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This DFKI technical report presents the anatomy of the No-IDLE prototype system (funded by the German Federal Ministry of

Education and Research) that provides not only basic and fundamental research in interactive machine learning, but also reveals deeper

insights into users’ behaviours, needs, and goals. Machine learning and deep learning should become accessible to millions of end

users. No-IDLE’s goals and scienfific challenges centre around the desire to increase the reach of interactive deep learning solutions

for non-experts in machine learning. One of the key innovations described in this technical report is a methodology for interactive

machine learning combined with multimodal interaction which will become central when we start interacting with semi-intelligent

machines in the upcoming area of neural networks and large language models.

1 INTRODUCTION

In recent years, machines have surpassed humans in the performance of specific and narrow tasks such as some aspects

of image recognition or decision making along clinical pathways in the medical domain (weak AI). Although it is

very unlikely that machines will exhibit broadly-applicable intelligence comparable to or exceeding that of humans

in the next 30 years (strong AI), it is to be expected that machines will reach and exceed human performance on

more and more applied tasks. To develop the positive aspects of AI, manage its risks and challenges, and ensure that

everyone has the opportunity to help in building an AI-enhanced society and to participate in its benefits, in this project,

human intelligence and machine learning (ML) take the centre stage: Interactive Machine Learning (IML) is the design

and implementation of algorithms and intelligent user interface frameworks that facilitate ML with the help of human

interaction.

Our focus is to improve the interaction between humans and machines, by leveraging state-of-the-art human-

computer interaction (HCI) approaches, as well as solutions that involve state-of-the-art ML techniques. In this project,

we focus on Interactive Deep Learning (IDL): deep learning (DL) approaches for IML. We want computers to learn from

humans by interacting with them in natural language for example and by observing them. Our goal in No-IDLE
1
is

to improve the interaction between humans and machines to update DL models, by leveraging both state-of-the-art

human-computer-interaction and DL approaches. Basic and fundamental research in this corridor project should also

reveal deeper insights into users’ behaviours, needs, and goals. Machine learning and DL should become accessible

to millions of end users, and be functionally more advanced than current recommender systems in online shops that

provide suggestions for items that are most pertinent to a particular user. Explicit (ontological) knowledge representation

and reasoning capabilities are however not part of this focused project, but a follow-up project would highly benefit from

them. In addition, we emphasise the role of multimodal interaction and mixed-initiative interaction. While focusing on

IDL in this corridor project, we pose the development of a methodology for IDL as a challenge problem. A methodology

for IDL will become central when we start interacting more with semi-intelligent machines. As a layer used to represent

the interactions, opinions and feedback, it is critical that IML is well understood and defined. Also, there has been

recent and relatively rapid success of AI and ML solutions that arise from neural network architectures. But neural

networks lack the interpretability and transparency needed to understand the underlying decision process and learned
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representations. Making sense of why a particular model misclassifies test data instances or behaves poorly at times

is a challenging task for model developers and is an important problem to address [Hohman et al. 2018]. A related

argumentation is that despite their huge successes, largely in problems which can be cast as classification problems, the

effectiveness of neural networks is still limited by their un-debuggability, and their inability to “explain” their decisions

in a human understandable and reconstructable way [Goebel et al. 2018].

In No-IDLE, we explore the relationship between DL, HCI, and explainable AI (XAI). For example, by approaching

the problem from the HCI perspective, recent work has shown the benefits of visualising complex data in virtual

reality (VR), e.g., in data visualisation [Donalek et al. 2014], and big data analytics [Moran et al. 2015]. In one HCI

subtask in No-IDLE for example, we extend an interactive image clustering method in VR [Prange and Sonntag 2021],

where the user can explore and then fine-tune the underlying DL model through intuitive hand gestures. While HCI

constitutes a key approach, we will attack the IML problem from multiple angles. Informed by emerging directions

in both research and commercialisation of IML systems [Oviatt et al. 2019; Zacharias et al. 2018], we will deploy our

expertise in multimodal-multisensor interfaces (MMI) and natural language processing (NLP), while also tapping on the

broader interdisciplinary community, to deliver on the mission to improve interaction between humans and machines.

Past application projects of DFKI’s IML group include deep active learning such as described in [Shui et al. 2020],

explanatory interactive image captioning [Biswas et al. 2020], IDL systems for melanoma detection [Sonntag et al.

2020] and wildlife monitoring [Gouvêa et al. 2023], toolkits for building multimodal systems and applications [Barz

et al. 2021a; Oviatt et al. 2019], and interactions with ML systems as domain-specific explanations [Hartmann et al.

2021]. In No-IDLE, we bring these approaches, technologies and our experience together to apply them to a special use

case, namely interactive photo book creation, to test and evaluate the basic and fundamental research in this corridor

project. The proposed project builds upon this broad experience and research results of the IML group in the areas

of human-computer interaction (HCI), machine learning (ML), multimodal human-computer interaction (MMI), and

natural language processing (NLP).

In a nutshell, in No-IDLE we explore IDL from four different perspectives (HCI, ML, NLP, MMI). No-IDLE is a basic

research project to advance our understanding of IML. We expect practical contributions to be made while bringing the

four working groups of IML closer together to work on a specific application around IML for photo book creation and

the exploitation of the findings in ongoing DFKI consortial and industrial projects.

2 USE CASE: INTERACTIVE PHOTO BOOK CREATION

The research questions raised in No-IDLE will be investigated in the context of a specific use case: the interactive

creation of a photo book. Consider the following scenario:

Family Smith (a family of four) takes many photos from all kinds of events and occasions and regularly likes to create

personal photo books and calendars for themselves and as gifts for family members and friends. Selecting the right

photos, arranging them and writing captions is fun but very time consuming, and while they appreciate it as a means

of their personal expression and creativity, they would like to speed up the process, especially with respect to the more

tedious parts like selecting among similar photos or finding a basic arrangement. At the same time, they would like to

maintain control and a personal connection to the results. Each family member has their own personal taste: some are

more inclined to funny situations and photos of people, other prefer scenic views and interesting lighting and their

personal style of arrangement, some like to put the photos simply side by side, others like to make use of interesting

frames, clip art and creative arrangements. In addition, the goal and target audience influence their choices. For instance,

they like to create diary type photo books of their travels for their own archive but like to tell image stories of the same
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Airport to Vancouver

Fig. 1. We plan to combine several modules based on deep learning models to create photo book pages from natural language input.

