
Parallel Processing of Temporal Anti-Joins in Memory

Ioannis Reppas1[0009−0006−8021−2338], Meghdad Mirabi2,1[0000−0003−3803−2756]�,
Leila Fathi1[0009−0002−7966−8873], Carsten Binnig1,2[0000−0002−2744−7836],

Anton Dignös3[0000−0002−7621−967X], and Johann Gamper3[0000−0002−7128−507X]

1 Technical University of Darmstadt, Darmstadt, Germany
ioannis.reppas@stud.tu-darmstadt.de,

meghdad.mirabi@cs.tu-darmstadt.de, lfathi@savian.io,
carsten.binnig@cs.tu-darmstadt.de

2 German Research Center for Artificial Intelligence (DFKI), Darmstadt, Germany
meghdad.mirabi@dfki.de, carsten.binnig@dfki.de

3 Free University of Bozen-Bolzano, Bolzano, Italy
anton.dignoes@unibz.it, johann.gamper@unibz.it

Abstract. Efficient and scalable processing of temporal anti-joins remains a sig-
nificant research challenge in temporal databases. To address this issue, this paper
introduces a novel temporal primitive designed for transforming a temporal anti-
join, including conjunctive equality predicates on non-temporal attributes, into
an equivalent algebraic expression involving a temporal inner join. The rationale
behind this transformation is that the new expression can be decomposed into
subtasks, allowing for parallel execution across multiple CPUs. Experimental re-
sults using real-world datasets demonstrate the superior efficiency and scalability
of our solution for in-memory processing compared to existing solutions.

Keywords: Temporal Anti-Join · Main Memory · Parallel Processing

1 Introduction

A temporal join is a database operation that combines two temporal relations and re-
turns pairs of tuples from the two relations that match on a value predicate and have
overlapping timestamps, indicating that tuples match over some time interval [19, 21,
33, 16]. This allows to retrieve data that is valid at the same time [22, 31]. In contrast,
a temporal anti-join reports all tuples over sub-intervals of one input relation for which
no matching tuple in the other relation exists [15, 12, 27, 13, 9]. This operation is crucial
for identifying missing, non-overlapping, or orphaned tuples in a temporal context.

Example 1. Consider the two temporal relations Employee Schedule and Employee Ab-
sence in Fig. 1. Employee Schedule records the work schedule of employees using
half-open intervals [Start Time, End Time). Employee Absence records the time pe-
riods when employees were absent from work for some reasons. For instance, John was
scheduled to work from Jan 2 to Jan 15, but was absent during the time periods Jan 8–10
and Jan 12–14 due to, respectively, a doctoral appointment and for personal reasons.

For a correct payroll processing, the company needs to determine the time during
which employees effectively worked. This information can be retrieved by a temporal

(a) Employee Schedule
Name Dep [Start Time, End Time)
John Sales [2023-01-02, 2023-01-15)
Bob Marketing [2023-01-01, 2023-01-10)
Mike Sales [2023-01-11, 2023-01-15)

(b) Employee Absence
Name Reason [Start Time, End Time)
Bob Family Emergency [2023-01-03, 2023-01-07)
John Doctor Appointment [2023-01-08, 2023-01-10)
John Personal [2023-01-12, 2023-01-14)

(c) Temporal Anti-Join
Name Dep [Start Time, End Time)
Bob Marketing [2023-01-01, 2023-01-03)
Bob Marketing [2023-01-07, 2023-01-10)
John Sales [2023-01-02, 2023-01-08)
John Sales [2023-01-10, 2023-01-12)
John Sales [2023-01-14, 2023-01-15)
Mike Sales [2023-01-11, 2023-01-15)

Fig. 1: Motivating Example

anti-join between the relations Employee Schedule and Employee Absence using an
equality predicate on the attribute Name, as shown in Fig. 1c. The same information
is also helpful for workforce management, allowing managers to monitor employee
attendance, to track their productivity, and to identify patterns in employees’ behavior.

While temporal anti-joins have been increasingly used in data analysis, the efficient
processing and scalability of temporal anti-joins have not be studied thoroughly in the
past. One promising avenue to address these issues is parallel processing, which has, so
far, been applied to temporal joins, but not to temporal anti-joins [8, 7, 26, 6].

Based on the above observations, this paper focuses on in-memory processing of
temporal anti-joins, leveraging parallel processing features found in multi-core hard-
ware. The proposed solution works in two steps: (1) compute the complement of one of
the two relations and (2) transform the temporal anti-join into an equivalent expression
using the complement in combination with a temporal join. This new expression can
be efficiently executed in parallel, utilizing multiple CPU cores or threads. The main
contributions of this paper are summarized as follows:

– We introduce a temporal primitive capable of transforming a temporal anti-join, in-
cluding conjunctive equality predicates on non-temporal attributes, into an equiva-
lent algebraic expression that involves a temporal inner join.

– We show how to decompose all operators within this temporal counterpart into
small subtasks, and propose a set of algorithms for parallel, in-memory computa-
tion of these subtasks across multiple CPU cores or threads.

– We experimentally evaluate the efficiency and scalability of the proposed solution
on four real-world datasets.

2 Related Works

In this section, we first review related work on processing temporal joins and their
parallel execution. Then, we review approaches for the temporal anti-join.

Generally, temporal join algorithms can be classified based on their data structures
and underlying architecture into nested loop, sort-merge, index-based, partitioning-
based, sweep-plane, and parallel algorithms.

