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Synopsis: EEG-based imagined speech BCIs try to decode imagined speech from EEG activity. 

While several studies have proven the feasibility of this innovative BCI concept, current 

implementations usually rely on high-resolution EEG devices with 64+ channels. These setups 

make EEG-based imagined speech BCIs inconvenient for everyday use. To overcome this 

problem and to evaluate the necessity of such complex setups, we applied electrode reduction on 

three different imagined speech EEG datasets, to find a best suitable subset of electrodes. Our 

results show that the commonly used 64+ channel setups are oversized, and a comparable 

performance could be achieved with half of the electrodes for all three datasets. A common subset 

shared between subjects could however not be found. 

Background: Imagined speech BCIs try to decode unspoken speech from brain activity (Rekrut 

et al. 2022a) and offer a variety of useful applications whenever spoken speech is not an option. 

While the feasibility of such BCIs has been proven in several studies even for non-invasive brain 

measures as the Electroencephalography (Sereshkeh, 2017b) (Nguyen et al., 2018) current EEG-

based setups are complex and rely on high resolution devices with 64+ channels (Lee et al., 2020) 

(Sereshkeh, 2017a). However, such high-resolution devices are expensive, cumbersome to wear, 

and inconvenient in everyday life. Although proven feasible, no study has so far questioned the 

necessity of such high-resolution setups, therefore within this work we aim at answering the 

following research questions: 

RQ1: Is there a single best minimal subset of electrodes for EEG-based imagined speech BCIs? 

RQ2: Are certain electrode positions related to good imagined speech classification accuracies? 

Methods: We investigated 3 different imagined speech EEG datasets that were all recorded with 

the same 64 channel headset (Brain Products LiveAmp) during single word imagination, however, 

by different research groups and in the context of different studies. Dataset one (5 words, 70 

repetitions/word) was taken from the 2020 international BCI competition1, dataset two (9 words, 

40 repetitions/word) was recorded in (Rekrut et al. 2022a), dataset three (5 words, 80 

repetitions/word) in (Rekrut et al. 2022b). We applied the following signal processing pipeline:  

Preprocessing: The data was bandpass filtered between 0.5 and 60Hz and notch filtered at 50 

Hz. The parameters were chosen according to our previous work (Rekrut et al. 2021). After filtering 

the data was cut into epochs of two seconds starting from the onset of the fixation cross. 

Three feature extraction methods were implemented, namely Common Spatial Patterns (CSP), 

Discrete Wavelet Transform (DWT) and a combination of the two referred to as CSPWav. The 

CSP was realized using multiclass implementation of the mne library (Gramfort et al., 2013) with 

default parameters. DWT was based on the PyWavelets library (Lee et al., 2013) with 

biorthorgonal 2.2 mother wavelet as suggested in (Feng et al., 2019) and decomposed until fourth 

level. Afterwards, a wavelet feature vector was created as presented in (Torres-García  et al., 

 
1 OSF | 2020 International BCI Competition 

https://osf.io/pq7vb/


2016). The CSPwav feature extraction combined the previously explained methods by first 

applying CSP and creating the DWT of the resulting time signal. 

For classification we used the Extreme Gradient Boosting algorithm (XGB) implemented based 

on (Chen & Guestrin, 2016) with a mean error as evaluation metric and instructed to stop if the 

value did not decrease for ten rounds. The objective function was chosen to be softmax for multiple 

classes. 

Electrode Reduction was realized with Grey Wolf Optimization as described in (Ghosh et al., 

2019). This evolutionary algorithm was implemented by evaluating classification accuracy as a 

fitness function, using a dataset in which a randomly selected electrode was excluded. This 

process was repeated for all electrodes consecutively and the electrode, without which the 

classification achieved the highest accuracy, was finally rejected. This process was repeated for 

each subset from 64 to 1 electrode. 

Performance evaluation: The top performing subsets of electrodes per participant were 

calculated based on the classification accuracy using a Fuzzy Inference System implemented 

according to (Torres et al., 2016), to prevent excluding sets with only slightly lower classification 

accuracy but significantly lower number of electrodes. 

Results 

Figure 1 shows an overview of the reduced electrodes per feature extraction method (right) and 

classification accuracy (left), for all three datasets. The top sets of the wavelet transform for all 

participants in all datasets lie above 30 removed electrodes, which means that for this method we 

could have achieved the top set configurations with only 34 of the initial 64 electrodes. Although 

CSP based feature extraction methods seem to prefer more electrodes to achieve their top sets, 

we observed the first quartile for both implementations lying at 30 removed electrodes, meaning 

that for 75% of the participants we would have achieved the top results with 30 electrodes less. 

On average we can include 83% of the top sets for all three methods with roughly half the number 

of electrodes for these 3 datasets. A clear conclusion on the relevant positions of electrodes could 

not be drawn as shown in figure 2. Each electrode position is visualized at its position of the head, 

colored according to the percentage of occurrence in the top sets. The distribution appears 

homogeneous for all three feature extraction methods which does not allow for a clear conclusion 

on a certain brain region being dominantly involved in the classification process. 

Discussion 

Within this work we aimed at finding a best minimal subset of electrodes for EEG-based imagined 

speech BCIs by applying electrode reduction on 3 different imagined speech datasets. Although 

we could not find common relevant electrode positions, our results show, that 64+ channel setups 

are most likely oversized. We were able to significantly reduce electrodes by almost a half for all 

three datasets which suggests, that EEG-based imagined speech BCIs work perfectly fine with 

smaller setups of 32 electrodes. However, due to the strong variation among subjects we would 

not recommend a standard montage but rather reduce electrodes from an initial high-resolution 

setup to subject specific positions. This work therefore provides first steps towards less complex 

setups of EEG-based imagined speech BCIs applicable in everyday use. 

 



  

Figure 1 Boxplots of the classification accuracies (left) and the number of electrodes removed (right) for each of the three 
datasets (D1, D2, D3) and feature extraction methods. The black boxes for the removed electrodes on the right show the average 

results for all datasets combined (All). 

 

Figure 2 Electrode positions for the top sets of all three datasets and the three different feature extraction methods in percent. 
Top left: CSP, top right: CSPwav and bottom: wav. 
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