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Abstract— In this paper, we present an attitude control
scheme for an autonomous underwater vehicle (AUV), which
is based on incremental nonlinear dynamic inversion (INDI).
Conventional model-based controllers depend on an exact mo-
del of the controlled system, which is difficult to find, especially
for marine vehicles subject to highly nonlinear hydrodynamic
effects. INDI trades off model accuracy with sensor accuracy
by incorporating acceleration feedback and actuator output
feedback to linearize a nonlinear system incrementally. Existing
research primarily focuses on studying INDI on unmanned
aerial vehicles. However, there is barely any research on
controlling marine vehicles using INDI. The control task we are
performing is a 90 degrees pitch-up maneuver, where the dual-
arm intervention AUV Cuttlefish transitions from a horizontal
traveling pose to a vertical intervention pose. We compare INDI
to a classical model-based control scheme in the maritime test
basin at DFKI RIC, Germany, and we find that INDI keeps
the AUV much more steady both in the transitioning phase as
well as in the station keeping phase.

I. INTRODUCTION

With the expansion of the blue economy, there has been
a notable increase in subsea infrastructures. This includes
a rise in aquaculture installations and offshore wind farms,
along with their corresponding foundation structures, as
documented by GWEC [1]. Simultaneously, there is an
intensification in regulations to protect the marine ecosystem.
This is leading to a growing need for automated subsea
operations not only within emerging markets but also within
the traditional oil and gas industry. Human diving operati-
ons face many dangers and depend on good weather and
have restricted depths [2]. Remotely Operated Vehicles are
currently used for deeper dives, but using them requires
large support vessels with special equipment, making ROV
operations time-consuming and expensive. The new class of
so-called intervention AUVs (I-AUVs) [3] aims to facilitate
autonomous interaction with the subsea infrastructures men-
tioned above. The AUV Cuttlefish, described in detail in [4],
is an I-AUV equipped with two arms and the capability for
hydrobatic motions (see [5] on the term hydrobatic). Using
its eight thrusters, it can take on arbitrary orientations in
the water column to interact with features of an offshore
structure that are otherwise difficult to reach. The vehicle
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Fig. 1: AUV Cuttlefish in intervention pose in the test basin
of DFKI RIC, Bremen, Germany.

can change its center of mass and center of buoyancy to
achieve the desired stability for the current task, such as
manipulation or transitioning into a new pose. The attitude
control of autonomous underwater vehicles is crucial for their
overall maneuverability and stability [6]. In this paper, we
focus on the attitude control of the hydrobatic AUV Cuttlefish
using incremental nonlinear dynamic inversion (INDI) [7].
This advanced control method allows for precise and agile
maneuvering of the AUV, making it suitable for a wide range
of underwater intervention tasks.

Due to Cuttlefish’s ability to assume an arbitrary pose, par-
ticulary an intervention pose with a pitch angle of 90 degrees,
we do not rely on Euler angles for attitude control due to the
Gimbal-Lock problem [8]. Instead, we use quaternions for
parameterizing the orientation. During the transition to an up-
right pose, the AUV leaves its stable orientation, resulting in
nonlinear restoring forces which must be compensated. Since
the early 1990s, there has been a significant volume of aca-
demic research in literature focused on model-based control
for underwater vehicles, the main results are summarized in
[9] and [10]. In [11], a quaternion-based adaptive controller
for a 6-DOF AUV is proposed, where the restoring forces
are identified and canceled during operation. The resulting
controller is evaluated in real world experiments on the AUV
ODIN. Another work has been done by [12], where the center
of buoyancy is identified using an Extended Kalman Filter
(EKF) based on the Intervention-AUV SAUVIM. Besides
hydrostatic restoring forces, there are hydrodynamic effects
acting on the vehicle body during motion. Modeling these
effects is difficult, since the shape of Cuttlefish is highly
complex. Hydrodynamic effects which cannot be modeled
also result in model uncertainty, which harms the control
performance. An alternative to model-based control is sensor-
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based control, where model accuracy is traded off by sensor
accuracy. Incremental nonlinear dynamics inversion (INDI)
is a sensor-based control scheme that iteratively linearizes a
nonlinear system based on acceleration and input feedback.
INDI has its origins in the unmanned aerial vehicle commu-
nity [7], [13], [14]. However, there is barely any research
on controlling marine vehicles using INDI. To date, the
authors know about only one single publication [15], where
the authors evaluate INDI to control an Unmanned Aerial-
Underwater Vehicle, which is a quadrotor capable of diving.
In this work, we present the first study of using INDI for
motion control of a 6-DOF underwater vehicle. In Section
II we will derive the mathematics behind INDI based on an
underwater Fossen model [9]. Additionally, we will define
the control laws for the model-based baseline controller,
and the attitude and altitude control loops. Subsequently, in
Section III we conduct real-world experiments of a control
task, where the AUV Cuttlefish performs a 90-degrees pitch-
up maneuver. Additionally, we perform a 6-DOF model
identification of the AUV to compare INDI to a model-
based controller. Our results show that INDI outperforms
the model-based controller, especially in keeping the pose
steady with minimum drift, which is crucial for intervention
tasks.