Nested loops algorithms [32] compare all tuples of two input relations. They scan
the outer relation once and then compare each tuple of the outer relation with all tuples
of the inner relation to identify overlapping intervals. Sort-merge algorithms [20, 28,
16] first sort both input relations based on their join attributes and then merge tuples si-
multaneously when they have the same join attribute values and overlapping intervals.
Index-based algorithms use various indexing structures, such as B-Tree [24, 18, 16],
multi-version B-Tree [2], TimeLine [23]), (key, time) [34], or hierarchical indices [11,
10] to find time interval intersections between input relations. Partitioning-based algo-
rithms [14, 33] first divide the time domain into non-overlapping partitions, and then
assign each tuple of an input relation to a specific partition based on its start or end
timestamps. Finally, tuples from the input relations within relevant partitions are com-
pared to identify tuples with overlapping time intervals. Sweep-plane algorithms can
be divided into two categories: backward scanning and forward scanning. In backward
scanning [29, 30], the two input relations are split and sorted based on their start and end
time points. Then, a backward scan is performed, i.e., a scan of already encountered (ac-
tive) intervals, on a data structure that supports scans and updates. On the other hand,
forward scanning [7, 8] sorts the two input relations based on their start time points.
Subsequently, a forward scan is conducted to identify the resulting tuples of a temporal
join, without the need for a special data structure to track active tuples in both input
relations. Both types of algorithms involve sweeping a line, which stops at the start or
end time points of all time intervals within the two input relations. At each position of
the sweep line, join results are generated.

The parallel execution of temporal joins can be divided into the following partition-
ing approaches. No-partitioning, hash-based partitioning, and domain-based partition-
ing algorithms [8]. In no-partitioning [3], the input relations are never physically parti-
tioned, but a hash table is built in shared memory for the inner input relation. Then, each
thread reads a chunk of the outer relation and probes the shared hash table to produce
join results. In hash-based partitioning [29], the time intervals of the input relations are
first sorted based on their start time points before partitioning. They are then assigned
to different disjoint partitions in a round-robin fashion using a hash function. Subse-
quently, a pairwise join is performed between partitions of the input relation. Since the
partitions are disjoint, the pairwise joins run independently of each other. In domain-
based partitioning [8, 7], the time domain is initially split into a set of non-overlapping
partitions. Each time interval in the input relations is assigned to the corresponding
partition based on its start time point and replicated across other partitions until the par-
tition that includes its end time point. Following this, a pairwise join is performed for
each partition separately using a single thread, and a join result is reported if at least
one of the time intervals is not replicated to avoid duplication in the result set.

Existing works on temporal joins primarily focus on efficiently identifying and ex-
tracting pairs of tuples from two input relations with overlapping time intervals. Apart
from the works mentioned below, they do not support temporal anti-joins. In this paper,
we transform a temporal anti-join into an equivalent expression that contains a temporal

join. To compute the temporal join we leverage the state-of-the-art approach for paral-
lel in-memory computation by Bouros et. al [7, 8]. Since this approach does not support
equality predicates in the temporal join, we extend it in Section 4.3. Currently, only
a few approaches support the processing of temporal anti-joins. The alignment frame-
work [15, 12] and rewriting approach [17], which are implemented in PostgreSQL, sup-
port a large range of operators including outer and anti-joins. Since these approaches
leverage existing database algorithms for query processing, they did not provide spe-
cific algorithms for efficiently finding overlapping intervals. Disjoint Interval Partition-
ing (DIP) [9] provides processing algorithms for all types of temporal joins, including
temporal anti-joins. It divides an input relation into the minimum number of partitions,
such that tuples in a partition are non-overlapping, resulting in an efficient sort-merge
approach without backtracking. To compute a temporal anti-join, DIP uses a lead, i.e.,
the set of time periods that are not overlapped by the second input relation. The authors
show that DIP is efficient for the temporal join, outperforming [14, 20, 23, 1], and anti-
join, outperforming [15, 12]. Different from our solution, DIP does not support equality
predicates. For the experimental evaluation, we extend DIP with equality predicates
and demonstrate that our solution is more efficient than the extended version of DIP for
computing a temporal anti-join with conjunctive equality predicates.

3 Problem Statement

We consider a discrete linearly ordered time domain ΩT . A time interval is a set of
contiguous time points, and we use T = [Ts, Te) to denote the half-open interval of
time points from Ts (included) to Te (excluded), similarly to SQL:2011 [4, 5, 25].

A temporal relation R with schema R = (A, T) is a set of tuples, where each tuple
has a set of non-temporal attributes A = A1, . . . , Am, each with a domain Ωi and a
time interval T . Similarly, we consider a temporal relation S with schema (B, T). To
refer to the value of an attribute Ai in tuple r ∈ R, we use the notation r.Ai, and we
abbreviate (A1, A2, . . . , Am) and (r.A1, r.A2, ..., r.Am) as A and r.A, respectively.

We use a relational algebra that includes two temporal join operators: inner join
▷◁T and anti-join ▷T . These temporal operators are generalizations of the standard rela-
tional join operators with an additional temporal constraint. We consider a conjunctive
equality predicate θ (possibly empty) between tuples in R and tuples in S, and we write
r.C = s.D with C ⊆ A, D ⊆ B as a shorthand for r.Ai = s.Bj ∧ . . . ∧ r.Ak = s.Bl.

