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Embedding textile capacitive 
sensing into smart wearables 
as a versatile solution for human 
motion capturing
Daniel Geißler  1*, Bo Zhou 1, Hymalai Bello 1, Joanna Sorysz 1, Lala Ray  1, 
Hamraz Javaheri 1, Matthias Rüb 2, Jan Herbst 2, Esther Zahn 3, Emil Woop 3, Sizhen Bian 4, 
Hans D. Schotten 2, Gesche Joost 3 & Paul Lukowicz 1

This work presents a novel and versatile approach to employ textile capacitive sensing as an effective 
solution for capturing human body movement through fashionable and everyday-life garments. 
Conductive textile patches are utilized for sensing the movement, working without the need for 
strain or direct body contact, wherefore the patches can sense only from their deformation within the 
garment. This principle allows the sensing area to be decoupled from the wearer’s body for improved 
wearing comfort and more pleasant integration. We demonstrate our technology based on multiple 
prototypes which have been developed by an interdisciplinary team of electrical engineers, computer 
scientists, digital artists, and smart fashion designers through several iterations to seamlessly 
incorporate the technology of capacitive sensing with corresponding design considerations into textile 
materials. The resulting accumulation of textile capacitive sensing wearables showcases the versatile 
application possibilities of our technology from single-joint angle measurements towards multi-joint 
body part tracking.

Human motion capturing is an essential research field with many established tracking possibilities, mainly from 
the computer vision and wearable community, to reliably track individual human body movements. Each of the 
existing methodologies typically accompanies several disadvantages, making it difficult to identify one of them 
as the most suitable one. Computer Vision solutions, marker or marker-less-based, usually lack flexibility in 
terms of human ground movement like walking or running, due to the necessity of calibrated and stable camera 
setups1,2. The wearable tracking technology, for instance, strain-based sensors or Inertial Measurement Units 
(IMU), require fixed positioning on the user’s skin, resulting in complex calibrations and wearing discomfort3,4. 
Additionally, the current wearable market focuses on rigid accessories like smartwatches and glasses, while 
research has a growing interest in textile-integrated functions5,6.

In contrast, Capacitive Sensing offers the unique advantage of embedding the sensing principle in a natural 
and comfortable way directly into the garments without fixed positioning on the skin7. The possibility and 
versatility for capacitive sensing becomes apparent in this work, especially in the area of applications where 
present technologies e.g. visual systems reach their limits when calibration or the utilization of external track-
ing systems is not applicable. Especially in niches such as medical rehabilitation or professional athlete training 
usually requiring8.

Its key functions of wearables to enable interactions and life logging are sensing the correlation of textile 
movements and the user’s activities9. The centerpiece of our technology consists of conductive textile patches, 
which can be integrated into the garments individually. Based on the sensing patches’ shape and position, 
the capacitive change, caused by contact, proximity, or the garment’s deformation itself while moving can be 
measured, resulting in a strain-less and skin-contact-free tracking technology with minimum discomfort. The 
same patch can be used for multiple purposes with the help of machine learning to recognize temporal pattern 
characteristics of different interaction and activity contexts.
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The main contributions of this work can be summarized as follows:

•	 We illustrate that Textile Capacitive Sensing is a valid alternative to existing human motion tracking systems 
by outlining the technical capabilities, potential, and accuracy.

•	 We present the diverse concepts of Textile Capacitive Sensing through multiple prototypes, starting from 
joint angle measurements over body segment tracking towards full body capturing.

•	 We additionally focus on the aggregation of technical smart wearables and their design aspects to make the 
garments more appealing than simple proof-of-concept prototypes.

Wearable textile capacitive sensing technology
Background
Many studies have investigated using specialized materials to detect human motions, such as piezoelectric 
materials10, MXene/Ag nanowires11,12, photodetector materials8, triboelectric materials13 and others. However, 
those methods rely on highly specialized and costly materials with special properties, and careful placement 
of different materials to satisfy the sensing principles. These requirements limit the broad dissemination and 
democratization of smart textile wearables. Each material also requires unique electronic drivers, making them 
not easily interchangeable.

