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Abstract—This paper introduces a distributed deep learning
framework called TrustDDL crafted to address privacy and
Byzantine robustness concerns across the training and inference
phases of deep learning models. The framework incorporates
additive secret-sharing-based protocols, a commitment phase, and
redundant computation to identify Byzantine parties and shield
the system from their detrimental effects during both deep
learning model training and inference. It ensures uninterrupted
protocol execution, guaranteeing reliable output delivery in both
phases. Our security analysis affirms the efficacy of the proposed
framework against both honest-but-curious and malicious adver-
saries for learning and inference tasks. Furthermore, we evaluate
the proposed framework against existing open-source distributed
machine learning frameworks, underscoring its practicality for
developing and deploying distributed deep learning systems.

Index Terms—Byzantine Robustness, Computational Redun-
dancy, Deep Learning, Privacy Preserving, Secret Sharing

I. INTRODUCTION

Deep learning, a leading methodology in machine learning,
excels in modeling and recognizing complex data types such
as images, speech, and text [1], [2]. Despite hardware and
network advancements, large-scale deep learning tasks remain
computationally intensive, posing challenges for resource-
constrained systems [3], [4]. Distributed deep learning frame-
works have emerged to address these challenges, alongside
commercial ”Deep Learning as a Service” solutions offered
by cloud providers [5]–[7]. However, this approach brings its
own set of challenges that warrant careful consideration.

One major concern is the high risk of privacy breaches,
mainly arising from both the input data and the deep learning
model itself [8], [9]. Input data frequently contains sensitive
information, requiring protection during transit and processing.
Likewise, deep learning models, as valuable assets, must be
shielded from theft, tampering, or unauthorized access.

In addition, distributed deep learning is particularly vul-
nerable to the presence of ”misbehaving” parties within the
system [10], [11], known as Byzantine parties. Such deviations
can result from software and hardware bugs, the inclusion of
poisoned or compromised data [12], [13], or the actions of
malicious parties attempting to manipulate the system [14].

Several cryptographic-based approaches, including Interac-
tive Proof Systems [15], [16], Homomorphic Encryption [17],
[18], and Zero-Knowledge Proofs [19], [20], have been pro-
posed for preserving the privacy of sensitive data and verifying

computation results during both model training and inference
phases. However, these approaches often incur significant
computational and communication overhead. Alternatively,
leveraging Trusted Execution Environments (TEEs) offers an-
other solution to protect data and model privacy and integrity.
Yet, TEE-based solutions may face challenges such as malware
attacks [21] and side-channel attacks [22].

Recently, secret sharing schemes have been explored for
designing efficient privacy-preserving machine learning frame-
works [1], [2], [23], [24]. However, these schemes, which
assume an honest-but-curious adversary model, lack resistance
against a malicious adversary, representing a form of Byzantine
party.

Several Byzantine machine learning frameworks have
been proposed, primarily focusing on server-based coordina-
tion mechanisms, coordinating parallel model training tasks
through parameter servers [25], [26]. This includes federated
learning, where models are trained across different devices
without exchanging data samples. In contrast, peer-to-peer
coordination mechanisms [27], [28] involve coordinating deep
learning tasks through direct interaction between computing
parties. However, existing Byzantine machine learning ap-
proaches differ from the assumption in this paper, where a
client lacks the capacity for performing deep learning tasks
and outsources storage and computational requirements to
untrusted cloud service providers. The client must ensure data
privacy and system robustness against Byzantine failures.

To tackle the limitations of existing approaches, this paper
proposes TrustDDL, a distributed deep learning framework
that addresses privacy and Byzantine robustness concerns.
TrustDDL secures all computations during model training
and inference phases using additive secret sharing and data
masking techniques. Additionally, it employs computational
redundancy and robust confirmation methods to filter out
incorrect intermediate results returned by Byzantine parties
and to impart robustness against arbitrary actions of Byzantine
parties. To achieve this, TrustDDL decomposes operations in-
volved in deep learning into simple arithmetic operations such
as addition and multiplication, which can be computed effi-
ciently over additive secret-shared data in a privacy-preserving
manner. TrustDDL includes a commitment phase coupled with
additive secret-sharing protocols to detect Byzantine parties,
allowing it to discard incorrect intermediate results during



the training and inference of a deep learning model. The
redundant computation employed in TrustDDL also provides
robustness against arbitrary actions of Byzantine parties. We
define Byzantine robustness as the ability to recover from
Byzantine failures and continue learning or inference tasks
without having to abort within the proposed protocols — a
property also known as guaranteed output delivery. The main
contributions of this paper are as follows:
• We propose TrustDDL to address privacy and Byzan-

tine robustness in deep learning training and infer-
ence. Through redundant computations and a commitment
phase, TrustDDL effectively detects and recover from
Byzantine failures.