Definition 1 (Temporal Anti-Join). Let R and S be two temporal relations with
schemas (A, T) and (B, T), respectively, and a conjunctive equality predicate θ ≡
r.C = s.D. The temporal anti-join, R ▷Tθ S, between R and S is defined as

R ▷Tθ S = {r′ | ∃r ∈ R(r′.A = r.A ∧ r′.T ⊆ r.T ∧ (1)
∄s ∈ S(r.C = s.D ∧ r′.T ∩ s.T ̸= ∅) ∧ (2)
∀T ′ ⊃ r′.T (∃s ∈ S(r.C = s.D ∧ T ′ ∩ s.T ̸= ∅) ∨ T ′ ̸⊆ r.T))} (3)

The first line ensures that tuple r′ has the same values for all non-temporal attributes
as tuple r and its timestamp is a sub-interval of r.T . The second line ensures that there

is no tuple in S that satisfies predicate θ and overlaps with the result tuple r′. The third
line ensures that for any larger time interval T ′ than r′.T , either it is value-equivalent
and overlapping to a tuple in S, or T ′ is not completely covered by the timestamp of r.

We can observe that the temporal anti-join R ▷Tθ S needs to split the timestamp of
the tuples r ∈ R, based on the timestamps of the tuples in S for which the predicate
θ is satisfied. This produces tuples composed of the non-temporal attribute values of r
and maximal sub-intervals of r.T that do not overlap with tuples in S satisfying θ.

Example 2. Fig. 2 shows a graphical illustration of two temporal relations R (blue)
with schema (A, T) and S (green) with schema (B, T). The timestamps are depicted
as a horizontal lines in the time domain ΩT = {1, . . . , 15}. The result of the temporal
anti-join R ▷Tθ S with θ ≡ r.A1 = s.B1 ∧ r.A2 = s.B2 is the set of tuples p1, . . . , p5
(red). For instance, p1 and p2 are derived from r1 ∈ R, which matches with s1 ∈ S. The
timestamps of p1 and p2 are the maximal sub-intervals of r1.T for which no matching
tuple in S exists. Similarly, p3 and p4 are derived from r2. Tuple p5 has the same
timestamp as r3 since r3 has no matching tuple in S.

s1 = (01, D1, ...)

s2 = (02, D2, ...)

s3 = (02, D2, ...) s4 = (02, D2, ...)

r1 = (01, D1, ...)

r2 = (02, D2, ...) r3 = (03, D3, ...)

p1 = (01, D1, ...) p2 = (01, D1, ...)

p3 = (02, D2, ...) p4 = (02, D2, ...) p5 = (03, D3, ...)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Day

Fig. 2: Result Set of R ▷TR.C=S.D S

The focus of this paper is on the efficient parallel processing of temporal anti-joins
with a conjunctive equality predicate by taking advantage of multi-core CPUs.

4 Proposed Solution

In this section, we present our 2-step solution for the efficient in-memory processing
of temporal anti-joins with a conjunctive equality predicate: First, we introduce a new
temporal primitive that computes the “complement” of a temporal relation with respect
to the non-temporal join attributes. Second, we transform the temporal anti-join into
an equivalent algebraic expression that contains a temporal join with the complement,
which can be computed using parallel execution across multiple CPU cores.

4.1 Complement of a Temporal Relation

The first step applies a new temporal primitive, which computes the “time complement”,
S, of a temporal relation S with respect to the non-temporal join attributes D. This

primitive constructs, for each unique value combination of the attributes in D, maximal
time intervals that do not overlap with any tuple in S with the same values on D.

Definition 2 (Complement of a Temporal Relation). Let S be a temporal relation
with schema (B, T) and let D ⊆ B be a set of non-temporal attributes. The complement
of S, denoted as S, with respect to D is defined as

S = {s′ | ∃s ∈ S(s′.D = s.D ∧ s′.T ⊆ ΩT ×ΩT) ∧
∄s ∈ S(s′.D = s.D ∧ s′.T ∩ s.T ̸= ∅) ∧
∀T ′ ⊃ s′.T (∃s ∈ S(s′.D = s.D ∧ T ′ ∩ s.T ̸= ∅ ∨ T ′ ̸⊆ ΩT ×ΩT))}.

The first two lines ensure that a tuple in the complement has the same values for the
non-temporal attributes D as a tuple in S, but does not overlap with the timestamp of
any of such tuples. The third line ensures that for any longer time interval T ′ covering
s′.T , there is a value-equivalent tuple s ∈ S that intersects with T ′, or T ′ goes beyond
the considered time domain.

Example 3. Consider the temporal relation S in Fig. 3 (green) with schema (B, T). The
non-temporal attributes in D are B1 and B2, and the time domain is from 1 to 15. The
complement of S contains five tuples (orange). The tuples s1 and s2 are derived from
s1, and the tuples s3, s4, and s5 are derived from s2, s3, and s4, which all have the same
values for the non-temporal attributes B1 and B2.

s1 = (01, D1, ...)

s2 = (02, D2, ...)

s3 = (02, D2, ...) s4 = (02, D2, ...)

s1 = (01, D1, ...) s2 = (01, D1, ...)

s3 = (02, D2, ...) s4 = (02, D2, ...) s5 = (02, D2, ...)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Day

Fig. 3: Complement of Temporal Relation S

4.2 Transformation of the Temporal Anti-Join

The second step is to transform a temporal anti-join, R▷Tθ S, into an equivalent algebraic
expression with the help of the complement S. The new expression is composed of two
parts: a temporal join of R with S and the set of all tuples in R that have no matching
tuples in S. Both parts can be processed in parallel on multiple CPU cores or threads.

