
ArgServices: A Microservice-Based Architecture
for Argumentation Machines

Mirko Lenz1[0000−0002−7720−0436], Lorik Dumani1[0000−0001−9567−1699], Ralf
Schenkel1[0000−0001−5379−5191], and Ralph Bergmann1,2[0000−0002−5515−7158]

1 Trier University, Universitätsring 15, 54296 Trier, Germany
info@mirko-lenz.de, {dumani,schenkel,bergmann}@uni-trier.de

2 German Research Center for Artificial Intelligence (DFKI),
Branch Trier University, Behringstr. 21, 54296 Trier, Germany

ralph.bergmann@dfki.de

Abstract. Argumentation is ubiquitous, and the development of argu-
mentation machines could greatly assist humans in managing and navi-
gating argumentation. However, the development of such systems is hin-
dered by the lack of common standards and suitable tools, leading to ad-
hoc solutions with little reuse value. Towards a more unified approach, we
present an extensible microservice-based architecture for argumentation
machines. Being built on the established gRPC framework, it provides
strongly typed interfaces for the following services: (i) Argument Min-
ing, (ii) Case-Based Reasoning on Arguments, (iii) Argument Retrieval
and Ranking, and (iv) Quality Assessment of Arguments. Our system is
designed to be extensible, allowing for easy integration of new tasks. We
demonstrate the feasibility of our architecture via a proof-of-concept im-
plementation and provide additional supplementary resources, such as a
REST API gateway. Our contributions are publicly available on GitHub
under the permissive MIT license.
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1 Introduction

Living in an ever-changing world, we are constantly confronted with new infor-
mation and, based on it, have to make decisions. With the advent of the Inter-
net, computers have become an integral part of this process. While traditional
Web search engines mostly rely on textual similarity, and thus require users
to manually extract and analyze relevant information, domain-specific systems
could incorporate other sources of knowledge to provide assistance. However,
even within a single field—such as argumentation—many competing solutions
exist without a common standard or interface. As a result, the development of
ad-hoc solutions is often necessary, which are not easily reusable in other con-
texts. Argumentation machines [30] for example may offer a variety of services
like retrieval and validation, but contributions in the domain of Computational
Argumentation (CA) focus mainly on one aspect of such a system.
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In this paper, we present a microservice-based architecture for argumenta-
tion machines designed to be extensible and reusable. The target audience is
researchers and developers who aim to build, extend, or only use specific func-
tions of argumentation machines, without reinventing the wheel. Our ultimate
vision is to allow other researchers to rewrite one service using their own algo-
rithms and integrate it into the existing architecture—enabling them to evaluate
their approach in a larger framework. Our contributions are (i) service descrip-
tions for common tasks in CA based on the established gRPC framework, (ii) a
proof-of-concept implementation of the architecture showcasing its feasibility,
and (iii) a collection of supplementary resources like a REST API gateway and
ready-to use client/server libraries.

The remainder of this paper is structured as follows: In Section 2, we intro-
duce the foundations necessary to understand our architecture, followed by a
discussion of related work in Section 3. Section 4 presents the service definitions
that are implemented in a proof-of-concept described in Section 5 and supported
by supplementary resources introduced in Section 6. Finally, Section 7 discusses
current limitations and Section 8 concludes our paper.

2 Foundations

Our proposed architecture for an argumentation machine is fundamentally based
on argument graphs, so we briefly introduce them in this section. Since dealing
with texts is essential in this domain, we also present some common Natural
Language Processing (NLP) [5] concepts here. Lastly, we introduce some aspects
of microservice-oriented backends like Representational State Transfer (REST)
and gRPC.

2.1 Theoretical Argumentation and Argument Graphs

An argument is typically composed of a single claim that is supported or attacked
by one or multiple premises [28]—these smallest units of an argument can be
subsumed under the term Argumentative Discourse Units (ADUs) [28]. A claim
itself may also support another claim and thus additionally act as a premise,
making it possible to represent entire conversations. Moreover, an argument
typically has one primary/central conclusion, the so-called major claim. This
inductive structure already forms a directed graph—we call it argument graph.