II. IMPLEMENTATION

A. Vehicle Modeling

For modeling the AUV Cuttlefish, we use a 6-DOF Fossen
model [9], where ~ν = [u, v, w, p, q, r]

> ∈ R6 is the body-
fixed velocity vector, containing three linear velocities: surge,
sway, and heave, and three angular velocities: roll, pitch, and
yaw. η = [x, y, z, qx, qy, qz, qw]

> ∈ R7 is the pose vector,
where the orientation is encoded as a quaternion ~q. The pose-
and the velocity vectors are coupled through a nonlinear
relationship:

~̇η = J(~η)~ν , (1)

where J(~η) is a Jacobian, also defined in [9]. The Fossen
equations are given by:

M~̇ν + C(~ν)~ν + ~d(~ν) + ~g(~η) = ~τ , (2)

where ~̇ν ∈ R6 is the acceleration vector, M ∈ R6×6 is
the mass-inertia matrix, and ~τ ∈ R6 is the input wrench.
C(~ν) ∈ R6×6 is the coriolis-centripetal matrix, which is
derived from the mass matrix M. The vector-field ~d(~ν)
models the hydrodynamic drag, where we choose a quadratic
drag model with Dlin,Dquad ∈ R6×6 as parameters:

~d(~ν) = Dlinν + Dquad|ν|ν ∈ R6 . (3)

The function ~g(~η) ∈ R6 models the hydrostatic forces which
are caused by gravity and buoyancy, and is defined as:

~g(~η) = Φg(~η)~θg , (4)

where

Φg(~η) =

(
R(~η)~z 03×3

~03×1 S(R(~η)~z)

)
(5)

is a (6 × 4) matrix further described in [10]. Here, z =
[0, 0,−1]

> is the axis of the gravitational field, and ~θg ∈ R4

is a parameter vector consisting of the net buoyancy force
and three parameters for the restoring torques. R(~η) is the
rotation matrix from world frame to body frame, and S(·) is
the skew-symmetric cross-product operator.

The actuation ~τ is modeled as a resulting wrench caused
by the thrusters. It is calculated using the thruster allocation
matrix T ∈ R6×8 and the thruster RPM vector u ∈ R8:

~τ(~u) = Tfthr(~u) . (6)

The relationship between the rotational speed ui and its
corresponding propulsive force is modeled as a quadratic
curve fthr(ui) = κui|ui|. The coefficient κ was measured
beforehand. For this actuation model, we ignore the moment
of inertia caused by each individual thruster to simplify
calculations.

B. Model Identification (Least-Squares)

We can express the dynamic equations given by (2) as a
matrix-vector product:

~τθ(~ν, ~η) = Φ(~ν, ~η)~θ , (7)

where

Φ(~ν, ~η) =
[
~̇ν, ~ν, ~ν|~ν|, · · · ,Φg(~η)

]
∈ R6×p . (8)

~θ is a parameter vector containing 36 mass-matrix entries,
72 damping matrix entries, and 4 hydrostatic parameters:

~θ =
[
Xu̇, Xv̇, · · · , Xu, X|u|u, · · · , Yu̇, · · ·

]> ∈ Rp (9)

In order to identify the parameter vector ~θ, we collect
n+1 samples from experiments and construct the regression
matrix using (8):

