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Abstract— Robots that make use of multi-fingered or fully
anthropomorphic end-effectors can engage in highly complex
manipulation tasks. However, the choice of a suitable grasp for
manipulating an object is strongly influenced by factors such as
the physical properties of an object and the intended task. This
makes predicting an appropriate grasping pose for carrying out
a concrete task notably challenging. At the same time, current
grasp type predictors rarely consider the task as a part of the
prediction process. This work proposes a learning model that
considers the task in addition to an object’s visual features
for predicting a suitable grasp type. Furthermore, we generate
a synthetic dataset by simulating robotic grasps on 3D object
models based on the BarrettHand end-effector. With an angular
similarity of 0.9 and above, our model achieves competitive
prediction results compared to grasp type predictors that do
not consider the intended task for learning grasps. Finally, to
foster research in the field, we make our synthesized dataset
available to the research community.

I. INTRODUCTION

Robotic grasping plays a significant role in numerous
fields such as manufacturing environments, ambient assisted
living, or prosthesis applications. Traditionally, robots lo-
cated in static environments are pre-programmed to repeat-
edly carry out the exact same task. To this end, they often
utilize a parallel jaw gripper and are able to surpass humans
in performance and precision [1]. On the other hand, pros-
thetic hands are usually anthropomorphic, and robots that
need to adapt to strongly differing object geometries often
utilize multi-fingered end-effectors. While such end-effectors
enable more dexterously manipulating objects, planning a
suitable grasp increases in complexity. As their design is
inspired by the human hand, research from the field of human
grasp analysis provides significant insights about the factors
influencing the choice of a suitable grasp [2], [3], [4], [5],
[6], [7]. It is particularly notable that not only the physical
properties of an object influence the choice of a suitable
grasp, but the intended tasks associated with an object as
well (see Figure 1). Harnessing these insights, numerous
approaches for predicting a suitable grasp have emerged.

Grasp type prediction models generally aim to determine
a suitable grasp based on object-related features. These
methods are examined with a particular focus on the learn-
ing methodology [8], [9], [10], explored in the context of
prosthesis control [11], [12], [13], [14], [15], [16], [17], and
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Fig. 1. Task-specific grasps simulated on the BarrettHand end-effector and
3D models of an apple and a hammer. The first column shows the tasks
(a) handoff and (b) use carried out with an apple, while (c) and (d) show
grasps for the same tasks applied to the hammer respectively.

actively utilized in multi-fingered robotic grasping applica-
tions [18], [19], [20], [21], [22], [23], [24], [25], [26]. Most
approaches utilize computer vision techniques to predict a
suitable grasp based on the exclusive use of visual features.
In other cases, textual resources, electromyography (EMG)
signals, or a mixture of multiple modalities is considered
[11], [17]. However, most grasp type predictors do not cur-
rently include the intended task in the process of predicting a
suitable grasp. For example, whether a pen is supposed to be
picked from a flat surface, held for writing, or used during
a handover is disregarded. Although there exists awareness
about the significance of the task [10], [16], [19], [21],
[27], authors often do not consider the aspect or leave its
incorporation for future work.

While building on top of related research, this work
specifically investigates the challenge of incorporating the
intended task into vision-based grasp prediction models. This
paper makes the following contributions:

• We demonstrate two variations of incorporating the in-
tended task into a vision-based grasp type predictor and
show that our method achieves competitive prediction
results in comparison to models that do not consider the
task for learning grasp types.

• We propose a hierarchical schema for systematically
labeling grasp types executable by the BarretHand1

1https://advanced.barrett.com/barretthand
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robotic end-effector.
• We generate a synthetic dataset by simulating multi-

fingered robotic grasps on 3D object models and aug-
ment the resulting 693 valid (object,task) tuples with
information about the executed grasp types. To support
research in this field, we make this dataset available to
the research community.

II. RELATED WORK

As this research utilizes findings from the field of human
grasp analysis and grasp type prediction, we subsequently
dedicate a section to the related work of each field.