These modules include, for instance, image retrieval, image captioning, and person recognition.

Use corrective feedback to improve underlying DL models

…

This is Sarah, not Mary
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Fig. 2. The user can provide multimodal feedback to the photo book tool to alter the created content. For instance, we plan to jointly

interpret the user’s gaze signal and spoken utterances to improve person recognition. An example is shown in figure 3.

trip for showing them or gifting them to others. When they create books or calendars for special holidays or birthday

gifts, they typically select photos that somehow match the occasion but that also contain the gifted person if possible.

Thankfully, they find out about the AI software that integrates techniques developed within No-IDLE. Using these, a

photo book can be created by providing a set of images and by sequentially describing the occasion in natural language,

be it a holiday trip or a wedding party. They can also describe the style and purpose of the photo book to guide the

creation process. To make an example, imagine that they plan to create a photo book about their last family trip to

Canada. They start off by telling the system: “This will be a photo book for aunt Mary about our last trip to Canada. We

would like to add some dramatic touch to it”. In return, the photo book creation tool suggests a suitable caption and

basic style for the photo book. If not suitable, they can edit the caption or adapt the style, e.g., by selecting another

frame type for captions or another font family. They would continue by describing how they perceived their vacation

to the photo book tool just like they would describe it to another human: “On the first day, we took the bus from the

airport to Vancouver” (see figure 1). As a response, the system creates a single page with suitable photos, i.e., from

getting on the bus at the airport, a photo of the skyline of Vancouver from inside the bus and one with aunt Mary who

was waiting for them at the bus stop. Since this is the first time family Smith is using this tool, the automatic caption

generation module is uncertain whether its output is suitable and, hence, actively asks for feedback.
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This is Sarah, not Mary

Fig. 3. Example of a multimodal user input to our photo book application (based on an existing demo setup). The user provides

corrective feedback in natural language by saying "This is Sarah, not Mary". The system uses his gaze to resolve the face that was

referred to and uses the new information to update the underlying deep learning models as depicted in figure 2.

Being happy with this partial result, the family continues to describe the events saying “The incident with the bears

was extremely funny and the woods were so impressive”. The newly generated pages of the photo include pictures of

the bear and the woods from their hiking trip, but none with aunt Mary, so they complain about this. “Please add a

picture with Mary here”. As the system does not know yet how Mary looks, it shows extracted faces from the provided

photos and asks to select a picture of Mary. Mrs. Smith looks at a picture and says “that’s my sister Mary”. The system

uses the gaze signal to identify the face that was referred to and learns to recognise Mary. Eventually, family Smith

reports how their vacation ended: “it was also something how aunt Mary had to take us to the airport on short notice

because our car broke down and we almost thought we wouldn’t make it and how they welcomed us back at the airport

after we landed.” One of the images shows Sarah in front of aunt Mary’s car, but the caption states “This is aunt Mary

after carrying us to the airport”. Mr. Smith corrects the system by saying “this is Sarah, not Mary” (see figures 2, 3, and

4). The system automatically corrects the caption and corrects the label for the detected face. From now on, the system

will be better at differentiating between Sarah and her sister Mary. Alternatively, Mr. Smith could edit the caption to

“This is Sarah in front of her car after carrying us to the airport last minute.” and the feedback contained in this post-edit

would be used to update the image captioning model.

While the initial draft of the photo book is already quite good, the Smiths want to add some personal touch and they

also spot some errors browsing through the suggestions. The system supports an immersive mode using VR or just a

normal desktop/tablet-based presentation. While they could use either mode and intuitive hand or touch gestures in

combination with gaze-tracking/spoken dialogue to rearrange and edit each caption and photo by pointing or touching

a photo and selecting from better alternatives presented by the system, by rating a photo as not suitable, or by providing
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Fig. 4. Visualisation of the virtual reality scenario. Images and the photo book are presented in an immersive virtual environment.

Through multimodal interaction (pointing, eye-/gaze-tracking, natural speech) the user engages with the system and provides

corrective feedback by saying "This is Sarah, not Mary". The system uses implicit and explicit pointing or gaze to resolve the face that

was referred to and uses the new information to update the underlying deep learning models as depicted in figure 2. In addition to

the multimodal setup depicted in figure 3, VR tracking provides detailed spatial tracking information that will be included in the data

analysis.

feedback to a caption, the system also provides some higher-level tools: for story-based books the overall time and

dramatic flow of the story and the included events are visualised along a time line (which works especially well in

VR thanks to almost unlimited virtual space). To avoid clutter, each event is represented by some iconic photos and a

summarising caption, generated by the system. The Smiths can now put more or less emphasis on certain events, add or

remove whole events, or “zoom” in and identify key characters and photos. For diary-type or location-centered books,

the photos are clustered accordingly and visualised over a floating map and again the Smiths can now edit and provide

feedback using rich multi-modal input. The system will continue to learn from the user input and actively ask for help

in uncertain cases. The rich input/output modalities (especially in the VR case) will benefit user and system on several

levels. They will make active learning by the system more effective because multimodality can be used to disambiguate

and to compensate for noise in single modalities. They will also improve the user experience because they allow for a

more intuitive and effective interaction and visualisation and as they provide more data about the user to the system,

the system can learn more effectively (using not only explicit but implicit inputs) about the user preference and can

adapt the information load.
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Over the past decade, researchers have studied similar scenarios [Sandhaus et al. 2008] and proposed partial solutions

for certain sub-task. For instance, different methods ranging from semantic modelling [Sandhaus and Boll 2011] and

meta data analysis [Boll et al. 2006, 2007] to deep learning solutions [Withöft et al. 2022] have been investigated for

retrieving and filtering photos according to general criteria or personal preferences [Maszuhn et al. 2021]. Some of

these works have also looked at data from social media activity to learn about user preferences or events [Rabbath et al.

