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Abstract— Enabling multi-fingered robots to choose an ap-
propriate grasp on an object from natural language instruc-
tions poses great difficulties for such systems. The diversity,
imprecision, and limited information contained in the language
make this task particularly challenging. However, speech serves
humans as a natural communication interface that can aid
robots in adapting to the environment more easily. Therefore,
providing robots with relevant data about the objects they
interact with is essential for them to understand how to carry
out object manipulation tasks. By leveraging Named Entity
Recognition (NER) to automatically extract semantic data,
our work introduces a novel approach to text-based grasp
predictions. Our methodology involves a multistage learning
approach using a semantic information extractor that provides
significant features to a grasp prediction model. To assess the
effectiveness of our approach, we conducted experiments on an
existing corpus and two corpora generated by ChatGPT. Our
results demonstrate superior performance compared to similar
grasp prediction models while overcoming limitations in the
literature. Additionally, we open-source our training data for
reproducibility and future research advancement.

I. INTRODUCTION

Natural language in the form of speech or text has served
a wide range of applications in Human-Robot Interaction
(HRI) research. Its uses range from simple commands to
control robot movement or end-effector [1], [2], [3], to the
management of semantic knowledge about important con-
cepts [4], [5], [6], [7], [8]. Within these applications, natural
language is utilized primarily to aid robots in industrial envi-
ronments and to engage in conversations with social robots.
To establish natural HRI, systems often incorporate state-of-
the-art Natural Language Processing (NLP) technology, such
as Part-of-Speech (POS) tagging or Named Entity Recogni-
tion (NER). They present an efficient solution for parsing
sentence structure or automatically extracting semantic data
about concepts. In some cases, dialogue modeling is used to
create an even more controlled environment for such robots
[4], [7]. These applications aim to use natural language as
an interface for facilitating interactions between humans and
machines. Especially recent advances in the field of Large
Language Models (LLMs) and the introduction of OpenAI’s
ChatGPT [9] may have implications for the future of natural
language-based HRI research [10]. Due to their potential
and versatility in many application domains, researchers are
already exploring the use of ChatGPT in innovative chatbot
systems [11], [12].
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One of the domains that has resorted to the use of natural
language is grasp (type) prediction for multi-fingered robotic
grasping. Inspired by findings from the field of human grasp
analysis, grasp predictors aim to simplify and improve multi-
fingered robotic grasp planning by determining a canonic
grasping pre-shape. The information about the grasp is then
actively integrated into the robotic grasp planning procedure
[13], [14], [15], [16], [17], [18], [19], [20]. Although several
approaches specifically focus on the use of visual input
as the only modality for grasp type identification [21],
[22], grasp types have also been explored in the context
of natural language [18], [23], [24], [25]. They involve
incorporating information about the grasp into ontological
frameworks or predicting appropriate grasping gestures from
textual descriptions. Consider a lay human who wants to
instruct a multi-fingered robot to grasp a generic bottle.
Providing a statement such as “the bottle in front of you
is a large container of cylindrical shape” presents an easy
way for a human to describe the properties of the bottle
during HRI without requiring knowledge about the robot.
However, existing grasp predictors cannot deal with such
instructions due to inflexible feature extraction that enforces
strong assumptions on the format of the input data, or do
not allow the extraction of significant information for future
adaptation. An HRI system, on the other hand, should allow
the use of natural communication and continuously adapt
to unknown situations, necessitating deep knowledge about
its environment. The approach we propose builds on prior
research while addressing the above challenges, aiming to
bridge the gap to natural language-based grasp prediction. To
overcome existing limitations, this paper makes the following
contributions:

• We introduce a novel approach to text-based grasp
prediction by automatically extracting significant in-
formation about grasp affordances. We demonstrate its
superior performance using three corpora and in direct
comparison to existing models.

• We obtain two corpora by prompting ChatGPT with
various queries and propose training a custom NER
model for filtering semantic information that influences
the choice of a grasp. By also predicting grasps based
on these data, we demonstrate that results can strongly
depend on prompt engineering.

• All data for training our models are made publicly
available for reproducibility and future research1.

1https://github.com/nikleer/EntityBasedGrasps
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II. RELATED WORK

A. Natural Language in HRI

Due to numerous technological advancements, the use of
natural language in HRI (i.e., speech or text) has experi-
enced notable developments. This field has suggested many
approaches to tackle a multitude of different challenges, as
subsequently described.

