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Abstract

Data collection and annotation are time-consuming, resource-intensive processes
that often require domain expertise. Existing data collections such as animal
sound collections provide valuable data sources, but their utilization is often
hindered by the lack of fine-grained labels. In this study, we examine the use
of existing weakly supervised methods to extract fine-grained information from
existing weakly-annotated data accumulated over time and alleviate the need
for collection and annotation of fresh data. We employ TALNet, a Convolu-
tional Recurrent Neural Network (CRNN) model and train it on 60-second sound
recordings labeled for the presence of 42 different anuran species and compare
it to other models such as BirdNet, a model for detection of bird vocalisation.
We conduct the evaluation on 1-second segments, enabling precise sound event
localization. Furthermore, we investigate the impact of varying the length of the
training input and explore different pooling functions’ effects on the model’s per-
formance on AnuraSet. Finally, we integrate it in an interactive user interface
that facilitates training and annotation. Our findings demonstrate the effective-
ness of TALNet and BirdNet in harnessing weakly annotated sound collections
for wildlife monitoring. Our method not only improves the extraction of infor-
mation from coarse labels but also simplifies the process of annotating new data
for experts.

Keywords: Weakly Supervised Learning, semi-automatic data annotation, Al
Transfer, Sustainability



1 Introduction

Passive acoustic monitoring (PAM), has emerged as a key technology for wildlife
monitoring [1] while using acoustic sensors and provides a way to promote biodiver-
sity, assess and understand the impact of climate change, and develop intervention
strategies to preserve ecosystems. However, handling the large amount of data gener-
ated by PAM still poses a barrier for adoption by both researchers and biodiversity
managers [2, 3]. Although a wide range of supervised machine learning methods for
analyzing PAM datasets (e.g., for sound event detection) exist [4], their application is
often constrained by the availability of domain-specific annotated data. Biologists tra-
ditionally rely on museum collections for studying biodiversity [5]. In modern times,
multimedia registers have become increasingly important and recognized as valuable
in common practice. Among these, sound archives and collections hold significant
importance [6, 7]. Several such collections exist, such as FNJV!, Macaulay library?,
and Xeno-Canto®. These resources serve as valuable sources of annotated data for
training models to automate sound event detection in large PAM datasets. However,
their potential for this task is currently limited because these sound files are weakly
annotated, meaning that sound recordings are labeled only at the file level, with no
information about the timestamps of specific identifying species sounds. This problem
is further compounded by the presence of multiple signals in these recordings, such as
other species co-occurring in the same soundscape, and the voice of the naturalist who
performed the recording, often speaking into the microphone and providing metadata
such as species name and a description of the recording context. Effective utilization of
such knowledge sources for powering ML tools rely on isolating the meaningful, identi-
fying portions of the sound recordings. In this paper, we propose a weakly supervised
method to leverage weakly annotated data and generate training data for ML models
for species level sound event detection in PAM datasets (Figure 1).

2 Related Work

Deep learning methods have proven very useful for detection of sound events in PAM
datasets. Among the most popular convolutional neural network (CNN) architectures
applied to PAM are ResNet [8], VGG [9] and DenseNet [10]. Even though they were
created for computer vision tasks, these architectures proved to be very efficient in
analyzing sound data. Kahl et al. [11] developed BirdNet, an EfficientNet-based model
for detection of bird vocalisations. Other popular methods include convolutional recur-
rent neural networks (CRNNs), that combine the advantages of both CNNs and RNNs
[12-14]. [15, 16] compare the performance of different models pre-trained on Ima-
geNet [17] on different PAM datasets. They show that transfer learning can be used
successfully on small PAM datasets with few samples per species.

Availability of training data is crucial for the development of supervised ML mod-
els that generalize well to new recording locations, background sounds and regional
differences in the species calls. BirdNet, a popular pre-trained model for species-level
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Fig. 1: A schematic of our proposed approach

classification of bird vocalizations [11], is trained on datasets that consist largely of
weakly annotated focal recordings. For detecting the presence of target sounds, they
used heuristic image processing methods for signal-strength estimation [20]. These
recordings are often acquired with professional equipment and thus have a high
sound-to-noise ratio (SNR).

