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Abstract. Passive Acoustic Monitoring (PAM) has become a key tech-
nology in wildlife monitoring, providing vast amounts of acoustic data.
The recording process naturally generates multi-label datasets; however,
due to the significant annotation time required, most available datasets
use exclusive labels. While active learning (AL) has shown the potential
to speed up the annotation process of multi-label PAM data, it lacks stan-
dardized performance metrics across experimental setups. We present a
novel performance metric for AL, the ‘speedup factor’, which remains
constant across experimental setups. It quantifies the fraction of samples
required by an AL strategy compared to random sampling to achieve
equivalent model performance. Using two multi-label PAM datasets, we
investigate the effects of class sparsity, ceiling performance, number of
classes, and different AL strategies on AL performance. Our results show
that AL performance is superior on datasets with sparser classes, lower
ceiling performance, fewer classes, and when using uncertainty sampling
strategies.

Keywords: Passive Acoustic Monitoring · Multi-label data · Active
Learning · Transfer Learning · Speedup Factor

1 Introduction

Passive acoustic monitoring (PAM) has emerged as a powerful technology
for wildlife monitoring, allowing researchers and biodiversity managers to gather
extensive acoustic data without disturbing natural habitats [21, 22]. PAM sys-
tems continuously record sounds from various environments, offering valuable
insights into animal behavior, species richness, and ecosystem health, with im-
portant applications in ecosystem management, rapid assessments of biodiver-
sity [20], and basic research [17]. However, effectively utilizing this vast amount
of data for sound event detection poses significant challenges due to the need for
annotated data to train machine learning models. The low quality of automati-
cally generated annotations for PAM datasets often requires manual annotation.

Multi-label PAM datasets. Because PAM datasets are typically recorded
without controlling the sources of sound events, PAM recordings are naturally
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multi-label datasets, meaning that multiple labels can be assigned to a single
point in time. However, there is a lack of availability of multi-label PAM datasets.
The main reasons for this scarcity are that only 21% of the data examined in
the literature is published [1], and that manually labelling a PAM dataset with
multi-label annotations can be extremely time-consuming and costly, typically
requiring annotation times of 10 to 15 times the duration of the audio [12]. For
this reason, the vast majority of PAM datasets are annotated with exclusive
labels, neglecting the multi-label aspect. Few research efforts are dedicated to
the development of multi-label annotation tools for PAM datasets [8, 12].

Active learning (AL) is a promising research direction for accelerating the
annotation and analysis of large multi-label PAM datasets [9]. AL provides an
iterative strategic approach to prioritize the most informative samples for an-
notation. Unlike random sampling of data points, AL algorithms intelligently
select samples that accelerate model convergence (see fig. 1). AL strategies can
be categorized into prediction-based, data-based and model-based strategies [24].
Prediction-based strategies use model outputs to select the next batch of sam-
ples, e.g., uncertainty sampling prioritizes samples close to the decision boundary.
Data-based strategies select samples based on the internal structure of the data,
e.g., diversity sampling selects batches that cover the entire input space. Model-
based strategies select samples based on the change in the model, e.g., prioritizing
samples with high model influence regardless of the label. While model-based
strategies directly aim to improve model performance, they are rarely used in
practice due to the high computational cost of training the model for all sam-
ples in all label combinations [14]. Multi-label AL is not a new task, yet this
research field has gained popularity only recently [26]. Various approaches have
been proposed to the problem of selecting samples while optimizing for multiple
classes [13,16,26], with the practice of pooling results from established strategies
applied to binary classifiers being used as a baseline [14]. The evaluation of AL
performance is primarily done by visually comparing the learning curves of the
applied sampling strategies [15,19]. While this approach is feasible for a few and
clearly separated curves, it complicates the comparison of AL strategies across
datasets, experiments, and projects [15]. Evaluation metrics provide statistical
justification by quantifying features of the learning curve [15]. The most popu-
lar evaluation metrics used in the literature for (multi-label) AL strategies are
accuracy [2, 23] or multi-class accuracy [10], sensitivity and specificity [11, 23],
and area under the curve [10,25] or multi-class area under the receiver operating
characteristic curve [5, 11]. These methods offer numerically comparable results
under equal experimental setups, but they are limited by their variation with
different numbers of training samples, leading to incomparability when different
experimental setups are used.