A. Analysis of Human Grasps

The field of human grasp analysis has experienced exten-
sive developments since Schlesinger [28] categorized grasps
into six basic grasp types and Napier [6] first distinguished
between the precision and power-grip categories. Based on
these categories, Cutkosky [2] later established a more re-
fined taxonomy of human grasps in the form of a hierarchical
layout. In addition to considering the physical properties
of an object, the taxonomy also includes aspects related
to the object manipulation task and constraints related to
the environment. More than two decades after its introduc-
tion, Feix et al. [3] presented an even more sophisticated
categorization of human grasp, which the authors named
the GRASP taxonomy. Their work is built on top of the
state-of-the-art while including extensive observations on the
relation of an object’s physical properties and several tasks
on the choice of a grasp [4], [5], [29]. It further represents
the most complete categorization of human grasps currently
established. As the GRASP taxonomy involved the use of
quantitative data, Stival et al. [7] investigated the similarity
of grasps using qualitative data. They use electromyography
(EMG) signals and kinematic data to construct a hierarchical
structuring of grasps. Finally, Arapi et al. [30] recently
introduced a novel taxonomy of human grasps for video
labeling. Their work contributes to the challenge of gathering
datasets for data-driven grasp synthesis methods.

The literature presented in this section serves as a basis
for grasp type prediction models. We provide an overview
of such models in the next section.

B. Grasp Type Predictors

Grasp type predictors exploit the aforementioned knowl-
edge about human grasping in order to predict a canonic
grasp type for manipulating an object. They have been
explored in numerous contexts and involve the use of various
data sources. The majority of these models rely on computer
vision-based learning methods. This includes grasp type
predictors investigated to control a prosthetic hand [11], [12],
[13], [14], [16], [17] and robots that utilize multi-fingered
end-effectors [18], [19], [20], [21], [22], [23], [24], [25],
[26]. A few approaches have also explored the potential
of textual descriptions [9], [24]. In these cases, textual
data describing attributes such as the general geometry,
size, and material of an object can effectively contribute

towards grasp predictions. Furthermore, modeling of grasp
types can benefit robotic grasp planning while outperforming
similar grasp planning algorithms that do not consider this
information [21]. For studying grasp type predictors based
on the BarretHand end-effector, Lin and Sun [31] specifically
provide a mapping that matches the grasp types introduced
by Cutkosky [2] to executable BarretHand grasps. Notably,
most grasp type predictors strongly focus on learning object-
related features. As a result, the significance of the task is not
considered. Specifically, Lu and Hermans [21], who demon-
strate the use of grasp types within their probabilistic grasp
planning framework, suggest including information about the
task for further improving grasp predictions. Moreover, Cai
et al. [32] discuss the importance of studying the relation
between an object’s physical attributes in conjunction with
the tasks associated with it. This is further emphasized by
Yang et al. [10] who outline how the applied grasp type
can have implications on how humans perceive and interpret
the executed action. The authors illustrate how the use of
different grasp types applied to a knife can convey either
a threatening gesture or a simple handover. This can be
considered a human-centered aspect that motivates the use
of grasp types. Finally, some authors aim to incorporate the
intended task in their future work [16], [18], [19].

As only a few works have considered task-related infor-
mation for grasp type prediction [9], [17], [24], our research
investigates the challenge of predicting a suitable grasp based
on the visual features of an object and the intended task
associated with the grasp. We build on top of the learning
architecture proposed by Zandigohar et al. [16] who have
previously considered predicting grasp types from visual data
and EMG signals [17]. In contrast to our work, their approach
is dedicated to controlling a prosthetic hand and has not
considered object manipulation tasks. Additionally, our work
proposes a hierarchical schema for systematically labeling
BarretHand grasps, extending the grasp type mapping intro-
duced by Lin and Sun [31].

III. PROPOSED APPROACH

Our method for integrating task-specific information into
a grasp type predictor involves the following steps:

1) We first generate a dataset that combines information
about objects, associated object manipulation tasks,
and observations about suitable grasp types for car-
rying out each task. This is particularly important as
datasets used in the literature do not combine all these
aspects [3], [16], [18].