2011a,b]. Other works have looked at the presentation layer, for instance, at how to create aesthetic layouts [Sandhaus

et al. 2011] or how to design novel augmented reality interaction techniques to allow users to easily annotate their

photos [Henze and Boll 2011]. However, integrated solutions for a complete system are still missing, which highlights

both the relevance but also the challenge of the presented scenario. While the goal of this project is not to develop a

market-ready photo book application software, we are certain that we will be able to implement the use case as an AI

testbed to extend the current state-of-the-art in interactive deep learning. We propose a unique and integrated approach

that draws on our expertise from machine learning, NLP, multimodal interaction and HCI research.

3 GOALS AND SCIENTIFIC CHALLENGES OF NO-IDLE

With the convergence of artificial intelligence and machine Learning, IDL is where the HCI community meets the DL

community [Amershi et al. 2014; Dudley and Kristensson 2018; Holzinger 2016; Sonntag 2010; Teso and Hinz 2020;

Zacharias et al. 2018]. No-IDLE’s goals and scientific challenges centre around the desire to increase the reach of DL

solutions (and ML solutions in general): DL for non-experts in ML and improving DL models when not enough data is

available (e.g., due to highly individualised tasks like photo book creation) or data quality is not sufficient. In addition,

to fully automate tasks in practical applications such as our use case of interactive photo book creation can be extremely

difficult and even undesirable. As a consequence, our goals are to find a computational and design methodology to

gracefully combine automated services with direct user input or manipulation. We investigate our scientific goals in the

context of our photo book application. However, the technologies developed shall be beneficial for other domains as

well such as healthcare or smart manufacturing. They can be summarised as follows:

(1) Define and declare the role of humans in IDL (HCI): (1) realising the importance of studying users; (2) reducing

the need for supervision by ML practitioners; (3) explore interactivity in a tight coupling between the system

and the user; (4) handle human ambiguity and confusion and instil trust and confidence through feedback and

explanations; (5) explore gamification and serious games in the context of IDL and IML in general.

(2) Provide a way for users to (1) understand why the system had made a particular prediction, and (2) adjust the

(DL) learner’s reasoning if its prediction was wrong. To this end, the system should provide an explanation for

its predictions, and incorporate corrective feedback given by the user. How can this be done in practical terms?

For providing useful explanations of model predictions, we will investigate the feasibility of solving tasks with

interpretable (DL) models rather than black box models [Rudin and Radin 2019].

(3) Active and passive user input needs to be interpreted carefully to establish an efficient and effective interaction

between humans and an AI system. The challenge includes to interpret signals from multiple input modalities

(e.g., gaze and spoken instructions). It may be required to interpret the input signals according to a user or context

model (e.g., reflecting a user’s preferences or the interaction context). In No-IDLE, we develop multimodal

interaction techniques for incremental photo book creation with the goal to improve model training through

rich multimodal user feedback and to improve the user experience through robust and intuitive interfaces. At

the same time, we should avoid the limitations of human cognitive abilities.
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(4) Implement mixed initiative interaction, an opportunity to explore interfaces that can leverage knowledge and

capabilities of domain experts more efficiently and effectively. The ML system and the domain expert should

engage in a two-way dialogue to facilitate more accurate learning from less data compared to the classical

approach of passively observing labelled data. In the context of our photo book use case, we aim at using,

e.g., active learning and principles from human-in-the-loop expert systems. The greater goal is to perform

application tasks more satisfactorily: human-machine teams shall surpass the efficiency/effectiveness of humans

or machines in this task alone [van Zoelen et al. 2023].

3.1 Natural Language Processing (NLP)

Our approach for supporting photo book creation relies on several components based on deep learning models for image

and multimedia data, in particular face and body shape recognition, text-to-image retrieval, image captioning, visual

storytelling, and Visual Question Answering (VQA) models. The different components are triggered based on a user’s

commands (e.g., "On the first day, we took the bus from the airport to Vancouver" triggers the text-to-image retrieval

component and the image captioning component). We plan to model this by either explicitly mapping triggering

keywords to components, or by applying more sophisticated semantic parsers. The optimal way of processing user

input will be determined in the course of the project based on insights from user studies. In this part of the No-IDLE

project, we investigate three core research problems associated with the application and interaction with DL models

in the context of our use case: (1) how to adapt state-of-the-art multimedia DL models to process user-specific texts

and images, which, in contrast to the generic data the models are usually applied to, requires to account for specific

information related to the user and the events they want to present in their photo book; (2) how to improve the DL

components based on user feedback collected in the refinement phase based on the IML paradigm; (3) how to use model

explanations to achieve optimal interaction between user and model and best support the photo book creation process.

Users have a personal relationship with objects and concepts displayed in the images of their photo book, and

providing support in the photo book creation process requires modelling image content from a user’s perspective. For

example, we need to take into account that a user will refer to named entities in an image by proper name rather than a

common noun (Mary instead of a woman). In No-IDLE, we investigate how to adapt multimedia and multimodal DL

models to account for such user-specific information. For cross-modal (text-to-image) retrieval, we plan to implement

state-of-the-art DL retrieval models [Alikhani et al. 2022; Jia et al. 2021; Zhang et al. 2020], which retrieve items based

on embedding similarities in a shared representation space, in combination with rule-based filters that take into account

output from a person recognition model as well as available image metadata, such as time stamps and geolocation. For

example, given a user query Show me the pictures of Peter and Mary playing football when we visited Vancouver, the

component retrieves images given the query Two people playing football and returns the subset of images for which

the person recognition model indicates Peter and Mary being present, and the geolocation indicates an image taken

in Vancouver. In contrast to image captions that can be found in general purpose datasets such as MS COCO [Lin

et al. 2014] or Flickr30k [Plummer et al. 2015], the captions generated by our captioning component should be (1)

entity-aware (e.g., instead of generic descriptions of objects or concepts, the captions contain proper names for named

entities), (2) stylised, and (3) controllable (see table 1 for examples). Existing models for entity-aware captioning usually

first generate a template caption with place-holders for named entities, which is then filled with information retrieved

from associated text or knowledge bases [Biten et al. 2019; Lu et al. 2018]. Ramnath et al. [Ramnath et al. 2014] propose

an approach for personalised template-filling with information such as geolocation, time stamp, detected landmarks,

recognised faces, which we plan to extend to incorporate finer-grained location information specified by the user. To
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generate stylised captions, we will explore caption generation reflecting sentiment [Mathews et al. 2016], specific styles