Research Contributions. We propose a quantitative performance metric for
AL termed the speedup factor. The metric represents the fraction of samples
required for an AL strategy to achieve the same model performance as when
using random sampling. The speedup factor remains constant regardless of the
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number of training samples, providing a comparable score even across experi-
mental setups. Furthermore, driven by the quest to accelerate the annotation
of multi-label PAM datasets, we investigate the performance of AL on a syn-
thetically generated variant of the Watkins Marine Mammal Sound Database
(WMMD) [18], as well as on AnuraSet [3], a multi-label PAM dataset of reason-
able size. Multi-label datasets often exhibit significant class imbalance, where
the amount of samples containing a particular class, termed positive samples,
varies significantly across classes. We examine the correlation between AL perfor-
mance and the number of positive samples. Since neural models typically perform
best on balanced datasets with 50% positive samples [6], and random sampling
on average selects the same fraction of positive samples as in the unlabelled set,
we hypothesize that AL performance decreases as the fraction of positive sam-
ples in the dataset increases. Conversely, we expect to see an improvement in
performance for sparse datasets where random sampling has difficulty selecting
positive samples. The maximum performance, termed ceiling performance, of
a neural model for a given dataset depends on several factors, including model
architecture, class similarity, class sparsity, and feature characteristics. We inves-
tigate the correlation between AL performance and ceiling performance. Since
classes with high ceiling performance have more room for improvement through
AL strategies, while classes with low ceiling performance may already be facing
challenges and could benefit from AL, we do not hypothesize a clear trend in
this regard. The number of classes in multi-label datasets is not fixed, but open-
ended. We investigate the correlation between the performance of AL and the
number of classes. Since AL strategies are forced to optimize for multiple goals
when the dataset contains more classes, we hypothesize that AL performance
decreases as the number of classes increases. Due to the high computational cost
associated with model-based AL strategies and the large number of experiments,
we limit our analysis to one uncertainty-based method and one diversity-based
method. Diversity strategies rely on the internal structure of the data and do not
consider information from previously sampled data. As a result, they face chal-
lenges such as repeatedly sampling from the same clusters and sampling from
clusters irrelevant to the classification task [14]. Uncertainty strategies aim to
refine the decision boundary by selecting samples close to it, but they can also
face challenges such as getting trapped by sampling from small clusters where
the decision boundary is unclear, rather than establishing a reliable decision
boundary for the entire space [14]. Because diversity sampling strategies select
data regardless of model performance and the classes being optimized for, we hy-
pothesize that uncertainty sampling outperforms diversity sampling. The present
study tests the following four hypotheses on two multi-label PAM datasets:

H1 AL performance decreases as the number of positive samples in the dataset
increases.

H2 AL performance changes as the ceiling performance changes.
H3 AL performance decreases as the number of classes increases.
H4 AL performance decreases when using diversity sampling strategies instead

of uncertainty sampling strategies.
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Fig. 1: Schematic representation of the learning curve for a neural model employ-
ing both random sampling and active learning (AL). The curve is fitted using
the function P = a

(
1− e−

x
b

)
, where the ceiling F1 score is a = 0.9 and the

parameterized learning rates are brandom = 600 and bAL = 150.

2 Methodology

2.1 Active learning validation metric

The learning curves of neural models typically exhibit three prominent features:
performance starting at 0 for 0 training samples, a general increase with the
addition of training data, and an asymptotic shape with the ceiling performance
as the limit. Therefore, the learning curves of neural models can be effectively
modeled using the equation

P = a
(
1− e−

x
b

)
, (1)

where P is the model performance, a is the ceiling performance, b is the param-
eter that represents the learning rate, and x is the number of training samples.