A =


~̇ν0, ~ν0, ~ν0|~ν0|, · · · ,Φg(~η0)

...
~̇νn, ~νn, ~νn|~νn|, · · · ,Φg(~ηn)

 ∈ R6n×p , (10)

and the output vector

~y = [~τ0, ~τ1, · · · , ~τn]
> ∈ R6n . (11)

We want to minimize the prediction error using the sum of
squared errors J(~θ) = ‖~y − ~τθ(~ν, ~η)‖2. A solution is given
by the Moore-Penrose pseudoinverse [16]:

~̂
θ = (A>A)−1A>~y . (12)

C. Feedback Linearization (FBL)

State feedback linearization (also known as ”Nonlinear
Dynamic Inversion“ (NDI) in aerospace control systems) is
a technique to transform a nonlinear system into a linear
system through a feedback loop [17]. Recall the dynamics
equation given in (2). We rewrite this equation as:

M~̇ν + ~f(~ν, ~η) = ~τ , (13)
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Fig. 2: Block diagram of the FBL-based velocity control loop

where ~f(~ν, ~η) is a smooth vector field describing the
nonlinear system dynamics:

~f(~ν, ~η) = C(~ν)~ν + ~d(~ν) + ~g(~η) . (14)

Now, we introduce a new control variable ~̇ν = ~aref , which
acts as the input vector for the linearized system:

~τref = M~aref + ~f(~ν, ~η) , (15)

where ~τref is the commanded wrench. Feedback linearization
not only cancels the modeled nonlinearities, it also decouples
each input ~aref,i to only affect its corresponding output ~νi.
However, the approach follows the assumptions that a) an
exact model of the system dynamics is given, and b), that
the state vector is exactly known at each time step.

A block diagram showing feedback linearization in con-
junction with the velocity controller is shown in Figure 2.

D. Incremental Nonlinear Dynamic Inversion (INDI)

Incremental Nonlinear Dynamic Inversion (INDI) is an
extension of Nonlinear Dynamic Inversion (NDI) / Feedback
Linearization. The idea is to incrementally update the control
command ~τref in order to linearize the system. At each
time step, the increment is calculated from accelerometer
readings and measurements of the actual thruster rates. This
is opposed to NDI, where the control command is calculated
directly from the model.

To derive the control law for INDI, we first rearrange the
Fossen equation (13) to an implicit form:

~̇ν = M−1
[
~τ − ~f(~ν, ~η)

]
. (16)

Now, we develop the first-order Taylor expansion of the
previous equation, where ~ν0, ~η0 and ~τ0 correspond to the
measured state and input vectors:

~̇ν ≈ M−1
[
~τ0 − ~f(~ν0, ~η0)

]
+

∂

∂~τ

[
M−1~τ

]
~τ=~τ0

(~τ − ~τ0)

+
∂

∂~ν

[
M−1 ~f(~ν, ~η)

]
~ν=~ν0

(~ν − ~ν0)

+
∂

∂~η

[
M−1 ~f(~ν, ~η)

]
~η=~η0

(~η − ~η0) .

(17)

We make the assumption that the thruster dynamics are
much faster than the dynamics of the AUV body:

|~f(~ν, ~η)− ~f(~ν0, ~η0)| << |~τ − ~τ0| . (18)

M[~aref − ~̇ν0]
δ~τ ~τ
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Fig. 3: Block diagram of the INDI-based velocity controller

With this assumption, we simplify the dynamics to:

~̇ν ≈ M−1
[
~τ0 − ~f(~ν0, ~η0)

]
+ M−1 (~τ − ~τ0) .