According to Argument Interchange Format (AIF) [13], an argument graph
is a tuple G = (V,E) where V is a set of nodes and E ⊆ V ×V is a set of directed
edges. The nodes are divided into atom nodes A ⊂ V representing the ADUs and
scheme nodes S ⊂ V representing the relationships between them: V = A ∪ S.
Edges cannot be drawn between two atom nodes, so we define E ⊆ V ×V \A×A.
Any sequential ordering of ADUs originating from the source text is lost in
the AIF graph representation. To mitigate this, the annotation software Online
Visualization of Arguments (OVA) [8] for example uses additional properties to
store the position of each atom node in the text and consequently the order of
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the ADUs. The creation of structured argument representations—including but
not limited to graphs—is also known as Argument Mining (AM) [20].

To use more detailed semantics when representing the scheme nodes, argu-
mentation schemes introduced by Walton et al. [41] may be used. Each scheme—
for instance, Expert Opinion—explicitly describes the role of a claim and its
fixed set of premises. In this example, the claim would be the conclusion of one
premise representing an expert’s opinion and the other premise representing the
expert’s expertise. To check the applicability of such a scheme to a relationship,
the authors defined critical questions.

2.2 Argument Processing

Argument graphs contain two types of information—structure and semantics.
The former refers to the graph-based representation (i.e., the nodes and edges),
whereas the latter refers to the text of the nodes. Our system deeply integrated
both aspects, so the following section will introduce the necessary concepts.

For the structural aspect, we use the wide variety of research on graph-
based representations. A relevant field is Process-Oriented Case-Based Reasoning
(POCBR), a variant of Case-Based Reasoning (CBR) [2,33] that focuses on
graph-based workflows (e.g., business processes). The idea of CBR is to solve
new problems by reusing solutions to problems similar to those that have been
solved in the past by performing four steps: (i) Retrieve a set of similar cases from
the so-called case base, (ii) reuse the found cases by adapting them to the new
query, (iii) revise the adapted cases by checking their validity, and (iv) retain the
new solution for future use. One central difference between case-based retrieval
and Information Retrieval (IR) is the inclusion of structural information—in our
case the argument graph.

When assessing the similarity between the atom nodes of two argument
graphs in the CBR framework, we need to take into account the semantic aspect.
Over the past few years, the use of language models—for instance, to compute
the semantic similarity between texts via embeddings—has become a common
practice in NLP. The basic idea is that words or sentences with similar meanings
should be close to each other in a high-dimensional vector space. Using standard
measures like the cosine distance, we can assess the similarity between two texts
by comparing their embeddings/vectors. For the nodes of the scheme, embed-
dings could also be computed to assess their similarity, but taxonomy-based
measures may be a better fit [40].

2.3 System Architectures

When designing a system, there are two common approaches: monolithic and
microservice-based architectures. A monolith is a single codebase that contains
all functionality of the system and is deployed as a single unit. On the contrary,
a microservice-based architecture is composed of multiple coherent services that
are deployed independently of each other. [4] In this paper, we committed to the
latter for two main reasons: (i) The specific implementation of a single module
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is entirely separated from the rest, meaning it is possible to combine differ-
ent programming languages (e.g., Java and Python). (ii) We aim at providing
an argumentation machine that allows other researchers to quickly swap out a
single module with their own implementation and evaluate it in a larger con-
text. Although both can in principle be achieved with a monolithic architecture,
the microservice-one was the more natural choice for us, since general-purpose
monoliths are not yet widely used (see Section 3). In addition, a microservice
architecture makes it easier to scale horizontally, which means that it translates
well into production environments. In the following, we briefly introduce this
architecture in more detail.

According to Jamshidi et al. [18], a service/module of a microservice-based
system offers “access to its internal logic and data through a well-defined network
interface”—the so-called Application Programming Interface (API). As of 2024,
the most common style of these systems is REST, which uses a fixed set of
URL-based endpoints and Hypertext Transfer Protocol (HTTP) operations to
access the functionality of a service. There are also other options like Simple
Object Access Protocol (SOAP), GraphQL, and gRPC, each having its own
set of advantages and drawbacks. For our architecture, we ultimately settled on
gRPC—a Remote Procedure Call framework developed by Google on top of the
modern HTTP/2 protocol specifically for microservice backends.3 Compared to
the established REST, it has the following differences:

Stronger typing gRPC uses Protocol Buffers (Protobuf) for data serializa-
tion, which allows for a more strict definition of the data types used in the
API. This strong contract between client and server removes some potential
sources of bugs (e.g., sending strings instead of integers).

Code generation The use of Protobuf to define services provides a code gener-
ation tool that creates client and server stubs for most major programming
languages. This means that compared to REST, the user does not have to
deal with the low-level details of the HTTP protocol.