[Gan et al. 2017; Guo et al. 2019], and taking into account a user’s active vocabulary [Chunseong Park et al. 2017]. In

the refinement phase, when additional captions are generated for newly retrieved images, the user should be able to

exert fine-grained control over the concepts to be included in the caption, e.g., by actively modifying an abstract scene

graph representation based on which the caption is generated [Chen et al. 2020]. In contrast to generating captions

for images in isolation, the visual storytelling component generates a sequence of captions that form a coherent story

for a retrieved sequence of images [Huang et al. 2016; Jung et al. 2020; Wang et al. 2020]. Similar to the captioning

component, the visual story component needs to be entity-aware and controllable. To this end, we will investigate to

what extent approaches for adapting the captioning model can be transferred to the visual storytelling task. Finally,

in the refinement phase, a VQA component can directly answer the user’s questions about image content, such as

What was the name of the mountain in the background?, or Did Peter join us for the trip to Lake Baikal?. Here, we will

focus on implementing models for answering questions that cannot be answered from information in the image alone,

but require additional knowledge about named entities and specific events, that could for example be provided by a

knowledge graph [Shah et al. 2019].

In order to improve the above described components based on feedback collected in the photo book refinement

phase, we implement an IML framework that allows us to iteratively update the models based on new information

via incremental and focused updates [Amershi et al. 2014]. Training and improving the models in an IML framework

is crucial to our use case, as we cannot assume large amounts of labelled personalised data to be available at once,

and therefore need to learn from user-specific data incrementally. In No-IDLE, we explore how IML can be applied to

improve the multimodal DL components for photo book creation, considering three scenarios: (1) debugging trained

models, e.g., identifying and correcting spurious patterns learned by the model [Lertvittayakumjorn and Toni 2021].

Here, we assume an explanation-based interactive loop to be particularly helpful; (2) adapting pre-trained models to

user-specific data with small amounts of annotations [Yao et al. 2021] (3) personalising models [Kulesza et al. 2015], e.g.,

for generating captions following stylistic preferences of users. We focus on improving models based on explanatory

feedback provided by the user, i.e., instead of providing only label-level feedback (e.g., a correct answer to a VQA model),

the user additionally provides information that states why the provided answer is the correct one. Interacting on the

basis of explanations has the potential to benefit both the user and the model: on the user side, providing richer feedback

beyond the label level is in line with their preferred way of interaction [Amershi et al. 2014; Ghai et al. 2021]. From the

modelling perspective, learning from explanatory feedback instead of label-level feedback can improve data efficiency

[Hancock et al. 2018; Ye et al. 2020] and generalisation [Yao et al. 2021]. We focus on the two most commonly considered

types of human explanations, which are highlight explanations, i.e., subsets of input elements deemed relevant for

assigning a specific label; and free-text explanations, i.e., natural language statements providing information about

why specific label should be assigned [Wiegreffe and Marasovic 2021]. Several ways for improving models (except for

[Selvaraju et al. 2019] these were developed for models that process either text or image data) based on such human

explanations have been proposed [Hartmann et al. 2021; Hase and Bansal 2021]: using natural language explanations

as additional inputs [Co-Reyes et al. 2019; Rajani et al. 2019; Rupprecht et al. 2018], using explanation generation as

auxiliary task [Camburu et al. 2018; Hase et al. 2020; Narang et al. 2020; Wiegreffe et al. 2021], directly constraining

intermediate representations [Rieger et al. 2020; Ross et al. 2017; Selvaraju et al. 2019; Shao et al. 2021], or exploiting

explanations to generate additional training instances [Awasthi et al. 2020; Hancock et al. 2018; Yao et al. 2021; Ye

et al. 2020]. We will investigate how to combine and extend these methods to update multimodal DL models based

on multimodal feedback. Most of these approaches have only been tested in offline setups, where the model can be
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trained on the entire explanatory feedback at once. As a first step, we will investigate which methods are applicable in

an interactive setup where models are updated incrementally. As all DL components process the same user-specific

data, we assume that it might be useful to share user-specific information among the components by exploiting user

feedback to update multiple components at once. To this end, we will experiment with a multi-task architecture with

hard parameter sharing, which trains 𝑛 models for 𝑛 tasks with a subset of parameters being shared among them

[Caruana 1993; Collobert et al. 2011], e.g., sharing the multi-modal encoder while maintaining task-specific classifier

layers (or decoders for language generation tasks). By updating the encoder based on feedback collected for one task,

the information will be available to models for the other tasks as well. For evaluating our methods for interactive deep

learning, we will follow previous work in re-splitting existing task-specific datasets (e.g., Microsoft COCO [Lin et al.

2014] and Flickr30k [Plummer et al. 2015] for image captioning and text-to-image retrieval, VQAv2 [Goyal et al. 2017]

and KB-VQA [Wang et al. 2017] for visual question answering, VIST [Huang et al. 2016] for visual story telling) into

new data splits that allow to evaluate specific model behaviour, e.g., if a model relies less on language bias [Agrawal

et al. 2018], or if a model has better continual learning abilities [Del Chiaro et al. 2020; Greco et al. 2019].

The central component of an IML system is a tight interactive loop between user and ML model, in which the model

presents its current state of knowledge to the user, and the user provides feedback to the model accordingly [Amershi

et al. 2011; Dudley and Kristensson 2018; Wang et al. 2021]. The former part of the loop could be supported by showing

an explanation for why the model made a specific prediction or took a specific action. The ability to provide explanations

for predictions, i.e., information about the reasons for why a specific prediction was made, is considered essential

for large-scale adoption of AI systems by end-users [Barredo Arrieta et al. 2020; Gunning 2017]. In No-IDLE, we will

investigate how to use model explanations to achieve optimal interaction between user and model. For DL black-box

models, this requires choosing an adequate mechanism to construct explicit representations of explanations that can

be provided to the user [Kim et al. 2021]. While for image processing models, saliency methods can provide useful

visualisations of important input regions, such methods are less intuitive for text inputs. Here, the compositional nature

of language calls for more expressive attribution methods that can model interactions between input tokens [Bastings

and Filippova 2020]. We focus on the generation of suitable explanations for generative or predictive multi-modal tasks,

e.g., by generating natural language explanations while at the same time marking image regions that were relevant for

a prediction [Park et al. 2018a]. For presenting the explanation to the target end-user, we investigate the personalisation

of explanations [Ghai et al. 2021; Mohseni et al. 2021; Ras et al. 2018; Sokol and Flach 2020; Tomsett et al. 2018] to elicit

high quality feedback and increase user satisfaction. How to evaluate model explanations is an active research topic

[DeYoung et al. 2020; Doshi-Velez and Kim 2017; Jacovi and Goldberg 2020; Pruthi et al. 2022] and we will focus on

using previously proposed metrics for comparing model-generated explanations with human-generated explanations

on publicly available multi-modal datasets, in particular VQA-X and e-ViL [Kayser et al. 2021; Park et al. 2018b].

