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Abstract. Manipulating objects with a robotic hand or gripper is a
challenging task that can be supported by knowledge about the object,
such as textual descriptions. Even with such knowledge, there remain nu-
merous possibilities for applying an appropriate grasping gesture. This
ambiguity can be reduced by providing information about the intended
task, aiding robots in making the choice of a suitable grasp less arbitrary
and more robust. This work investigates using word embeddings in the
context of grasp classification for multi-fingered robots. Instead of pre-
dicting grasping gestures without specifying the intended task, our work
combines a description of the properties of an object and task-related in-
formation. We demonstrate that a systematically generated dataset and
fine-tuned context embeddings can compete with existing models that
do not consider object manipulation. Our best model achieves a micro f1
score of 0.774 and macro f1 score of 0.731 while distinguishing between
over 40 tasks.

Keywords: Grasp Classification · Text Classification · Word Embed-
dings · Natural Language Understanding

1 Introduction

Grasp classification in multi-fingered robotics aims to determine a canonic grasp-
ing pre-shape suitable for grasping or manipulating an object. Well-established
literature about human grasping shows that the choice of a grasp depends on
numerous factors [3, 10]. It is important to note that these factors not only in-
clude physical attributes such as an object’s shape or size but also relate to
the tasks it can be used for. Even though many approaches have investigated
classifying these grasping gestures, or integrated knowledge about them in their
system, information about concrete tasks often plays a subordinate role or is
not considered [4, 6, 11, 14, 23]. However, a robotic system should be aware of
the tasks a grasping gesture is associated with as this may influence how an
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object must be handled. Imagine an industrial human-robot collaborative set-
ting where simple machine tools such as a screwdriver or a wrench have to be
used. In case of using such a tool, the robot likely requires a powerful grip to
apply pressure to a specific region. However, handing over the same tool to a
human might require a completely different grasp on the object to guarantee the
smooth completion of this task. Especially handling objects or workpieces with
a wide range of complex object geometries involved in a series of tasks reinforces
the challenge of appropriate grasp choice. In the context of spoken instructions
or textual descriptions, this problem equates to capturing semantics about the
attributes of an object in conjunction with information about the tasks it can
be used for.

Conceptually, there is a resemblance to text classification tasks that aim to
extract the meaning of a sentence based on the words it contains e.g., during
sentiment analysis [12]. Over the last few decades, the field of Natural Language
Processing (NLP) has proposed many approaches that consider many factors for
capturing the meaning of words or sentences. Prominent methods that model the
(co-)occurrences of words include the Term-Frequency Inverse-Document Fre-
quency (TF-IDF) vector space model, Näıve Bayes, or Latent Semantic Analysis
(LSA) [5]. Well-known machine learning models that leverage specific archi-
tectures for establishing vector representations of words include Word2Vec [19],
Global Vectors (GloVe) [22], and the Bidirectional Encoder Representations from
Transformers (BERT) [7]. Although a few works have investigated how to pre-
dict suitable grasping gestures from natural language [14, 23], it is still unclear
how to adequately capture the semantic information of textual descriptions while
distinguishing between a wide range of object manipulation tasks.

To improve our understanding of this challenge, we make the following con-
tribution: This paper investigates the capabilities of word embeddings to capture
semantic information about objects and their associated tasks for grasp classi-
fication. By appropriately accounting for object manipulation, we aim to make
the grasp choice less arbitrary and more in line with real-world situations. To
this end, we conducted two data collection studies to determine relevant tasks
and collect their grasping behavior based on five grasp types. Furthermore, we
systematically generated a dataset of textual descriptions of an object’s prop-
erties in conjunction with these tasks. Finally, we evaluated our approach using
multiple embedding models and applied different strategies for dealing with the
complex relationship between the objects, the associated tasks, and their corre-
sponding grasping gestures. We demonstrate that fine-tuned context embeddings
can successfully capture these relationships while achieving competitive results
compared to existing models not distinguishing between tasks.