Capacitive sensing, a widely used physical-to-digital conversion technique in electronics, on the other hand, 
requires only materials with conductivity similar to the metals that form regular circuits. This requirement 
can be sufficed not only by specially nano-coated materials14, but also off-the-shelf conductive yarns, and EM 
shielding fabrics available to the public. This makes capacitive sensing a viable option for a broad portfolio of 
applications. There are generally two types of capacitance measurement solutions depending on the principle: 
current-based and frequency-based. As capacitance variation is essentially a process of charge redistribution 
on the conductive plates, by observing the charge flow (current), the capacitance variation could be deduced. 
A high input impedance with a high amplification circuit is usually used to sense the charge flow as the current 
flow is very subtle15. Compared with frequency-based capacitive sensing, the charge-based solution consumes 
much less power but is prone to EM interference.

Therefore, frequency-based capacitance measurement is widely used. As a capacitor is an integral component 
of many oscillators, there is a definitive relationship between the resonant frequency/amplitude and capacitance 
in an oscillator. By introducing the surroundings into an oscillator through an antenna, the motion-related 
capacitance value can be derived by either reading the envelope of the oscillating AC signal after modulation16 
or counting the frequency of the oscillating AC signal directly17,18. For example, in16, the author designed an 
envelope detector composed of a diode and low pass filter followed by a Colpitts Oscillator, and the measured 
amplitude information is used for capacitance perceiving.

Textile integration and usages
The basis for including the proposed capacitive sensing functionality in a garment rests on the conductive fabrics 
and their characteristics. Such material can be used as the antenna to form the capacitor, which can further be 
applied in downstream tasks such as motion capturing or gesture recognition similar to a Theremin20. To connect 
the conductive patches with the data acquisition unit (DAU) for sensing the capacitance, conductive traces from 
the same material can be used to route through the garment19. Conductive traces have proven to be more robust 
than using single core wires for each patch due to the extensive movement in the clothing and the accompanying 
fatigue of the thin wires. A well-established method to apply the chosen material to textiles is heat transferring 
it directly onto the garment. By stacking up the textile substrate, the conductive material, a thermotransfer foil 
as isolating cover to add robustness, and adding some thermal textile glue, the heat pressing fully bonds the 
materials into one cohesive textile as shown in Fig. 2. There are basically two setups of patches and traces that 
form the sensing pipeline together with the DAU. The traces themself can be used as sensing fabric to cover big-
ger areas equally by routing through the garment. Using bigger patches and thinner traces as connecting parts 
on the contrary places shifts the sensing focus more on the explicitly chosen body part for tracking.

The DAU is shown in Fig. 3 as a breakout module for visualization. During our development through multiple 
iterations of DAUs, we also implemented a 3D-printed case to accommodate the sensing technology together with 
a 250 mAh Lipo Battery. The setup consists of two Texas Instruments FDC2214 4-channel 28-bit capacitive-digital 
converters and an Adafruit Feather Sense Microcontroller to gather the data streams and forward them through 
Bluetooth Low Energy. We further developed a web user interface to connect to the DAU based on JavaScript. The 
gathered capacitive data from each channel can be collected, visualized, and stored for later usage. Throughout 
all experiments of this work, we used the same setup of DAU and web user interface for sensing the capacitance. 
To customize the system for sensing various movements of different body parts, modifications were only applied 
on the textile level. The connection of the textile to the DAU was established through wired pin connections.

To explore the landscape of the established capacitive sensing principle, we tested multiple combinations of 
substrates, sensing, and cover materials, as shown in Fig. 1. We built a harness to fix the sample in the textile 
pocket and thoroughly tested it on the knee and elbow joints. Each conductive part of a sample has a size of 
2x10cm in order to obtain comparable results. Most of the samples (a-j) passed our tests of being flexible and 
sensitive enough to be used for measuring the capacitance change while moving the fabric. However, for sample 
(b), the low interlocking between the conductor’s mesh resulted in a high resistance and therefore a low con-
ductivity. As a result, samples with resistance values below 10 � are ideal for capacitive sensing whereas higher 
resistance may influence the measurements. From there on, we also tested different shapes of conductive patches 
(m-p) which extend the designer’s possibilities for creating a unique sensing garment. Together with the Make-
Your-Own-Wearables (MYOW) toolkit, the knowledge from the tested samples can be transferred into smart 
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Figure 1.   Testing different combinations of substrate, sensing, and cover materials using heat transfer 
technology.

Figure 2.   The layer stack of the protected textile capacitive sensor patch.

Figure 3.   Breakout module of the Data Acquisition Unit19.
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garments that benefit from the dynamic textile geometry21,22. Therefore, the following points form a general 
guideline for developers and designers on how to build a smart capacitive sensing garment:

•	 The sensor’s output is correlated to the geometry change of the conductive patches caused by human motion. 
There are no special requirements on the shapes of the patches, but the designer has to ensure the correct 
position on the garment to cover the moving area.