• We demonstrate, through our security analysis detailed in
the appendix, that TrustDDL effectively guards against
both honest-but-curious and malicious adversary models.
TrustDDL stands out as a secret-sharing-based solution
capable of sustaining continuous learning and inference
tasks without protocol interruptions.

• We benchmark TrustDDL against existing open-source
distributed secret-sharing-based machine learning frame-
works for deep learning model training and inference.

II. PRELIMINARIES

The Additive Secret Sharing scheme (ASS) is the funda-
mental building block used in TrustDDL. In ASS, the secret,
e.g., s, is split into N different additive secret shares [s]i for
∀i = 1, . . . , N , satisfying

∑N
i=1[s]i = s, where s ∈ R. It is

an (N,N )-threshold secret sharing scheme as the absence of
any additive secret share renders the information independent
from the secret. Additive secret shares can be created by
choosing N − 1 random shares [s]1, . . . , [s]N−1 and setting
[s]N = s −

∑N−1
i=1 [s]i. Algorithm 1 shows this process in

pseudo-code form for a secret s ∈ Rm×n. For simplicity, we
define all protocols presented in this paper over the Ring of
real matrices Rm×n, with the case n = m = 1 representing
the set of real numbers.

Algorithm 1: CreateShares(s,N)

Input: A secret value s ∈ Rm×n;
Output: Additive secret shares [s]1, ..., [s]N of s;

1 for i = 1, . . . , (N− 1) do
2 Generate a random number ri ∈ Rm×n;
3 [s]i ← ri;

4 [s]N ← s−
∑N−1

i=1 [s]i;
5 return [s]1, ..., [s]N ;

ASS supports homomorphic addition and subtraction by
definition. Consider the case of N parties, where each party
i holds additive secret shares [x]i, [y]i ∈ Rm×n for two
secrets x, y ∈ Rm×n. From now on, the term share will be
used interchangeably with additive secret share, as this is the
technique of secret sharing used in TrustDDL. To obtain a
share [z]i ∈ Rm×n representing the result of the addition
z = x± y, each party i can locally compute [z]i = [x]i± [y]i.

Furthermore, multiplication and division by constants are
supported by ASS. From this point on, we denote a regular

multiplication by the symbol ”·”, matrix multiplication by ”×”,
and a division by ”÷”. For the operators ∗ ∈ {·,÷}, each party
i can locally compute [z]i = [x]i ∗ k, where [x]i is a share of
secret x and k is a constant, to obtain a share of z = x ∗ k.

To support regular multiplication and matrix multiplication
between two secrets, ASS generates the Beaver triple [29]
{a, b, c|c = ab}, where a and b are randomly chosen from
R such that c = ab. This triple must be prepared for
each multiplication. The triple is then split into triples of
shares ([a]i, [b]i, [c]i) by a trusted party using Algorithm 1
and distributed among the N untrusted parties. Using this
triple, party i can mask the shares [x]i and [y]i by setting
[e]i = [x]i − [a]i and [f ]i = [y]i − [b]i. Masking the original
shares by adding or subtracting random values preserves the
privacy of the secrets x and y; even if all shares [e]i and
[f ]i for ∀i = 1, . . . , N are known, the secrets cannot be
reconstructed [30]. Thus, all parties can exchange their values
[e]i and [f ]i so that each party obtains all shares [e]i and [f ]i
for ∀i = 1, . . . , N , without leaking any information about x
and y. The parties can then reconstruct e =

∑N
i=1[e]i and

f =
∑N

i=1[f ]i. After reconstructing e and f , each party i sets
[z]i = [c]i + e ∗ [b]i + [a]i ∗ f , where ∗ ∈ {·,×}. Finally, one
random party r, 1 ≤ r ≤ N , sets [z]r = [z]r + e ∗ f [31].

This approach supports various types of privacy-preserving
multiplication: regular multiplication with a, b ∈ R, element-
wise multiplication with a, b ∈ Rm×n, and matrix multiplica-
tion with a ∈ Rm×n and b ∈ Rn×p. Algorithm 2 (SecMul)
demonstrates element-wise multiplication, while SecMatMul
can be obtained by substituting element-wise with matrix
multiplications. For brevity, we omit the explicit presentation
of this protocol. Instead of collecting all shares [e]i and [f ]i
for ∀i = 1, . . . , N at each party, it is possible to collect these
shares at one random designated party r, reconstruct e and f
there, and distribute the results to the rest of the parties. This
optimization, utilized in Algorithm 2, significantly reduces
communication costs.