Lemma 1. Let R and S be two temporal relations with schemas (A, T) and (B, T),
respectively, θ ≡ r.C = s.D be a conjunctive equality predicate over the non-temporal

attributes C ⊆ A and D ⊆ B, and S be the complement of relation S wrt the attributes
in D. The temporal anti-join, R ▷Tθ S, can be expressed as

R ▷Tθ S ≡
∏

R.A◦T

(R ▷◁Tθ S) ∪ {r ∈ R |̸ ∃s ∈ S(r.C = s.D)},

where the temporal join ▷◁Tθ produces pairs of θ-matching tuples over maximally over-
lapping timestamps [19, 34, 4].

Proof (Sketch). To show that our equivalence holds, we split the proof over two com-
plete and disjoint partitions of relation R: (a) {r ∈ R | ∃s ∈ S(r.C = s.D)} and
(b) {r ∈ R | ∄s ∈ S(r.C = s.D)}. We use R′ =

∏
R.A◦R.T (R ▷◁Tθ S) and

R′′ = {r ∈ R | ∄s ∈ S(r.C = s.D)}.
For (a) we have that a result tuple r′ in Definition 1 takes the values for the non-

temporal attributes A from a tuple r ∈ R and the time interval of r′ is contained or
equal to the time interval of r (line 1). Since ∃s ∈ S(r.C = s.D), the timestamp of
r′ cannot overlap with the timestamp of any tuples with r′.C = s.D (line 2). In R′

we produce tuples (projected to A) from tuples in R and S that satisfy C = D using
the intersection of intervals, thus we ensure the two conditions. All result tuples for
{r ∈ R | ∃s ∈ S(r.C = s.D)} are produced, since S contains tuples for all values
of D that exist in S. Since, S by definition contains all maximal time intervals for all
values of D that exist in S, we have that any interval larger than the intersection between
the interval of a tuple r and a tuple in S would either overlap a tuple in S with C = D
or extend beyond r.T ensuring line 3 in Definition 1. R′′ does not produce any results
for partition {r ∈ R | ∃s ∈ S(r.C = s.D)}.

For (b) we have that line 2 in Definition 1 evaluates to true, and the condition ∃s ∈
S(r.C = s.D ∧ T ′ ∩ s.T ̸= ∅) in line 3 evaluates to false. Thus, a tuple r′ takes the
values for the non-temporal attributes A from a tuple r ∈ R, the time interval of r′ is
contained or equal to the time interval of r, and any larger time interval would extend
beyond r.T , i.e., we have r.A = r′.A ∧ r.T = r′.T , and since ∄s ∈ S(r.C = s.D),
we have {r ∈ R | ∄s ∈ S(r.C = s.D)} = R′′. R′ does not produce any results for
partition {r ∈ R | ∄s ∈ S(r.C = s.D)}, since S only contains values for D that are
also in S and the join requires that r.C = s.D exists. ⊓⊔

Lemma 1 shows how to transform a temporal anti-join, including a conjunctive
equality predicate on non-temporal attributes, into an equivalent expression with a tem-
poral join. The rationale behind this transformation lies in the fact that all operators in
the transformed expression can be divided into subtasks that can be executed in parallel.

Example 4. Consider Fig. 4, which shows on top the temporal relation R (blue) and the
complement S of relation S (orange) with D = {B1, B2}. The result of the expression∏

R.A◦T (R ▷◁TR.C=S.D S) consists of the tuples p1, p2, p3, and p4. The tuple p5 comes
from the expression {r ∈ R | ∄s ∈ S(r.C = s.D)}, since tuple r3 = (03, D3, . . .)
has not matching tuple in S.

s1 = (01, D1, ...) s2 = (01, D1, ...)

s3 = (02, D2, ...) s4 = (02, D2, ...) s5 = (02, D2, ...)

r1 = (01, D1, ...)

r2 = (02, D2, ...) r3 = (03, D3, ...)

p1 = (01, D1, ...) p2 = (01, D1, ...)

p3 = (02, D2, ...) p4 = (02, D2, ...) p5 = (03, D3, ...)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Day

Fig. 4: Result of R ▷TR.C=S.D S using the Complement

4.3 Parallel Processing of Temporal Anti-Join

Algorithm 1 computes the temporal anti-join R▷TR.C=S.DS, taking advantage of parallel
processing over multiple CPU cores. The algorithm begins by sorting the two input
relations by the join attributes and the start timepoint. Then, for each of the two sorted
relations a hash table is constructed: the key is composed of the join attributes, and the
value is a pair representing the position of the first and the last tuple with the same values
in the join attributes. This step is performed in parallel using Algorithm 2. Subsequently,
Algorithm 3 is invoked to compute the complement of relation S with respect to the join
attributes. Finally, Algorithm 5 computes the temporal join between relation R and the
complement S of S projected to the nontemporal attributes of R and the intersection on
T , including tuples from R that do not have tuples with matching join attribute values
in S. Notice that all steps allow a parallel execution.