In recent years, there has been a notable surge of interest within the research com-
munity in the domain of weakly supervised sound event detection (WSSED), which has
been notably catalyzed by initiatives like the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges and the release of extensive audio datasets
such as AudioSet [21] that provide baselines for the development and evaluation of ML
methods related to sound event detection (SED) and specifically WSSED. Kumar et
al. [22] propose that WSSED can be treated as a problem of Multi Instance Learning;
from this perspective, every audio file can be viewed as a bag B of instances x; of sound
events. If one or more instances have label y; = 1, then the whole bag is considered
to be positive and is assigned label Y. They explore SVM and neural network based
approaches trained on weak labels for detection and achieve temporal localization of
sound events, harnessing richer information from the annotations within the original

Table 1: Performance metrics on AnuraSet

Architecture Global 1s

F1 Score F1 Score Precision Recall

TALNet [18] 90.00 64.68 50.82 88.94
ResNet-50 [8] 90.11 63.54 54.79 75.60
ResNet-18 [§] 88.89 62.85 56.73 70.46
VGGish [19] 69.64 41.67 31.36 59.92
BirdNet [11] 84.80 71.14 67.42 75.30




dataset. Xu et al. [23] introduce an attention mechanism, replacing the ReLU acti-
vation function after each convolution with GLUs. Wang et al. [18] propose TALNet,
a CRNN for audio tagging and localization. They identify the best pooling function
for the task. More recent approaches propose transformer-based methods for WSSED
[24, 25]. Current approaches combine embeddings extracted from pre-trained models
such as BEATS [26] with CRNN classifiers aligning with the newest requirements of
the DCASE challenges that use heterogeneous datasets that contain unlabeled, weakly
labeled and synthetic datasets with strong annotations. In our work, we focus only on
methods for weakly annotated datasets and how to use them to enrich annotations
for PAM. Some of the deep learning methods for detection of sound events in ani-
mal sounds datasets are associated with a user interface for result inspection and easy
annotation [27-29]. We contribute to this body of research by exploring how WSSED
can be used for wildlife monitoring to support biodiversity conservation.

3 Implementation

In our implementation, we apply existing weakly supervised methods to extract
detailed information from weakly-annotated data.

Dataset

For our experiments, we use AnuraSet, a recently released benchmark PAM dataset
comprised of 1612 minutes of omindirectional recordings from four different sites in
two Brazilian biomes: Cerrado and Atlantic Forest [30]. The dataset consists of 60
seconds long recording files, as well as manually created expert annotations for 42
species of anurans (frogs and toads). The annotations consist of strong labels, i.e.,
species identity plus on- and offset times for each call occurrence.

Table 2: Comparison of pooling functions for BirdNET finetuned on 60-second long
inputs and evaluated on either 60-second (global) or 1-second long segments.

Pooling Function Global 1s
F1 Score F1 Score Precision Recall
Average (2) 79.90 65.64 52.20 88.40
Max pooling (1) 81.41 36.70 74.01 24.40
Exponential Softmax(4) 81.57 64.38 51.10 86.98
Linear Softmax (3) 84.80 71.14 67.42 75.30
Attention pooling (5) 80.84 67.63 55.45 86.65

Data Preprocessing

The audio recordings are represented as Mel-frequency single channel spectrograms
S € R"™"™ where m = 64 is the number of frequency bins and n is the number
of frames. As "frame” we denote the minimal time segment, so n depends on the



length of the input files. For the 60-second long recordings n = 2400. To compute the
spectrograms, we use a window size of 1102 and hop length 551. Raw recordings are
resampled to 22kHz. For comparing performance when training is carried with inputs
of different durations, we partition the 60-second audio recordings from the training set
into non-overlapping 9-second and 3-second long segments. We keep the same frame
length and number of frequency bins as described in TALNet [18], but adjust the
number of frames according to the segment length. Considering the unbalanced nature
and relatively small size of the dataset when training with 60-second long input, we
perform iterative stratification to ensure balanced train and test splits, with 80% for
training and 20% for test. For each segment, a vector of binary labels is generated to
indicate presence of calls from each of the 42 species; each entry is set to 1 if a call of
that species is present anywhere in the corresponding segment, and 0 otherwise. To
create the Mel-frequency spectrograms, we use native torchaudio [31] transforms for
audio processing.