Binary data transfer The messages sent between the client and the server are
encoded in a binary format, which is much more compact than the textual
JavaScript Object Notation (JSON) format used by REST. Note that this
does not have a negative impact on readability, as it only applies to the
transfer itself—that is, any Protobuf message can be serialized to a JSON
object as well.

These advantages come at the cost of a steeper learning curve—for instance,
developers need to learn a new domain-specific language and have to re-run the
code generation tool after changes to the service definitions. With its reliance
on HTTP/2, gRPC cannot be natively used in browsers and requires proxies
to work around this limitation (see Section 6 for our solution). Yet, due to the
mentioned advantages, gRPC and Protobuf are already heavily used in Machine
Learning (ML)—most prominently, they serve as the backbone for the official
Tensorflow API.4
3 https://grpc.io
4 https://github.com/tensorflow/serving

https://grpc.io
https://github.com/tensorflow/serving
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3 Related Work

To the best of our knowledge, there is almost no work on the architecture of
argument machines as we present them. Works up to the mid-2010s often only
presented computational models of argument which are more concerned with
argumentation theory—that is, the construction of arguments or a whole argu-
mentation. In the following, we consequently not only collected works describing
entire argumentation machines, but also works concerned with only one aspect
of it (e.g., argument retrieval).

The development of argumentation machines began in the mid-1990s and
included work on argumentative dialog planning [29], applications of argument
schemas in Artificial Intelligence (AI) [31], and argumentation engines capable
of handling a large number of topics [30]. The AIF (see Section 2.1) was later
extended to handle dialogical argumentation [32]. In the following years, the
argument annotation tools ArgueBlogging [9] and OVA+ [19] were developed.
They specialized in constructing discussions about blogs and annotating plain
texts with argument graphs, respectively.

Slonim et al. [36] presented Project Debater, an autonomous debating system
that is capable of discussing with people a wide variety of topics and taking
certain positions. Even before the era of Large Language Models (LLMs), their
system was capable of conducting a discussion—that is, understanding users’
viewpoints and generating suitable arguments. In their work, they described the
architecture of the system and conducted an evaluation that included several
debate topics. An alternative architecture for an argumentation machine has
been proposed by Bergmann et al. [6] as part of the ReCAP project. In our
work, we build on their proposal and present an improved version that has been
developed according to best practices in an effort to keep up with the rapidly
changing field of CA.

Apart from this, we are only aware of work on stand-alone systems, which
we present in the following. Wachsmuth et al. [39] proposed the first argument
search engine (Args) known to us, which introduced a system that reads any free
text user queries to search for arguments, and then presents relevant arguments
from a pool of almost 300k previously mined and indexed arguments from five
debate portals (i.e., Web content) in a ranking based on BM25F. Other projects
used their system as a starting point for their own research—for instance, by
reimplementing its most important properties or using their dataset for tasks
like ranking [3,11]. However, despite all merits, their system does not cover the
entire argumentation machine as we envision it.

Among others, Bondarenko et al. [11] have been setting up the CLEF lab
Touché every year since 2020, where they used the Args dataset until 2022 and
ClueWeb22 since 2023. The systems submitted by the participants can be up-
loaded to TIRA [16] to reproduce the results. Like Args, ArgumenText [37]
is an argument search engine. First, it finds relevant documents in a large set
of heterogeneous arbitrary Web sources using ElasticSearch, then it identifies
relevant premises in them using Keras, assigns them stances by applying BiL-
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STM, and ranks the premises by their classifier’s confidence score. Its evaluation
showed a high recall of 89% and a rather moderate precision of 47%.

Beyond the retrieval of arguments, Eden et al. [15] presented insights on the
creation of a Key Point Analysis (KPA) system and highlighted some of the
main challenges. KPA is concerned with extracting the main points from a col-
lection of opinions, a service that may in the future also be incorporated into our
proposed architecture. Romberg [34] tackles the problem that argumentation is
often subjective and annotations are summarized with average or majority vote,
resulting in minorities being ignored when learning. Therefore, she introduced
PerspectifyMe, a method that combines subjective points of view by com-
plementing an aggregated label with a subjectivity score. Heinisch et al. [17]
addressed the subjectivity issue in annotation processes and found that classi-
fiers incorporating relations between different annotators are beneficial even for
predicting single-annotator labels. Building models that are aware of potentially
subjective annotations is a crucial aspect in CA, so we plan to include this aspect
in future iterations of our architecture.