(19)

Since ~̇ν0 = M−1[~τ0 − ~f(~ν0, ~η0)], we replace the dynamic
terms of the previous equation with the measured accelera-
tion ~̇ν0:

~̇ν ≈ ~̇ν0 + M−1 (~τ − ~τ0) . (20)

Inverting this equation leads to

δτ = ~τ − ~τ0 = M
[
~̇ν − ~̇ν0

]
, (21)

which is the increment of the control wrench for one time
step. If we introduce ~̇ν = ~aref to be our new control variable
(as in feedback linearization), we finally get the incremental
control law:

~τref = M
[
~aref − ~̇ν0

]
+ ~τ0 . (22)

Note that ~τ0 is the actual input wrench, which is obtained
by the actual thruster’s rpm readings and the actuation model
described in (6). As the angular acceleration ~̇ω ∈ R3 cannot
be measured directly, we estimate it using finite differences:
~̇ω ≈ (~ωt+1 − ~ωt)/dt, where dt = 0.01 s is the sampling
interval. To reduce noise, we apply a first-order Butterworth
low-pass filter with a cutoff frequency of 4.0 Hz to the
angular velocity readings before differentiation. The same
low-pass filter is also applied to the thruster rate readings
~u0 and the linear acceleration, since the phase must be
synchronized in order to avoid oscillations. An overview of
the INDI linearization loop is shown in Figure 3.

E. Velocity Controller (Inner Loop)

The linearized system can now be controlled using linear
control theory. For controlling the linear and angular veloci-
ties we use a proportional control law:

~aref = Kν (~νref − ~ν) , (23)

where ~νref ∈ R6 is the desired velocity vector. To find
the optimal gain parameters, we use trial-and-error to find
a diagonal gain matrix which is optimized such that the step
response of the maximum velocity control commands does
not exceed the force/torque limits of 300 N / 300 Nm (which
are given due to internal safety and power regulations), while
maintaining an optimal tracking performance:

Kν = diag(0.3, 0.3, 0.3, 1.0, 0.7, 0.7) . (24)



F. Attitude Controller (Outer Loop)

Euler angles are not suitable for describing the orientation
of an AUV that is designed for variable attitude maneuvers,
since certain configurations cause a loss of one degree of
freedom. This problem is also called the ”Gimbal-Lock“
problem [8]. For this reason, we use quaternions to describe
the orientation of the AUV. To control the orientation, we
implement an attitude controller which is derived from the
work of Chaturvedi et al. [8]:

ωref(R,Rd) = KΩ

3∑
i=1

ei × (R>d R>ei) . (25)

The attitude controller generates an angular velocity com-
mand ωref ∈ R3 based on rotation matrices R ∈ R3×3

(current orientation), and Rd ∈ R3×3 (desired orientation).
Both matrices can be directly calculated from the current and
desired quaternions. [e1 e2 e3] is the identity matrix. KΩ is a
proportional gain matrix, whose elements are chosen during
real-world experiments such that there is minimum overshoot
during a pitch-up maneuver:

KΩ = diag(0.15, 0.15, 0.15) . (26)

To avoid too large angular velocities, ~ωref is bounded to
‖~ωref‖max < 0.2 rad/s.

G. Depth Controller

In order to keep the depth of the AUV steady, a
proportional-gain depth controller is implemented:

~vref = KposR
I
B

[
[0, 0, zref ]

> − [0, 0, z]>
]

, (27)

where zref is the commanded depth, and z is the actual,
measured depth. ~vref ∈ R3 is the commanded linear velocity,
and RI

B is a rotation matrix from world frame to body
frame. KΩ is a proportional gain matrix, whose elements are
chosen during real-world experiments to result in minimum
overshoot:

Kpos = diag(0.5, 0.5, 0.5) . (28)

The maximum linear velocity command ~vref is bounded to
±[0.5 m/s, 0.5 m/s, 0.2 m/s].

III. EVALUATION

A. Experimental Setup

TABLE I: Cuttlefish Specifications [4]
Specification Value

Length / Width / Height 2.8m / 2.0m / 0.8m
Weight 1200 kg

Inertial Navigation System iXblue Phins Compact C3
DVL Rowe SeaPilot

Pressure Sensor Keller PAA-33x
Rated Driving Power 21.6 kW (8x 2.7 kW)

The experiments are conducted in the maritime test basin
of DFKI RIC, Bremen, Germany 1. The target vehicle is the

