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Abstract

Animating human face images aims to synthesize a desired source identity in a
natural-looking way mimicking a driving video’s facial movements. In this context,
Generative Adversarial Networks have demonstrated remarkable potential in real-time
face reenactment using a single source image, yet are constrained by limited geometry
consistency compared to graphic-based approaches. In this paper, we introduce
Geometry-guided GAN for Face Animation (G3FA) to tackle this limitation. Our
novel approach empowers the face animation model to incorporate 3D information
using only 2D images, improving the image generation capabilities of the talking
head synthesis model. We integrate inverse rendering techniques to extract 3D facial
geometry properties, improving the feedback loop to the generator through a weighted
average ensemble of discriminators. In our face reenactment model, we leverage 2D
motion warping to capture motion dynamics along with orthogonal ray sampling and
volume rendering techniques to produce the ultimate visual output. To evaluate the
performance of our G3FA, we conducted comprehensive experiments using various
evaluation protocols on VoxCeleb2 and TalkingHead benchmarks to demonstrate the
effectiveness of our proposed framework compared to the state-of-the-art real-time face
animation methods. Our code is available at github.com/dfki-av/G3FA.

1 Introduction
Talking head generation involves the task of re-rendering a source face image with a new
pose and expression, often controlled by either the same individual or a different one. This
technology finds particular application in video conferencing tools by enabling significant
bandwidth reduction through keypoints transmission or by displaying alternative appearance
representations. This not only reduces transmission costs but also mitigates potential biases
in scenarios like job interviews while preserving a sense of presence for participants.
While this challenge was initially tackled by computer graphics researchers, new advances
in deep generative modeling led to significant progress in this field [6, 29, 36, 42, 50].
Approaches centered around graphics-based head synthesis demonstrate impressive
geometric capabilities as they aim to fully reconstruct and animate human heads [38].
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Typically, these approaches leverage parametric models [3, 20] to reconstruct the geometry
of the human’s head, subsequently mapping the source identity’s texture to render the
animation [38]. Recent advances in this domain, particularly by the introduction of 3D
Gaussian Splitting technique [16] are moving towards increased photorealism level and also
rendering speed [46]. Nonetheless, this approach necessitates multiple images captured
from various viewpoints of the subject’s head and entails some processing time for head
reconstruction.
In parallel, researchers have been harnessing deep generative models to enhance face
reenactment techniques. This is typically achieved by extracting features from a desired
source image and warping them based on a driving video [22, 36, 51] or utilizing a
pre-trained StyleGAN2 model [15] and navigation in the latent space [43, 47]. Compared
to graphics-based approaches, these methods demonstrate higher generalization capabilities,
having been trained on thousands of video clips and capable of animating diverse human
face images. They can start rendering instantaneously using a single shot of the source
identity, producing photorealistic outcomes including fine details and accessories like
glasses. However, since these methods are trained on 2D data, they are generally less robust
in terms of geometry reconstruction. This leads to poor reconstruction quality in the case of
head rotations far from the frontal view - typically when the driving source turns the head
left or right.
To overcome these limitations, this paper introduces a novel face animation method based on
Generative Adversarial Networks (GAN) [8] that incorporates 3D supervision to enhance the
generator’s awareness of the true distribution of the human’s head while synthesizing novel
head poses. To address this challenge, an inverse rendering approach is employed to extract
geometry properties including depth and normal maps from RGB frames. Our method uses
a weighted combination of discriminators, to inject this information into the generator as
a core module for image synthesis. The proposed framework can be easily applied to
most adversarial-based face reenactment models, leveraging off-the-shelf pre-trained inverse
rendering models.
The contributions of this paper can be summarized as follows:

• We propose implicit 3D supervision leveraging prior human head information for
face reenactment models to enhance geometry consistency without affecting inference
time.

• We introduce a novel integration of 3D properties into a GAN framework for face
animation tasks, without imposing significant computational overhead during training.

• We conduct extensive experiments across various scenarios on benchmark datasets,
demonstrating a superior realism compared to recent state-of-the-art approaches,
both quantitatively and qualitatively, particularly in the case of extreme head pose
variations.