Active learning algorithms are designed to identify and select relevant sam-
ples from the unlabelled dataset. As a result, they reduce the number of samples
required to achieve a predetermined level of model performance. Figure 1 shows a
schematic comparison of learning curves using random sampling and AL. Given
the assumption that increasing the number of training samples improves per-
formance, a corresponds to the performance of the model when trained on the
entire dataset. The parameter b is calculated from eq. (1) using the least squares
method, using the samples obtained from the experimental data. Therefore, a
is constant for all sampling strategies, while b varies depending on the sample
selection method. We define the speedup factor as an evaluation metric for AL,
representing the fraction of samples required to achieve the same level of per-
formance using AL as compared to random sampling. The speedup factor (S)
serves as validation metric for assessing the efficiency of active learning. Invert-
ing eq. (1) and assuming that aAL = arandom, the speedup factor is calculated
with eq. (2).
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The speedup factor remains constant regardless of the number of training
samples; for example, a factor of 0.4 means that the AL strategy requires, on
average, 40% of the amount of data that random sampling requires to achieve
the same performance. A lower speedup factor indicates that AL requires fewer
data samples to achieve comparable performance, while a speedup factor greater
than 1 indicates that random sampling is more efficient than AL.

S =
xAL

xrandom
=

− ln
(
1− P

aAL

)
· bAL

− ln
(
1− P

arandom

)
· brandom

=
bAL

brandom
(2)

2.2 Active learning strategies

To test the AL performance, we opted for simple but interpretable and well-
established AL strategies to test hypotheses H1-H4 [14].

We use ‘ratio’ as the AL uncertainty sampling strategy [14]. The uncertainty
score Φ for a binary classifier is calculated using the equation

Φbi(y) =
0.5− |y − 0.5|
0.5 + |y − 0.5|

, (3)

where y ∈ [0; 1] represents the output of the model prediction. Multi-label classi-
fiers with n species use n binary classifiers, hence n uncertainty scores per sample
are computed. To obtain a meaningful single uncertainty score for a sample, we
use the maximum of the computed uncertainty scores [9].

Following [14], we implement k-means clustering using the Euclidean dis-
tance measure as diversity sampling strategy. Within each cluster, we select the
centroid (the sample with the smallest distance to the cluster centre), an outlier
(the sample farthest from the nearest cluster centre) and three random samples.
The number of clusters is inversely determined; e.g., to annotate 20 samples at
a rate of 5 samples per cluster, we use 4 clusters [14].

2.3 Experimental Setup

Datasets. In this study we take advantage of AnuraSet, a recently released
real-world benchmark multi-label PAM dataset containing 27 h of audio plus
manually created expert annotations for 42 species of anurans (frogs and toads)
from two different biomes [3]. To the best of our knowledge, this is currently the
only freely available multi-label PAM dataset of reasonable size. The original
authors divide the one-minute audio files recorded in four different areas into
segments of three seconds each, with an overlap of two seconds. This segmenta-
tion approach resulted in 58 three-second audio files per minute, increasing the
dataset to 77 h of audio. The sample rate is 22.05 kHz. The authors provide a
training/evaluation split for all files. The AnuraSet dataset has a high degree
of class imbalance among its classes. We used the evaluation set as defined by
the original authors. Additionally, we synthesized another multi-label dataset
using underwater sound3 and inserting events from the WMMD [18] at random
3 https://www.youtube.com/watch?v=sCc3UtzZDEo
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positions, including the possibility of overlapping events. We segmented the data
into three-second files. From the total duration of 7.8 h of audio with 40 highly
unbalanced classes, the evaluation set (1.6 h) includes 20 % of the events from
each class.

Pre-processing. Recent studies show that the use of BirdNet [7], a neural
model trained on vocal bird recordings, is an effective approach for embedding
PAM datasets [4,9]. As a pre-processing step, all three-second files are resampled
to 48 kHz and embedded using the penultimate layer of BirdNet 2.4. This layer
has an embedding size of 1024, which has shown superior performance [9].

Training. Since the goal of this study is not to construct a state-of-the-art clas-
sifier, but to investigate the dependencies of different factors on AL performance,
a linear (multi-label) classifier is trained to evaluate the performance of active
learning. The resulting architecture consists of a single fully connected layer with
an equal number of output nodes as there are species in the dataset. Because the
classifier comprises only a single layer without shared weights, it facilitates the
assignment of results to different causes. Each output node indicates the pres-
ence or absence of a particular species and is independent of the other output
nodes. A binary cross-entropy loss function and logistic activation are used since
we train a multi-label classifier. The classifiers are trained on frozen BirdNet
embeddings (no fine-tuning) for a maximum of 1 000 epochs. Early stopping cri-
teria are based on validation loss, with a minimum delta of 0.1 and a patience
of 10 epochs, with reinstatement of the best weights.