Algorithm 2: SecMul([x]i, [y]i, Bi, i, r)

Input: Shares [x]i, [y]i ∈ Rm×n of the matrices to multiply element-wise, a
Beaver triple Bi = ([a]i, [b]i, [c]i) ∈ Rm×n × Rm×n × Rm×n,
the number of the party calling this protocol i ∈ {1, ..., N}, and the
randomly selected party r;

Output: A share [z]i ∈ Rm×n of the result of the multiplication z = x · y;
1 [e]i ← [x]i − [a]i;
2 [f ]i ← [y]i − [b]i;
3 if i == r then
4 Receive [e]j and [f ]j from all parties j ∈ {1, ..., N}\{i};
5 Recover e =

∑N
j=1[e]j and f =

∑N
j=1[f ]j ;

6 Send e and f to all parties j ∈ {1, ..., N}\{i};
7 [z]i ← [c]i + e · [b]i + [a]i · f + e · f ;

8 else
9 Send [e]i and [f ]i to party r;

10 Receive e and f from party r;
11 [z]i ← [c]i + e · [b]i + [a]i · f ;

12 return [z]i;

To compare two secrets x, y ∈ Rm×n element-wise, it suf-
fices to determine the sign of x−y, denoted as sign(x−y) [30].
Since the reconstruction of x−y leaks information about x and
y, we need to reconstruct t · (x− y) instead, where t ∈ Rm×n



with random positive elements. Choosing t to be positive for
all elements ensures sign(t · (x−y)) = sign(x−y) [31]. With
shares [x]i, [y]i, and [t]i for x, y, and t, each party i calculates
[α]i = [x]i − [y]i and obtains a share of t · (x − y) = t · α
as [β]i = SecMul([t]i, [α]i, Bi, i, r). Similar to the SecMul
protocol, one selected party r collects all shares [β]i for
∀i = 1, ..., N , reconstructs β, and sends it to all other parties.
Each party then obtains the result as sign(x − y), which is
equivalent to sign(β). This approach is used in Algorithm 3
for privacy-preserving comparison between two secrets.

Algorithm 3: SecComp([x]i, [y]i, [t]i, Bi, i, r)

Input: Shares [x]i, [y]i ∈ Rm×n of the matrices to compare element-wise,
an auxiliary share [t]i ∈ Rm×n, a Beaver triple
Bi = ([a]i, [b]i, [c]i) ∈ Rm×n × Rm×n × Rm×n, the number
of the party calling this protocol i ∈ {1, ..., N}, and the randomly
selected party r;

Output: The sign of x− y, sign(x− y);
1 [α]i ← [x]i − [y]i;
2 [β]i ← SecMul([t]i, [α]i, Bi, i, r);
3 if i == r then
4 Receive [β]j from all parties j ∈ {1, ..., N}\{i};
5 Recover β =

∑N
j=1[β]j ;

6 Send β to all parties j ∈ {1, ..., N}\{i};

7 else
8 Send [β]i to party r;
9 Receive β from party r;

10 sign(x− y)← sign(β);
11 return sign(x− y);

III. PROPOSED FRAMEWORK

A. System Architecture
TrustDDL’s system architecture, depicted in Fig. 1, consists

of a proxy layer with three computing parties collaborating on
most operations involved in mode training and inference. This
layer acts as an intermediary between the data owner and the
model owner. In TrustDDL, the roles of both data owner and
model owner are consolidated into a single trusted party that
leverages TrustDDL’s computational and storage capabilities
for deep learning. In TrustDDL, the following actors come
into play:
• Data Owner: A party who holds the training and testing

data and creates the three sets of shares for all inputs
and labels. This party also may receive the results of an
inference task, i.e., the predicted label.

• Model Owner: A party who possesses the (deep) neural
network to be trained or used for inference. This party is
responsible for creating and distributing shares for neural
network’s parameters as well as auxiliary values (e.g.,
Beaver triples and auxiliary positive numbers) and their
relative shares. This party may also receive the result of
a training task, i.e., the updated model parameters.

• Computing Parties: Computing parties in the proxy layer
perform most of the operations involved in model training
and inference, validate computation results, and aggregate
them when necessary.

This framework, tailored for N = 2 and three computing
parties (a 3PC framework), accommodates at most one poten-
tial Byzantine party in the proxy layer. In TrustDDL, either

Fig. 1: System Architecture

the data owner or the model owner generates three distinct
sets of shares for each secret, ensuring that no computing
party in the proxy layer obtains a complete set. For any
secret s, the data owner or the model owner creates the
three sets of shares s1 = {[s]11, [s]12}, s2 = {[s]21, [s]22}, s3 =
{[s]31, [s]32}, where [s]ji represents the ith share of the jth set.
In TrustDDL, party P1 receives the shares {[s]11, [s]21, [s]32},
P2 receives {[s]21, [s]31, [s]12} and P3 receives {[s]31, [s]11, [s]22}.
The distribution scheme in TrustDDL is designed so that it
meets the requirements of privacy—ensuring that no single
computing party obtains a complete set of N shares—and
resiliency—where 2 out of 3 computing parties are sufficient
to perform computations involved in deep learning tasks, even
in the presence of one Byzantine party in the proxy layer.