Algorithm 1: TEMPORALANTIJOIN(R,C, S,D, t)
Input: Temporal relations R and S with join attributes C and D, respectively, and number of threads t;
Output: Result of temporal anti-join R ▷T

R.C=S.D S;

1 Sort relation R by the attributes C and start timepoint;
2 Sort relation S by the attributes D and start timepoint;
3 hR ← BORDERS(R,C, t); // Algorithm 2
4 hS ← BORDERS(S,D, t); // Algorithm 2

5 (S, hS)← COMPLEMENT(S, hS ,D, t); // Algorithm 3

6 res ← TEMPORALJOIN(R, hR, S, hS , t); // Algorithm 5
7 return res;

Algorithm 2 computes the borders of unique values of the join attributes C in R in
parallel. First, t threads are created together with a hash table. Then, each thread scans
an equal-sized chunk of R. While scanning the chunk (lines 4–10), each thread j stores
the positions in the chunk at which a unique set of values of the join attributes begins
and ends. Once all threads have completed, the t hash-tables are merged into a single
hash-table, named hR (lines 13–16), which contains the positions at which a unique set
of values of the join attributes begins and ends.

Algorithm 2: BORDERS(R,C, t)
Input: Temporal relation R sorted by attributes C and start timepoint, and number of threads t;
Output: Hash table hR with the positions in R where a set of value-equivalent tuples on C starts and ends;

1 create t threads;
2 create a hash table hj for each thread j;
3 assign to each thread a chunk of R of size |R|/t;
4 foreach thread j do // executed in parallel
5 first ← chunkStart ;
6 for i← chunkStart to chunkEnd − 1 do
7 if ri.C ̸= ri+1.C then
8 hj [ri.C]← (first, i);
9 first ← i + 1;

10 hj [ri+1.C]← (first, chunkEnd);

11 wait until all threads finish; // synchronization
12 hR ← empty hash table;
13 foreach hash table hj produced by the t threads do // executed in single thread
14 foreach key ∈ hj do
15 if key ̸∈ hR then hR[key]← hj [key] ;
16 else

hR[key]← (min(hR[key].start, hj [key].start),max(hj [key].end, hR[key].end)) ;

17 return hR;

Example 5. Consider relation S in Fig. 3. The join attributes are B1 and B2, result-
ing in the sorted relation S = {s1, s2, s3, s4}. The algorithm BORDERS with re-
lation S in input computes the corresponding hash table hS = [((01, D1), (0, 0)),
((02, D2), (1, 3))]. This indicates that there are two blocks of tuples: the first block
with the join attribute values (01, D1) contains the first tuple s1, whereas the second
block with join attribute values (02, D2) contains the tuples s2, s3, and s4.

Algorithm 3 computes the complement S and its associated hash table hS for a
relation S. In the first loop (lines 4–7), function PARTIALCOMPLEMENT is invoked in
parallel to compute, for each combination of unique values of the join attributes D,
the number of tuples that will be in the complement S; the result is stored in the cnt
array. In the second step, once all slave threads have completed, the cnt array is used to
determine the position pos in the output array S, where to write the complement tuples
(lines 9–11). This is required such that the complement tuples can be computed and
written to S in parallel. In the third step (lines 12–20), the complement of relation S is
computed. After initializing the data structures, the hash table hS is filled and function
PARTIALCOMPLEMENT is called in parallel to compute the complement S.

Example 6. We continue our running example and call algorithm COMPLEMENT. The
number of tuples in the complement relation for each combination of unique join at-
tribute values is computed as cnt = [2, 3], i.e., for the values (01, D1) the complement
contains two tuples and for the values (02, D2) three tuples. Then, the positions in S are
determined, where to write the complement tuples, as pos = [0, 2]. That is, the com-
plement tuples for the join attribute values (01, D1) are written to the positions 0–1,
whereas the complement tuples for the values (02, D2) are written to the positions 2–4.

Algorithm 4 implements two different functions depending on the variable
countFlag . If the flag is true, the algorithm counts the number of complement tuples

Algorithm 3: COMPLEMENT(S, hS ,D, t)
Input: Relation S sorted by D and start timepoint, hash table hS , attribute set D, and number of threads t;
Output: Sorted relation of S and hash table hS ;

1 create t threads;
2 cnt← array of size hS ;
3 i← 0;
4 foreach key ∈ hS do
5 wait for a thread to be available;
6 cnt[i]← PARTIALCOMPLEMENT(S, hS , null, null, key, true);
7 i← i + 1;

8 wait until all threads finish; // synchronization

9 pos[0]← 0;
10 for i← 1 to hS .size− 1 do
11 pos[i]← pos[i− 1] + cnt[i− 1];

12 S ← empty array of size pos[hS .size− 1] + cnt[hS .size− 1];
13 hS ← empty hash table of size hS ;
14 i← 0;
15 foreach key ∈ hS do
16 hS [key].start← pos[i];
17 hS [key].end← pos[i + 1]− 1;
18 wait for a thread to be available;
19 PARTIALCOMPLEMENT(S, hS , S, hS [key].start, key, false);
20 i← i + 1;

21 wait until all threads finish; // synchronization

22 return (S, hS);

for a chunk of tuples in S, which all have the same values key for the join attributes.
Otherwise, the algorithm computes the complement tuples for the same chunk of tuples
in S. The algorithm implements a sweep line approach. The sweep line (sl) is moved
from the beginning of the time domain to the end. During this process, all tuples in
the chunk of tuples in S from hS [key].start to hS [key].end are considered, which all
have the same values for the join attributes D. A new tuple is added to S whenever a
temporal gap is detected, which is not covered by a tuple in the chunk.