1https://robotik.dfki-bremen.de/en/research/research-facilities-
labs/maritime-infrastructure
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Fig. 4: Model identification test (dashed line: prediction)

dual-arm intervention AUV Cuttlefish [4], which is based
on a steel frame construction equipped with 13 pressure
housings for electronics and PVC-based foam, to make the
vehicle positive buoyant. The two robotic arms are not used
for our experiments and are fixed to the body. To control the
1200 kg heavy vehicle, eight 2.7 kW rim-driven thrusters are
installed (four vertical ones and four horizontal ones). The
thrusters were developed by Wittenstein cyber motor GmbH
specifically for Cuttlefish, and are designed to be precisely
controllable, even at very low RPM. The measured time
constant of the thruster acceleration is Tthr = 0.672 s. For
estimating the attitude, velocities and linear accelerations,
we use the iXblue Phins Compact C3 inertial navigation
system. The Phins C3 is based on a fiber-optic gyroscope,
offering high-precision rotation rate measurements with a
resolution of 0.001 deg/s. Additionally, the Phins C3 is
capable of estimating the orientation in roll and pitch with
an accuracy of 0.05 deg RMS. The accuracy of the linear
velocity estimate is 0.1 kn = 0.0514 m/s. The Phins C3
uses its own Kalman filter implementation to fuse data with
various external sensors, in our setup a Rowe SeaPilot DVL
to measure the speed over ground, and the Keller PAA-33x
pressure sensor. A summary of the basic specifications is
given in Table I. Cuttlefish follows a centralized computer
architecture, where all software modules are running on
a single x86-based computer, equipped with an Intel(R)
Core(TM) i7-8700 CPU and 32 GB of RAM. The software
stack is composed of Ubuntu 18.04 as the host system,
running a ROS Noetic environment in a Docker container.
Our control stack is split into two ROS-nodes, where one
ROS-node is responsible for high-level tracking of depth
and attitude, while the other ROS-node embeds the low-level
FBL- and INDI - based velocity controllers. The update rate
of the control stack amounts to 100 Hz.



TABLE II: Model Identification RMSE
DOF Linear Model Quadratic Model
Surge 11.31N 9.38N
Sway 6.62N 5.01N
Heave 16.92N 18.94N
Roll 6.39Nm 6.86Nm
Pitch 17.91Nm 15.83Nm
Yaw 13.74Nm 13.40Nm

B. Model Identification

In order to identify the motion model, we conducted
a series of test drives where we recorded 57 minutes of
training data in total. During the first test drive, we manually
carried out random motions with the AUV, incorporating
coupled maneuvers in different axes and orientations. We
then identified a preliminary motion model, which was used
in a second test drive. During the second test drive we did
some pitch-up maneuvers using the FBL-based controller, in
order to capture some training data representing the actual
task we are aiming for. After collecting all training data,
we identified the final motion model and did a test drive to
collect a two-minute dataset solely used for testing the model
identification performance, where we did three successive
pitch-up maneuvers. The root mean square error of the
predicted wrench is shown in Table II for a linear drag model
and for a quadratic drag model. Figure 4 shows one full
period of the test sequence, where the vehicle transitions
into a upright pose and back into a horizontal pose. The
dashed curve represents the predicted force/torque using the
quadratic damping model, while the solid curve represents
the actual force/torque. It can be seen that the model captures
the coarse motion of the AUV accurately. However, for
example the yaw prediction has an inaccuracy at 20s, and
the peak in the heave DOF is not correctly predicted at 10s.

C. Experimental Results

During our real-world experiments we compare the INDI-
based controller to a linear-drag and a quadratic-drag
feedback-linearized controller.

1) Pitch-up maneuver: In our first experiment we evaluate
the transition from horizontal into upright pose by measuring
the step response from 0◦ pitch to −90◦ pitch for 30 seconds.
Subsequently, we perform a transition back to the stable
horizontal pose, again for 30 seconds. The whole process is
repeated for three cycles. Figure 5 shows the resulting plots.
The first row shows the pitch velocity for each controller, and
the second row shows the actual pitch torques, as calculated
from the thruster outputs. The third row shows the actual
pitch angles, while the desired pitch angle is outlined by
a dashed curve. Looking at the plots we notice that the
performance of all three controllers perform similarly, with a
slight overshoot at the upright phase and a larger overshoot
at the stabilization phase. The mean overshoot during the
pitch-up maneuver is 1.36◦ for INDI, 1.33◦ for linear FBL,
and 1.59◦ for quadratic FBL. During stabilization, the mean
overshoot is 1.71◦ for INDI, 2.63◦ for linear FBL, and
2.10◦ for quadratic FBL. The mean energy consumption
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Fig. 5: Three pitch-up maneuvers