•	 The patches can be placed further away from the small rigid sensing module through conductive traces. This 
separates the capacitive measurement location from the sensor’s position. Further, the whole trace can be 
used for sensing to cover larger areas.

•	 There are minimum technical constraints: a single sensing module can only connect to a fixed maximum 
number of patches and a single DAU can only connect to a fixed maximum number of modules. So it is best 
if the patches are routed in bundles to the sensing unit. For the MYOW toolkit each bundle is limited to four 
patches and each microcontroller can only handle two bundles21.

Joint angle measurement
In order to prove the usefulness of textile capacitive sensor patches’ size, position, shape, and number of chan-
nels, initial tests that emphasize the correlation between human body movement and the capacitive signal were 
necessary. A common practice to evaluate a new sensing technology for its capabilities in this scope is single 
joint angle measurements23–25. To check the precision of our capacitive sensing technology, multiple patterns 
were designed, and based on that, we created three prototypes. They were then tested to assess which of them 
returned the best outcomes.

In Fig. 1k,l, two special harnesses for testing the prototypes are presented. They can be mounted on the 
knee joint which allows for easy changes between sessions. Both of them are created from two pieces of fabric 
in between which there is a pocket for the created designs. Red markers on its side were used for generat-
ing the ground truth through single-camera video tracking by calculating the angle of the knee movement. 
Through Fig. 4, three tested patterns are presented. The first prototype consists of one piece of conductive mate-
rial arranged in the form of a wavy oval. This shape surrounds the center of the joint which has the potential to 
collect valuable data as it accumulates all of the environment changes in one signal. In the second design, the 
three stripes are placed evenly in a vertical way. As the harness is placed directly on the top of the knee, this 
arrangement could gather information about the bending of the knee as it would stretch the conductive mate-
rial generating a stronger and clearer signal. The last prototype has four diagonally placed stripes. In this way 
each one of them would be affected by the smallest movement of the leg, be it flexion and extension or lateral 
rotation. Another difference between all three of the designs is the material they are made of: only the last one is 
flexible which essentially is more comfortable for users and should be more resistant against mechanical fatigue.

To prove the concept of the potential usability of capacitive sensors for human motion capturing, we con-
ducted an experiment to gather data from the capacitive prototypes and the video tracking setup. The experiment 
was set up to prove that the data gathered by capacitive sensors resembles the movement of the leg, wherefore two 
types of motion were chosen: squats and a less dynamic version of ”high knees”. The first one starts in a standing 

Figure 4.   The correlation between the selected capacitive sensor patches with one, three, and four channels and 
the ground truth from video tracking. Each capacitive channel is assigned with a different color to highlight the 
signal stream with the placement and shape of the patch.
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position and then the exercise is performed until the angle of the knee gets to 90 degrees; then the person stands 
up and finishes 5 seconds after the angle gets to 180 degrees. The second one also starts while standing and then 
one leg is raised forward with a bent knee until its angle gets to 90 degrees, then the leg should be put down on 
the ground. Each prototype was set up to the already introduced DAU to forward and store the capacitive data 
for later synchronization with the ground truth video tracking.

As shown below the utilized patches in Fig. 4, sample sections of each prototype are visualized through the 
alignment of the capacitive channels next to the video-based extraction of the knee angle as ground truth. We 
added the color of each capacitive channel from the graph in the patch images. The prototype with one channel 
only already shows a reasonable signal, whereas the other two prototypes show much finer movements due to 
their multi-channel layout to introduce more signal robustness. Moreover, the multi-channel prototypes further 
enable the measurement of joints with more than one degree of freedom by adjusting the layout of each channel 
to match the corresponding motion. Such collected and synchronized data stream can then be further applied 
to various machine learning applications to benefit from the strong correlation between the angular motion 
and the capacitive signals. Especially when utilizing multiple channels with different sizes and alignments, an 
increased granularity of information can be obtained from each channel to enhance the correlation robustness 
between capacitance and the ground truth from the video.