4 Microservices for Argumentation

As mentioned in Section 1 and seen in Section 3, argumentation machines can
vary greatly w.r.t. their functionality. Consequently, the main goal of our service
definitions is to be easily extensible for tasks not envisioned by us. As a starting
point, we identified the following tasks as common in CA: (i) argument mining,
(ii) case-based reasoning on arguments, (iii) retrieval and ranking of arguments,
and (iv) quality assessment of arguments. Please note the difference between
(ii) and (iii): while the former integrates the structural information of entire
graphs (see Section 2.2), the latter considers ADUs or claim-premise pairs. An
overview of the different modules is given in Figure 1. There are two special
services in our proposed architecture that were not part of the aforementioned
list: (i) The argumentation base in the middle and (ii) the NLP service to the
bottom right. All services either consume argument graphs or produce them, so
we created a dedicated module to serve them. Some of the services also require
NLP functionality, leading to the creation of a separate service for this task. All
services are designed to work independently of each other (with the exception
of the NLP service), but may be combined to form a complete argumentation
machine. Further aspects of their orchestration are discussed in Section 5.

All services are defined using Protobuf and gRPC with their definitions pub-
licly available on GitHub under the permissive MIT license.5 These service defi-
nitions are also available from the Buf Schema Registry, which makes it possible
to add them as dependencies in other gRPC-based project and provides users
with a nicely formatted and up-to-date documentation.6 We acknowledge that
there may be varying requirements or the need for additional data depending on

5 https://github.com/recap-utr/arg-services
6 https://buf.build/recap/arg-services

https://github.com/recap-utr/arg-services
https://buf.build/recap/arg-services
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Fig. 1. Overview of our proposed architecture for microservice-based argumentation
machines. Light gray boxes represent the different layers, dark gray ones external re-
sources, and white ones the services exposed via our API.

the context. Consequently, each function described here allows arbitrary JSON-
encoded data to be encoded as an optional parameter called extras.

In the following section, we introduce each service in detail and provide a
list of all included functions. We also highlight some of the most important op-
tions/parameters that can be used to customize the behavior of the services. Due
to their tight integration with the other services, we start with two core modules:
the argumentation base (middle) and NLP service (bottom right). Subsequently,
the remaining services mentioned above are introduced.

4.1 Argumentation Base

The core of our argumentation base is our own argument serialization format
Argument Buffers (Arguebuf) [21] first introduced at COMMA 2022. Given
that it has been designed as a first-class citizen of Protobuf, the integration
into our architecture is straightforward. Its formal semantics are based on the
established AIF standard (see Section 2.1), but the storage format is designed
to be more uniform and extensible at the same time. With regards to the graph
structure, the following five main differences exist compared to argument graphs
serialized to AIF: (i) The graph itself and each of its nodes/edges allow arbitrary
key-value pairs to be stored. (ii) The sets containing the nodes and edges are
represented as dictionaries with their respective IDs as keys to enforce unique-
ness. (iii) Original textual resources and participants of a conversation can be
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stored together with the graph. (iv) The major claim is explicitly marked as
such. (v) Information about analysts and the creation/modification date can be
stored. Atom nodes can not only store the text of the ADU, but also the position
in the original text and the participant who made the statement. The link to
the original text also allows for reconstruction of the sequential ordering of the
argument as found in the source text. Scheme nodes do no longer use a free-text
field to store the scheme name, but instead refer to a scheme from a predefined
list through an enumeration. This decision makes parsing and serialization easier
and more reliable, with the drawback that new schemes first need to be added to
the Protobuf definition. All the mentioned changes are additions to the format,
so an existing AIF graph can easily be converted to Arguebuf. An area where
our format is currently lacking is the representation of dialogical argumentation,
which is planned to be added in the future. This service offers a single function:

Casebase Given a list of filter criteria (expressed as regular expressions), re-
turn a list of argument graphs. The type of filters available depends on the
implementation—thus the use of generic regexes—but may include factors
like the corpus name, the serialization format, or the inclusion of schemes.

We have chosen to stick to the CBR terminology here to be consistent with some
of our other services. Currently, only regex-based filtering is supported, but more
advanced filtering options could be added in the future if the need arises.