B. Resiliency against a Byzantine Party

TrustDDL ensures resilience against a Byzantine party in
the proxy layer by redundantly executing each ASS-based
protocol across all computing parties. This includes protocols
like matrix multiplication and comparison, where each party
collects shares from the others for secure reconstructions. This
method allows for the high probability identification of a
Byzantine party.

Here, we go through one exemplary reconstruction phase,
derive a decision rule, and argue for its correctness. We focus
on the reconstructions in one specific party (P1); however, the
correctness can be argued for any other computing party in
the same way. Party P1 may need to use a timer to handle
potential delays or dropped shares from parties P2 and P3.
For simplicity, we focus on detecting a Byzantine party in the
proxy layer, presuming all shares are received by party P1.

When party P1 reconstructs some value s, it holds the
shares {[s]11, [̂s]21, [s]32} and collects the shares {[s]21, [̂s]31, [s]12}
of party P2 and {[s]31, [̂s]11, [s]22} of party P3. We introduce
the notation ·̂ to avoid duplicate names, and this notation is
used in all subsequent protocols. It then performs the following
reconstructions:

s1 = [s]11 + [s]12, s2 = [s]21 + [s]22, s3 = [s]31 + [s]32,

ŝ1 = [̂s]11 + [s]12, ŝ2 = [̂s]21 + [s]22, ŝ3 = [̂s]31 + [s]32



In this case, compromised shares of one computing party
(P2 or P3) can only corrupt the set of reconstructions
{s2, ŝ3, s1, ŝ1} or {s3, ŝ1, s2, ŝ2}. Thus, if party P2 is a Byzan-
tine party, the reconstructions ŝ2 and s3 are always correct.
Similarly, if party P3 is a Byzantine party, the reconstructions
s1 and ŝ3 are always correct.

In addition, to prevent a Byzantine party from reliably
selecting incorrect shares that closely match corrupted recon-
structions, TrustDDL includes a commitment phase in ASS-
based protocols. Here, computing parties commit to their
shares before distributing them to others, exchanging them
only after receiving commitment values (i.e., hash values of
shares) from the others. Subsequently, each computing party
recalculates the hash values and verifies whether they match
the values received during the commitment phase.

In the case where a Byzantine party violates the com-
mitment phase by sending a hash value of one share but
later exchanging it with a different share, the two honest
computing parties can detect this and discard any reconstruc-
tion involving the Byzantine party’s shares. However, if it
only violates the commitment phase with one party, the two
honest computing parties are unable to reach a consensus on
which computing party has violated the commitment phase.
Nevertheless, this does not hinder correct reconstructions,
as TrustDDL’s computing parties independently detect and
recover from misbehavior.

There is another case where a Byzantine party adheres to
the commitment phase but uses an incorrect share in both
the calculation of the hash value and in the share exchange.
This misbehavior cannot be detected by recalculating the hash
values and verifying whether they match or not after the
commitment phase. To delve deeply into this case, assume
that there is a Byzantine party Pi; it sends a set of shares
{[s]i11 , [̂s]i21 , [s]i32 } (where i1, i2, and i3 denote the sets of
which Pi holds its shares, e.g., i1 = 2, i2 = 3, and
i3 = 1 for party P2). With these shares, it can corrupt the
reconstructions si1 , ŝi2 , si3 , and ŝi3 . For these reconstructions,
we have si3 ≈ ŝi3 (in this context, we write ’≈’ instead of
’=’ since the reconstruction of a secret from two different
sets of shares incurs a slight inaccuracy when implemented
with the finite precision of a computer). Thus, we ignore the
(approximate) equality between any two reconstructions sj

and ŝk if j = k. However, the Byzantine party Pi cannot
force an (approximate) equality between si1 and ŝi2 without
the knowledge of the other shares of the respective sets ([s]i12
and [s]i22 ). Due to the existence of commitment phase in ASS-
based protocols of TrustDDL, the Byzantine party Pi cannot
simply wait to receive these shares and then send incorrect
shares to force (approximate) equality since it has to commit
to its shares beforehand. Thus, if the Byzantine party Pi

sends incorrect shares, it only has a negligible probability
of randomly achieving an (approximate) equality between si1

and ŝi2 . Since the remaining two correct reconstructions are
always (approximately) equal, the honest computing parties
can identify two correct reconstructions by determining the

minimum distance between any pair of two reconstructions
sj , ŝk, where j ̸= k:

min
sj ,ŝk

{dist(sj , ŝk) | j ̸= k}j,k∈{1,2,3}

for the distance measure dist. This serves as a decision rule
in TrustDDL to identify the correct computations.

TrustDDL applies such a strategy in ASS-based protocols
to provide resilience against one Byzantine party, as illustrated
in Algorithm 4 and Algorithm 5.