The main deliverables of this part of the project are:

(1) Implementation of multi-modal DL components for photo book creation support that are entity-aware and

controllable. For image captioning and visual story telling, the components should be able to generate text in a

specific style.

(2) Implementation of an IML framework which allows to update the DL components based on explanatory user

feedback collected in the photo book refinement phase. In addition to learning from explanatory feedback,

the model should retain its knowledge while learning new things, which calls for the application of continual

learning methods [Biesialska et al. 2020; d’Autume et al. 2019; Li et al. 2020] within the feedback loop to prevent
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catastrophic forgetting [Kirkpatrick et al. 2017]. Incompleteness and uncertainty of human explanations [Tan

2021] should be accounted for when implementing a feedback mechanism into the model as a software package.

To this end, we will build on insights from the core ML part of the project that investigates the use of Bayesian

modelling for feedback integration as described in section 3.3.

(3) Implementation of XAI methods for multimodal models which provide explanations for black box DL model

decisions and take into account user-specific information, e.g., background knowledge and the motivation for

consuming the explanation.

3.2 Multimodal-Multisensor Interaction (MMI)

In No-IDLE, we aim at developing interactive training mechanisms that enable continuous improvements of DL models.

A central aspect of this interactive loop is human feedback. We investigate the effect of integrating multimodal user

input on the effectiveness, efficiency, and usability of interactive model training. We target models of our photo book

application which include, for instance, models for recognizing specific persons and objects (see section 3.3) and natural

language generation models (see section 3.1).

One goal is to implement a gaze-driven dialogue that can support the initial creation and iterative refinement of a

photo book. The multimodal feedback from the user shall enable the underlying DL models to learn new concepts,

to differentiate between instances of a concept, and to improve the detection/recognition of know classes. We plan

to implement simple state-based dialogues to realise interactive model training with human gaze as additional input

modality (e.g., based on the open source dialogue platform Rasa
2
). The goal is not to develop beyond state-of-the-

art multimodal dialogue systems, but to investigate the effect of integrating gaze (or pointing gestures) in simple

speech-based instructions on the usability and effectiveness of interactive machine learning systems. For instance,

a face recognition model could wrongly detect Sarah as Mary as described in section 2. When the user detects that

the person identification system failed, he could provide a corrective feedback in natural language: "This is Sarah,

not Mary". The system should analyse the user’s gaze to identify to which face he referred in his utterance. Figure 3

illustrates this interaction based on an existing demo setup with three wall-sized screens. This corrective feedback shall

be used to improve the underlying deep learning models (see figure 2). While, in No-IDLE, we put a focus on gaze-based

input, pointing gestures will be considered for this kind of reference resolution as well, especially in the context of

AR/VR interaction settings or when interacting with a wall-sized screen. Also, multimodal interaction can benefit from

system-initiated interaction. This is particularly interesting in combination with active learning techniques that shall

be developed by the ML group (see section 3.3). We want to explore the effectiveness (does the system actually learn

to recognise new persons and objects), efficiency (what time is required for the model until it can recognise a new

class), and usability (is the system usable for lay users) of different approaches in collaboration with the HCI group (see

section 3.4). Another goal is to produce captions that are more focused on what the user wants to describe. We plan to

integrate aggregated [Cornia et al. 2018; Sugano and Bulling 2016] or sequential [Meng et al. 2021; Pont-Tuset et al.

2020; Takmaz et al. 2020] human attention traces estimated from the multimodal input signal (gaze and pointing) into

the generation process. We hypothesise that incorporating multimodal interaction signals can improve the robustness

of and the user experience during the interaction with an interactive machine learning system. Eventually, this should

improve the quality of human feedback and, hence, the efficiency of model updates during training. Also, we expect

2
https://rasa.com/open-source/

https://rasa.com/open-source/
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that multimodal interaction can lead to a better understanding of how a model works, to a better understanding of the

model’s strengths and weaknesses, and eventually to more trust in the model’s decisions.

Human gaze is well known for carrying non-verbal cues that can be used intelligent user interfaces: the eye movement

behaviour depends on the task in which a user is currently engaged [DeAngelus and Pelz 2009], which provides an

implicit insight into their intentions and allows an external observer or intelligent user interface to make predictions

about the ongoing activity [Flanagan and Johansson 2003; Gredebäck and Falck-Ytter 2015; Rothkopf et al. 2016; Rotman

et al. 2006]. For instance, knowing which objects in a scene are fixated is a valuable context information for spoken

feedback in personalised photo book creation. In particular, when deictic references must be resolved [Matuszek 2018;

Mehlmann et al. 2014]. Also, there is a strong link between gaze behaviour and spoken language: speakers fixate

elements “less than a second before naming them” [Griffin and Bock 2000] and the coordination of hand-movements

depends on human vision, e.g., when “directing the hand or object in the hand to a new location” [Land et al. 1999].

Human gaze can also be used to analyse or model the behaviour of a user (user modelling), e.g., to learn about a

user’s ongoing activity [Bulling et al. 2013; Steil and Bulling 2015], their preferences [Barz et al. 2022; Lallé et al. 2021],

intentions [Barz et al. 2020b; Huang and Mutlu 2016], or state [Bulling and Zander 2014; Huang et al. 2019]. Observing

eye movement behaviour during interaction with an interactive machine learning system could reveal situations in

which the user disagrees with the model output. If these situations coincide with the model being uncertain about the

output, this may be a good point in time to trigger a feedback request to the user (system-initiative).