Model architecture

For the sound event detection and localization we use TALNet [18] a convolutional
recurrent neural network developed for audio tagging and localization on AudioSet
and the DCASE challenge 2017. The network consists of three convolutional layers, a
pooling layers and one recurrent layer.

To perform WSSED using transfer learning on the PAM dataset, we use ResNet-50
and ResNet-18[8] pretrained on ImageNet [17], VGGish [32] pretrained on AudioSet
and BirdNet [11] pretrained on bird vocalisations, leveraging their feature extraction
capabilities to capture fundamental patterns typical for spectrograms.

All presented models treat WSSED as a multiple instance learning problem; specif-
ically, the strategy consists of training models to make predictions for each frame of
a multi-frame data point, and then apply a pooling function. The pooling function
combines frame level predictions into segment level ones while retaining important
information. The pooling layer applies different pooling functions such as Max Pooling
(equation 1), Average Pooling (equation 2), Linear Softmax (equation 3), Exponential
Softmax (equation 4) and Attention pooling (equation 5)
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Experimental setup

We train the network on samples of the AnuraSet with weak labels (60-seconds long
samples) and evaluate the performance using the strong labels (1-second). In the
training procedure, we use the Adam optimizer [33], and a learning rate of 3 x 10~%.
As a loss function we use the binary cross entropy loss:

L(y,9) = —(y x log(y + (1 —y) * log(1 — §)) (6)

In equation 6, y represents the true labels, while § the predicted probabilities.
Time and frequency masking are applied as suggested in SpecAugment [34]. We create
shuffled batches of size 32 samples and train for 100 epochs.

Evaluation metric is the global F1 score (equation 7, 8) assessing how well the
model can identify only the presence or absence of events within an audio file, and 1-
second F'1 score, an indication of how well the model can localise sound events in an
audio file with a precision of 1 second.

precision X recall

F1=2x - (7)
precision + recall
where,
Trecision = L
b TP+ FP
TP

ll= ——"—

reca TPLFN (8)

To compare the model performance on different input lengths, we also conduct
experiments with 9-second and 3-second long files.

4 Interactive training and annotation tool

We create a user interface to allow the user to train a model from weakly annotated
data and use it to inspect results and change weakly-supervised learning parameters
at inference time, enabling them to do semi-automatic annotation of new unlabeled
data.

In our interface the user can change parameters such as pooling function and
prediction window size. This human intervention at test time allows for improvement
of the final results. We design the tool with two user personas in mind: the expert and
the novice, therefore we create a training (Figure 2) and an annotation pane (Figure
3a).

4.1 Training

The training pane has three main areas that are dynamically filled upon user action to
minimize user input and collapsible for less visual clutter. Here the expert can select
a weakly-annotated dataset and a pretrained model, such as BirdNet [11] or ResNet-
50 [8]. As the pooling function plays an important role in the performance of weakly
supervised learning models [18, 35] we make it a configurable parameter.
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Fig. 2: Training pane: Domain experts can train a model with a backbone of choice
of pretrained models and configure parameters such as pooling function (model con-
figuration area (1)) using a weakly annotated dataset, such as a subset of the FNJV
dataset for anurans. Upon selection of the dataset, the label distribution is computed
for a better overview of the dataset (dataset area (2)). At the bottom (single file
inspection area (3)), the user can inspect single spectrograms, here collapsed.