It should be noted that if the union of time intervals of tuples with the same set of
values of the non-temporal attributes in S.D spans the entire time domain, relation S
does not contain any tuples related to this set of tuples in S, and hS contains an invalid
input with its start index greater than its end index for the specific key. This invalid input
is checked in Algorithm 5 before producing the result tuples (line 13).

Algorithm 5 efficiently computes the temporal anti-join R ▷TR.C=S.D S according
to Lemma 1, tacking advantage of the hash tables and the complement relation S. The
basic idea is a merge join, reading the hash-tables hR and hS in key order until the
hash table hR is depleted (lines 5–20). In this process, we can distinguish three cases.
If a key exists only in R (condition in line 6), all tuples in R matching key are added
to the result, and keyR is set to the next key in key order (lines 7–8). Conversely, if a
key exists only in S (line 10), no output tuple is produced for this key. The algorithm
fetches the next key in key order from the hash table hS (line 11). Finally, if the hash
keys keyR and keyS are equal (line 12), we compute the temporal join between the
two matching chunks of tuples from R and S. The algorithm waits for an available
thread and assigns the forward scan-based plane sweep algorithm bguFS from [8] to

Algorithm 4: PARTIALCOMPLEMENT(S, hS , S, pos, key , countFlag)

Input: Relation S sorted by D and start timepoint, hash table hS , relation S, position pos in S where to write
the complement tuples, join attribute values key , and flag countFlag ;

Output: If countFlag is true, then number of tuples in S with D = key , otherwise tuples in S computed for
D = key starting from position pos.

1 j ← pos;
2 count← 0;
3 sl← beginning of time domain;
4 foreach tuple si ∈ S from hS [key].start to hS [key].end do
5 if sl < si.Ts then
6 if countFlag then
7 count← count + 1
8 else
9 S[j]← new tuple (key, [sl, si.Ts));

10 j ← j + 1;

11 sl← si.Te;
12 else
13 if sl < si.Te then sl← si.Te ;

14 if sl < end of time domain then
15 if countFlag then
16 count← count + 1
17 else
18 S[j]← new tuple (key, [sl, end of time domain));
19 j ← j + 1;

20 if countFlag then return count;
21 else return 0 ;

that thread for execution. Once all threads complete their tasks, the result res of the
temporal anti-join is returned.

5 Performance Evaluation

5.1 Setup and Data

All experiments were run on a server with 32 GB RAM and a 12 core CPU Intel(R)
Xeon(R) Silver 4214R CPU clocked at 2.40 GHz running Linux. Hyper-threading al-
lows to run up to 24 threads. All algorithms were implemented in C++, compiled using
g++ (v11.4.0) with flags -O3, -mavx and -march=native. The code for bguFS proposed
in [7, 8], (line 17 in Algorithm 5), was publicly available1. The source code for the
algorithms implemented in this study is also publicly available2.

We conducted the experiments using four real-world datasets: Taxis3, Dig4, Divvy5,
and Emergency6. Table 1 shows the main characteristics of these datasets. For each
dataset, we randomly selected half of the data for the first input relation and used the
other half for the second input relation.

1 https://github.com/pbour/ijoin
2 https://github.com/GiannisReppas/temporal_joins
3 https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4 https://data.cityofchicago.org/Transportation/Dig-Ticket-Notifications/cygx-ui4j
5 https://data.cityofchicago.org/Transportation/Divvy-Trips/fg6s-gzvg
6 https://data.cityofnewyork.us/browse?category=Health

Algorithm 5: TEMPORALJOIN(R, hR, S, hS , t)

Input: Relation R sorted by attributes C and start timepoint, hash table hR, relation S sorted by attributes D
and start timepoint, hash table hS , and number of threads t;

Output: Result of R ▷T
R.C=S.D S;

1 create t threads;
2 res ← ∅;
3 keyR ← first key in hR in key order;
4 keyS ← first key in hS in key order;
5 while hR not depleted do
6 if hS depleted or keyR < keyS then
7 res ← res ∪ {tuples from R[hR[keyR].start] to R[hR[keyR].end]};
8 keyR ← next key in hR in key order;
9 else

10 if keyR > keyS then
11 keyS ← next key in hS in key order;
12 else
13 if hR[keyR].start ≤ hS [keyS].end then
14 R′ ← tuples from R[hR[keyR].start] to R[hR[keyR].end];
15 S

′ ← tuples from S[hS [keyS].start] to S[hS [keyS].end];
16 wait for a thread to be available;
17 res ← res ∪ bguFS(R′, S

′
);

18 keyR ← next key in hR in key order;
19 keyS ← next key in hS in key order;

20 wait until all threads finish; // synchronization
21 return res;

We compare our solution against a main memory implementation of DIP [9], which
is the state-of-the-art for computing temporal anti-joins. Since DIP does not support
equality predicates, we extended it similar to our solution using ordered hash tables.