2 Related Works

2.1 Face Reenactment
Recent reconstruction-based methodologies typically employ the FLAME 3D face model
[20] and rendering algorithms, such as rasterization, to achieve real-time reenactment.
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Figure 1: Implicit 3D supervision: This figure shows how an inverse rendering module can
guide the generator to generate more geometry-consistent output. We utilized canonical
shading here to better visualize the differences between two cases and it is not used in the
model’s pipeline.

These approaches involve reconstructing the avatar’s head and subsequently animating it
by manipulating the morphable model’s parameters. However, these techniques exhibit
limitations in rendering fine details and entail significant training time when reconstructing
heads from 2D-captured data. [9, 38]. Generative models, including GANs and Diffusion
models [11], have demonstrated significant success in this field. In the real-time domain,
GAN-based techniques initiate by estimating 2D or 3D keypoints and deriving the optical
flow of these points between the source and driving frames. Following this, they deform
the features of the source image and utilize a generator model to produce the animated
output [12, 36, 42, 49]. Expanding on the concept of GAN inversion [34], another research
direction, aims to animate face images based on latent space navigation of StyleGAN model
[2, 43, 47]. On the other hand, Diffusion models provide face animation approaches that
can even work with other modalities like audio information [33, 39, 45]. These models
are typically used for offline tasks where rendering time is not crucial. Additionally,
some researchers have explored the application of neural rendering techniques within
an adversarial framework, capitalizing on their ability to generate photorealistic results
[30, 48, 51].

2.2 Generative Models

Generative adversarial networks (GANs) [8] serve as the primary engine for generating
high-fidelity samples in the domain of talking head synthesis. Researchers have endeavored
to expedite convergence and enhance the stability of GAN models by optimizing their
architectures [13, 25] or loss functions [1, 10]. In this regard, certain works have explored
the use of two discriminators, whereby forward and backward KL divergence is computed,
resulting in improved performance compared to the standard framework [28]. Additionally,
the combination of pre-trained discriminators with varying architectures has been employed
to enhance the quality of the generated images [19, 27]. Some studies have also tried to guide
the generator through more effective supervision by incorporating geometry information
during the model’s training process [12, 35, 40].
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Figure 2: Face animation pipeline: Capturing facial expression and pose based on keypoints,
followed by an implicit 3D supervision using inverse rendering and an ensemble of
discriminators. NIR stands for Neural Inverse Rendering which is a pre-trained model and
FVR is our Face Volume Rendering module.

3 Method

The global architecture of our method is shown in Fig. 2. We leverage the face volume
rendering (FVR) technique [23] in conjunction with an adversarial training procedure. To
empower the model in generating photorealistic outcomes mainly based on RGB training
data, we integrated a neural inverse rendering module and two additional discriminators
to process the extracted 3D attributes. Our objective is to synthesize images with the
appearance of a given source image IS while incorporating the pose and facial expressions
from a set of driving frames {ID1 , ID2 , ..., IDn}, which could be sourced from videos or live
webcam streams. In the subsequent sections, we provide comprehensive information on each
individual module.

3.1 2D Motion Estimation

We start by extracting features from the source image fs using a dedicated self-supervised
feature extraction module Fs. To capture the facial dynamics of the driving frames, we
employ a motion estimation module. Within this module, we detect and extract a set of k =
15 2D landmarks from both the source and driving frames, leading to pairs {qs,k,qd,k} ∈R2.
Subsequently, to better emulate facial changes, we consider the neighboring points as a 2×2
Jacobian matrix {Js,k,Jd,k} ∈ R2×2 for each landmark. Using first-order Taylor expansion,
we can obtain an affine approximation of motion field modeled by τS←D based on backward
optical flow as in [36]:

τS←D,k(z)≈ qs,k + Js,kJd,k
−1(z−qd,k). (1)

Although some studies have advocated for the utilization of 3D keypoints and the elimination
of the Jacobian matrix [42], we did not observe significant differences. Moreover, adopting
3D keypoints introduces a substantial number of parameters to the model. Leveraging a
dense motion field for each keypoint [36], we combine them with a weight factor as a mask,
ranging from 0 to k {M0,M0, ...,MK} , where the initial one represents the background. The
dense motion estimation module also produces an occlusion map O to generate the occluded
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parts using Hadamard product while synthesizing novel poses:

τ̂S←D(z) = M0z+
K

∑
k=1

MkτS←D,k(z), (2)

Fw = O⊙ fw( fs, τ̂S←D,k). (3)

Finally, in this part of the framework, the extracted features from the source image are
warped using information obtained from the dense motion estimation module. This allows
the warped features to be utilized by the face volume rendering component.