4.2 Natural Language Processing

As outlined earlier, the use of language models—for instance, to compute the se-
mantic similarity between texts via embeddings—has become a common practice
in NLP. At the same time, these models are getting larger and larger, making
it harder to use them on a regular computer. When combined with a microser-
vice architecture, another challenge is that each service would need to load the
model into memory, which is a waste of resources. We therefore chose to add a
dedicated service for these needs with a central NlpConfig message that can
be passed between individual services. It encodes (i) the language of the process-
ing pipeline, (ii) the choice of the language model (multiple are also possible),
(iii) the similarity measure to use, and (iv) the pooling function for plain word
embeddings. Currently, this service focuses on determining semantic similarity
between texts through embeddings. More general NLP tasks like named entity
recognition or dependency parsing are not yet supported but could be added in
the future if the need arises. To mitigate this restriction, we added a function to
process texts with the Python library spaCy [25] and return the result as a bi-
nary representation. Please note that the goal of this service is to save resources
by loading common base models once instead of requiring each service to load
them individually. That also means that custom models (e.g., for classification)
are not part of this service and need to be handled by the respective service
implementations. It is also beyond the scope of this service to add generative
models, as there already exist well-established interfaces like the OpenAI API
for this purpose. The corresponding service offers the following functions:
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Vectors Given a list of texts, it returns their embeddings of n dimensions.
Similarity Given a list of text pairs, it returns their similarity score between 0

and 1.
Spacy Document Give a list of texts, return the corresponding spaCy docu-

ments. This is an optional service that is usable only with Python servers
and clients.

4.3 Argument Mining

Having introduced the two cornerstones of our architecture, we now present the
service responsible for building our argumentation base through AM. The set of
functions is derived from an end-to-end pipline [23] for transforming plain texts
into argument graphs consisting of multiple successive steps with an additional
function for transforming a text to a graph without any intermediate steps.

Segment Text Given a natural language text, return the list of Elementary
Discourse Units (EDUs).

Classify ADUs Given a list of EDUs, return the list of ADUs.
Predict Major Claim Given a list of ADUs, return a ranking of major claim

candidates.
Predict Polarity/Entailment Given a list of ADUs, compute the cross prod-

uct to generate claim-premise pairs and predict the polarities (i.e., support,
attack, or neutral) between them.

Construct Graph Given all ADUs, the major claim, and the predicted polar-
ities, construct the resulting graph using some heuristic.

End-to-End Pipeline Given a natural language text, return an argument graph.

With the advent of generative language models, we plan to add a function to
the service that allows the generation of textual arguments and/or argument
graphs from a given prompt. Although even the present functions can already
be implemented using LLMs, the current set of features is more focused on the
extraction of arguments from existing texts. As such, the envisioned generation
function would enable the synthesis of new arguments.

4.4 Case-Based Reasoning on Arguments

With the methods in place to build the argumentation base, we have now reached
the knowledge layer and can take advantage of them in our services. The re-
trieval functionality is motivated by our paper published at FLAIRS 2019 [7]
that proposes a combination of semantic and structural similarity measures for
CBR with argument graphs. The underlying paper for the adaptation service
has been published at ICCBR 2023 [22] and proposes a hybrid approach com-
bining WordNet with LLMs to adapt retrieved arguments. For all methods
offered by the service, the cases and the user-provided are represented as argu-
ment graphs—enabling the user to specify the structure and the content of the
desired argument. It offers the following functions:
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Retrieve Given a collection of argument graphs (i.e., the casebase) and a user-
defined query (that is also a graph), perform a search for the most similar
argument in the casebase.

Adapt Given one retrieved graph and the user-defined query, perform a keyword-
based adaptation with the goal of making the retrieved one more similar to
the query. The function allows passing one or multiple rules to influence the
process. One can decide to restrict the adaptation process to pure general-
ization, pure specialization, or a combination of both.

4.5 Argument Retrieval and Ranking

Argument Retrieval contains a wide range of IR tasks, including ranking and
clustering—the former being at the heart of every IR system. At SIGIR 2021 [27]
we presented an argument search system that ranks premises to queries according
to the principle of TF-IDF (i.e., the more frequent premises of claims that are
(more) similar to the query occur, the higher the score), as well as by the three
(main) quality dimensions of cogency, reasonableness, and effectiveness [38]. At
CIKM 2021 [14] we presented a work on fine granular clustering of arguments,
as clustering is an essential part of our ranking approaches. The service offers
the following functions:

Statistical Ranking Given a query and a list of ADUs, return a ranking of
the given arguments based on frequency and specificity.