Robot Motion Control: Some works have investigated
how to translate voice commands or a sequence of words into
executable actions [1], [2]. These actions typically include
directional movements or changing the state of the robotic
gripper. Specifically, van Delden et al. [3] have investigated
the problem of how to enable a non-expert to re-cast a
generic pick-and-place task in a typical industrial environ-
ment. The authors include a vision component to capture
what the user is pointing toward. Krupke et al. [26] have
further explored a mixture of multimodal HRI methods. Their
system combines voice commands with pointing gestures
and head orientation in a mixed-reality environment. They
effectively enable controlling a co-located robot for pick-and-
place applications. However, robots often require a deeper
understanding of the concepts they interact with.

Information Extraction: As robots are intended to per-
form increasingly complex tasks in everyday life (e.g., dex-
terous grasping), they may require a sophisticated under-
standing of their surroundings. To solve this problem in
a direction understanding task, Kollar et al. [5] introduce
the concept of a Spacial Description Clause (SDC). An
SDC represents a sequence of words that describe a route
instruction that includes a subject, an action, and a special
relation to an object in the environment. Other approaches
use well-established Natural Language Processing (NLP)
methods to identify and filter significant features of textual
data [4], [6], [7], [8]. Part-of-Speech (POS) tagging is
commonly applied to identify the grammatical role of words
in a sentence, such as nouns or verbs. Another technique
often utilized is Named Entity Recognition (NER). The
method allows extracting terms belonging to categories such
as person names, organizations, and locations [27]. Paplu
et al. [7] utilize these methods for including linguistic cues
into the dialogue of their social robot to establish context-
aware HRI. Some more recent methods have explored how to
build interfaces on top of Large Language Models (LLMs) to
exploit their pre-existing knowledge about objects and tasks.

ChatGPT in HRI: Artificial intelligence powered by
LLMs has been gaining significant attention since the emer-
gence of OpenAI’s ChatGPT [9]. This is due to the potential
and versatility displayed by models such as GPT-3 and the
recently studied GPT-4 across various applications [28], [29],
which have already led to the development of novel chatbot
systems such as RoboGPT [12] and ROSGPT [11]. These
systems capitalize on the capabilities of ChatGPT for HRI.
Ye et al. [12] demonstrate that working with such systems
reduces mental workload and fosters trust. However, the
authors note that cases of miscommunication or inaccurate
communication can be problematic, as ChatGPT applies

its own understanding to instructions. Due to its recent
introduction, how to effectively integrate the technology into
HRI applications, such as instructing a robotic system on
how to manipulate objects, remains an open question [10].

B. Grasp Prediction for Multi-fingered Robots

Grasp (type) prediction in multi-fingered robotics aims to
predict a suitable grasping pre-shape for manipulating an
object. The terminology originates from the field of human
grasp analysis where grasp types have been studied since
the 1950s [30]. Grasp types refer to the various ways in
which humans hold and manipulate objects using their hands.
Generic versions of these grasps can be categorized based
on the position and configuration of the fingers and thumb
during gripping [31], [32]. They are actively used to simplify
multi-fingered robotic grasp planning [13], [14], [15], [16],
[17], [18], [19], [20] and have been demonstrated to out-
perform similar approaches excluding this information [33].
While most existing approaches focus on the investigation of
vision-based methods, grasp types have also been explored
in natural language-related applications [18], [23], [24], [25].
For example, Varadarajan et al. [23] formulate an ontological
framework that models functional and grasp affordances for
task-based grasping. They utilize grasp types as a simple way
to model the grasp affordances of objects. Li and Tian [24]
similarly use grasp types for defining object manipulation
constraints as a part of their ontological framework. To
our knowledge, there currently exist two approaches for
predicting grasp types from natural language. Rao et al.
[18] use manually generated textual descriptions, in addition
to precise quantitative data, that follow a specific format
and only contain significant features influencing a grasp.
They use a mixture of lemmatization, POS tagging, and
regular expression-based sentence chunking. As the authors
acknowledge, this restricts their extraction method to the
specific scenario they have investigated. Our prior work par-
tially solved this problem by retrieving unstructured textual
descriptions from the Internet (e.g., Wikipedia) and predict-
ing grasps based on the whole description [25]. While this
approach enables processing arbitrary textual descriptions,
extracting significant attributes and establishing a semantic
representation of the objects is not possible.