2) Second, we establish a learning architecture that in-
corporates the intended task as a feature for learning
suitable grasp types.

In the next three sections, we elaborate on how we generate
data from synthesized robotic grasps, systematically label our
samples, and suggest suitable learning architectures.

A. Grasp Synthesis

One of the main challenges in generating a dataset lies in
acquiring information about the grasp types that are suitable
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Fig. 2. Hierarchical rule set for an iterative sample labeling procedure. Level (a) distinguishes between more powerful and more precise grasps, (b)
separates poses based on the number of virtual fingers involved, and (c) specifically differentiates between different types of “wrap” grasps.

for carrying out a specific task. For example, it seems clear
that writing with a pen commonly requires a different grasp
as compared to handing it over to somebody else. To learn
about the suitability of grasp types for certain tasks, we
utilize the ContactGrasp framework introduced by Brahmbatt
et al. [33], [34]. The framework allows synthesizing func-
tional grasps on 3D object models based on contact maps for
multiple end-effectors using the GraspIt! simulator [35]. A
functional grasp is a grasp dedicated to carrying out a specific
task. Leveraging the contact maps provided by ContactDB
[33], we simulate a total of 20 grasps for the tasks use and
handoff respectively. It is important to note that the task use
corresponds to a precise action in relation to each object
(e.g., talking on the phone or screwing a light bulb into a
socket). The grasps are simulated on the BarretHand end-
effector. We repeat this procedure for the same 19 objects
as the authors of the ContactGrasp framework, resulting in a
total of 760 samples. Examples of task-specific synthesized
grasps for the objects “apple” and “hammer” are visualized
in Figure 1. We used this data as a basis for learning about
the grasp types used in specified object manipulation tasks.

While ContactGrasp allows us to synthesize grasps, it does
not provide any information about which grasp types are used
on an object. Next, we must determine these grasp types for
obtaining labeled samples.

B. Sample Labeling Procedure

Before we can train a learning model for predicting a
suitable grasp based on an object and a given task, we have
to (1) specify the target classes of our model and (2) label
each sample accordingly. As we synthesize grasping poses
using the BarretHand end-effector, we adopt the grasp type
mapping introduced by Lin and Sun [31]. They provide
a mapping from human grasps to executable BarretHand
grasps based on Cutkosky’s taxonomy [2]. However, labeling
our data according to these grasps is challenging without

a consistent methodology. Therefore, we have developed a
schema for systematically labeling each sample. It contains
a ruleset for iteratively determining a canonic grasp type
applied by the BarretHand end-effector. Our rules can be vi-
sualized in a hierarchical structure as demonstrated in Figure
2. First, we distinguish between grasps that involve the use of
the fingertips or the entire finger, sometimes in conjunction
with the palm. This step resembles the prominent distinction
between precision and power grasps. After that, we further
separate these grasps based on the number of virtual fin-
gers used during the grasp. The number of virtual fingers
describes the directions in which parts of the hand apply
force to an object. For example, spherical grasps usually
involve a hand configuration where each finger applies force
from a different direction. Finally, we distinguish between
different “wrap” grasps, which are commonly influenced by
the diameter of an object. As a result, we can systematically
determine the grasps generated during the grasp synthesis
procedure, and label each sample accordingly. The only
samples we have not labeled are the ones showing an invalid
grasp. Cases of invalid grasps include objects not being
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Fig. 3. Examples for invalid grasping poses. The grasp shown in (a) would
cause the object to drop and in (b), parts of the gripper penetrate the object.



Fig. 4. Proposed learning architectures that integrate the task into the learning process. The upper architecture appends a one-hot encoded vector to the
second fully connected layer after feature extraction. The lower architecture directly encodes information about the task into the image of an object.

gripped by the BarrettHand (i.e. the object would drop to the
ground due to gravity), or the end-effector penetrates parts
of the object. Figure 3 shows an example for either case.
Our retrieved data ultimately contains 693 valid samples,
combines objects with their associated tasks, and provides
a grasp type distribution. The final grasp type distribution
corresponds to 52, 59, 144, 197, 103, and 138 grasps in order
of their visualization in Figure 2 respectively. We make this
dataset2, which effectively augments the work by Brahmbatt
et al. [34] with information about grasp types, publicly
available. We also include metadata required for reproducing
the synthesized grasps using their framework. For additional
comprehensibility, the dataset contains a screenshot of each
synthesized grasp. This may enable other authors to create a
dataset that suits their research project.