Active learning experiments are conducted starting with a random selection
of 20 samples. Then, using the sampling strategies random, ratio max, and clus-
tering, 20 samples are added per iteration until a total of 1400 samples (70
iterations) is reached.

Evaluation. All experiments are conducted with 5 random seeds to ensure
robustness and reliability of the results. All results are evaluated on the respec-
tive evaluation set, ensuring that this set is never used for training purposes.
After each sample selection iteration, all selected samples are used to train a
linear classifier, which is then evaluated on the evaluation set. Given the highly
imbalanced classes, we use the macro F1 score as score aggregation metric for
experiments with multi-label datasets to assign equal importance to all species.
To compute the speedup factor, we calculate the mean across random seeds of
the true positive, false positive and false negative values to compute the mean
macro F1 score for the currently used AL sampling strategy and for random
sampling. Using the macro F1 score as learning curve, the b-values and the re-
spective speedup factor are computed. If the speedup factor cannot be computed,
e.g. if the class is extremely sparse and no positive samples are selected for the
training set over all iterations, the results are discarded. To compute the ceiling
performance, we use all available data from the training split to train the model
and average the result over the independent runs.
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Fig. 2: Speedup factor of the single-label datasets over the number of positive
samples of the respective class. AnuraSet (left) and WMMD (right) with the
active learning strategies ratio max (top) and clustering (bottom).

3 Experiments

The following experiments investigate the influence of the number of positive
samples, the ceiling performance, the number of classes, and the active learning
strategy on the performance of active learning, measured by the speedup factor.

3.1 Single-label data

To isolate the variables of interest, we begin by evaluating hypotheses H1, H2
and H4 on single-label data. Single-label datasets are generated by iteratively
selecting one class from the dataset.

To test hypothesis H1, fig. 2 shows the speedup factor for the single-class
datasets of AnuraSet and WMMD over the total number of positive samples for
the respective class used. Using ratio max, fig. 2 (top) shows a strong positive
correlation between the speedup factor and the number of positive samples. The
speedup factor remains consistently below 1. Conversely, using clustering, fig. 2
(bottom) shows no significant correlation. The speedup factor is around 1.

Figure 6 provides a detailed overview of the results for AnuraSet, showing
the learning curves for both a rare and a frequent species over the AL sampling
strategies ratio max and clustering. As can be seen in the figures, clustering does
not improve model performance compared to random sampling, while ratio max
improves model performance, showing higher improvement for rare classes.
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Fig. 3: Fraction of positive samples in the training set selected by the sampling
strategies random, ratio max and clustering over the total amount of training
samples for two single-label datasets from AnuraSet: one with a low number
of positive samples in the dataset (left, class ELABIC, 1705 positive samples
(1.8 %)) and the other with a high number of positive samples in the dataset
(right, class BOABIS, 16524 positive samples (17.4 %)).

Figure 3 (left) shows for AnuraSet for all 3 sampling strategies the fraction
of positive samples in the training set over the total amount of training data for
a rare class and a frequent class. The proportion of positive samples for the rare
class in the entire AnuraSet is 1.8 % and for the frequent class 17.4%. After 70
iterations, the number of positive samples in the training set for the ratio max
sampling strategy is 701 (50.0%) for the rare dataset and 693 (49.5 %) for the
frequent dataset. In contrast, for random sampling and clustering, the proportion
remains approximately at the default level. Figure 3 (right) shows similar trends
for the WMMD dataset, with the difference that for the rare species the fraction
for ratio max decreases after a certain number of iterations.

These results indicate that ratio max is effective as an AL strategy for PAM
datasets, while clustering does not provide significant benefits. Therefore in the
following we present and discuss the results of the AL strategy ratio max. Cor-
responding figures for clustering are provided in the appendix.