3.2 Rendering
To render the final animated face results, we use the face volume rendering architecture
proposed by [51]. This architecture, compared to other approaches utilizing a single U-Net
model [31] as the generator, offers a reduced parameter count and the ability to generate
photorealistic outcomes through orthogonal ray sampling and volume rendering. It is
important to note that our proposed framework seamlessly integrates with other architectures
that follow an adversarial training procedure.
To employ the face volume rendering module, which consists of several parts, we initially
feed the warped features Fw obtained from the previous stage into two networks: the 3D
shape extractor φσ and the color extractor φcolor similar to [51]. These networks serve
to both separate these two types of information from the features and elevate them to a
higher-dimensional space. In order to calculate the sampled color and density, we leverage
the proposed orthogonal ray-sampling module, which employs fθ ; a multi-layer perceptron
(MLP) to estimate the color field Fcolor and voxel probability Fσ in an adaptive manner [51],
instead of adhering to the ray-sampling strategy proposed in NeRF [24]:

Fσ = φσ (Fw), (4)

Fcolor = φcolor(Fw), (5)

pσ , pcolor = fθ (Fσ ,Fcolor). (6)

We confine the camera pose to the frontal view and employ an adaptive ray sampling method,
which significantly enhances the rendering speed. In our framework, we did not employ a 3D
face reconstruction component to supervise the rendering model. However, by employing
geometry guidance based on 3D geometric properties and an ensemble of discriminators,
we can provide implicit supervision to the rendering model. To aggregate the color pcolor
and the density pσ obtained from the adaptive ray sampling segment, we utilize a volume
rendering algorithm, albeit distinct from [23]:

Fr,i =
D

∑
j=1

τ j(1− exp(−pσ ,i, j))pcolor,i, j, (7)

τ j = exp(
j−1

∑
k=1
−pσ ,i,k), (8)

where τ j is the transmittance term. This algorithm enables the derivation of the final RGB
value. Furthermore, we have observed that concatenating the extracted features from the
source image fs with the output of the volume rendering module Fr and passing them through
a shallow decoder with SPADE layers improves the fidelity of the results, as suggested
in [51]. A detailed comparison of computational costs is provided in the supplementary
material.
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3.3 Neural Inverse Rendering
As depicted in Fig. 1, we utilized a well-established Unsup3D model [44] to obtain 3D
geometric properties, such as canonical depth and normal map, from a single RGB image.
These properties are subsequently employed to enhance the quality of the rendered results.
By regarding the RGB image I as a function Ω→ R3 that maps coordinate {0, ...,W −1}×
{0, ...,H−1} in a 2D space to tensor in R3×W×H , and under the assumption that the image is
centered and relatively symmetric, we adopt an autoencoder architecture model, as in [44],
to obtain 3D properties, including depth map d, global light direction l, viewpoint w, and
albedo image a, using an analysis-by-synthesis approach making Î ≈ I:

Î = ∏(ψ(a,d, l),d,w), (9)

Here, ψ synthesizes a version of the object from a canonical viewpoint, then the reprojection
function ∏ tries to simulate the viewpoint effect to the model using shaded canonical image
ψ(a,d, l) and also depth map d. However, in our framework, we utilize a pre-trained
Unsup3D model trained on the CelebA dataset [21], extracting only depth information, from
which we subsequently derive the normal map.