Our proposed methodology enables processing arbitrarily
formed textual descriptions while overcoming the challenge
of feature extraction by automatically extracting semantic
information about objects, therefore combining the strengths
of previous text-based grasp predictors. Similar to other
approaches in HRI, we leverage NER technology to extract
this information. Since existing state-of-the-art NER models
do not enable extracting information associated with grasp
affordances (e.g., object geometry, material, hardness), we
have trained a custom model specifically for this purpose.
We obtained a large portion of our corpus by prompting
ChatGPT with various queries and used this data to train
our model. By applying this model, our results demonstrate
superior performance in comparison to existing text-based
grasp prediction models.



Fig. 1. Conceptually shows how to predict a grasp based on extracted semantic information from a description of a bottle.

III. METHOD

In this section, we elaborate on our underlying informa-
tion extraction methodology that is used to model grasp
affordances for a NER model. We subsequently describe the
important attributes we want to extract. After that, we explain
how to create a corpus from natural language that serves as a
basis for (1) training the recognition model and (2) showing
that natural language-based grasp prediction benefits from
the extraction procedure. Figure 1 conceptually demonstrates
this approach based on spoken language or text corpora.

A. Semantic Features for Automatic Information Extraction

Based on the literature [18], [31], [32], we have identified
a set of significant attributes that may influence a suitable
grasp and defined classes for our proposed NER model.

• Pivot: We consider the pivot to be the main point of
reference in a sentence, and understanding it can help a
learning model infer which poses are suitable for objects
with similar semantic properties.

• Geometry: The geometry of an object has a strong
influence on the type of grasp that’s appropriate. For
example, cylindrical objects like bottles require a com-
pletely different grasp than flat objects.

• Material: Objects made of fragile material that can
more easily break may require a grasp suitable for
careful manipulation instead of a strong grip.

• Hardness: Some objects are more easily deformable
than others, which means they potentially require a
grasp that provides more stability to manipulate an
object effectively.

• Texture: In addition to the material and hardness of an
object, its texture can also affect the stability of a grasp,
especially if it’s slippery.

• Size: When describing the size of an object, natural
language often includes relative terms like “small” or
“large” instead of providing exact numerical values.
Although these words do not give an accurate measure-
ment of an object’s size, they provide a general idea
about it, which affects the choice of a grasp.

• Weight: Similarly, the weight of an object, often de-
scribed using words such as ”lightweight” or ”heavy,”
can affect the force required for a successful grasp.

• Component: One of the aspects sometimes considered
is that some objects can be decomposed into multiple
components (e.g., a mug having a body and a handle)

[6], [24]. This is not only relevant for establishing
semantic representations but also determines whether
a grasp is applicable.

• Context: Understanding contextual information such as
more abstract object categories (e.g., a bottle being a
container) can further help to establish relationships and
distinguish between different types of objects.

• Task: Tasks associated with an object can fundamen-
tally change the grasp required for interacting with it.
In particular, the applied grasp can impact how humans
interpret the executed action [22], introducing another
aspect to consider in natural HRI.

• Color: We only want to extract color as an auxiliary
attribute to increase the recognizer’s versatility in aiding
vision-based applications in the future.

Taking the above-described entities into account, the natural
language description “a bottle is a large cylindrical container
made of plastic with a neck used for drinking”, which
contains a high density of relevant information, should result
in the extraction of the following named entities:

{bottle → PIVOT, large → SIZE,
cylindrical → GEOMETRY, container → CONTEXT,

plastic → MATERIAL, neck → COMPONENT,
drinking → TASK}

Bottle  

hasSize  
large  

hasGeometry  cylindrical  

hasContext  container  

hasMaterial  plastic  
hasComponent  neck  

hasTask  
drinking  

Fig. 2. Translation of entity types into semantic relationships commonly
used in ontological frameworks.



TABLE I
WORD AND SENTENCE STATISTICS FOR EACH CORPUS.