Full body capturing
Previous works have already presented possible ways to transition from linear joint angle measurements toward 
larger body segment tracking. Instead of measuring one angle only, the interaction of multiple joints can be 
tracked through larger wearable systems like capacitive sensing jackets for the upper body. Bello et al.26 created a 
blazer equipped with four capacitive patches to detect 20 different arm and torso movements. A classifier, trained 
on the gathered dataset of fourteen recorded participants can predict the selected gestures with 97.18% accuracy 
for leave one recording out and 86.25% accuracy for user-independent recognition. Similar work was conducted 
by Zhou et al.19 through a sportswear jacket equipped with eight capacitive patches to sense arbitrary arm and 
upper body movements. A 38-h dataset of synchronized video and capacitive data from 21 participants has 
been recorded to train a deep neural network regression model to continuously predict the 3D upper body joint 
coordinates of the user. The system achieves satisfying results with R2 = 0.91; MPJPE (Mean-Per-Joint-Position-
Error) = 86 mm and additional F1 score = 0.9 for 10-class classification with unsupervised class discovery based 
on the loose-fitting capacitive sensing garment.

In general, it is up to the user to select the arrangements and design of capacitive sensing patches due to the 
low technical requirements. Multiple strategies are possible, e.g. giving importance to joints with multiple chan-
nels for higher accuracy, or less with only one small patch. Moreover, the shape of the patch can be designed 
to detect the full joint or parts of complex joint movements only for instance shoulder or hip joint movements. 
The size and shape can also be used to define focal points, for example, to highlight regions with weaker move-
ments. Considering larger tracking areas, the freedom for designers to embed the tracking technology into the 
garment without restricting the functionality increases. The following sections present ways to merge the tech-
nical approaches to capture body movements with a design-oriented approach to incorporate the introduced 
guidelines for seamless textile integration.

Laser cut digital art
We asked a digital artist to create some abstract geometry to transition from technical prototypes as shown before 
to design-centric smart wearables. With a focus on the shoulder, the design follows the natural movement of the 
shoulder joint, so that each part of the design can be connected to one separate channel to independently capture 
the complex shoulder rotation. The designer’s vector art can be converted into capacitive sensing patches using 
a laser cutter for the conductive fabric and a programmable plotter for the isolation foil. The produced design 
components are heat-pressed onto a plain shirt afterwards, following the introduced methodology. To express 
the sensor patches as prominent design elements, they can be installed on the outside of the garment, and the 
conductive traces, used for the wiring towards the DAU, can be routed on the inside of the garment. From our 
testing, the placement on the inside or the outside of the garment does not matter since the isolation foil mini-
mizes the influence of touching the skin on the garments inside and helps to sense the deformation only. Figure 5 
shows the final implementation of the design concept into a fully integrated smart wearable, being able to sense 
the wearer’s shoulder movement with capacitive sensing technology.

The semi-automated workflow through programmable cutting and plotting machines promotes the diffusion 
of the technology as any designing enthusiast can transform their vision into motion-sensing garments. Using 
vector bitmaps, the designs can also be easily plugged into 3D design software such as Clo3D or Blender to 
visualize the design in dynamic 3D environments to iteratively fine-tune design aspects (e.g. shapes and place-
ments) before implementation. This approach can also be replicated with processes similar to current online 
shirt printing services.

Design‑centric full body capturing suit
A major barrier for professional fashion designers when they want to integrate technologies into their smart 
wearables is the uncertainty of whether the design has a negative effect on the technology without the close 
guidance of technical experts. This uncertainty greatly restricts the creative process. With the capacitive sens-
ing technology, designers have simple rules to follow as explained above which encourages them to focus on 
the creative process and the dynamic geometry changes of the fabric. We invited a professional smart fashion 
designer to express her design ideas regarding a full-body motion-capturing suit. While it is difficult to describe 
the aesthetics and inspiration aspects in words, we describe the implementation process below and show the 
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overall design in Fig. 6. The conductors are integrated into the fabric on the left-hand side, i.e. the inside. This 
approach has the advantage that the conductors are almost invisible in the garment. They are insulated with 
thermal transfer film, shielding them from skin contact. The tracks run parallel for most of the distance, which 
has the advantage that the ends of the tracks act as data input first, as most of the tracks run parallel and gener-
ate similar data. Some tracks have an antenna element at the ends that runs in curves. Especially in areas where 
diffraction causes wrinkles, the area of data collection can be spread over a larger area. We have also developed 
insulation for these elements and studied which types of curves remain the most elastic. The insulated tracks can 
be printed with decorative elements on the other side of the textile. We opted for a design that follows the course 
of the conductors and also laminates the conductors on the right-hand side of the fabric. The patterns follow the 
positions of the tracks and sensors. However, it is possible to change the pattern to suit custom requirements.