3.4 Ensemble of Discriminators
To incorporate the extracted 3D information, obtained through prior knowledge of the human
face, into our talking head synthesis pipeline, we introduce two additional discriminators.
For this purpose, we feed each discriminator with the RGB image, canonical depth, and
normal map, respectively. All of these discriminators employ a multi-scale architecture [41]
with spectral normalization [26]. To ensure the convergence of the model is unaffected,
we assign different weights λi to each discriminator [18] and aggregate them based on the
min-max formulation to obtain the final result:
LGAN(G,Dtotal) = Ex∼preal(x)[logDtotal(x)]+Ex′∼pfake(X′)[log(1−Dtotal(x′))], (10)

Dtotal = ∑
i∈S

λiDi(xi), (11)

where S = {RGB, depth, normal} and we assume ∑i λi = 1. By incorporating the 3D
face geometry as additional supervision, the generative model can better estimate the true
data distribution. The photorealistic results generated by the Unsup3D model produce
meaningful depth and normals, thereby reducing the adversarial loss, rendering them close to
real images. This integration of 3D information into a 2D GAN pipeline, in contrast to [35]
and [12], preserves the inference time efficiency, and when combined with more powerful
inverse rendering techniques, can yield even more effective outcomes.

4 Experiment
The G3FA framework is devised to operate in a fully self-supervised manner during the
training process. It randomly extracts two frames from a video: the first frame serves
as the source, while the second frame acts as the driving frame. The framework then
animates the source image based on the changes exhibited by the driving frame, while
simultaneously incorporating the ground-truth animated frame for comparison. Adversarial
and perceptual losses [14] are employed to ensure the photorealism of the generated samples.
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Table 1: Comparison with prior works on same-identity reconstruction on VoxCeleb2 [5].
Bold values indicate the best performance, while underlined values represent the
second-best.

Method L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ AKD ↓
FOMM (NeurIPS 2019) 12.31 0.109 23.52 0.71 24.59 1.89
Face vid2vid (CVPR 2021) 11.13 0.125 24.15 0.84 21.78 1.72
DaGAN (CVPR 2022) 11.22 0.117 25.64 0.88 22.83 0.91
FNeVR (NeurIPS 2022) 11.16 0.094 24.18 0.77 21.11 0.95
LIA (ICLR 2022) 12.02 0.106 25.57 0.84 16.47 1.12
HyperReenact (ICCV 2023) 13.42 0.111 22.51 0.69 28.87 1.28

G3FA (ours) 10.87 0.081 24.51 0.91 18.79 0.80

Table 2: Quantitative comparison of cross-identity reenactment on VoxCeleb2[5] and
TK[42]. Bold values indicate the best performance, while underlined values represent the
second-best.

VoxCeleb2 TK
Method FID ↓ CSIM ↑ FID ↓ CSIM ↑
FOMM 142.18 0.5219 130.78 0.5402
Face vid2vid 139.74 0.5971 121.44 0.6114
DaGAN 130.77 0.6021 120.94 0.6264
FNeVR 132.36 0.5408 122.47 0.6021
LIA 122.26 0.6078 118.59 0.6338
HyperReenact 152.94 0.5144 147.63 0.4923
G3FA (ours) 127.12 0.6274 122.83 0.6455

The adversarial loss encompasses the combined predictions of all discriminators, while the
perceptual loss [14] leverages a pre-trained VGG-19 model [37] trained on ImageNet [32] to
extract features. Additionally, to ensure the consistency of detected keypoints in the face, the
framework incorporates an equivariance loss [36]. The keypoint extraction module extracts
keypoints and their jacobians, all of which are attained in a fully self-supervised manner:

Ltotal = LP(x,x′)+LGAN({xi,x′i}i∈S)+LE({xd,k}) (12)

4.1 Implementation Details

Datasets: Our experiments were conducted using two well-known datasets, VoxCeleb2
[5] and TK (TalkingHead-1KH) [42]. VoxCeleb2 [5] comprises over 1 million videos
encompassing approximately 6K distinct identities, while TK offers about 180K high-quality
samples. As part of the preprocessing stage, we traced and cropped face images from
the videos, resizing them to a standardized dimension of 256× 256, as in [36]. This
preprocessing methodology holds particular significance for our neural inverse rendering
module, which was also trained on centered images, ensuring the acquisition of meaningful
geometric properties.
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Source Driving FOMM DaGAN FNeVR LIA HyperReenact Ours

Figure 3: Same-identity reconstruction: Our method exhibits superior performance in terms
of both photorealism image generation and precise synthesis of fine details on VoxCeleb2
[5].