Corpus Number of Words Number of Sentences

Wiki/Dict [25] 19, 227 1, 221
GPT-L 18, 488 1, 018
GPT-S 6, 147 347

Total 43, 862 2, 586

We can translate this information into semantic relationships
used in ontological frameworks, as visualized in Figure 2.
The set of significant information we identified ultimately
contains ten distinct entity types, excluding color. Distin-
guishing between these many classes naturally necessitates
a corpus that allows extracting a rich vocabulary of terms.

B. Data Generation Procedure and Corpora Aggregation

Since state-of-the-art NER models, which are trained on
standardized datasets, are not dedicated to extracting entities
that influence the choice of a grasp, they are not useful for
our investigations. Therefore, one of the main challenges
of this research also lies in gathering data to establish a
corpus. This corpus should contain a rich vocabulary used to
describe the properties of objects. Our prior work dealt with
the same challenge [25]. Here, we gathered textual data from
online sources such as Wikipedia and online dictionaries for
a set of 100 everyday objects. This dataset, which is fully
labeled based on four grasp types for the task of holding an
object, served as a starting point for our corpus. Additionally,
we wanted to leverage crowdsourcing to gather a large
corpus of object descriptions provided by humans. However,
recent research shows that crowdsourcing study participants
employ LLMs for automatizing text-generation tasks [34].
These findings are consistent with our pilot studies where
we gathered a tremendous number of duplicate descriptions
that were generated by an LLM instead of produced by a
crowdsourcing worker. Therefore, similar to more recently
developed systems that capitalize on the capabilities of
ChatGPT for HRI [11], [12], we decided to leverage its
potential to generate suitable data instead. This would not
only serve the purpose of training a NER model but also
allow us to explore whether data generated by ChatGPT can
successfully be employed for predicting grasps. As noted in
the literature, generating suitable data may require extensive
prompt engineering [12], [28]. During our experiments,
we also observed significant differences in how ChatGPT
would describe the properties of an object. Including words
such as “comprehensive”, “thoroughly”, “precise”, or “short”
strongly influenced the number of generated sentences as
well as their detail. After thorough experimentation, we
decided to generate two datasets that demonstrate vastly
different behaviors. In variation one (hereafter referred to
as GPT-L), we queried ChatGPT to provide as much infor-
mation as possible by using the generic prompt:

“What can you tell me about the physical
properties of a/an [object].”

As a result of this query, the descriptions we retrieved contain
large portions of useful data for training the NER model.
This includes various geometric properties (e.g., cylindrical,
spherical, or rectangular), a large number of materials (e.g.,
plastic, wood, or fabric), and details about the components of
an object. On the other hand, they tend to be extremely exten-
sive and generic, with an average length of over 184 words.
In some cases, the number of words almost reaches 300.
Therefore, in variation two (hereafter referred to as GPT-
S), we wanted to be more specific and queried ChatGPT
to describe only the most significant properties using more
precise language. To this end, we used the prompt:

“Please concisely describe the most common physical
attributes of a/an [object] and its typical uses.”

In contrast to GPT-L, the information density of the gen-
erated descriptions is considerably higher and the language
used is less generic. As a consequence, the average length
of the retrieved sentences has decreased to 61 words. Table
I provides a complete overview of the word and sentence
statistics related to each corpus. We have also retrieved these
statistics for the existing corpus [25]. Due to our previous
extraction procedure, we refer to this data as Wiki/Dict.
We observe that GPT-L generates nearly as much data as
Wiki/Dict, which was gathered using nine different online
sources. GPT-S, on the other hand, contains less than one-
third in terms of the generated number of words and sen-
tences. Overall, the corpora contain approximately 44, 000
words and 2, 600 sentences. To establish a training corpus
for our custom NER model, we have manually labeled the
data according to the semantic features described in the
previous section. Sentences not containing the features we
are interested in were ignored and not labeled. This led
to reducing the number of sentences in our corpora to
677 for Wiki/Dict, 783 for GPT-L, and 257 for GPT-S.
By aggregating this data, we obtained our final corpus for
training the recognition model.

IV. EVALUATION

Our evaluation is divided into two parts. The first part
involves assessing the performance of the proposed NER
model. In the second part, we use the NER model to
extract semantic information from each corpus introduced
in the previous section. We then use the extracted entities to
evaluate whether the automatic extraction of these features
can benefit natural language-based grasp prediction. This
further allows us to compare the performances we retrieve
using each corpus.