Quality-Based Ranking Given a query and a list of ADUs, return a ranking of
the given arguments based on scores derived from a set of quality dimensions.

Fine-Granular Clustering Given a query and a list of ADUs, predict a set of
scores used to assign them to fine-granular clusters.

4.6 Quality Assessment of Arguments

As implied in the previous section, we used argument quality in our work, which
is why we also offer a dedicated service for this task. A work presented at CIKM
2023 [12] introduced a User Interface (UI) that takes two premises for a claim
and not only decides for these two, which is more convincing for all 15 argument
quality dimensions [38], but also provides an additional explanation together
with the individual scores justifying why the particular decisions were made.
Another work published at the ArgMining workshop at COLING 2022 [10]
presented an end-to-end tool that reads any plain text and returns the so-called
qualia structures (which express the meaning of lexical items from four view-
points). With validation being a central part of argument quality—arguments
containing disinformation have lower quality—we also provide a further service
that is based on a work presented at the TMG workshop at ICCBR 2023 [26]
able to predict the suitability of experts when cited for emphasizing statements.
The quality service has the following functions:

Quality Explanation Given a claim and two premises, determine and explain
which one is more convincing for all available quality dimensions as well as
globally across all dimensions.
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Qualia Annotations Given a text and a list of qualia patterns, compute the
constituency tree and return the qualia role for each pattern.

Expert Suitability Given a premise and (optionally) the Google Scholar ID
of a researcher, predict whether they are an expert on the given topic.

5 Proof-of-Concept

With all the necessary tools in place, we created a proof-of-concept implemen-
tation of our architecture that includes almost all the services and functions
described in Section 4. One of the central goals of our work has been to create a
machine that allows other researchers to reimplement a single module and gain
the ability to perform experiments in a larger system. Consequently, some of the
services are written in Python, while others use Java. The code is based on exist-
ing implementations originally written for the corresponding paper or was newly
created for this work. Some services are even implemented through a LLM-based
prompting strategy to showcase the flexibility of our architecture in keeping up
with the latest trends in NLP. The code and additional instructions are avail-
able on GitHub under the permissive MIT license.7 In the following section, we
present individual service implementations and discuss their orchestration. To
wrap up, we also introduce an evaluation framework for the CBR services that
demonstrates the client side of our architecture.

Argumentation Base The argumentation base is provided by our Arguebuf
Python library (see Section 6 for more details). It can serve argument graphs
from a local directory or a remote server and allows to filter them with regular ex-
pressions. Our implementation expects that filter criteria are stored in directory
names using the pattern <property1>=<value1>,<property2>=<value2>,...
and therefore allows the use of arbitrary properties for filtering.

To get started more easily, we provide a public collection of argument graphs
called ArgueBase8 that adheres to the naming convention mentioned of the
directory. It contains a diverse set of publicly argument graph corpora in various
formats like AIF or Arguebuf and includes links to the original sources and
licenses.

Natural Language Processing Our NLP service implementation is written in
Python and built on the popular spaCy library—including a specialized client to
simplify the consumption of the service. Besides the embedding models offered
by spaCy, our services provide an integration with SentenceTransformers9

that allows to use a wide range of pre-trained models for computing contextual-
ized embeddings and includes support for CUDA acceleration. For regular word
embeddings, multiple pooling methods are supported in addition to the default
7 https://github.com/recap-utr/arg-services-poc
8 https://github.com/recap-utr/arguebase
9 https://www.sbert.net/

https://github.com/recap-utr/arg-services-poc
https://github.com/recap-utr/arguebase
https://www.sbert.net/
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pooling of the mean, including the generalized power mean [35]. Instead of ap-
plying cosine similarity to pooled vectors, max-pooling can be used to determine
the similarity between two texts [42]. Finally, multiple models can be selected at
the same time with their individual embeddings concatenated to a larger vector.

Argument Mining Based on a prompting strategy created for another project
(currently in development), we implemented an LLM-based AM service in Python.
The service allows to run the stages individually or as an end-to-end pipeline
and makes use of the function calling feature of OpenAI’s ChatGPT to enforce a
JSON schema for the predictions. It demonstrates that even in light of generative
models getting better at many tasks, our architecture can act as a translation
layer between new and existing systems.