Table 1: Characteristics of Real-World Datasets
Dataset Taxis Dig Divvy Emergency
Cardinality 7,696,617 13,045,430 21,242,740 82,021,561
Domain Size 2,744,641,998 183,497,400 207,319,715 87,177,600
Shortest Interval 1 9,000 60 172,800
Longest Interval 2,618,881 79,867,800 13,453,220 87,177,600
Average Interval 995 3,142,491 1,151 29,449,118

5.2 Evaluation results

Fig. 5 shows the runtime for the single-threaded processing of a temporal anti-join for
varying input cardinalities for the various datasets. Our proposed solution outperforms
DIP in terms of query processing time. The reason is that our proposed solution employs
a simple forward scanning plane sweep algorithm to find the borders of unique values
for the non-temporal attributes of input relations involved in the conjunctive equality
predicate, construct the complement of a temporal relation, and process the temporal

algebraic equivalent expression (cf. Lemma 1). In contrast, DIP partitions one input
relation into the smallest possible number of partitions, each of which stores tuples
with non-overlapping time intervals, and then applies a sequence of merges to these
partitions. This process in DIP requires more time compared to our solution.

DIP Proposed Solution

3 6 9 12 15 18 21 24 27 30
0

2

4

6

8
·104

Cardinality of Input Relations (×105)

R
un

tim
e

(m
s)

(a) Taxis Dataset

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

0.3

0.6

0.9

1.2
·106

Cardinality of Input Relations (×106)

R
un

tim
e

(m
s)

(b) Dig Dataset

1 2 3 4 5 6 7 8 9 10
0

0.75

1.5

2.25

3
·105

Cardinality of Input Relations (×106)

R
un

tim
e

(m
s)

(c) Divvy Dataset

4 8 12 16 20 24 28 32 36 40
0

1.5

3

4.5

6
·105

Cardinality of Input Relations (×106)

R
un

tim
e

(m
s)

(d) Emergency Dataset

Fig. 5: Temporal Anti-Join Query Processing using Single Thread

Fig. 6 shows the speed-up depending on the number of threads achieved by each
of the parallel algorithms presented in Section 4.3. We used the full datasets and varied
the number of available parallel threads in the set {1, 4, 8, 12, 16h, 20h, 24h}, where the
subscript “h” indicates the activation of hyper-threading.

In general, we can see that all proposed algorithms for in-memory computation of
subtasks related to processing a temporal anti-join experience performance improve-
ments with the use of more threads. Furthermore, the general behavior of these algo-
rithms indicates that performance is enhanced up to 12 threads in most cases. Beyond
that point, a slight, yet stable improvement in terms of speedup is still achieved with the
utilization of hyper-threading in most cases. As shown in Fig. 6, the algorithms designed
for constructing the complement of a temporal relation (i.e., Algorithms 3 and 4) and
processing the equivalent expression of a temporal anti-join (i.e., Algorithm 5), con-
sistently offer the best speedup. The reason is that Algorithms 3 and 5 assign a slave
thread for each group of tuples having the same value for the non-temporal attributes in-

BORDERS COMPLEMENT TEMPORALJOIN TEMPORALANTIJOIN

1 4 8 12 16h 20h 24h
0

2

4

6

8

Number of Threads

Sp
ee

du
p

[×
]

(a) Taxis Dataset

1 4 8 12 16h 20h 24h
0

3

6

9

12

Number of Threads

Sp
ee

du
p

[×
]

(b) Dig Dataset

1 4 8 12 16h 20h 24h
0

4.5

9

13.5

18

Number of Threads

Sp
ee

du
p

[×
]

(c) Divvy Dataset

1 4 8 12 16h 20h 24h
0

3

6

9

12

Number of Threads

Sp
ee

du
p

[×
]

(d) Emergency Dataset

Fig. 6: Speedup in Temporal Anti-Join Query Processing

volved in the join predicates. Therefore, it is expected that these algorithms can achieve
a higher speedup when the dataset contains groups with similar sizes, as seen in datasets
like Dig, Divvy, and Emergency. However, in cases where such groups vary signifi-
cantly in size, as in the complement construction for the Taxis dataset, containing over
4,000 different non-temporal values with substantial variations among them, a smaller
speedup is expected. In contrast, the proposed algorithm to find borders for unique val-
ues of the non-temporal attributes in the join predicate (i.e., Algorithm 2) demonstrates
a stable speed-up in most cases as the number of threads increases, albeit without sig-
nificant growth. This is because, despite the effort to distribute the load between all
threads evenly by assigning chunks of the relation with the same size to each thread,
the merging of the local hash tables, along with key updates, nullifies the effects of
equal load distribution. Finally, we observe that our proposed solution for processing a
temporal anti-join, which employs all algorithms from Section 4.3, demonstrates scal-
ability with increasing number of threads. In our setting, it achieved a speed-up of 4.36
for the Taxis dataset, 7.15 for the Dig dataset, 13.69 for the Divvy dataset, and 9.01 for
the Emergency dataset.

6 Conclusion and Future Works

In this paper, we focused on an efficient and scalable in-memory computation of tempo-
ral anti-joins. We introduced the complement of a temporal relation as a new temporal
primitive to transform a temporal anti-join, including conjunctive equality predicates
on non-temporal attributes, into an equivalent algebraic expression, which contains a
temporal inner join. The processing of the equivalent expression can be decomposed
into smaller subtasks, which, utilizing multiple CPU cores, can be executed in par-
allel. In a single-threaded evaluation, our experimental results demonstrated that the
proposed solution outperforms the state-of-the-art approach DIP. In a multi-threaded
setting, depending on the characteristics of the datasets, our proposed solution achieves
high speed-ups with an increasing number of available CPU cores or threads.