To test hypothesis H2, fig. 4 (left) shows the ceiling performance for the
single-class datasets over the total number of positive samples for the respective
class used. A strong positive correlation between the speedup factor and the
number of positive samples is recognisable. Observing a strong correlation be-
tween the ceiling performance and the number of positive samples (fig. 4 (left))
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Fig. 4: Ceiling performance of the single-label datasets of AnuraSet (top) and
WMMD (bottom) over the number of positive samples of the respective class
(left) and the speedup factor (right) for the active learning strategy ratio max.

and a strong correlation between the speedup factor and the number of posi-
tive samples (fig. 2 (top)), we also observe a strong positive correlation of the
speedup factor and the ceiling performance (fig. 4 (right)).

3.2 Multi-label data

To test hypothesis H3, we create multi-label datasets.
To isolate the variable of interest (number of classes), we first create datasets

that include classes with similar amounts of positive samples, ceiling perfor-
mances and speedup factors. Figure 5 (top) shows a strong positive correlation
between the speedup factor and the number of classes. Table 1a shows the frac-
tion of positive samples and table 1b the F1 score for each species of AnuraSet
after 25 iterations, over the number of classes for which the AL strategy ratio
max was optimized. Table 1a shows a noticeable tendency for the proportion of
positive samples to decrease as the number of classes increases, with the most
significant decrease observed when optimizing for 2 classes instead of 1. Figure 7
(left) illustrates that this trend holds not only for the specific value of 25 iter-
ations, but also more generally over all iterations. Table 1b shows that the F1
score for each class decreases as the number of classes increases. Figure 7 (right)
shows similar results to the WMMD dataset, but with the difference that the
proportion of selected positive samples begins to decrease after several iterations.
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Fig. 5: Active learning (ratio max) performance over the used number of classes
for multi-label datasets generated with AnuraSet (left) and WMMD (right). Top
row: 4 classes with similar properties (left: classes: BOAALB, SCIPER, DEN-
NAN, PHYCUV, # positive samples: 5917±309, ceiling performance: µ = 0.82,
σ2 = 0.003, speedup factor: µ = 0.46, σ2 = 0.012; right: classes: FalseKiller-
Whale, SpinnerDolphin, NorthernRightWhale, BowheadWhale, # positive sam-
ples: 787 ± 56, ceiling performance: µ = 0.43, σ2 = 0.105, speedup factor:
µ = 0.51, σ2 = 0.006). All combinations are used. Bottom row: All classes.
For each number of classes, all combinations with neighboring numbers of posi-
tive samples are used. The mean number of positive samples is color-coded.

Finally, we used all classes for our analysis. To minimize the variance within
the selected datasets regarding the number of positive samples, we first sorted all
classes based on their respective number of positive samples. Subsequently, we
generated datasets containing 1 to 40 (42) classes. For n classes, we utilized all
combinations of classes with neighboring numbers of positive samples, resulting
in 40 (42) − n + 1 combinations. Figure 5 (bottom) shows the speedup factor
over the number of classes with all used combinations for the sampling strategy
ratio max. The average number of positive samples across all classes used for
each dataset is color-coded. There is a strong positive correlation between the
number of classes and the speedup factor, where the speedup factor tends to
be lower with fewer classes and approaches 1 with more classes. There is also a
clear positive correlation between the number of positive samples in the dataset
and the speedup factor, with the speedup factor being lower for datasets with
fewer positive samples and higher for datasets with more positive samples. While
for some combinations the speedup factor exceeds 1, indicating that random
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Table 1: Fraction of positive samples and F1 score for each species for created
datasets with 1 to 4 classes from AnuraSet after 25 iterations (500 training
samples) for the sampling strategy ratio max. For datasets with 2 and 3 classes,
each class combination is used, resulting in three combinations per class. The
results are then averaged to obtain the final results.

(a) positive samples [%]

# classes

Species 1 2 3 4

PHYCUV 52.7 30.0 25.1 20.0
BOAALB 47.7 37.6 18.1 19.9
DENNAN 47.8 28.9 27.6 9.9
SCIPER 56.8 21.0 19.7 26.7

(b) F1 Score

# classes

Species 1 2 3 4

PHYCUV 0.59 0.48 0.41 0.39
BOAALB 0.87 0.75 0.52 0.61
DENNAN 0.75 0.57 0.54 0.25
SCIPER 0.73 0.39 0.36 0.48

sampling outperforms AL, for the majority of combinations it remains below 1,
indicating that AL is more efficient in those cases.