Case-Based Reasoning on Arguments The retrieval functionality is imple-
mented in the Python application ArgueQuery and uses both semantic and
structural similarity measures for CBR with argument graphs. The semantic
part is handled by comparing embeddings, while the structural part involves an
A* search algorithm to find the best mapping between the user query and the
graphs in the case base.

Adaptation is possible through ArgueGen and uses a combination of Word-
Net [24,1] and LLMs to adapt retrieved arguments. For each argument to be
adapted, the Python-based service first identifies the central keywords, prompts
a generative language model for suitable replacements, verifies the response us-
ing the WordNet database, and applies all valid ones to the argument graph.
In addition to this hybrid approach, it is also possible to perform the adaptation
solely based on LLMs or WordNet.

Both of these services make use of the NLP service of our architecture to
compute the embeddings and extract other linguistic features from the texts.
They show the power of the NlpConfig message: Each service receives an NLP
configuration object containing parameters like the model to use, and then uses
it themselves to perform requests to the NLP service. In this way, it is possible
to share a single object between all services but also use different configurations
for certain services if needed.

Argument Retrieval and Ranking For the two ranking functions, a Java-
based application built on Apache Lucene10 is available. Given a user-provided
textual query, this argument search engine returns a ranked list of representa-
tives from premise clusters. It first searches an inverted index for claims that
are similar to the query, identifies all linked premises (pre-clustered according
to their semantics), and then ranks these clusters at runtime using frequen-
cies or argument quality. For the fine-granular clustering function, we developed
a prompt-based strategy leveraging OpenAI’s ChatGPT to provide responses
(similar to the argument mining service).
10 https://lucene.apache.org/

https://lucene.apache.org/
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Quality Assessment of Arguments The same LLM-based approach was
used to provide a prototype of our quality explanation function. To determine
the qualia annotations, a text and a list of patterns consisting of sequences of
POS tags are expected. The Java-based system then creates the constituency
trees of the text and searches for the patterns. If these are found, the qualia
role and the qualia query that match a pattern are output for each match. The
expert suitability function is the only functionality of our proposed architecture
that is not part of this proof-of-concept.

Orchestration of Services The ultimate goal of our architecture is to pro-
vide an integrated argumentation machine that exposes a set of services to the
user. To simplify the deployment and orchestration of these services, we provide
Docker-based containers for many of the services described in this section. These
containers can be managed jointly using Docker Compose, for which we provide
a configuration template as part of our proof-of-concept implementation. For our
two central services—that is, the argumentation base and NLP service—we also
provide pre-built images that can be pulled directly from the GitHub Container
Registry. For all argument mining and CBR services, we created ready-to-use
Docker files that can be built locally and integrated into the Docker Compose
configuration. The services for ranking and quality assessment of arguments (see
Sections 4.5 and 4.6) are mostly written in Java and require custom binary files,
so their deployment is more involved. We plan to provide Docker images for the
in the future as well.

Evaluation Client To evaluate our CBR services, we created a client called
ArgueLauncher11 that can be used to compare the results of the argumenta-
tion machine to a gold standard. It is written in Python, can be used to evaluate
the retrieval and adaptation services, and contains an abstract interface for eval-
uations that can be easily extended to other services in the future. With this
application using only the client libraries of the services, it can also be used by
other developers as a starting point for integrating our architecture into their
own systems.

6 Supplementary Resources

Besides the service descriptions and their accompanying Protobuf definitions,
we also provide a few additional tools and resources to simplify the development
of argumentation machines. When designing these, we strived to follow the best
practices of software engineering. For instance, all libraries strictly adhere to the
semantic versioning scheme and provide a changelog for each release. We also
make extensive use of the package manager Nix 12 to manage our dependencies
and provide reproducible environments. New releases are published through a
11 https://github.com/recap-utr/arguelauncher
12 https://nixos.org

https://github.com/recap-utr/arguelauncher
https://nixos.org
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Continuous Integration (CI) pipeline that leverages our Nix setup in GitHub
actions. In the next section, we highlight what we believe are the most useful
resources for other researchers and developers in the domain of CA.

Ready-to-Use Client and Server Libraries As stated in Section 2.3, Pro-
tobuf offers easy code generation of native libraries for most programming lan-
guages, but this additional step may already be a hurdle for some developers.
To lower the barrier of entry, we provide ready-to-use client and server libraries
for Python, TypeScript/JavaScript, and Java.13 They can be installed via their
native package manager—that is, pip, npm, and maven.