In No-IDLE, we focus on human gaze and pointing gestures as additional interaction modalities. We investigate

the impact of using multimodal interaction signals on recognising objects or persons as context-information and to

personalise the natural language generation process in the context of the photo book creation and refinement process.

The challenge is that relevant persons and objects, their appearance, or similar properties can significantly vary between

users and the occasion for creating such a book [Barz and Sonntag 2021]. However, pre-trained models cannot account

for such dynamic circumstances and adaptive models or agents are required that incrementally and continuously learn

from human collaborators or interlocutors. The main deliverable is a software extension of an existing DFKI system,

the multisensor-pipeline (MSP)
3
. The resulting modules shall be integrated and evaluated in the photo book creation

process based on the experimental procedure as depicted in section 3.5:

(1) Implementation of a module that enables to learn about unseen classes (objects) when the context shifts

(class-incremental learning) and to improve the recognition of known classes via multimodal user interaction

based on, e.g., transfer learning [Käding et al. 2017] and active learning (see section 3.3). Similarly, we plan the

implementation of a module to differentiate between multiple instances of the same class trough multimodal

human-machine interaction. We focus on the differentiation between multiple persons according to our photo

book use case (e.g., to filter for images showing a particular person). This part will benefit from novel active

learning approaches as described in section 3.3. We will also investigate in how far this module can be used

to track meta information like ownership (see the COPDA project
4
). Real-time tracking of multiple instances

could be achieved by a combination of (multi-)object tracking [Li et al. 2019] and models that estimate object

properties such as colour, size, and shape [Thomason et al. 2016]. Such models are of particular interest when

grounded in natural language, which would facilitate expressive explanations for classification results (related

to section 3.1 and the XAINES project
5
).

3
https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline

4
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/copda

5
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/xaines

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/copda
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/xaines
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(2) Implementation of a module of a new image clustering and object tracking method that can help "quick

start" multimodal interactive model training upon domain shifts, because a single (user-provided) label can be

propagated to multiple samples, e.g., to an image cluster or to samples from object tracking (semi-supervised

learning). The idea is to cluster fixated image contents in the photo book application and, once a label is provided

via speech, to propagate this label to the whole cluster. Similarly, few shot learning (FSL) from the ML task (see

section 3.3) should help to overcome this cold-start problem. Few-shot image classification [Wertheimer et al.

2021] or few-shot object detection [Fan et al. 2019] enables image classification or object detection, respectively,

using around five example images.

(3) Implementation of multimodal interaction techniques based on eye tracking for the photo book application.

This includes approaches to provide feedback on model outputs multimodally (e.g., correcting labels for

misclassified persons, triggering post-editing of generated captions, and guiding the caption generation process),

but also general multimodal interaction with photo book representations in desktop or VR settings (for instance

rearranging images, selecting better photos, or similar selection and manipulation actions).

3.3 Machine Learning (ML)

An important factor which contributes to the recent success of DL (apart from superior computing power and training

algorithms) is the availability of labelled data. In fact, neural networks are known to be data-hungry (e.g., popular

benchmark datasets range from tens of thousands of labelled samples as in CIFAR-10 to millions as in ImageNet

dataset). However, data labelling is a costly, human labour intensive activity. In certain domains such as healthcare and

biomedicine where considerable expertise may be required, data labelling becomes a limiting step in the realisation

of the value of ML. This is also the case for the creation of personalised photo books. For instance, when the system

should learn to differentiate between faces and body shapes of a set of persons in order to select images containing

them or not while the persons may differ per user and photo book. Thus, it is imperative to build ML algorithms which

are capable of learning from significantly fewer labelled samples to save human time.

A set of methods known as active learning [Monarch 2021; Settles 2010] tackle this problem by allowing the system

to identify a subset of maximally informative samples from a given pool of unlabelled data to be queried for additional

labelling/feedback. In the context of IML in this proposal, active learning plays a key role in how a learning system

requests, receives, and learns from user input. In combination with the HCI tasks (section 3.4), this forms a joint task for

mixed-initiative interaction: ML system and human domain expert engage in a two-way dialogue, facilitating learning

from less data compared to the classical approach of passive consumption of labelled data. One direction to explore

are new input techniques that allow users to provide more informative feedback [Ratner et al. 2016], compared to

traditional low dimensional labels.

Popular methods in active learning might be uncertainty-based [Joshi et al. 2009; Konyushkova et al. 2019; Tong and

Koller 2001], density- or diversity-based approaches [Gissin and Shalev-Shwartz 2019; Sourati et al. 2018], ensemble

methods [Beluch et al. 2018; Freund et al. 1997; McCallumzy and Nigamy 1998], and expected error reduction [Roy

and McCallum 2001]. A common problem of pure uncertainty-based methods is that the selection strategy depends

on the performance of an existing model. This could be problematic in the early phase of training since outcomes

are likely to be unreliable, leading the algorithm to query poor examples and thus lead to inefficiencies. Similarly, in

pure density-based approaches data labelling could be redundant if the present model produces already high confident

predictions. Recently, methods have been proposed which try to mitigate this problem by combining and balancing

uncertainty and diversity of the new samples w.r.t. the data distribution [Ash et al. 2020; Huang et al. 2010; Ozdemir



A look under the hood of the Interactive Deep Learning Enterprise (No-IDLE) 13

et al. 2018; Smailagic et al. 2018; Yang et al. 2017]. Bayesian approaches have also been proposed [Gal et al. 2017; Kapoor

et al. 2007; Kirsch et al. 2019], but they do not scale well to deep networks with large datasets. Other recent works

include Fisher information [Ash et al. 2021; Sourati et al. 2018] and learning to select from data [Konyushkova et al.

2017].