In Algorithm 4 (SecMul-BT protocol), each party i con-
tributes all its shares of the matrices to be multiplied, rep-
resented as vectors: [x]i = ([x]i11 , [̂x]i21 , [x]i32 ), [y]i = ([y]i11 ,

[̂y]i21 , [y]i32 ), each consisting of three shares. Additionally, party
i provides its shares of the Beaver triple as [B]i = ([a]i,
[b]i, [c]i), where [a]i = ([a]i11 , [̂a]i21 , [a]i32 ), [b]i = ([b]i11 , [̂b]i21 ,

[b]i32 ) and [c]i = ([c]i11 , [̂c]i21 , [c]i32 ), with each also being a
vector of three shares. The indices i1, i2, and i3 indicate the
set from which the share originates (e.g., i1 = 1, i2 = 2,
i3 = 3 for party P1; see Fig. 1). For simplicity, we implicitly
use these values within Algorithm 4 without passing them as
arguments. Furthermore, this algorithm can be applied for any
share dimensions to perform an element-wise multiplication
over Rm×n. We omit the dimensions of all shares here for
the sake of readability. Following this, each computing party
calculates vectors of the intermediate shares [e]i and [f]i by
performing element-wise subtractions between two vectors
(Lines 1 and 2). Subsequently, all computing parties execute
the commitment phase by exchanging the hash values of
intermediate shares (Lines 3-7). To address potential issues
such as delayed or dropped messages from a Byzantine party
during the commitment phase, or a malicious party falsely
claiming not to have received any commitment values, it is
possible to introduce timeouts. Computing parties can forward
the commitment values of others in response. If a Byzantine
party deliberately delays or drops all of its messages, the
other two parties can reach a consensus on this misbehavior
and exclude the offending party from further computations. In
the case of a Byzantine party only delaying or dropping their
shares to one party, the other computing party can forward the
received commitment values (directly or after a timeout). For
simplicity, we do not detail this mechanism in Algorithm 4.
Only after confirming the receipt of all commitment values
(Line 8) do the computing parties proceed to exchange their
intermediate shares. During the exchange of all intermediate
shares (Lines 9-14), the computing parties send their inter-
mediate shares (Line 10) and store the intermediate shares
received by the other two parties (Line 11). Furthermore,
they recalculate the hash values for all received intermediate
shares and check if they match the hash values received in
the commitment phase (Line 12). For any reconstructions sj

and ŝj , this algorithm uses the flags flagj and flagj to indicate
whether all intermediate shares used in the reconstruction were
validated in the commitment phase (value true) or not (value
false). When party Pi receives some intermediate shares [s]j =



([s]j11 , [̂s]j21 , [s]j32 ) from party Pj (here, s would be e or f ), this
algorithm first initializes the flags of reconstructions affected
by a violation of the commitment phase by party Pj : flagj1

,
flagj2 , flagj3 , and flagj3 . This initialization is abstracted to
initializeFlags, which sets each passed argument to true if they
are undefined or identity otherwise (Line 13). Then, these flags
are updated by performing an element-wise AND operation
with the commit check (Line 14). Thus, each flag is only true if
the commit check succeeded for all intermediate shares of the
corresponding reconstruction set. Next, reconstructions flagged
as Byzantine (value false) are ignored. Next, each computing
party performs six reconstructions for e and f (Lines 15-
19). The algorithm identifies two correct reconstructions from
each of them by determining the minimum distance between
any pair of two reconstructions (Line 20) and dismisses any
reconstructions that have been flagged due to a violation of the
commitment phase. Finally, each computing party calculates
and returns its shares of z = x · y for the sets (and share
numbers within a set) they were assigned in the system
architecture (Lines 21-25). In Algorithm 4, r is set to 2,
signifying the addition of the term e ·f to the second share of
each set (Line 23). Consequently, there is no designated party
Pr to perform different operations, as observed in Algorithm 2
(SecMul protocol) in Section II. Thus, a fixed value for r can
be chosen within the share calculation rules.

The adapted SecMatMul-BT protocol is derived from Al-
gorithm 4 by substituting element-wise multiplications with
matrix multiplications. Due to space constraints, we do not
explicitly show this protocol. However, we provide the adapted
SecComp protocol in Algorithm 5, following a similar strategy
without further explanation.

C. Deep Learning in TrustDDL

In the context of deep learning, we typically encounter the
following types of operations:
• Linear Operations: These operations involve basic arith-

metic operations such as addition and multiplication.
• Non-Linear Element-Wise Functions: During model train-

ing and inference, activation functions such as ReLU and
Softmax are used to introduce non-linearity to the output
of a linear operation.

• Local Transformations: These operations involve mod-
ifying the shape of an input data structure to make it
compatible with a specific layer or component of a deep
learning model.