A. Named Entity Recognizer

To train our proposed custom NER model, we use the
state-of-the-art NLP framework FlairNLP [35]. It enables us-
ing a bi-directional LSTM in conjunction with a Conditional
Random Field (CRF) for training an entity extraction model.
Furthermore, it supports the incorporation and combination
of many pre-trained word embeddings for a deep contextual
understanding of the training data. Since there are no other



Fig. 3. Confusion matrices showing the normed (left) and absolute (right) value distribution of our NER prediction model averaged over all runs of the
k-fold cross-validation. Average values in the interval [0, 1] were rounded to 1. Entity type names are abbreviated for space reasons.

comparable NER models in the literature, we obtained all
relevant evaluation metrics including Precision, Recall, F1-
Score, Micro Average (Accuracy), and Macro Average. To
effectively train and evaluate our custom NER model, we first
pre-processed all labeled sentences, which served as the basis
for using FlairNLP. Our training configuration includes pre-
trained GloVe embeddings [36] and the bidirectional LSTM
uses a hidden layer size of 512 cells. The initial learning
rate is set to 0.1 and the model is trained using a batch size
of 8 over 50 epochs. Table II shows the results based on
a k-fold cross-validation using this configuration. The UNK
entity type functions as a substitute for all words that did
not receive a label. Support describes the total number of
classified entities for each entity type. In terms of entity types
we aim to extract, our trained model achieves an F1 Score
above 0.9 for the PIVOT, MATERIAL, GEOMETRY, SIZE,
and WEIGHT entity types. Especially tasks and components,
both achieving an F1 Score close to 0.75, are much more
challenging to extract. That’s because these entity types are
arguably the most complex to extract since the entities do
not necessarily have a semantic relationship. For example,
geometric features such as “spherical”, “cylindrical”, or
“round” are semantically homogeneous whereas the terms
“handle”, “pages”, and “nib” have no relationship to each
other. The extraction of tasks deals with a different challenge
as recognizing these entities is considerably more complex
than tagging the verbs of a sentence. It is important to note
that the NER model has to develop a deep understanding of
the occurring words and sentence structure to identify what
qualifies as a task related to an object. Because of these rea-

sons, Precision and Recall are notably lower in comparison
to other entity types. Our model’s overall retrieved Micro F1
Score lies above 0.95 whereas the Macro F1 Score averages
slightly above 0.88. However, due to a strongly unequal
entity distribution in our data, the Micro F1 Score is not
a suitable indicator for assessing the model’s performance.
As the UNK entity type, which represents all unlabeled
words, has the highest support by a considerable margin
and achieves excellent performance, the score is biased.
Calculating this value without including the UNK entity type
results in a Micro F1 Score of 0.8797, which is almost
equivalent to our retrieved Macro F1 Score and a much better
indicator. State-of-the-art models trained on standardized
datasets reportedly achieve slightly higher Micro F1 Scores
of 0.943 (4 classes) [37] and 0.913 (18 classes) [38] on well-
established entity types (e.g., person names, organizations,
and locations). We have also retrieved our entity extractor’s
confusion matrix to learn about the entity assignment (see
Figure 3). Notably, the majority of False Positive and False
Negative predictions are related to the UNK tag. As noted
earlier, especially task-related information presents a chal-
lenge to our extractor, which leads to a high percentage of
False Positive predictions. Only a small fraction of entities
are mistakenly assigned a label of another significant entity
type. The PIVOT entity type appears to be most prone to this
misclassification. These results indicate that, while our NER
model performs reasonably well, correctly tagging entities
in unseen data can still be improved. We have used this
entity extractor to predict grasp types, as described in the
next section.



TABLE II
RESULTS OF A K-FOLD CROSS-VALIDATION ON AN ENTITY-LEVEL. THE

AVERAGE ACCURACY (MICRO F1) AND MACRO AVERAGE INCLUDE ALL

ENTITIES (MODEL-LEVEL EVALUATION).