We tailor active learning technologies to be applied in No-IDLE in the context of our photo book scenario. The goal is

to train a model that is able to differentiate between individual persons contained in a set of photos with little labelling

effort by the user. The basis for this feature are computer vision models that enable a robust detection and location of

faces and body shapes. For any set of images, these models can provide a pool of unlabelled face and body images. This

is helpful to filter for images showing humans versus, e.g., landscape photos. However, for personalised photo books,

we want the system to be able to differentiate between individual persons to filter for photos with specific persons. For

instance, a user request could be “please add an image of Mary in front of our rental car”. The persons involved may

vary as they are highly dependent on the user and the occasion for creating the photo book. We will (1) implement

and evaluate new sampling techniques/active learning approaches that enable model training with small amounts of

labelled data and (2) investigate when system-initiative feedback requests should be shown and how they should be

designed in order to maintain a good user experience. A good opportunity to trigger a feedback request could be right

after a user takes the initiative to provide a new name (i.e., a label) for a person/face or corrects a label. For instance, if

a user tells the system "this is Mary", the system could query for the most informative unlabelled instances that may

also show Mary like "Ah, this is Mary. I guess, I’ve seen her on other pictures too. Is this Mary again [system shows

another face image]?".

In this proposal, we aim to address the following ML problems:

(1) On the experimental side, we first investigate the performance of existing uncertainty functions for various

neural network architectures on image classification/segmentation tasks (see, e.g., figure 5).

(2) On the experimental side, this point is related to studying if we should only use the DL black box models in the

IML process when we perhaps do not need to. The point brought forward in [Rudin and Radin 2019] is that

one might consider that (in IML) maybe interpretable deep-learning models can be constructed, or transparent

models be used in conjunction with DL models according to the user feedback. In machine learning, these black

box models are created directly from data by an algorithm, meaning that humans, even those who design them,

cannot understand how variables are being combined to make predictions. Also see surrogate models for this

purpose, co-creating a transparent model from the predictions. A global surrogate model is an interpretable

model that is trained to approximate the predictions of a black box model. We can draw conclusions about the

DL black box model by interpreting the surrogate model [Burkart and Huber 2021].

(3) On the practical side including Few-Shot-Learning: the motivation for this ML task comes from MMI (section

3.2), where we want the system to learn new objects during an interactive training session with the user, given

that the user has provided feedback/labels for a few examples. In the literature, this problem could be tackled

using techniques from FSL [Tian et al. 2020]. The main challenge is how to learn a good latent embeddings of

the inputs and the labels, and to align them together in such a way that certain attributes from both inputs and

labels can be transferred to unseen objects.

The research outcomes and main deliverables will include the design of new uncertainty functions, which will be

used in IML-related tasks such as NLP (section 3.1) and MMI (section 3.2). Additionally, together with HCI (section 3.4)

we will promote an active role for the human-in-the-loop: besides providing labels, we want to explore different
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ways of providing/correcting explanations, aligning important features learned by the machine with human intuition,

interpreting learned models, and finding a common ground with general HCI tasks, including a more generic approach

for generating explanations and insights into the effectiveness of few-shot learning.

3.4 Human-Computer Interaction (HCI)

We explore the role of humans in IDL. From our own previous work [Herrlich et al. 2017] and from the literature [Oviatt

2006; Picard 2000; Ryan and Deci 2000], the relevance of motivation, emotion and factors like cognitive load on how

interfaces and systems are used and, consequently, how these factors should be taken into account during interface

design is quite clear. IDL presents both a potential solution and an additional challenge in this regard [Amershi

et al. 2014]. Furthermore, we want to transfer insights from our previous works in the medical domain and virtual

reality. We have studied expert users such as medical doctors
6
and explored VR for IDL, e.g., for image classification

in VR [Prange and Sonntag 2021], and as a general prototyping and evaluation environment for human-centered

interaction design [Klonig and Herrlich 2020; Omar Jubran et al. 2021; Queck et al. 2022; Reinschluessel et al. 2017; Vera

Eymann et al. 2021].

Referring to the example “photo book” application scenario described above, we plan to explore the combination of

VR and IDL as a multi-modal, immersive interaction environment. This environment supports rich data input signals,

for example, gaze and eye tracking, tracking of spatial movements and features such as pointing using a controller

or freehand gestures and recording 3D trajectories over time as well as audio and speech input. It also integrates

multi-modal output signals in the form of 3D graphics, spatial audio and simple forms of tactile feedback. Last but

not least, it provides unlimited virtual space. As we sketched in the application scenario, we want to investigate how

to leverage the potential of VR for IDL but the VR environment also provides an ideal test bed for generating and

comparing data and models to be used in the real world because it is much easier to control and deploy. While existing

works in this area have investigated specific components and tasks of the example usage scenario, e.g., the selection of

aesthetically pleasing photos [Withöft et al. 2022], taking a specific look at the human factors with respect to the rich

input and output modalities within virtual reality is a novel idea and has not been explored in the context of IDL to the

best of our knowledge.

From an HCI perspective, the goals can be summarised as exploring new ways for learning systems to interact with

their users, namely: (1) how user-driven learning cycles can involve more rapid, focused, and incremental model updates;

(2) how to reduce the need for supervision by ML practitioners; (3) As a result of these rapid interaction cycles common

in IML, even users with little or no machine-learning expertise should be able to steer machine-learning behaviours

through low-cost trial and error or focused experimentation with inputs and outputs. How can this be supported

from the HCI perspective? (4) Transparency can help provide better labels (contextual features, ML predictions, etc.)

towards explainable IML. The experimental setup should include explainable IML, where the user feedback is derived

after the system explains its results, to avoid “right answers for the wrong reasons”, see, e.g., [Anders et al. 2022].

(5) Understanding how people actually interact—and want to interact—with machine-learning systems is critical to

designing systems that people can use effectively [Simard et al. 2017].

More specifically, we plan to study basic properties like mental and physical load, attention split problems, confusion,

and emotional affect. These provide the foundation to investigate more complex effects regarding user intention and

strategies, trust, and confidence in using the system. Furthermore, we expect a large impact of explainability techniques

6
https://medicalcps.dfki.de/wp-content/uploads/2017/08/KDI_V2_Pro_v04_2.mp4

https://medicalcps.dfki.de/wp-content/uploads/2017/08/KDI_V2_Pro_v04_2.mp4
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on these factors. We plan to experiment with different graphical and textual or spoken explanations. By studying these

factors from the user’s perspective we intend to optimise the effectiveness of active learning techniques.

We plan to run comparative studies within VR, for example, exploring different interaction designs, information

presentation and DL techniques. The idea is to measure human factors as listed above, e.g., cognitive load, but also

other factors of the user experience, such as emotional affect and motivational measures such as user engagement and

study their impact on active learning efficiency and effectiveness.