Figure 5.   Laser cut vector art from digital artist connected through hidden traces on the garments inside.

Figure 6.   Design process of embedding the capacitive sensing technology into a custom-built suit by a 
professional experienced fashion designer.
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Hand and finger pose detection
Since it is in the nature of humans to control things by hand with a high level of precision, there is emerging 
interest in smart wearables to track hand and finger movement, mainly coming from the human-robot interaction 
(HRI)27,28. Due to the hand’s biological structure being very sophisticated because of many joints for executing the 
essential and versatile movements of the hand, the tracking technology must also meet higher requirements in 
order to work reliably. In the following, we present two current research projects aiming to use capacitive sensing 
technology for tracking the hand and fingers through a smart glove. Both prototypes implement the introduced 
capacitive sensing technology, the first one combining it with an IMU to realize gesture recognition for drone 
controls, whereas the second glove is designed to reconstruct the wearer’s finger pose through a regression model.

Gesture recognition
The gesture recognition as shown in Fig. 7 glove is built from a sports glove that does not cover the entire fingers 
to maintain the user’s mobility and comfort. It is equipped with four stretchable and soft capacitive electrodes to 
sense the finger movements and an IMU placed on the wrist, delivering the three-axis orientation. Together, they 
implement a capacitive and inertial fusion-based glove-based design for real-time on-the-edge hand gesture rec-
ognition. The main board is a Portenta H7; the main processor is the dual-core STM32H747, including a Cortex 
M7 running at 480 MHz and a Cortex M4 running at 240 MHz. Portenta H7 offers 2MB flash and 8MB SDRAM 
and wireless data transmission options such as WiFi, Bluetooth classic, and BLE. The inertial board is a Nicla 
Sense with a 64 MHz ArmCortex M4 (nRF52832) and sensors such as; IMU, air pressure, humidity, temperature, 
and gas. Nine hand gestures are defined, which can be used for basic drone controls as a downstream applica-
tion (Up, Down, Back, Forward, Land, Stop, Left, Right, Null). Based on the hierarchical fusion of inertial and 
capacitive information, the aim is not only to use capacitive sensing as an alternative to state-of-the-art computer 
vision solutions. Moreover, we try to reduce the power requirements and provide tiny memory models suitable 
for real-time on-the-edge (RTE) devices to support the development of standalone smart wearables further.

As shown in Fig. 8A, two collaborative models were deployed for gesture recognition. Pre-normalization per 
window is applied to the inertial and capacitive signals. The window size is 2 seconds, and the window’s step is 
0.5 seconds. The first neural network model is the inertial model with three channels as input (linear accelera-
tion). This model obtains a Convolutional Neural Network (CNN) architecture and is used to distinguish the null 
class from gesture detection. The null class includes activities such as; walking and standing/sitting down, among 
others. The output of the acceleration model served as a trigger for the second model, the capacitive model. If an 
activity is classified as non-null, the capacitive model is activated. The second model uses a CNN architecture 
as well by fusing the four capacitive channels as four independent input channels. The outputs of the capacitive 
model are the nine classes as listed in Fig. 8B.

For the training data (offline results), one volunteer (female) participated and mimicked (randomly ten ses-
sions) the selected gestures while wearing the system. The sessions were recorded on different days to ensure that 
our device was not worn repeatedly. The offline evaluation scheme was 10-fold cross-validation with a leaving-
one-session-out. Each session had four random tries per gesture.

The F1-Scores for the offline inertial model was 96%, the offline capacitive model resulted in 80%, and the 
RTE results (5 sessions, re-wearing, one volunteer) gave an F1-score = 67%. Further, the hierarchical fusion of the 
inertial and capacitive information impacts the power consumption reduction by about 27%. The fusion method 
also helps reduce model complexity and parameters to obtain lightweight neural networks to be deployed in 
embedded devices. To sum up, the confusion matrices for offline and online recognition are presented in Fig. 8. 
In the offline results, we can observe confusion between the gestures, Up and Land (14%) and Forward and Up 
(13%); both pairs mainly differentiate by how the finger’s upper parts move. The sports glove we employed does 
not cover the finger’s upper parts to allow flexibility/comfort for the user. There is also confusion for the case of 
the pairs; Stop and Right (13%), Right and Down (13%), Right and Back(13%), and Left and Right (12%). All 

Figure 7.   Gesture recognition glove with capacitive sensing and IMU. The wristband hosts the embedded 
board to realize real-time and on-the-edge (RTE).
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these pairs have in common that the fist is closed, and their main difference is how the thumb and the index 
finger move. For specific applications such as sign language gesture recognition, the glove can be extended to 
cover the fingers completely to reduce confusion as shown in the following section.