2 Related Work

This work is primarily related to two fields. We subsequently elaborate on the
concept of grasp types, which is fundamental for grasp classification, and con-
tinue by briefly discussing the background and development of word embeddings.
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2.1 Grasp Types in Robotics

Grasp classification builds on top of a large body of research dedicated to an-
alyzing how humans handle objects of everyday life [1–3, 8–10]. These findings
show that the applied grasping gestures can be categorized according to criteria
related to the properties of objects and environmental influences. As a result,
several categorization approaches that divide frequently re-occurring gestures
into so-called grasp types were proposed [3, 10]. A grasp type is a canonic grasp-
ing pre-shape that describes the placement of the fingers and palm relative to an
object. Although the well-established GRASP taxonomy by Feix et al. [10] con-
tains over 30 grasp types, applications involving the use or classification of grasp
types usually distinguish between a much smaller number. In particular, research
demonstrates that even the most fundamental distinction between the precision
and power grasp categories can benefit robots during grasp planning [18]. As
the names of these categories suggest, a precision grasp is used for fine-grained
manipulation whereas a power grasp often involves the palm to allow for a stable
grip. While the computer vision community has put great effort into understand-
ing how to classify grasp types [4, 6, 11, 18], only a few approaches have investi-
gated the use of natural language [14, 23]. The authors Rao et al. [23] proposed
extracting nominal attributes that describe e.g., an object’s shape, material,
hardness, or texture. They applied regular expressions and sentence chunking to
obtain these features from textual descriptions that follow similar formatting.
Furthermore, the size of an object was measured and included as numerical val-
ues to enable their multi-fingered robot to plan and apply a secure final grasp.
Building on top of this work, Kleer et al. [14] extracted object descriptions from
public websites such as Wikipedia to not constrain their learning model to a pre-
defined set of features. They did not incorporate a dedicated feature extraction
procedure and classified grasp types based on unstructured textual descriptions,
allowing for more flexibility. However, in both of these cases, the authors classi-
fied grasp types for only one task. To our knowledge, there are no publications
that investigate how to distinguish between different tasks based on the seman-
tics of a sentence. Therefore, our work explores how to effectively capture the
semantic relationship between an object’s properties and the associated tasks
for grasp classification.

2.2 Development of Word Embeddings

The modeling and extraction of semantic information has long been a topic of
interest in NLP. Early approaches involved modeling (co-)occurrences of words
as sparse vector representations, also known as the Bag-of-Words (BoW) model.
A prominent method that represents words in this model is LSA [5]. By apply-
ing a technique called singular value decomposition (SVD), the matrix of word
frequencies is reduced to multiple matrices of lower dimensions. This allows cap-
turing the latent relationships between words. On the other hand, the BoW
model suffers from several disadvantages such as assuming words to appear in-
dependently and its incapability to model more complex relationships (e.g., pol-
ysemous words and contextual meaning). Two decades later, Mikolov et al. [19]
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proposed a neural architecture to obtain numerical representations, so-called
word vectors or embeddings, for the words of a corpus. This approach is known
as Word2Vec and builds on the idea that words appearing in the same semantic
context have a similar meaning. The authors distinguish between the Continu-
ous Bag-of-Words (CBOW) and Skip-gram model where a word based on a local
context window is predicted and vice versa. In an attempt to further improve
the modeling of the semantic relationship of words, Pennington et al. [22] later
suggested leveraging global word statistics instead of a local context window,
known as Global Vectors (GloVe). These word embeddings have shown impres-
sive results in many NLP tasks [25] and several variations for text classifications
were proposed, such as Doc2Vec [16] or fastText [13]. One major disadvantage
to these methods is that they cannot adequately capture contextual informa-
tion when processing a sequence of words as there is no mechanism to account
for it. This is also why traditional embeddings can face challenges dealing with
polysemous words or idioms [20, 21]. To overcome existing challenges, incorpo-
rating contextual information through the BERT architecture was proposed [7].
Unlike traditional embeddings, BERT uses a so-called attention mechanism that
recognizes the interdependence of contextual words and learns their importance
regardless of their distance from each other. Since BERT uses a bidirectional
transformer model, it can effectively account for significant contextual words
from both directions. This ultimately allows establishing an embedding for each
word depending on its surrounding context. Similar to traditional word embed-
dings, several variations of BERT were developed e.g., an even more optimized
version called RoBERTa [17] and a distilled model known as DistilBERT [24].
Grasp classification shares many similarities with text classification tasks where
capturing the relationship of words is significant. Yet, it is currently unclear
whether embedding-based methods can recognize and account for attributes that
dictate grasping behavior when considering object manipulation.