4.2 Training details

Our G3FA model was trained on the pre-defined training set of VoxCeleb2 [5]. Moreover,
randomly selected 90% of the videos from the TK dataset were included for training. For
network optimization, we employed the Adam optimizer [17] with the same parameters
across all modules η = 2× 10−4, β1 = 0.5 and β2 = 0.9. After conducting several
experiments, we determined the weights of the three discriminators as follows: λRGB = 50% ,
and λdepth = λnormal = 25% for depth and normal. These weights remained fixed throughout
the training process. Ablation studies investigating various values of λ are detailed in the
appendix.

4.3 Evaluation Metrics

To gauge the reconstruction quality, we employed the L1 loss, Learned Perceptual Image
Patch Similarity (LPIPS), Structural Similarity Index Metric (SSIM), Peak Signal-to-Noise
Ratio (PSNR), Average Keypoint Distance (AKD) [7] using MTCNN [52] and to evaluate the
identity preservation, we utilized cosine similarity metric (CSIM). Additionally, to compare
the distributions and assess the quality and diversity of real and generated samples, we
utilized the Fréchet Inception Distance (FID) metric.

4.4 Comparison with State-of-the-Art

We conducted a comparative analysis of G3FA against six prominent models: First Order
Motion Model (FOMM) [36], One-Shot Free-View Neural Talking-Head Synthesis for Video
Conferencing (face vid2vid) [42], Depth-aware Generative Adversarial Network for Talking
Head Video Generation (DaGAN) [12], Neural Volume Rendering for Face Animation
(FNeVR) [51], Latent Image Animator (LIA) [43] and One-Shot Reenactment via Jointly
Learning to Refine and Retarget Faces (HyperReenact) [4] on the VoxCeleb2 dataset [5]. We
used the official implementations of the models, except for face vid2vid, where we relied on
an unofficial yet well-known implementation.
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Figure 4: Cross-identity reenactment: demonstrating our method’s superiority in geometry
reconstruction and photorealistic face generation through a Qualitative Comparison on the
TK Dataset[42].

4.5 Same-identity Reconstruction

Same-identity reconstruction involves reconstructing the face of a single individual using
both the source image and driving frames. In Table 1, we show the results of our method
compared to recent state-of-the-art approaches. As demonstrated, our framework exhibits
substantial improvements across the majority of metrics, yielding highly refined samples.
Notably, even without incorporating the face reconstruction component, our model, when
coupled with the FNeVR architecture-based talking head model, achieves superior results.
Fig. 3 shows a qualitative evaluation of our method for this scenario on two examples. Our
method produces the most realistic images, providing the closest resemblance to the driving
faces.

4.6 Cross-identity Reenactment

In this section, we compare the performance of our method with state-of-the-art approaches
on both the VoxCeleb2 [5] and TK [42] datasets. In this scenario, we evaluate the
generalization of our face animation model by utilizing two distinct identities for the source
and driving frames. As indicated in the Table 2, our method attains the highest CSIM value
compared to all other approaches which shows the better identity preservation of our work. In
addition, our G3FA achieves the highest FID score among the majority, closely approaching
LIA. This work leverages a pretrained StyleGAN2 model, enhancing FID values. However,
qualitative evaluation reveals shortcomings in accurately mimicking head rotation, a factor
not assessed in FID calculation due to the predominance of frontal face samples. Notably,
as depicted in Fig. 4, our model consistently produces geometrically consistent results in
extreme head poses compared to other approaches.
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5 Conclusion
We presented a novel integration of 3D information derived from neural inverse rendering
into an adversarial learning framework, employing an ensemble of discriminators for one
shot talking head synthesis. Our framework takes advantage of the intrinsic characteristics
of 3D geometry to enhance the synthesis process outperforming current state-of-the-art
face reenactment models. Importantly, our method can easily be integrated with existing
face animation architectures based on Generative Adversarial Networks (GANs), without
requiring any modifications to their fundamental structure. Leveraging off-the-shelf
geometry extraction modules and discriminators to provide feedback to the generator
preserves inference speed while enhancing the quality of generated samples.
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