ASS-based protocols provide an efficient and straightfor-
ward means of implementing linear operations. Furthermore,
each computing party can easily perform local transforma-
tions on its secret shares within TrustDDL. Additionally,
TrustDDL is able to efficiently compute the ReLU activation
function f(xi) = max(0, xi) using the SecComp-BT protocol.
However, the Softmax activation function f(xi) = exi∑

j exj

cannot be computed with ASS-based protocols in TrustDDL.
Consequently, TrustDDL delegates the computation of this
activation function to the model owner during both model

Algorithm 4: SecMul-BT ([x]i, [y]i, [B]i, i)

Input: Shares [x]i = ([x]
i1
1 , [̂x]

i2
1 , [x]

i3
2 ) and [y]i = ([y]

i1
1 , [̂y]

i2
1 , [y]

i3
2 )

of the matrices to multiply element-wise (i1, i2, and i3 denote the
sets of which party Pi holds shares), shares of a Beaver triple

[B]i = ([a]i, [b]i, [c]i) where [a]i = ([a]
i1
1 , [̂a]

i2
1 , [a]

i3
2 ),

[b]i = ([b]
i1
1 , [̂b]

i2
1 , [b]

i3
2 ) and [c]i = ([c]

i1
1 , [̂c]

i2
1 , [c]

i3
2 ), and the

number i of the party calling this protocol;

Output: Shares [z]i = ([z]
i1
1 , [̂z]

i2
1 , [z]

i3
2 ) of the result of the

multiplication z = x · y;
1 [e]i ← [x]i − [a]i;
2 [f]i ← [y]i − [b]i;
3 for i, j ∈ {1, 2, 3}, i ̸= j do
4 Send hash([e]i), hash([f]i) to Pj ;
5 Receive hash([e]j), hash([f]j) from Pj ;
6 hashe,j ← hash([e]j);
7 hashf,j ← hash([f]j);

8 Confirm receipt of all the commitment values from all other parties;
9 for i, j ∈ {1, 2, 3}, i ̸= j do

10 Send [e]i, [f]i to Pj ;

11 Receive and store [e]j = ([e]
j1
1 , [̂e]

j2
1 , [e]

j3
2 ) and

[f]j = ([f ]
j1
1 , [̂f ]

j2
1 , [f ]

j3
2 ) from Pj ;

12 commit checkj ← hashe,j == hash([e]j) ∧ hashf,j == hash([f]j);
13 initializeFlags(flagj1 , flagj2 , flagj3 , flagj3 );

14 flagj1 , flagj2 , flagj3 , flagj3
∧← commit checkj ;

15 for j ∈ {1, 2, 3} do
16 ej ← [e]j1 + [e]j2;
17 fj ← [f ]j1 + [f ]j2;

18 êj ← [̂e]j1 + [e]j2;

19 f̂j ← [̂f ]j1 + [f ]j2;

20 e, f ← minej,fj {dist(ej , êk) + dist(fj , f̂k) | flagj ∧ flagj ∧ flagk ∧
flagk ∧ j ̸= k}j,k∈{1,2,3};

21 [z]
i1
1 ← [c]

i1
1 + e · [b]i11 + [a]

i1
1 · f ;

22 [̂z]
i2
1 ← [̂c]

i2
1 + e · [̂b]i21 + [̂a]

i2
1 · f ;

23 [z]
i3
2 ← [c]

i3
2 + e · [b]i32 + [a]

i3
2 · f + e · f ;

24 [z]i ← ([z]
i1
1 , [̂z]

i2
1 , [z]

i3
2 );

25 return [z]i;

training and inference. As the Softmax activation function is
typically applied only in the last layer of a neural network,
over a relatively small number of neurons, even a resource-
constrained computing party can usually handle this compu-
tation. TrustDDL also requires the model owner to compute
the differentiation of the Softmax activation function.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We implemented TrustDDL in Python using the Ray frame-
work for inter-party communication and PyTorch for data rep-
resentation. Experiments ran on four machines, each featuring
an Intel Xeon Gold 5120 CPU and 256 GB of RAM.

Table I details the neural network structure used in
our experiments, including the utilized layers and their in-
puts/outputs. We evaluated test image accuracy over five train-
ing epochs with 60,000 images each. Fully connected layer
weights were randomly initialized with a normal distribution
N (0, 1/n), where n is the number of input neurons, and
convolutional layer weights were initialized with a normal
distribution N (0, 1/(k1 · k2)), where (k1, k2) denotes the
kernel size. MNIST dataset feature values were normalized to
[0, 1]. Furthermore, we assessed runtime and communication



Algorithm 5: SecComp-BT ([x]i, [y]i, [t]i, [B]i, i)

Input: Shares [x]i = ([x]
i1
1 , [̂x]

i2
1 , [x]

i3
2 ) and [y]i = ([y]

i1
1 , [̂y]

i2
1 , [y]

i3
2 )

of the matrices to compare element-wise (i1, i2, and i3 denote the
sets of which party Pi holds shares), shares of an auxiliary matrix of

positive numbers [t]i = ([t]
i1
1 , [̂t]

i2
1 , [t]

i3
2 ), shares of a Beaver triple

[B]i = ([a]i, [b]i, [c]i) where [a]i = ([a]
i1
1 , [̂a]

i2
1 , [a]

i3
2 ),

[b]i = ([b]
i1
1 , [̂b]

i2
1 , [b]

i3
2 ) and [c]i = ([c]

i1
1 , [̂c]

i2
1 , [c]

i3
2 ), and the

number i of the party calling this protocol;
Output: The sign of x− y, sign(x− y);