Creating a new argument graph format for our microservices allows first-
class support without the need for numerous format conversions. However, it
also means that existing and commonly used formats like AIF cannot be used
out-of-the-box. To remedy this, we provide supercharged libraries for Python and
JavaScript/TypeScript that make it easy to import graphs in AIF, Argdown,
Kialo, OVA3, SADFace, and xAIF and export them to AIF and xAIF.14 They
also contain optimized graph representations that abstract some Protobuf-specific
details away and make it easier to work with argument graphs in these languages.
The Python version is additionally integrated with NetworkX and can render im-
ages of graphs using D2 and Graphviz.

REST API Gateway Even though gRPC provides major advantages over
REST and we try to reduce the burden of using it as much as possible, it is
still not as widely used as REST. It may also be the case that a developer
wants to integrate our services into an existing system that already uses REST
APIs. To combine the best of both worlds, we created a proxy15 that allows
REST clients to access any gRPC service. It is based on the popular Envoy
proxy16 and is provided as a Docker image and a binary file for all three major
operating systems: Windows, Linux, and macOS. Additionally, it also supports
the conversion between gRPC-Web requests and regular gRPC requests (which
is needed for browser-based clients).

Argument Mapping Interface First introduced at COMMA 2022 [21], our
tool ArgueMapper [21] is a web-based interface for creating argument graphs.17
Compared to established solutions such as OVA, it uses a modern development
stack (TypeScript and React) and is thus easier to extend and maintain. Ar-
gueMapper natively support our Protobuf-based serialization format Argue-
buf and can be used to build the argumentation base for our microservices.

13 https://github.com/recap-utr/arg-services
14 https://github.com/recap-utr/arguebuf
15 https://github.com/mirkolenz/grpc-proxy
16 https://www.envoyproxy.io/
17 https://github.com/recap-utr/arguemapper

https://github.com/recap-utr/arg-services
https://github.com/recap-utr/arguebuf
https://github.com/mirkolenz/grpc-proxy
https://www.envoyproxy.io/
https://github.com/recap-utr/arguemapper
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7 Limitations

While we have tried to create an extensible architecture that can be used for
a wide range of tasks in CA, there are still some limitations to our approach.
First, the reliance on gRPC and Protobuf may be a hurdle for some developers:
Although they provide a strong contract between the client and the server, they
are not as widely used as REST—especially in the context of research projects.
We try in part to mitigate this through our REST API gateway, but it is still
an additional layer that needs to be managed.

The representation of arguments through graphs is backed deeply into our
architecture and may not be suitable for all argumentative domains. For example,
some texts may contain arguments that are only loosely connected or where the
relations between them are implicit—like in news editorials. In such cases, the
strict graph structure may not be the best choice for representing arguments. In
addition, our Arguebuf format does not yet support dialogical argumentation,
limiting its applicability in this domain.

Lastly, the evaluation of our architecture is still ongoing, and we have not yet
tested it in a real-world scenario. We assume that there exist some features that
are missing and/or incomplete when coming to new domains, but we are open for
feedback and contributions from the community to improve our architecture—
which is possible due to the forward- and backward-compatibility of Protobuf.
An example of such missing features is our NLP service that is currently focused
only on the extraction of linguistic features and the computation of semantic
similarity. In the future, it may be desirable to extend its scope and integrate
functions to serve custom models to other services.

8 Conclusion & Future Work

In this paper, we presented an extensible microservice-based architecture for
argumentation machines based on gRPC and Protobuf. We also presented a
proof-of-concept implementation of our architecture and a ready-to-use evalua-
tion framework for CBR tasks. Finally, we introduced a set of supplementary
resources that we believe are useful to other researchers and developers in the
domain of CA. The architecture is the culmination of our work over the past
years, and we hope to contribute to the standardization of argumentation ma-
chines. We also await feedback from the community to improve our architecture
and resources—everything is hosted on GitHub and open to any kind of contri-
bution.

Software is never a finished product, so there are many potential avenues
for future work. First, we will implement the remaining services mentioned in
Section 4 so that the evaluation framework is no longer restricted to CBR. Sub-
sequently, we will add more services to our architecture to support more tasks
in CA. To appeal to a wider audience, we plan to develop an intuitive UI that
allows both lay persons and experts to use these services. Another starting point
for future work is the creation of a low-code solution for defining new services
on the fly—enabling the fast adoption of new ideas and trends in the field CA.
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