3 Method

To conduct our investigations, we needed to collect information about the rela-
tionship between objects, their associated tasks, and suitable grasping gestures.
Since the authors Kleer et al. [14] have publicized the list of objects they used
for their grasp classification approach, we based our work on the same set of 100
household objects. However, as they have classified grasp types based on only one
task (i.e., holding an object), their labeling is insufficient for us. Therefore, we
carried out two consecutive data acquisition studies where we asked humans (1)
to note down grasping tasks for the objects and (2) to identify the appropriate
grasping behavior. After that, we generated textual descriptions that capture
the physical characteristics of these objects and added information about the
tasks gathered as a part of our study. In the next two sections, we elaborate on
the specifics of our data acquisition studies and the object description generation
procedure.
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3.1 Data Acquisition Studies

Our first study was intended to collect a set of tasks that each object in our
dataset can be used for. Feix et al. [10], who have established the GRASP tax-
onomy, previously distinguished between two task categories that describe rea-
sons for grasping, namely holding and using an object. While holding an object
describes general manipulations, uses typically depend on its purpose. Since this
categorization could cause a high degree of ambiguity during grasp classifica-
tion, we gathered a set of more concrete tasks based on these categories instead.
Following, we describe the setup of our first study.

(1) Grasping Tasks Study : We recruited five participants (two females and
three males) between the ages of 21 and 28 with no Computer Science back-
ground. Each participant was given a document containing a list of the 100
household objects. Furthermore, the document contained instructions for not-
ing down tasks related to both holding and using task categories. To collect
hold tasks, the participants were instructed to note down everyday situations or
tasks in which they would typically grasp or hold common household objects.
The tasks should not be specific to an individual object but applicable to all.
On the other hand, to collect use tasks, the participants were instructed to note
down tasks each of the 100 household objects can be used for.

Fig. 1. Most frequently mentioned tasks by our study participants for object use.

To obtain the final set of tasks for each object, we aggregated the answers
by our participants and kept all tasks mentioned by an absolute majority (i.e.,
a task was noted by at least three of them). As a result, our dataset contained
over 400 object-task combinations, averaging around four tasks per object. We
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collected 47 unique tasks, two describing generic hold tasks applicable to all
objects, and 45 tasks for specific uses. While the generic tasks correspond to se-
curely gripping an object and handing it over to somebody else, our data covers
a wide range of applications an object can be used for (see Figure 1 for the most
frequent tasks). We further observe that many tasks are only associated with
a few objects. For example, the mobile phone is the only object in the dataset
used for making a phone call. However, even though this is the case, it is impor-
tant to note that completely unrelated tasks might require the same grasping
behavior during execution. To learn about the distribution of suitable grasping
gestures for the object manipulation tasks we gathered, we conducted a second
data acquisition study as described below.

(2) Grasping Behavior Study : For conducting our grasping behavior study,
we recruited the same five participants (two females and three males) between
the ages of 21 and 28 who participated in our grasping tasks study. This time,
each participant was given a document listing all combinations of objects and
tasks that resulted from our previous study. Furthermore, the document con-
tained five pictures demonstrating the execution of a grasp type (see Figure 2)
and an instruction asking them to assign the most suitable grasp for each com-
bination. During the study, our participants did not know about the names of
these grasp types and were only provided the numbers in the upper right cor-
ner. The reason for choosing these poses is based on the literature which shows
that they are most frequently used to handle objects because of their distinct
hand-finger configurations [1, 10].

Fig. 2. Five demonstrations of distinct grasp types commonly used by humans for
object manipulation according to the literature [1, 10].
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Similar to our previous study, we aggregated all answers by our participants
and the final label was determined based on a majority vote. This time, reach-
ing an absolute majority was not a requirement as humans might not agree on
only one grasping gesture [14]. Our method of label assignment always yielded
a unique result, meaning that we did not observe a draw. Our label distribution
corresponded to 187 Tripod, 129 Medium Wrap, 71 Lateral Pinch, 19 Power
Sphere, and 14 Writing Tripod grasps. This shows a strong imbalance but also
highlights the challenge of optimal grasp assignment. We elaborate in our Evalua-
tion Section on how we dealt with these imbalances. Next, we needed to generate
textual descriptions that would allow us to capture the attributes of our objects
in conjunction with the tasks we gathered.