Finger skeleton reconstruction
Instead of recognizing predefined gestures for specific use case scenarios, we are aiming for a more generic 
approach to reconstruct the complete skeletal pose of the hand during arbitrary movements through a capacitive 
glove. Due to the complex and simultaneously fine movements of the hand, this task forms the spotlight of our 
work and further stretches the boundaries of capacitive tracking technology.

The implemented glove covers the entire hand and is equipped with eight-channel sensing patches made 
from flexible conductive fabrics29. To maintain flexibility and comfort, the introduced heat pressing technology 
was applied together with only flexible materials for each layer. As a protection, the isolation layer of the glove 
is highly flexible and thin, although not very robust to strain and interference, resulting in a trade-off between 
the wearer’s comfort and signal quality. The routing and placement of these patches can be seen in Fig. 9, the 
primary objective is to cover the most relevant joints with sufficiently sized patches to obtain distinct signals 
from the deformation of the conductive patches. We added sensing patches to both the top and bottom of the 
fingers because, on closer inspection, each finger can perform two basic movements: the patches on the top track 

Figure 8.   (A) Real-time on-the-edge (RTE) Implementation for Hand Gesture Recognition with two stages, 
first the detection of gestures, second the classification of gestures, both with focus on low energy and memory 
footprint. (B) The average offline results for final classification. (C) The average RTE results, deploying the 
models on the main board Portenta H7 and the inertial board Nicla Sense.

Figure 9.   The capacitive glove is equipped with 8 capacitive channels, an additional 17 markers for the ground 
truth tracking, and the DAU worn on the wrist.
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the movements of the two smaller finger joints, whereas the patches on the bottom track the movements of the 
main joint of the fingers.

To produce a dataset suitable for deploying a regression model for continuous hand skeleton reconstruc-
tion, an experiment was conducted. The input of the model consists of eight-channel capacitive signals without 
any additional sensory information. To gather ground truth data, a HoloLens 2 with visual tracking and a Leap 
Motion infrared sensor placed on top of the lens was set up. Both systems captured the same field of view, 
resulting in two separate ground truth datasets of the recorded hand. The Mixed Reality Toolkit 2 (MRTK) from 
Microsoft was utilized to extract the global coordinates for each joint and fingertip with the origin at the Holo 
Lens’ front30. As it turned out after the first test recordings, both generated data sets were not able to extract the 
hand pose with sufficient precision. A subsequent hand pose estimation from a single RGB image algorithm 
applied to the video material could not solve this problem either31. The issue was not the setup or conditions of 
the experiment, rather it was the glove itself. Since the video-based tracking systems were trained on the bare 
hand, the glove leads to a lack of relevant information such as shadows cast or wrinkling of the skin.

To overcome the drawbacks of the previous tracking approaches, an infrared-based Vicon Nexus motion 
tracking setup, provided by Vicon Motion Systems Ltd. was utilized. The configuration consists of 8 Vero v2.2 
cameras, strategically positioned to optimize tracking of the complete range of the hand movements. Reflective 
markers with a 14 mm diameter, mounted on a 1 mm thick base, were placed on key joints of the hand as outlined 
in Cook et al.32. Operating with a 100 Hz sampling rate, the Vicon system provides a robust and reliable ground 
truth environment for precise motion tracking, which enables a detailed validation of the capacitive glove’s per-
formance. For each reflective marker, the global 3D coordinates are retrieved from the motion tracking system 
to further extract the required ground truth information.

The experiment involved recording data from five participants with different hand sizes, ranging from loose 
fitting to tight fitting, to obtain an unbiased dataset. Each participant performed three sessions, each lasting 
around 7 minutes, while performing arbitrary finger movements of individual fingers and combinations of them. 
The instructor followed the sessions and suggested additional movements and gestures based on the participant’s 
ingenuity to ensure the coverage of the majority of possible movements for building an unbiased dataset. The 
participants performed the experiment in a sitting position, holding their hands in an upright posture. The move-
ment of the wrist cannot be tracked with the glove and therefore played an irrelevant role in this experiment. 
Forming a fist three times at the beginning and end of each session served as a synchronization point to align 
the dataset streams afterward. The resulting dataset spans approximately 100 minutes, with a sampling rate of 30 
Hz for the capacitive data of the glove. The marker-based motion tracking system’s recording with 100 Hz was 
time-synchronized and down-sampled to match the capacitive data.