As the final step of our proposed approach, we have to
establish a learning model that incorporates the intended task
into the process of predicting a suitable grasp.

C. Learning Architectures

Since there has been a strong focus on the use of visual
features among researchers developing grasp type prediction
models, a large number of convolutional neural network-
based model architectures have emerged [8], [10], [12], [14],
[16], [18], [19]. However, Zandigohar et al. [16] have com-
pared numerous convolutional neural network architectures
and conclude that the MobileNetV2 [36] feature extractor
achieves the best results while being most efficient in terms
of floating point operations. We choose the MobileNetV2 as
the core component of our architecture as this further allows

2https://github.com/nikleer/GraspTypesWithTasks

us to compare our results to the approach evaluated by the
authors. However, the feature extractor does not account for
information about object manipulation tasks. Therefore, we
propose the following strategies for integrating the intended
task into the learning architecture.

• Our first strategy takes inspiration from Zunjani et al.
[37], who distinguish between an unspecified primary
and secondary task to determine grasping regions for a
robot using a parallel jaw gripper. In contrast to their
use case, our model does not predict a region but has to
learn a grasp type configuration according to an object
and a specified task. To this end, we replace the last
layer of the MobileNetV2 feature extractor with four
fully-connected layers and append a one-hot encoded
vector to one of the layers. During our experiments
with the architecture, we determined that appending this
vector to the second fully connected layer is the most
sensible choice.

• One disadvantage of our first strategy is that the in-
tended task entirely circumvents the feature extractor.
As a result, we might not leverage the full potential of
the learning model. Therefore, as our second strategy,
we propose to directly encode information about the
intended task into the image of an object. We explicitly
increase and decrease the RBG values of an image for
the tasks use and handoff by the value 10 respectively.
As a result, the core component of our model may
directly extract information about the intended task.

Both proposed strategies, as well as the exact network
architecture, are visualized in Figure 4. In the next section,
we elaborate on how we have evaluated our approach based
on the presented dataset and learning architectures.



IV. EVALUATION
For our evaluation, we implemented the models presented

in Section III-C. The MobileNetV2 feature extractor is pre-
trained on the well-established ImageNet dataset [38]. For
training our final grasp type predictor, we render realistic
images of 3D object models similar to the models used by
ContactGrasp [34]. Each object is rendered from 100 random
viewpoints, resulting in a total of 1900 RGB images with a
dimension of 256 × 256 pixels. Our final training samples
combine object images, the intended task, and grasp types for
each (object,task) tuple. For the output of our network, we
use a binary vector representation. For example, the binary
vector [1, 1, 0, 0, 0, 0] indicates that we have observed the
grasp types “large wrap” and “medium wrap” at least once,
indicating that both grasps are suitable for carrying out the
task. To maintain an equal distribution of grasp type labels in
our training and test set, we split the data using a stratified 5-
fold cross validation. Finally, we use the following evaluation
metrics to retrieve the results of our models.

A. Evaluation Metrics

We use three metrics to evaluate our proposed approach.
First, we utilize the angular similarity measure, a metric
introduced and used by Zandigohar et al. [16], which allows
measuring the similarity between two probability distribution
vectors. Transforming the distribution of grasp types into a
probability distribution is done by dividing each value of
a binary vector by the sum of all values (e.g., the binary
vector [1, 1, 0, 0, 0, 0] is transformed to [0.5, 0.5, 0, 0, 0, 0]).
Using this measure enables us to compare our results to their
work and observe whether the inclusion of the task leads to a
difference in the model’s performance. The angular similarity
of the input vector u and the predicted vector v is calculated
following the formula

sim(u, v) =

(
1− 2 · arccos

(
u · v

||u|| · ||v||

)
÷ π

)
.