3.2 Description Generation

The features that influence the choice of a suitable grasp are well-researched [1–3,
8–10]. Based on these insights, we wanted to generate a dataset of descriptions
that combines both the attributes of an object and its tasks. To achieve this
goal, we leveraged the power of OpenAI’s Large Language Model (LLM) Chat-
GPT 3.53. This approach is similar to newly developed frameworks, such as
ROSGPT [15], that provide an interface to ChatGPT for facilitating human-
robot interaction. We thoroughly explored strategies for generating descriptions
that include useful information for grasp classification and experimented with
prompting strategies that influence the description’s length, content, and the
language used for describing objects in conjunction with their tasks. We faced
many challenges and found that the LLM could not adequately generate descrip-
tions of the objects and their tasks at the same time. This is because textual
portions describing our tasks were often unclear and focused on the objects
rather than the action. For example, instead of describing how to grasp an apple
for slicing, the LLM would generate that one has to grab a knife to slice the
apple. Therefore, we split this problem into separately generating an object and
task description while applying slightly different strategies. In case of the object
descriptions, we prompted the LLM to:

– Imagine the object in front of you: This restricted the LLM to describing
tendencies rather than all theoretically existing variations of an object. Ex-
cluding the constraint resulted in too general descriptions of object attributes
such as “the object can occur as either heavy or light”.

– Describe in two to three sentences: When we did not specify the description’s
length, the LLM generated long paragraphs including a considerable amount
of geographic or historical information unrelated to grasping behavior.

– Mention shape, material, hardness, texture, fragility, and weight : These at-
tributes were derived by Rao et al. [23] and can tremendously influence the
handling of objects. Besides mass, they were defined as discrete sets of words,
which is different from our work.

3 https://chat.openai.com/
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– Exclude quantifiable features: Dealing with numerical features can be dif-
ficult, especially because the LLM usually generates comprehensive para-
graphs about the dimensions and weight of an object. We excluded this
information from our investigations and focused on the semantics of words.

– Keep the description objective: We introduced this constraint to remove eval-
uative terms that do not influence grasping behavior.

Since we noticed during our investigations that the LLM could not adequately
describe and integrate information about our tasks, we chose to generate a sepa-
rate task description using a different strategy. For each task in our dataset, we
first formulated a concise sentence that outlines the action, independently of the
LLM. For example, we described the task of securely holding an object as “Hold
the object firmly while carrying to prevent accidental drops” and the handover
task as “Hold the object to hand it over to another person”. We created such
a description for each of our 47 unique grasping tasks. After that, we prompted
the LLM to provide a synonym for this description by using different words and
grammar while maintaining its meaning. This resulted in the LLM producing
descriptions that focused on the action rather than the object. Additionally, we
prompted the LLM to produce an object and task description based on sim-
ple, everyday, and formal language to increase the amount of data. Finally, we
concatenated the object and task descriptions for each object-task pairing, re-
sulting in 1260 samples. The next section elaborates on how we used this data
to evaluate our grasp classification approach.

4 Evaluation

We evaluated our labeled descriptions for the challenge of grasp classification by
implementing a series of learning models. Similar to the authors Kleer et al. [14],
we used a Näıve Bayes (BoW) classifier, a Support Vector Machine (SVM) based
on the TF-IDF vector space model, and a Convolutional Neural Network (CNN)
where the initial layer contained pre-trained GloVe [22] embeddings. Our CNN
uses the same layering architecture to warrant a fair comparison to their work.
Rao et al. [23] used a NN whose inputs were restricted to nominal variables
extracted from their descriptions. Their architecture does not apply to our ap-
proach and was not implemented. Our evaluation further includes a comparison
of pre-trained GloVe and Word2Vec embeddings whose dimensions were 300.
Finally, we included fine-tuned DistilBERT context embeddings. In terms of hy-
perparameters, all networks were trained for 30 epochs using a batch size of 8,
the Adam optimizer, and our data followed an 80/20 training-test split. We em-
ployed an early stopping condition where the patience hyperparameter was set
to five to prevent our models from overfitting on the training data. This means if
a model could not improve its performance within the next five epochs after ob-
taining the best result, it maintains the model weights before these epochs. Our
experiments demonstrated that lower values result in stopping the training too
early while higher values might not benefit the training as the early stopping
condition is never met. We evaluated three model variations to deal with the
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Fig. 3. Validation accuracy progression over the first 10 epochs (left) and final confu-
sion matrix (right) of our best model. All values are averages.

challenge of imbalanced label distribution (see our grasping behavior data col-
lection study in Section 3.1). Specifically (1) a base model (i.e., data and model
were unmodified), (2) a model where our dataset was randomly undersampled
based on the minority class, and (3) a weighted model where the class weights
were chosen inversely proportional to their frequency in the dataset. We did not
include the weighting approach for the Näıve Bayes and DistilBERT model as
there is no intuitive parameterization option for these weights. Table 1 provides
an overview of the micro f1 (accuracy) and macro f1 scores for each model.