As a future work, we plan to extend our proposed solution by optimizing the al-
gorithm for finding borders of a temporal relation in parallel, aiming to construct hash
tables faster and consume less memory. Additionally, we plan to study the processing
of temporal outer and anti-joins with disjunctive equality predicates on non-temporal
attributes in an efficient and scalable manner.

Acknowledgment

This work was partially supported by hessian.AI at TU Darmstadt and DFKI Darmstadt
as well as by a grant from the Autonomous Province of Bozen-Bolzano “Research
Südtirol/Alto Adige 2019” (project ISTeP).

References

1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-based spa-
tial join. In: VLDB. p. 570–581. Morgan Kaufmann (1998)

2. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal
multiversion b-tree. The VLDB Journal 5, 264–275 (1996)

3. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms
for multi-core cpus. In: SIGMOD. pp. 37–48. ACM (2011)

4. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data management - an
overview. In: eBISS. LNBIP, vol. 324, pp. 51–83. Springer (2017)

5. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Database technology for processing
temporal data (invited paper). In: TIME. LIPIcs, vol. 120, pp. 2:1–2:7. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

6. Bouros, P., Lampropoulos, K., Tsitsigkos, D., Mamoulis, N., Terrovitis, M.: Band joins for
interval data. In: EDBT. pp. 443–446 (2020)

7. Bouros, P., Mamoulis, N.: A forward scan based plane sweep algorithm for parallel interval
joins. In: VLDB. pp. 1346–1357. ACM (2017)

8. Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis, M.: In-memory interval joins. The
VLDB Journal 30, 667–691 (2021)

9. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. The VLDB Journal 26, 447–466
(2017)

10. Christodoulou, G., Bouros, P., Mamoulis, N.: Hint: A hierarchical index for intervals in main
memory. In: SIGMOD. pp. 1257–1270. ACM (2022)

11. Christodoulou, G., Bouros, P., Mamoulis, N.: Hint: A hierarchical interval index for allen
relationships. The VLDB Journal (2023)

12. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: SIGMOD. pp. 433–444.
ACM (2012)

13. Dignös, A., Böhlen, M.H., Gamper, J.: Query time scaling of attribute values in interval
timestamped databases. In: ICDE. pp. 1304–1307 (2013)

14. Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: SIGMOD. pp.
1459–1470. ACM (2014)

15. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational
dbms with comprehensive support for sequenced temporal queries. ACM Trans. Database
Syst. 41(4), 26:1–26:46 (2016)

16. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S., Moser, P.: Leveraging range joins for
the computation of overlap joins. VLDB J. 31(1), 75–99 (2022)

17. Dignös, A., Glavic, B., Niu, X., Gamper, J., Böhlen, M.H.: Snapshot semantics for temporal
multiset relations. Proc. VLDB Endow. 12(6), 639–652 (2019)

18. Enderle, J., Hampel, M., Seidl, T.: Joining interval data in relational databases. In: SIGMOD
Conference. pp. 683–694. ACM (2004)

19. Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal databases.
The VLDB Journal 14, 2–29 (2005)

20. Gunadhi, H., Segev, A.: Query processing algorithms for temporal intersection joins. In:
ICDE. pp. 336–344. IEEE Computer Society (1991)

21. Hu, X., Sintos, S., Gao, J., Agarwal, P.K., Yang, J.: Computing complex temporal join queries
efficiently. In: SIGMOD. p. 2076–2090. ACM (2022)

22. Jensen, C.S., Jensen: Temporal data management. IEEE Transactions on knowledge and data
engineering 11(1), 36–44 (1999)

23. Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F., May,
N.: Timeline index: a unified data structure for processing queries on temporal data in SAP
HANA. In: SIGMOD. pp. 1173–1184. ACM (2013)

24. Kriegel, H., Pötke, M., Seidl, T.: Managing intervals efficiently in object-relational databases.
In: VLDB. pp. 407–418. Morgan Kaufmann (2000)

25. Kulkarni, K.G., Michels, J.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43
(2012)

26. Leung, T.C., Muntz, R.R.: Temporal query processing and optimization in multiprocessor
database machines. In: VLDB. pp. 383–394. Morgan Kaufmann (1992)

27. Mirabi, M., Fathi, L., Dignös, A., Gamper, J., Binnig, C.: A new primitive for processing
temporal joins. In: SSTD’23. p. 106–109. ACM (2023)

28. Pfoser, D., Jensen, C.S.: Incremental join of time-oriented data. In: SSDBM. pp. 232–243.
Computer Society (1999)

29. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In:
ICDE. pp. 1098–1109. IEEE Computer Society (2016)

30. Piatov, D., Helmer, S., Dignös, A., Persia, F.: Cache-efficient sweeping-based interval joins
for extended allen relation predicates. VLDB J. 30(3), 379–402 (2021)

31. Raigoza, J., Sun, J.: Temporal join processing with hilbert curve space mapping. In: SAC.
pp. 839–844. ACM (2014)

32. Segev, A., Gunadhi, H.: Event-join optimization in temporal relational databases. In: VLDB.
pp. 205–215. Morgan Kaufmann (1989)

33. Soo, M.D., Snodgrass, R.T., Jensen, C.S.: Efficient evaluation of the valid-time natural join.
In: ICDE. pp. 282–292. IEEE Computer Society (1994)

34. Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In:
ICDE. pp. 103–113. IEEE Computer Society (2002)