We obtain the predicted vector v by applying the Softmax
function to the last layer of our learning model. Furthermore,
precision, recall, and accuracy represent commonly used
evaluation metrics for assessing the performance of machine
learning models. Since our method involves a multilabel
classification problem, we retrieve the multilabel accuracy

accuracy(u, v) =
|u ∩ v|
|u ∪ v|

and multilabel precision

precision(u, v) =
|u ∩ v|
|v|

to learn more about the overall prediction quality of our
models [39]. As these two evaluation metrics require both
vectors, u and v, to contain absolute values, we specifically
apply the Sigmoid function to our results and consider a
grasp type prediction in vector v to be true in case the
prediction probability of a class exceeds 0.5. We are unaware
of use cases that may ignore false positive predictions, which
is why we do not retrieve multilabel recall.

B. Results

Based on the evaluation metrics previously described,
we have retrieved results for different configurations of
our models. All results are displayed in Table I. Model

TABLE I
ANGULAR SIMILARITY, MULTILABEL ACCURACY, AND MULTILABEL

PRECISION OF DIFFERENT MODEL CONFIGURATIONS.

Model sim(u, v) acc(u, v) prec(u, v)

(a) Model without task 0.81 0.85 0.87
(b) Task as vector 0.90 0.88 0.88
(c) Task in image 0.92 0.92 0.92
(d) Model ignores task 0.94 0.98 0.99
(e) Zandigohar et al. [16] 0.93 × ×

variation (a), which achieves the worst performance in all
retrieved metrics, represents our learning model without a
mechanism to account for the associated tasks. This means
that the implemented architecture does not include the one-
hot encoded vector and the information about the task was
not encoded into the object images. On the other hand, a
direct comparison of our proposed learning architectures (b)
and (c) to the results retrieved by Zandigohar et al. [16]
shows that we achieve competitive angular similarities while
considering the task. Encoding the information about the task
into the image results in a minor difference of 0.01 in angular
similarity. This shows that tasks can be integrated into a
vision-based grasp predictor without suffering a major loss
in prediction quality. Our retrieved multilabel accuracies and
precisions are equivalent to the angular similarity of model
(c) and nearly match the angular similarity of model (b),
indicating no inconsistencies. Finally, we have also evaluated
a configuration of our model that ignores the task. This
means that all observed grasp types were considered valid for
manipulating an object. For example, the observed distribu-
tion vectors [1, 1, 0, 0, 0, 0] and [0, 0, 0, 1, 0, 0] are combined
into a joint vector [1, 1, 0, 1, 0, 0] and the model is not
required to distinguish between different tasks. It is similar
to vision-based grasp type predictors that do not consider
the task and the aspect is implicitly assumed during the data
labeling procedure. However, the assumption automatically
leads to a degree of arbitrariness during grasp choice, which
we aim to diminish. In real-world scenarios where a robot
has to distinguish between explicit tasks that require dif-
ferent grasping gestures applied to the same object, such
assumptions might not be possible. This model’s architecture
resembles model (e) the most. Due to this simplification, the
approach achieves the highest angular similarity, multilabel
precision, and multilabel accuracy since the choice of a grasp
is independent of the object manipulation task. In the next
section, we discuss noteworthy aspects related to our results
and elaborate on potential future work.

V. DISCUSSION

Based on our evaluation, it is evident that a learning archi-
tecture without a mechanism to factor in object manipulation
tasks performs notably worse than the other models. While



our analysis is based on a limited set of objects and tasks, it
highlights the impact of the associated object manipulation
tasks related to the model’s ability to choose a suitable
grasp. This can likely be attributed to differing grasp type
distributions for the tasks associated with an object, which
poses a challenge when trying to learn grasp types from
object images alone. An analysis of our data shows that
there exists an average of 3.5 valid grasp types for the
(object,task) tuples. Upon closer examination of the grasp
type distribution, we observe that there is an average of 1.1
grasp types occurring for different tasks involving the same
object. We hypothesize that predicting appropriate grasps
will become even more challenging as more objects and tasks
are added to such a system. This suggests that it is necessary
to have a deeper understanding of how to incorporate tasks
into a grasp predictor. Even though our proposed approaches
provide ways for dealing with this challenge, it is worth
discussing that both architectures make potentially limiting
assumptions about the system.