We recognized a correlation between the capacitive signal and the curvature angle of the fingers during the 
synchronization of the dataset, where we decided to simplify the skeleton model to one value per finger. The 
calculation is based on the global coordinates of the marker-based tracking, moreover, we implemented the angle 
based on the two vectors that are spanned between the three markers located on the finger joints. The greater 
mobility of the thumb resulted in insufficient angle calculations due to the narrow placement of the markers. 
Nevertheless, a more promising calculation could be realized by utilizing the wrist marker as the origin to span 
the two vectors. With this strategy, we are able to incorporate the movement of the thumb metacarpal bone, 
which typically has larger mobility than the ones of the four fingers.

Compared to using any distance information for the ground truth, the angle is independent of the participant’s 
hand size as well as from the offset between the joint and the marker’s center point. The final dataset consists of 
eight-channel capacitive data aligned with the simplified hand skeleton model of five angles.

To evaluate our approach, we developed a regression model based on the common Convolutional Neural 
Network (CNN) architecture33,34. Our architecture consists of three convolutional layers followed by two fully 
connected layers. Together with dropout layers of 0.5 after each activation, this slim architecture is sufficient to 
generalize the dataset. Due to some naturally occurring outliers in our capacitive data, we trained the model 
with the Huber loss function which combines the L1 loss and the L2 loss which results in a model that is less 
sensitive to outliers while still providing smooth gradients for optimization35. By adding a sliding window of 
30 data points for the capacitive data, which corresponds to about one second of the recording, we were able to 
stabilize the model training further.

The model takes five values as input, which is the calculated angle for each finger. Even though the finger 
representation is simplified that much, we can still train the model well on our dataset due to the correlation 
between the five data points. From a biological perspective, there are certain restrictions on finger movements 
due to the anatomy of the hand skeleton. Each finger’s individual movement may seem indefinite, but there are 
a lot of finger movement combinations where fingers restrict each other. Our model can benefit from that by 
learning all five fingers at once and incorporating the dependencies, e.g. ring and pinky finger.

We evaluated our model using cross-validation, employing two distinct approaches. In the first approach, the 
model was trained across all participants, with one of the three sessions each left out for the test and validation. 
In the second approach, we trained individual models for each participant, leaving out again one of the three 
sessions. We plotted a regression plot in Fig. 10, visualizing the correlation between ground truth and prediction 
for each finger in a different color. The majority of predictions align with the ground truth, generating a vertical 
line in the graph. However, outliers can be found for all fingers. More interestingly, we can also see the range of 
motion for each finger and the majority of finger positions. For instance, the pinky has the least range of motion. 
The large cluster in the lower values range shows that most participants had their fingers angled, whereas there 
is another smaller cluster in the high-value range for the full extended fingers. In between, there are fewer data 
points present since these values are usually only reached when moving from angled to full extension and back. 
The first approach resulted in an R2 value of 0.74 and a Root-Mean-Squared-Error (RMSE) of 11 degrees for 
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the average absolute error whereas the second approach resulted in an average R2 value of 0.76 and an average 
RMSE of 10 degrees across the models trained on the five participants separately.

An additional in-depth analysis of each finger showed that the thumb obtains weak results of an average R2 
around 0.6 whereas the four fingers ranged between 0.78 to 0.87. This result can be explained by the already 
mentioned higher mobility of the thumb and the issue of tracking it properly. When comparing the direct cor-
relation for each finger in Fig. 11, there is an enhanced deviation for the thumb, emphasized through the higher 
occurrence of red lines. Compared to the other fingers, at least following the trend of the ground truth, the model 
struggles to properly predict the thumb. Moreover, the per-person model training demonstrated that tighter 
fitting of the glove resulted in a worsened model prediction of up to 3 degrees in the RMSE results, which we 
can attribute to restricted movement of the garment and accompanying weaker signal.

The results manifest our idea of a loose-fitting garment decoupling the fixed calibration between tracked joint 
and sensory with additional comfort considerations. Compared to other related works36,37 using sensory in as 
glove to reconstruct the hand skeleton, our significantly simpler design with only 8 capacitive sensing patches 
produces satisfying results to reconstruct the hand pose based on our five-angle approach.

