closest camera frame for
each sonar frame. However, even with the use of a custom tool
(also part of our release, see fig. 4), this took a considerable
amount of time.

In the end, we processed our recordings as follows: 1.
extract sonar frames, 2. split camera footage, 3. extract relevant
sections, 4. calculate optical flows, 5. match data to sonar
frames, 6. export and organize.

Fig. 4. Matching tool used for aligning sonar and camera recordings.

Almost all scripts are written in Python 3, the remainder is
written in Bash. Further details can be found in the code re-
lease, available at https://github.com/dfki-ric/uxo-dataset2024.

E. Structure

/

3d_models

calibration

recordings

${uxo_type}
${datetime}

aris_raw

${frame_idx}.pgm
aris_polar

${frame_idx}.png
gopro

${frame_idx}.jpg
label

${frame_idx}.json
aris_file_meta.yaml

aris_frame_meta.csv

gantry.csv

notes.txt

Fig. 5. Directory structure of our dataset.

Our recordings are grouped by UXO type first, and then
recording timestamp, as shown in Fig. 5. Each recording
contains the following:

• sonar raw folder, containing raw sonar frames in .pgm
format named by sonar frame index.

• sonar polar folder, containing polar transformed sonar
frames in .png format named by sonar frame index
(downloaded separately).

• gopro folder, containing camera frames in .jpg format
named by sonar frame index.

• label folder, containing camera frame bounding boxes in
.json format named by sonar frame index.
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• aris file meta.yaml file, the sonar metadata.
• aris frame meta.csv file, the metadata for each sonar

frame including PTU angles, indexed by frame number.
• gantry.csv file, the gantry crane positions for each sonar

frame index.
• notes.txt file, containing a short description of the record-

ing and additional notes and comments.
The 3D models are exported as .obj Wavefront files and

come along a .mtl material file and the texture in JPEG format.
The calibration folder contains the transforms between the

crane and sensors, provided as a .yaml file, and GoPro camera
calibrations. A jupyter notebook showing how the transforms
can be used using the transforms3d package is included in the
code release.

F. Annotations

The camera frames were systematically annotated with
bounding boxes and object types to facilitate the training of
object detection models. This was done automatically where
possible, and by hand using Make Sense [39] for the remaining
frames. The automated annotation involved the following
steps:

• Image Conversion: Conversion from BGR to HSV color
space to enable better color-based segmentation.

• Mask Creation: Identify HSV ranges that isolate the
UXO well.

• Thresholding and Contour Extraction: Combination of
mask with contour detection to exclude stray sections.

• Bounding Box Extraction: Mapping of isolated regions
to bounding boxes.

In total, we provide 37,278 annotated images. The distribu-
tion of data per class is presented in Table II. Frames from
e.g. the test cylinder was not labeled.

TABLE II
NUMBER OF SAMPLES PER CLASS

Class Number of samples
100lbs aircraft bomb 15,536
incendiary grenade 9,157

mortar shell 12,585

IV. CONCLUSION

We find that research on AI models for underwater UXO
detection, identification and autonomous handling through
e.g. intervention AUVs is hindered by the near non-existent
availability of public datasets. We aim to make a contribution
by providing a publicly available dataset of three different
UXO types, using a high frequency imaging sonar, a high
resolution camera and a remote controlled gantry crane. The
dataset includes UXO and sensor poses, time-matched frames,
annotations, textured 3D models, calibrations, and the scripts
we used for processing the data. We hope that this dataset will
be useful in future research for solving a major problem in-
herited from the past: the recovery and disposal of unexploded
ordnance that have been dumped into the oceans.

A. Lessons Learned

Collecting our dataset did not come without hassles. For
those readers planning to record a dataset on their own, these
are our major takeaways:

• All sensor data should be collected by one central entity.
Exceptions to this are not worth the resulting overhead
in post-processing.

• Sensors that can’t be integrated this way should be re-
placed. Establishing strict procedures for sensors outside
this setup helps with consistency.

• Keep processing times in mind. UHD footage may sound
appealing, but is difficult to work with.

• Schedule time in between recordings for validation.
• Check the state of battery powered sensors before each

recording.
• Make sure you have well-defined transforms between

your sensors.

B. Future Work

Our motivation to record this dataset lies in the following
research goals:

• To train AI models for feature and pose estimation of
UXO.

• To develop algorithms for 3D reconstruction from acous-
tic data.

• To inform interaction strategies for intervention AUVs to
support UXO recovery.

The outcomes of these research goals will be presented in
more detail in future papers.
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