1 [α]i ← [x]i − [y]i;
2 [β]i ← SecMul([t]i, [α]i, [B]i, i);
3 for i, j ∈ {1, 2, 3}, i ̸= j do
4 Send hash([β]i) to Pj ;
5 Receive hash([β]j) from Pj ;
6 hashβ,j ← hash([β]j);

7 Confirm receipt of all the commitment values from all other parties;
8 for i, j ∈ {1, 2, 3}, i ̸= j do
9 Send [β]i to Pj ;

10 Receive and store [β]j = ([β]
j1
1 , [̂β]

j2
1 , [β]

j3
2 ) from Pj ;

11 commit checkj ← hashβ,j == hash([β]j);
12 initializeFlags(flagj1 , flagj2 , flagj3 , flagj3 );

13 flagj1 , flagj2 , flagj3 , flagj3
∧← commit checkj ;

14 for j ∈ {1, 2, 3} do
15 βj ← [β]j1 + [β]j2;

16 β̂j ← [̂β]j1 + [β]j2;

17 β ← minβj {dist(βj , β̂k) | flagj ∧ flagj ∧ flagk ∧ flagk ∧ j ̸=
k}j,k∈{1,2,3};

18 sign(x− y)← sign(β);
19 return sign(x− y);

TABLE I: Neural Network Configuration for MNIST Dataset

Input: 28× 28 image
Convolution: (28× 28)→ (14× 14× 5)

kernel size (5× 5), padding size 2, 5 output channels
ReLU: (980)→ (980)

FullyConnected: (980)→ (100)
ReLU: (100)→ (100)

FullyConnected: (100)→ (10)
Softmax: (10)→ (10)

costs via microbenchmarks, focusing on single-image (batch
size 1) training or testing.

We used 64-bit fixed-point integers with 32 precision bits to
convert floating-point values. During the commitment phase,
TrustDDL utilized the SHA-256 hash function to hash shares.

B. Model Accuracy

Fig. 2 depicts the accuracy trained with CML (Centralized
plaintext Model Learning) and TrustDDL. TrustDDL shows
accuracy comparable to CML. This can be attributed to the
utilization of the SecComp-BT protocol for computing the
ReLU activation function, the outsourcing of the computation
of the Softmax activation function to the model owner, and the
utilization of 64-bit fixed-point integers with 20 precision bits
to minimize accuracy loss during conversion between floating-
point and fixed-point values during model training.

C. Runtime and Communication Cost

We compared TrustDDL with SecureNN [32], Falcon [33],
and SafeML [34], all based on the additive secret-sharing
scheme, in terms of runtime and communication costs. Se-
cureNN provides security against honest-but-curious adver-
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Fig. 2: Model Accuracy on the MNIST Dataset

TABLE II: Runtime and Communication Cost

Framework Model Task Time (s) Comm. (MB)
SecureNN Honest-but-Curious Training 0.0824 6.8434
Falcon Honest-but-Curious Training 0.0513 1.7788
Falcon Malicious Training 0.0833 5.0660
SafeML Crash-Fault Training 6.3208 53.1408
TrustDDL Honest-but-Curious Training 5.9397 56.0285
TrustDDL Malicious Training 8.5315 68.4792
SecureNN Honest-but-Curious Inference 0.0498 4.0489
Falcon Honest-but-Curious Inference 0.0168 0.1535
Falcon Malicious Inference 0.0366 1.5624
SafeML Crash-Fault Inference 5.5406 28.0132
TrustDDL Honest-but-Curious Inference 5.1423 28.0132
TrustDDL Malicious Inference 7.6022 34.2384

saries, while Falcon can detect and abort malicious behavior
but cannot continue learning or inference. SafeML offers
protection against crash faults.

In Table II, TrustDDL demonstrates higher runtime and
communication costs compared to other frameworks due to
its advanced capabilities in detecting and recovering from
Byzantine faults. There is a notable increase in both runtime
and communication costs when dealing with malicious and
crash-fault models compared to honest-but-curious adver-
saries. However, TrustDDL shows a relatively lower escalation
in costs from honest-but-curious to malicious adversaries. For
instance, while Falcon exhibits a 0.62× runtime increase,
TrustDDL demonstrates a more modest 0.44× increase.

V. CONCLUSION AND FUTURE WORKS

TrustDDL addresses privacy and Byzantine robustness con-
cerns for model training and inference using a 3-party setting.
Theoretically, it is secure against both honest-but-curious and
malicious adversaries with an honest majority. It stands as a
secret-sharing-based solution capable of detecting Byzantine
failures and continuing protocol execution without interrup-
tion, ensuring reliable output delivery for deep learning tasks.
Experimentally, TrustDDL demonstrates its ability for model
training with satisfactory accuracy.