4 Discussion

In this study, we introduced a quantitative performance measure for AL, the
speedup factor, which is independent of the number of training samples and
states the fraction of samples needed to reach the same level of performance
using AL compared to random sampling. Motivated by the desire to develop a
methodology capable of annotating and interpreting large volumes of multi-label
PAM data, we investigate the influence of several factors on AL performance.
These factors include the number of positive samples, the ceiling performance,
the number of classes, and the AL sampling strategy.

H1. We hypothesised, that AL performance decreases as the number of positive
samples in the dataset increases. Our results shown in figs. 2 and 6 support
this hypothesis for single-class datasets, showing a strong positive correlation
between the number of positive samples and the speedup factor. Figure 3 shows
that random sampling maintains an equivalent proportion of positive samples
in the training set as in the original unlabelled dataset. By selecting samples
close to the decision boundary, the AL method ratio max is trained to select
approximately 50% positive samples. Since a model tends to perform better
with a more balanced dataset, the effect of AL is more pronounced for sparse
classes where the fraction of positive samples selected by random sampling is
very small. Figure 5 (bottom) shows the same trend for multi-label datasets,
where the color indicates that the speedup factor decreases for sparser multi-
label datasets. Using the sampling strategy ratio max on the smaller dataset
WMMD with sparse classes results in a noticeable decrease in the number of
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unlabelled positive samples over iterations, resulting in a decreasing proportion
of positive samples within the training set, as shown in fig. 3 (top right) and
fig. 7 (right).

H2. We hypothesised, that AL performance changes as the ceiling performance
changes. While fig. 4 (right) shows a decrease in AL performance with increasing
ceiling performance, fig. 4 (left) also shows a strong correlation between the
number of positive samples and ceiling performance. Therefore, we conclude
that the ceiling performance does not directly influence the AL performance,
but rather the number of positive samples has a strong influence on both the
AL performance and the ceiling performance.

H3. We hypothesised, that AL performance decreases as the number of classes
increases. Holding the variables of positive samples, ceiling performance, and
speedup factors constant for the single-label datasets, fig. 5 (top) illustrates
that the performance of AL decreases as the number of classes increases. As
shown in fig. 7, this phenomenon occurs because the selected fraction of positive
samples decreases when optimizing for more classes, resulting also in lower model
performance (see table 1b). Figure 5 (bottom) shows consistent results even
when considering different numbers of positive samples, ceiling performances,
and speedup factors, asymptotically approaching a speedup factor of 1 as the
number of classes increases.

H4. We hypothesised, that AL performance decreases when using diversity
sampling strategies instead of uncertainty sampling strategies. Figures 2 and 6
show that for single-label datasets, ratio max significantly outperforms random
sampling, while clustering exhibit an average speedup factor of 1, indicating
a learning curve close to random sampling. Figure 3 reveals that the number
of selected positive samples using clustering is even slightly lower than that for
random sampling. In addition, we conducted all experiments using diversity sam-
pling. The results indicate that the correlation between the speedup factor and
both maximum performance and the number of classes suggests no performance
advantage when using clustering compared to random sampling.

Regarding the limitations of our elaboration, while the speedup factor effec-
tively captures the AL performance, it could be better adapted to the learning
curves by allowing a shift along the x-axis (see fig. 6). For this study, we limited
our analysis to two well-established, computationally tractable AL strategies in
the domain of PAM datasets. Future research include investigating these claims
for multi-label datasets from other domains, such as image, text, and tabular
data, as well as exploring more sophisticated AL strategies.
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Fig. 6: AnuraSet: Learning curves for two single-label datasets. Positive samples:
1.8 %, (class ELABIC, top row); 17.4 %, (class BOABIS, bottom row). Speedup
factors for active learning (AL) strategies: ratio max (left col): 0.3 (ELABIC),
0.5 (BOABIS); clustering (right col): 1.0 (both classes).
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Fig. 7: Fraction of positive samples in the training set selected by the sampling
strategy ratio max over the total amount of training samples for multi-label
datasets for one class. For 2 and 3 classes, where 3 combinations are possible,
the curves are averaged over these combinations.