of INDI is 33.24 Wh per cycle, for linear FBL it is 33.84
Wh, and for quadratic FBL it is 34.19 Wh. We notice that
both feedback-linearized controllers result in a steady-state
orientation error in upright pose. To study the steady-state
error in more detail, we maintain the upright pose for 300
seconds and then measure the error. For INDI, we measure an
error of 0.0829◦. For the feedback-linearized controllers we
measure an error of 1.3459◦ for the linear drag model, and
1.6897◦ for the quadratic drag model. The reason INDI has a
smaller steady-state error is that it has an incremental control-
law, which is eliminating the nonlinear effects successively.
Table III shows the RMS tracking errors for the linear
and angular velocities. According to the data, INDI keeps
the roll axis more stable than the model-based controllers,
which indicates that INDI captures the coupled dynamics
better. A surprising result is that the tracking performance
of the quadratic drag model is worse than that of the linear
drag model. One possible explanation could be that the
velocities of our system are considerably low, which makes
the quadratic drag terms hard to identify correctly.

2) Station Keeping: To evaluate the station keeping per-
formance, we measure the positional drift while maintaining
an upright pose for 300 seconds. The drift is plotted in
Figure 7 for INDI and FBL. It can clearly be noticed that the
feedback-linearized controllers have much higher drift. One
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TABLE III: Tracking Error (RMSE)
INDI Linear FBL Quadratic FBL

Surge 0.39mm/s 0.55mm/s 1.04mm/s
Sway 0.12mm/s 0.34mm/s 0.64mm/s
Heave 0.73mm/s 0.69mm/s 1.11mm/s
Roll 0.022 ◦/s 0.043 ◦/s 0.063 ◦/s
Pitch 0.328 ◦/s 0.321 ◦/s 0.317 ◦/s
Yaw 0.053 ◦/s 0.051 ◦/s 0.108 ◦/s

explanation is that feedback linearization tries to compensate
the damping terms. However, if the modeled drag is higher
than the actual drag, the linearization loop applies too much
force, resulting in instabilities. A detailed overview of the
error velocities is given in Table IV. During station keeping,
we could measure a continuous power consumption of 2231
Watts using INDI, 2246 Watts using linear-drag FBL, and
2274 Watts using quadratic-drag FBL.

IV. CONCLUSION

In this paper, we conducted a first study on using incre-
mental nonlinear dynamic inversion for attitude control of
a 6-DOF underwater vehicle. Our results show that INDI
clearly outperforms the model-based controller in stabilizing
the upright pose with minimum drift. Keeping the drift of the
AUV minimal is crucial for our intended use in intervention
tasks. INDI results in a much lower steady-state error than
the model-based controller, while keeping the roll axis much
more stable during transition phase. Our findings are as
expected, since the installed PHINS Compact C3 is a state-
of-the-art military grade INS. It is possible that INDI might
not have outperformed the model-based controller when less
accurate sensor hardware or more advanced models had been
used. However, modeling the dynamic behavior of marine
vehicles is difficult, and not all hydrodynamic effects can
be modeled exactly. For our sensor-based approach, only a
6×6 mass-inertia matrix together with an actuation model is
needed, reducing the modeling effort significantly. This also
comes with the advantage that altered dynamics have less
impact on controller performance.

The results of this work can be seen as a basis for further
studying INDI on marine vehicles. According to [14], INDI
is also capable of adapting to actuator failure to a certain
extent, which has not been studied in this work. For this

TABLE IV: Station Keeping Error (RMSE)
INDI Linear FBL Quadratic FBL

Surge 0.128mm/s 0.449mm/s 0.279mm/s
Sway 0.016mm/s 0.171mm/s 0.088mm/s
Heave 0.017mm/s 0.191mm/s 0.117mm/s
Roll 0.003 ◦/s 0.015 ◦/s 0.015 ◦/s
Pitch 0.007 ◦/s 0.066 ◦/s 0.049 ◦/s
Yaw 0.007 ◦/s 0.027 ◦/s 0.029 ◦/s

reason, the authors plan to conduct upcoming research on
Fault-Tolerant Control using INDI.
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