Table 1. The best performances of our grasp classification models where the highest
average Micro F1 and Macro F1 scores of each model are highlighted.

Model Base Undersampling Weighted

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

Näıve Bayes (BoW) 0.584 0.429 0.575 0.566 X X
SVM (TF-IDF) 0.679 0.489 0.652 0.638 0.690 0.638
CNN (GloVe) 0.729 0.665 0.654 0.631 0.736 0.706

CNN (Word2Vec) 0.722 0.650 0.646 0.621 0.734 0.695
DistilBERT 0.774 0.731 0.699 0.689 X X

Our results show that the Näıve Bayes and SVM classifiers cannot compete
with the embedding-based approaches. This is different compared to the work
by Kleer et al. [14], whose best model is an SVM with an accuracy of 0.79.
Although we can achieve significant improvements in macro f1 by undersampling
the data or adding suitable class weights, the micro f1 score remains under 0.7.
The Word2Vec and GloVe embeddings are equally powerful for classifying grasp
types while distinguishing between many tasks. Similar to the other models,
we can increase macro f1 by accounting for minority classes by using suitable
class weights. Nonetheless, the DistilBERT context embeddings outperform all
other models with a micro f1 score of 0.774 and a macro f1 score of 0.731. This
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is a difference of less than 0.02 in accuracy compared to the literature where
the authors achieve an accuracy of 0.79 while considering only one task [14, 23].
As shown by Figure 3, our context embeddings can equally adapt to both task
categories during training and the final model predicts nearly all grasp types with
similar accuracy. The power sphere grasp type causes the most confusion and
is mainly responsible for the decrease in macro f1. Overall, our approach yields
competitive results while distinguishing between almost 50 tasks and considers
minority classes that might be significant for object manipulation.

5 Discussion

A qualitative analysis of our results shows that, while the models slowly adapt to
most grasping tasks and capture many details during training, a few tasks pose
too much of a challenge. The gripping task, for example, was mentioned by our
participants for the tweezers and pliers. Here, the models would need to learn
that using tweezers necessitates a precision grasp (e.g., writing tripod) whereas
using pliers often requires force and a powerful grasp (e.g., medium wrap). This
distinction is difficult as it involves a deep understanding of the relationship be-
tween an object’s properties, tasks, and the applicable grasp types. Collecting
data to model these details is very challenging since grasping tasks are unevenly
distributed across different objects. Therefore, factoring in this information can
significantly increase the complexity of grasp classification. Additionally, we had
assumed that integrating grasping tasks into our grasping behavior study (see
Section 3.1) would simplify the optimal grasp assignment. Even though this con-
straint limits the number of feasible grasps on an object, our study participants
did not always agree on the same gesture for a particular object-task pairing.
This is because many objects can be grasped in different ways, even when the
task is specified. We believe that more research is needed on how to model the
existing knowledge about human grasping [3, 8–10] to learn appropriate grasping
gestures based on specific object manipulation. To address this, it may be feasi-
ble to incorporate pre-defined task constraints into a grasp classification model,
drawing inspiration from ontological frameworks that assist robots in learning
about their environment.

6 Conclusion

This work investigated using word embeddings in the context of grasp classifica-
tion for multi-fingered robots while focusing on including task-related informa-
tion. To this end, we conducted two data acquisition studies for systematically
gathering related tasks and suitable grasping behavior for 100 household objects.
After that, we generated textual descriptions that combine an object’s attributes
in conjunction with the tasks gathered from our study. Finally, we evaluated our
approach using five learning models while employing strategies for coping with
the imbalances in our data. Our results demonstrate that context embeddings
show great potential in capturing the relationship between objects, tasks, and
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grasp types as they outperform all other models. Achieving a micro f1 score of
0.774 while distinguishing between over 40 tasks, there is a difference of less than
0.02 to existing works that do not consider this information. As a result, these
findings may contribute to developing methods that further mitigate arbitrari-
ness during grasp choice. We are interested in further investigating how to model
object manipulation using more sophisticated text representations and hope to
see a stronger emphasis on this aspect in the grasp classification literature.
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