Conclusion
In conclusion, we demonstrate multi-channel capacitive sensing as a valid alternative for human motion captur-
ing. Our approach of embedding conductive textile patches into everyday life garments as a foundation for sens-
ing body movements highlights the idea of combining technology with design considerations. The wide variety 
of materials, shapes, positioning, and the resulting, diverse solutions to motion tracking incorporating design 
considerations offer many more possibilities than the applications shown here. Textile capacitive sensing can find 
its application in downstream tasks from various fields, for instance, the medial area for rehabilitation purposes, 
the sign language community for gesture-to-speech translation, or the film industry to track actors’ movements 
without visual interference through markers or skin-tight sensors. Moreover, capacitive sensing can be applied in 
all areas where human body tracking technology has to be operated without personalization or calibration to the 
user’s body while at the same time maintaining the expected level of comfort for loose-fitting smart wearables.

Methods
Sensing principle and interpretation
The sensing capacitor can be configured as a double plate capacitor14 as shown in Fig. 12. Apart from classic 
double plate capacitors, we can use only one conductor plate to form a capacitor with the virtual ground in the 
environment, as a single-ended capacitor38. The music instrument Theremin uses this principle to detect the 
range of the performer’s hand which is considered the virtual ground. The ideal model of a single-end capacitor 
is shown in Fig. 13 next to the two application scenarios. For the wearable application, the first is proximity or 
contact to the sensing patch whereas the second is the sensing patch’s geometry deformation. Due to the virtual 
ground, the technology can be embedded into textiles through a single conductive sensing patch. Single-ended 
capacitive sensor also has better sensitivity39.

To convert the dynamic changes of the single-ended capacitive sensors, we used the Texas Instrument 
FDC2214 capacitive-digital converter. The simplified circuit diagram of a single channel is shown in Fig. 14. 
FDC2214 integrates a resonant circuit driver for each circuit, which excites an LC resonant circuit with an 
external fixed inductor (L) and capacitor (C) as passive components on the printed circuit board. The sensing 
capacitive plate forms a variable capacitor with the virtual ground ( Cs ) connected in parallel with the fixed 

Figure 10.   Regression plot of Ground Truth versus prediction across the five fingers, highlighting the range of 
movement and the accuracy of the prediction for each finger.
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capacitor, which changes the resonant frequency ( fs ) of the LC circuit. The resonant frequency of the LC circuit, 
measured by the FDC2214 core, can be expressed by the equation below:

The frequency-based sensing is robust against external or cross-channel electrical interference, as the meas-
urement core counts the frequency of the resonant signal with a peak voltage of VDD (3.3V average). In our 

fs =
1

2π
√
L(C + Cs)

Figure 11.   The ground truth representation of the hand (distance between finger knuckle and finger tip) 
extracted from the marker-based tracking overlaid with the prediction of the trained CNN model for all of the 
five fingers.

Figure 12.   Double-ended (differential) capacitor sensing. The displacement of a pair of capacitor plates 
influences the effective capacitance.

Figure 13.   Single-ended capacitor sensing principle with single-end capacitor and virtual ground.
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application, although 18 uH inductors and 33 pF capacitors were used for all channels; each component has a 
factory tolerance of 10%, which means the exact values are slightly different and such difference is sufficient to 
introduce a significant offset for the operating frequencies ( fs when Cs = 0 ). Cross-channel interference was 
not observed.

Deep convolutional neural networks are used to interpret the multi-channel frequency data which represents 
the dynamic changes of Cs . Since the introduced DAU gathers multichannel frequency on different levels, nor-
malization of the recorded data is a crucial preprocessing step. By taking the mean and the standard deviation 
of each channel separately, each channel can be normalized into the range between 0 and 1. Having all chan-
nels on the same range now, the data is independent of the biased operating frequency and can be utilized for 
synchronization with the ground truth data followed by the training of the model. Since we preprocess each 
channel independently, also the adaption to the connected textile patch is maintained. We used textile sensing 
materials from ShieldEx29, which maintain their structural properties within their specifications. During our 
tests, we could not determine any fatigue or changes in material. The employed layer stacking conductive textiles 
and protective insulation foil ensures the long-term stability of the system. Nevertheless, to integrate potential 
differences in frequency changes over time, long-term inference with capacitive sensing involves an online nor-
malization process that automatically integrates the degradation of material over time through the mean and 
standard deviation calculation.
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