4.2 Annotation

In the annotation pane, the user can upload and annotate an audio file. Upon upload,
inference runs in the background while the spectrogram of the audio file is computed
and displayed. Upon selection, the time intervals are displayed as gray overlays on the
spectrogram. The user can modify them, delete or add new ones. For the more expe-
rienced user we have created a Settings section (Figure 3b) to modify post-hoc model
parameters related to weakly supervised learning such as pooling function, prediction
threshold to make the model more or less sensitive towards certain classes and predic-
tion window. Currently, our tool is not meant for automatic dataset annotation, but
to help novice and expert users, generate accurate annotations in a more efficient way.
The application is implemented in Python using Dash * and PyTorch [36].

4https://dash.plotly. com
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Fig. 3: Annotation pane: Upon file upload, the model annotates the file with the
detected species’ calls and onset, offset time. The user can modify the predictions if
necessary (a) using UI components such as slider, buttons and input fields. The more
experienced machine learning practitioner can adjust the post-hoc parameters of the
weakly supervised setting to achieve the best performance such as pooling function,
prediction threshold and the precision of the prediction window for the onset-offset
times (0.1 - 1s)(b).

5 Results

We assess the model’s performance on PAM data using the AnuraSet dataset.

We start by analyzing models trained on 60-second long inputs. To compute F1
scores for both tagging and localization tasks, we use weak and strong labels. For
this, we make predictions on 1-second windows by aggregating probabilities across 10
frames, followed by the application of a threshold as described in [18]. To compare
the performance of TALNet with a pretrained model, we use ResNet-50, ResNet-18,
VGGish and BirdNet. In Table 1 we report the global and 1-second F1 scores on
AnuraSet. Since the performance of the model on 1 second segments is essential for
our goal, we report the related precision and recall too. As it is evident from the table
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Fig. 4: Spectrogram of a representative 10-second audio segment, and bar plots with
predicted and observed labels for five example species at 1-second resolution. Gray bars
are true labels; green line is predicted probability of species occurrence; yellow line is
the decision threshold. Notice that species LEPPOD, PHYALB, PHYSAU, and PITAZU are
correctly localized by the model, while DENMIN gets mistakenly identified as occurring
during the entire duration of the audio clip.



Table 3: Micro F1 score of the BirdNet model
trained on inputs of varying duration (3, 9, or
60 seconds), and evaluated globally and on 1-
second long segments. Performance drops as
duration of training samples increases.

Length of Training Input Micro F1 Score

Global 1s
3s 90.27 74.50
9s 89.81 71.00
60s 84.80 71.14

TALNet performs better than ResNet-50 in the localization task (1s segments) and
slightly worse in the tagging task (60s segments) but is outperformed by BirdNet in
the localization task (1s segements). Figure 4 illustrates prediction results for a 10s
long file with five species present.

Table 2 shows the results for different pooling functions on AnuraSet. To analyze
the influence of input length in performance, we finetune and evaluate BirdNet on
three different input lengths (table 3). The decrease of the input length to 9 seconds
improves the performance by 3.36% for the 1-second F1 score and 5.47% for the global
F1 score, indicating that the model’s sensitivity to input length is task dependent.
This finding confirms the results in [37]

6 Conclusion and Future Work

In this paper, we proposed the use of the existing CRNN based approach TALNet
and pretrained models such as BirdNet to harness more information from weakly
annotated data for wildlife monitoring and evaluated its performance on a benchmark
PAM dataset. We demonstrated that domain transfer of existing models developed
for different acoustic environments, such as the one in AudioSet to passive acoustic
monitoring (PAM) datasets does not always require a complex model architecture
and input modifications. With TALNet we achieved a 90% global F1 score in the
tagging task while with BirdNet 71.14% F1 score in the localization task of animal
sounds for 60-second long recordings. Further, we implemented a user interface to
allow domain experts to train the model and investigate the results. Designed with
the human ”component” in mind, our tool makes model configuration and inference
as transparent as possible and allows the user to modify the results if necessary. We
plan to refine our tool by implementing more feedback-loops and include iterative
model training. Future research includes applying our approach to PAM collections to
generate annotated data from the weakly labelled recordings. Based on the promising
results using AnuraSet, we could train BirdNet using the recordings of anuran calls
and the weak annotations from museum collections such as the FNJV collection and
calculate the evaluation metrics using the strong labels from AnuraSet.
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