Our results show that encoding task-related information
into the image of an object may benefit the grasp type
predictor. It represents our method with the best performance
in all retrieved metrics while considering the task. However,
this approach could encounter scalability issues as soon as
too many tasks must be distinguished. To overcome this
limitation, a more sophisticated method would be required.
Alternatively, including an additional image that demon-
strates the task being executed could serve as input for the
feature extractor. By producing a collection of images that
illustrate the task being executed from randomly generated
perspectives, similar to the object images we utilized, the pre-
dictor’s capabilities could be further improved. This method
not only addresses the aforementioned limitation in a more
refined manner but may also enable the extraction of more
intricate information about the object manipulation tasks.

In part, the issue can be mitigated by integrating a one-
hot encoded vector that captures task-related information
into the learning model. While our experiments indicate
that this method performs slightly worse in all retrieved
evaluation metrics, it offers unique advantages over relying
on a single vision-based classification model. In our imple-
mentation, this vector can be interpreted as a surrogate for
an additional source of information, such as a prediction
model that is intended to classify the object manipulation
task. By utilizing such a multi-stage classification model,
we may use multimodal data and select the most appropriate
modality for determining the task that is supposed to be
executed. Recent research has demonstrated that multimodal
data outperforms using only one modality for predicting
grasp types in controlling a prosthetic hand [17]. While
the authors used EMG signals for a small number of hand
gestures, other sources of information could be integrated
into such models as well. Leveraging this methodology, it
would also be possible for a human to specify the task during
human-robot interactive situations (e.g., by using language or
demonstrating the grasp). This could result in creating further
incentives to use grasp types for not only enhancing robotic

grasp planning but also fostering an interface for human-
robot interaction. In particular, viewing grasp types from
a human-centered perspective appears to be underexplored
in the existing related work. Finally, Since the execution of
most object manipulation tasks also depends on factors such
as the environment, considering other contextual attributes
could likewise contribute to better grasp predictions.

VI. CONCLUSION

In this research, we have examined the incorporation of
the intended object manipulation task into a vision-based
grasp type predictor for a multi-fingered robotic end-effector.
Our approach involves generating a synthesized dataset and
enriching the data with information about the executed
grasp types. We have developed a rule-based schema for
methodical labeling and proposed two learning architectures
that integrate the intended task into the model. Our evalua-
tion demonstrates that we can successfully integrate object
manipulation tasks into a vision-based grasp type predictor
without compromising its prediction accuracy, competing
with models that do not factor in the task. Our results align
with existing literature that highlights the task’s importance
in selecting an appropriate grasp. Nevertheless, predicting
grasp types remains a complex task due to numerous factors
that influence their selection. Therefore, we are interested
in further exploring how additional contextual data, such
as multimodal data, can be used to enhance grasp type
prediction. Specifically, we intend to investigate how these
prediction models can be utilized in robotic grasping ap-
plications where the system needs to differentiate between
multiple object manipulation tasks. Finally, we hope that our
work will assist other researchers in overcoming the existing
challenges in this field.
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creating a deployable grasp type probability estimator for a prosthetic
hand,” in International Workshop on Design, Modeling, and Evalua-
tion of Cyber Physical Systems, Workshop on Embedded Systems and
Cyber-Physical Systems Education. Springer, 2020, pp. 44–58.

[17] M. Zandigohar, M. Han, M. Sharif, S. Y. Gunay, M. P. Furmanek,
M. Yarossi, P. Bonato, C. Onal, T. Padir, D. Erdogmus, et al., “Mul-
timodal fusion of emg and vision for human grasp intent inference in
prosthetic hand control,” arXiv preprint arXiv:2104.03893, 2021.

[18] Z. Deng, G. Gao, S. Frintrop, F. Sun, C. Zhang, and J. Zhang,
“Attention based visual analysis for fast grasp planning with a multi-
fingered robotic hand,” Frontiers in neurorobotics, vol. 13, p. 60, 2019.