Entity Type Precision Recall F1 Score Support

UNK (no tag) 0.9780 0.9758 0.9769 4966
PIVOT 0.9360 0.9444 0.9383 245
MATERIAL 0.8773 0.9475 0.9110 152
CONTEXT 0.8691 0.8553 0.8608 135
TASK 0.7778 0.6962 0.7394 133
GEOMETRY 0.9286 0.9409 0.9341 121
COMPONENT 0.7503 0.7775 0.7627 113
SIZE 0.9527 0.9804 0.9662 69
COLOR 0.8455 0.9299 0.8850 48
TEXTURE 0.8420 0.7625 0.7965 36
HARDNESS 0.8522 0.9252 0.8855 25
WEIGHT 0.9321 0.9042 0.9157 7

Micro Average 0.9585 6058
Macro Average 0.8782 0.8865 0.8803 6058

B. Grasp Prediction Model

To assess whether the extraction of semantic features
benefits grasp prediction, we first extracted all entities for the
objects in our corpora. To compare our results to the most
recent natural language-based grasp method, we followed a
similar evaluation methodology as in our prior work [25].
There, we found a Support Vector Machine (SVM) that uses
a linear kernel and a Convolutional Neural Network (CNN)
to be most effective. The SVM learns features from a tf-idf
(term frequency-inverse document frequency) matrix and the
CNN uses a pre-trained word embedding for its first layer.
We demonstrate the performance of these models using three
different input data configurations.

1) Raw Data: For the first configuration of our models,
we use the raw textual data. This produces results
equivalent to our prior work where we used complete
textual descriptions [25]. As this does not involve using
the NER model, it serves as a baseline.

2) Entity and Entity Type: This configuration leverages
the extracted semantic entities in addition to their
corresponding entity type (e.g., geometry cylindrical).
Adding the information about the entity type presum-
ably aids the CNN in establishing a better understand-
ing of the extracted data and their relationships.

3) Extracted Entities: The final configuration we evalu-
ate uses the smallest set of features by only learning
grasps based on the extracted entities.

As before, we split the data according to a k-fold cross-
validation. The accuracy and standard deviations of each
configuration are summarized in Table III. We can derive
several significant observations. First, our results show that
the extraction of semantic information has improved grasp
prediction for each corpus, regardless of the learning method
used. With the Wiki/Dict pre-existing corpus, we achieved
improvements ranging from 0.066 to 0.076 when compared
to [25]. It further demonstrates an improvement of more than
0.05 compared to the work by Rao et al. [18], who used
manually generated descriptions that follow a specific format.

The extraction of entities led to an even more significant
improvement for the GPT-S corpus, where the SVM gained
0.069 and CNN gained 0.088 in accuracy. For GPT-L, only
the SVM’s performance increased by nearly 0.05 in accuracy,
while the CNN achieved a minor improvement. Furthermore,
our hypothesis that the inclusion of the entity type may aid
CNNs in establishing a better understanding of the relation-
ships in the data is partially true using this data. While a
direct comparison to predictions on raw data always leads to
an improvement, the approach can be inferior (Wiki/Dict)
or similarly effective (GPT-L) as predicting grasps using
only the extracted entities. Moreover, a comparison between
our retrieved results for the ChatGPT-based corpora shows
significant differences in prediction quality. Using raw data,
these differences can only be observed using the SVM
classifier. However, by employing our NER model, both,
SVM and CNN, strongly outperform predictions made on
GPT-L by utilizing data extracted from the GPT-S corpus.
Presumably, this could be caused by discrepancies in the
extracted entities for these corpora. Overall, our evaluation
demonstrates that the extraction of semantic features benefits
grasp prediction across all models and corpora used in our
experiments. Furthermore, a comparison of our retrieved
corpora using ChatGPT shows that results can strongly differ
based on the provided prompt.

V. DISCUSSION

When investigating the data qualitatively, an interesting
observation that is not reflected in the quantitative results is
that there is a small set of objects that is almost consistently
misclassified across all datasets and model configurations.
These objects include the “barrette” (i.e., a small hair clip),
“bowl”, “candle”, “flashlight”, “hammer”, “lollipop”, “pli-
ers”, “Rubik’s cube”, and “sponge”. Although the data used
in our evaluation originates from different sources, none of
the extracted descriptions seem suitable for predicting an
appropriate grasp using the applied models. For the task of
securely holding an object, five of these objects are labeled
using the same grasp (medium wrap). The objects “bowl”,
“lollipop”, and “sponge” each require a different grasp. This
issue potentially arises from non-optimal descriptions or the
properties of an object being naturally more complex to
describe. For example, a “lollipop” is sometimes described
as round and hard. However, it is not adequately reflected
in the data that these attributes refer only to the part of
the object that is not usually grasped. Furthermore, even
though our approach generally enables the extraction of
semantic information, the NER model is currently unable
to link components to their respective attributes. Consider
the following short description of a hammer:

“A hammer is a heavy tool with a long handle”.