Future research for TrustDDL includes optimizing commu-
nication by designing protocols that reduce redundancy and
improve efficiency in model training and inference.
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VI. APPENDIX

The security of ASS-based protocols under the honest-
but-curious adversary model is proven using the universal
composability framework [35]. We assume their security, as
established in prior works [30], [31], focusing solely on
demonstrating TrustDDL’s security during model training and
inference. In the honest-but-curious adversary setting, comput-
ing parties in the proxy layer are hosted across diverse cloud
infrastructures, each managed by a different cloud service
provider. While assuming most providers avoid collusion due
to conflicting interests, we consider the possibility of one
computing party acting as the adversary (denoted as A).
The security of TrustDDL in this setting is established by



proving that the ideal experiment, where a simulator (denoted
as S) emulates A’s view according to the functionality F , is
indistinguishable from the real experiment. The functionality
F is defined so that a trusted functionality machine has access
to the correct input information required for all operations
related to learning and inference of a deep learning model. The
ideal experiment aims to present S with computation results,
ensuring that S’s view is indistinguishable from the real-world
view and that sensitive information remains concealed.

Theorem 6.1: TrustDDL is secure in the honest-but-curious
adversary model.

Proof 6.1: During model training and inference, the view
of the adversary can be defined as view = ([s]11, [̂s]

2
1, [s]

3
2,

[s]21, [̂s]
3
1, [s]

1
2, [s]

3
1, [̂s]

1
1, [s]

2
2), where these shares are masked

computation results (e.g., the shares of e and f in the SecMul-
BT protocol or the shares of β in the SecComp-BT protocol)
from its own or received from the other two computing parties
in the proxy layer. While the adversary A can reconstruct the
secret of s using one of the following equations:

s = [s]11 + [s]12, s = [s]21 + [s]22, s = [s]31 + [s]32,

s = [̂s]11 + [s]12, s = [̂s]21 + [s]22, s = [̂s]31 + [s]32

This secret is a masked value (e.g., the values e and f in
the SecMul-BT protocol or the value of β in the SecComp-BT
protocol). Therefore, the value of s is completely random and
simulatable. Consequently, both the view of the adversary A
and the outputs of the ASS-based protocols in TrustDDL are
simulatable by the simulator S, and the views of S and A are
computationally indistinguishable.□

In the malicious adversary setting, we maintain the assump-
tion that the computing parties within TrustDDL’s proxy layer
are hosted across diverse cloud infrastructures, operating under
the premise of honest behavior to safeguard their reputations.
However, we postulate the possibility of one computing party
deviating from honesty. This party, referred to as a Byzantine
party, intentionally provides incorrect computation results and
manipulates data. The security of TrustDDL in this setting
is established by demonstrating that every honest computing
party can still derive masked correct computation results (e.g.,
the values e and f in the SecMul-BT protocol or the value of
β in the SecComp-BT protocol) in the presence of a Byzantine
party. In cases where honest computing parties receive erro-
neous shares, they can effectively detect the Byzantine party
and reconstruct every masked correct computation result from
a set of six reconstructions.

Theorem 6.2: TrustDDL is secure in the malicious adversary
model.

Proof 6.2: Let party P2 be a Byzantine (malicious) party.
Based on the proposed solution in TrustDDL to resilience
against a Byzantine party in the proxy layer, any honest
computing party (i.e., P1 and P3) can reconstruct the masked
value s using one of the following equations:

s = [s]11 + [s]12, s = [s]21 + [s]22, s = [s]31 + [s]32,

s = [̂s]11 + [s]12, s = [̂s]21 + [s]22, s = [̂s]31 + [s]32

Now, there are three cases as follows:
• Case 1: If party P2 violates the commitment phase by

sending hash values of shares but later exchanges them
with different shares, the two parties P1 and P3 can detect
this misbehavior by recalculating the hash values and
verifying if they match the values received during the
commitment phase.

• Case 2: If party P2 only violates the commitment phase
with a specific party (e.g., P3), party P1 assumes both
parties P2 and P3 are honest, while party P3 detects party
P2 as a Byzantine party. Nevertheless, this does not hinder
correct reconstructions, as TrustDDL’s computing parties
independently detect and recover from misbehavior.

• Case 3: If P2 adheres to the commitment phase but
uses incorrect shares for the calculation of the hash
values, and in the share exchange, the two parties P1

and P3 can detect this misbehavior and identify the
correct reconstructions with a very high probability by
determining the minimum distance between any pair of
two reconstructions.□

The security of TrustDDL against Byzantine attacks is
ensured by honest behavior among cloud service providers,
driven by their reputation concerns, the cooperation of most
computing parties, and the commitment phase implementation.