[19] Z. Deng, B. Fang, B. He, and J. Zhang, “An adaptive planning
framework for dexterous robotic grasping with grasp type detection,”
Robotics and Autonomous Systems, vol. 140, p. 103727, 2021.

[20] D. Dimou, J. Santos-Victor, and P. Moreno, “Grasp pose sampling
for precision grasp types with multi-fingered robotic hands,” in 2022
IEEE-RAS 21st International Conference on Humanoid Robots (Hu-
manoids). IEEE, 2022, pp. 773–779.

[21] Q. Lu and T. Hermans, “Modeling grasp type improves learning-based
grasp planning,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 784–791, 2019.

[22] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans,
“Multifingered grasp planning via inference in deep neural networks:
Outperforming sampling by learning differentiable models,” IEEE
Robotics & Automation Magazine, vol. 27, no. 2, pp. 55–65, 2020.

[23] J. Lundell, E. Corona, T. N. Le, F. Verdoja, P. Weinzaepfel, G. Rogez,
F. Moreno-Noguer, and V. Kyrki, “Multi-fingan: Generative coarse-
to-fine sampling of multi-finger grasps,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
4495–4501.

[24] A. B. Rao, K. Krishnan, and H. He, “Learning robotic grasping strat-
egy based on natural-language object descriptions,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 882–887.

[25] C. Wang, D. Freer, J. Liu, and G.-Z. Yang, “Vision-based automatic
control of a 5-fingered assistive robotic manipulator for activities
of daily living,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 627–633.

[26] Y. Zhang, J. Hang, T. Zhu, X. Lin, R. Wu, W. Peng, D. Tian, and
Y. Sun, “Functionalgrasp: Learning functional grasp for robots via
semantic hand-object representation,” IEEE Robotics and Automation
Letters, 2023.

[27] N. Kleer and M. Feick, “A study on the influence of task dependent
anthropomorphic grasping poses for everyday objects,” in 2022 IEEE-
RAS 21st International Conference on Humanoid Robots (Humanoids).
IEEE, 2022, pp. 829–836.

[28] G. Schlesinger, “Der mechanische aufbau der künstlichen glieder,” in
Ersatzglieder und Arbeitshilfen. Springer, 1919, pp. 321–661.

[29] I. M. Bullock, J. Z. Zheng, S. De La Rosa, C. Guertler, and A. M.
Dollar, “Grasp frequency and usage in daily household and machine
shop tasks,” IEEE Transactions on haptics, vol. 6, no. 3, pp. 296–308,
2013.

[30] V. Arapi, C. Della Santina, G. Averta, A. Bicchi, and M. Bianchi,
“Understanding human manipulation with the environment: a novel
taxonomy for video labelling,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 6537–6544, 2021.

[31] Y. Lin and Y. Sun, “Grasp mapping using locality preserving projec-
tions and knn regression,” in 2013 IEEE International Conference on
Robotics and Automation. IEEE, 2013, pp. 1076–1081.

[32] M. Cai, K. M. Kitani, and Y. Sato, “Understanding hand-object
manipulation with grasp types and object attributes,” in Robotics:
Science and Systems, vol. 3. Ann Arbor, Michigan;, 2016.

[33] S. Brahmbhatt, C. Ham, C. C. Kemp, and J. Hays, “Contactdb:
Analyzing and predicting grasp contact via thermal imaging,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 8709–8719.

[34] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox, “Contactgrasp: Func-
tional multi-finger grasp synthesis from contact,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 2386–2393.

[35] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[37] F. H. Zunjani, S. Sen, H. Shekhar, A. Powale, D. Godnaik, and
G. Nandi, “Intent-based object grasping by a robot using deep learn-
ing,” in 2018 IEEE 8th International Advance Computing Conference
(IACC). IEEE, 2018, pp. 246–251.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE,
2009, pp. 248–255.

[39] M. S. Sorower, “A literature survey on algorithms for multi-label
learning,” Oregon State University, Corvallis, vol. 18, no. 1, p. 25,
2010.