When using the extracted information to predict appropriate
grasps, the SVM cannot link the attribute “long” to the
handle of the hammer by itself. Although the CNN may be
able to learn about this relationship through the positioning



TABLE III
GRASP PREDICTION RESULTS FOR EACH CORPUS AND DIFFERING INPUT DATA.

Input Model Wiki/Dict GPT-L GPT-S

Raw Data (complete description) SVM 0.79 [25] 0.690± 0.0253 0.785± 0.0108
Raw Data (complete description) CNN 0.75 [25] 0.716± 0.0375 0.725± 0.0334

Extracted Entities and Types SVM 0.806± 0.0126 0.690± 0.0141 0.806± 0.0117
Extracted Entities and Types CNN 0.815± 0.0283 0.720± 0.0278 0.813± 0.0105

Extracted Entities SVM 0.856± 0.0217 0.737± 0.0231 0.854± 0.0084
Extracted Entities CNN 0.826± 0.0217 0.720± 0.0216 0.787± 0.0249

of such words, it would be desirable to model these rela-
tionships for managing knowledge even more effectively in
the future. This representation of the extracted entities could
be beneficial to our grasp prediction methods, especially
when augmented with vision-based HRI applications for a
robot that requires complete situational knowledge of its
environment.

Since we only predict grasps in the context of securely
holding an object, we similarly do not currently use the
information about the extracted tasks. Instead, the informa-
tion may serve our predictors in comparing objects used for
the same tasks (e.g., all pens used for writing). Due to the
flexibility of this method, it would be possible to simply
provide instructions on the task during HRI. In contrast to the
literature, which mainly exploits grasp types to plan multi-
fingered robotic grasps, our work views them more as a
potential interface for natural HRI. Since we have trained
our model on textual data with a high information density,
the recognizer can already extract attributes from natural
language instructions such as:

“Please hold this large cylindrical object for me” →

{hold → TASK, large → SIZE, cylindrical → GEOMETRY}

or

“I need your help picking the rectangular parts” →

{picking → TASK, rectangular → SIZE}

while only facing issues determining more generic pivots.
Presumably, fine-tuning the recognition model based on the
objects commonly manipulated in a specific environment or
domain (e.g., ambient assisted living or industry 4.0) would
enable the extraction of coherent information during HRI.
Such instructions, or a single significant feature, could also
be queried by a robot as part of a dialogue management
system. Our work paves the way to solve these questions in
future work to achieve more natural HRI using grasp types.

VI. CONCLUSION

This paper has presented a novel approach to natural
language-based grasp prediction. We have proposed lever-
aging NER technology for the automatic extraction of se-
mantic information influencing the choice of a grasp. To
this end, we have identified relevant features associated with
grasp affordances describing the properties of an object. To
overcome the challenge of generating training data, we have

retrieved two corpora by prompting ChatGPT with queries
that demonstrate vastly different behaviors. An evaluation
of our proposed NER model achieves a Macro Average F1
Score of 0.88 and a similar Micro F1 Score while only
distinguishing between relevant entity types. We demonstrate
that the automatic extraction of semantic features benefits
grasp prediction using three corpora. We further show that
results may depend on prompt engineering, necessitating
the development of strategies for generating appropriate
data using LLMs. Overall, our method demonstrates supe-
rior performance in comparison to similar grasp prediction
models while overcoming currently existing limitations. By
systematically post-processing the descriptions, we can more
easily facilitate establishing semantic representations and
potentially deal with instructions provided by a human.

Using our findings, we would like to explore the use of
multimodal interaction techniques in the context of multi-
fingered robotics for achieving natural HRI. Instead of treat-
ing grasp types purely as a learned prior for grasp planning,
we find the idea of leveraging them as an interface to HRI,
which has not been explored in the literature, very promising.
Our research is intended to be a step in this direction
using natural language and we look forward to seeing more
research that considers this aspect in the context of HRI.
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