Considering the potential effect of user motivation, experimenting with forms of gamification [Deterding et al.

2011a,b] and serious games within the framework of the example scenario seems relevant. One approach in that regard

will be to turn the respective task, e.g., finding photos with certain contents, describing a picture, sorting or clustering

pictures, inserting a missing or best fitting picture into visual photo book story, into challenges by introducing a

time limit (soft or hard), rewards (short, mid, long term) and potentially forms of social relatedness (synchronous or

asynchronous forms of multi-player). Gamification could also be used to provide a measurement of the quality of the

DL model by using it to acquire user ratings of the overall output.

As a side note, to facilitate user participation in our experiments, we plan to set up an open lab space in the centre of

the city of Oldenburg (in the CORE Oldenburg) to increase participation and recruit volunteers with diverse demographic

backgrounds.

The main deliverables in this area are:

(1) Implementation of different interaction modalities within virtual reality, e.g., free hand gestures vs. controller

based selection or manipulation vs. NLP and possible combinations.

(2) Studies about the influence of conscious and unconscious gestures, e.g., certain movements or posture that relate

to confusion or decision insecurity; gaze or eye tracking (here there is a very strong link to multimodality).

(3) Implementation of different feedback forms and modalities to encode information about the DL results and

decision process, from “simple” visual features (colour, location, etc.) to audio or tactile channels.

(4) Concepts and studies of the effect of more playful approaches (serious games and gamification) with respect to

user motivation and user feedback quality and quantity for IDL.

3.5 Evaluation Plan

In this subsection we provide details about our general evaluation process and study plan. Of course, due to the novelty

of the research, the plan will have to be adjusted throughout the project as it depends on the progress and results of the

technical parts and work packages. We want to emphasise that the guiding overall focus of all evaluation activity is

to investigate and improve the IDL process as discussed in the specific subsections, e.g., how can the observed user

behaviour and user experience be utilised as a means for improving efficiency and effectiveness of IDL. This also is

reflected in the way that VR is used within this project, i.e., as powerful tool for studying user behaviour and collecting

data using photo book creation as an example application as opposed to investigating the use of VR for photo book

creation, which is explicitly not a focus point of this project.

Firstly, we plan to conduct a number of smaller studies that look at very specific aspects and that lay the foundation

for a larger study towards the end of the project. At the beginning, we will focus on fundamentals and isolated elements

and shift to investigating more complex combinations of system features and tasks over time. This will also be reflected

in the methods we apply. At the beginning we will employ methods of a more exploratory and formative type, for
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instance, case studies using methods such as interviews, cognitive walk-troughs, think-aloud, observation and forms of

moderated discussion. Of course, this does not exclude also collecting quantitative data already in this phase if possible.

The main study approach of a more summative character will be using an experimental setup comparing two

conditions (control + intervention) or (if applicable) a factorial design with up to three or four conditions using

appropriate tools and collecting quantitative measures like completion times, labelling accuracy in addition to (preferably

validated) questionnaires for subjective feedback especially for measuring user experience and usability, e.g., SUS [Brooke

1986], PANAS-X [Watson and Clark 1994] and other SDT-based [Ryan and Deci 2000] tools related to motivation and

also physical and mental load (e.g., NASA-TLX [Hart 2006; Hart and Staveland 1988]).

The final decision for the experimental design with respect to independent or dependent groups (within-subjects

vs. between subjects design) hinges on factors like the expected learning effect vs. fatigue effects and is subject to the

specific experimental design for each study based on testing and pre-studies to quantify these confounding effects.

In addition, the VR setup in particular but also the eye-tracking scenario provide unique opportunities to collect

objective data, most importantly, eye-tracking and movement data, e.g., trajectories of the controllers. We will also look

into additional psycho-physiological measures, such as heart rate that are relatively easy to measure with off-the-shelf

wearables.

We will base the number of participants on comparable studies and standards in HCI, typically in the range of 20-80

participants per experiment. The general experimental procedure includes the following steps:

(1) Introduction and welcome of participants and collecting their informed consent.

(2) A training or accommodation phase, which is especially important in the VR case.

(3) A calibration phase or procedure, which can also include collecting base levels of certain measures.

(4) The main part, i.e., participants perform specified tasks under different conditions, e.g., different forms of visual

feedback, input gestures or active learning prompts. Some data are collected continuously through logging

other data (e.g., subjective feedback) are collected after each condition (in accordance to the respective measure

or questionnaire).

(5) Collection of post-experimental and independent data (e.g., demographics).

(6) De-briefing and “Goodbye”.

Throughout the procedure participants will be able to take breaks as needed (especially in the VR scenario) and we

will adhere to scientific standards including getting approval of the DFKI ethics committee. The statistical analysis of

individual measures will be carried out using linear models such as ANOVA for comparing means or non-parametric

tests like Friedman [Cairns 2019]. In addition, forms of time series analysis and clustering will be looked into for

analysing and correlating spatial measures such as body, hand, or controller movements. We will also consider post-hoc

experiments based on recorded user inputs to test additional IML approaches. This can be done by simulating the

interaction signals of our study participants if the model outputs have no immediate impact on the interaction flow.

4 EXISTING HARDWARE AND SOFTWARE FRAMEWORKS AT DFKI IML

By harnessing the power of foundation models [Ali et al. 2019], i.e., any ML model which is trained on a large-scale

dataset and can be adapted to a wide range of downstream tasks, the research community is optimistic about their

social applicability [Bommasani et al. 2021], especially in the healthcare discipline with integrated human interaction.

Especially, patient care via disease treatment usually requires expert knowledge that is limited and expensive. Foundation

models trained on the abundance of data across manymodalities (e.g., images, text, molecules) present clear opportunities
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to transfer knowledge learned from related domains to a specific domain and further improve efficiency in the adaptation

step by reducing the cost of expert time. As a result, a fast prototype application can be employed without collecting

significant amounts of data and training large models from scratch. In the opposite direction, end-users who will directly

use or be influenced by these applications can provide feedback to power these foundation models toward creating

tailored models for the desired goal of IDL, based on DFKI IML’s existing software frameworks: [Nguyen et al. 2020;

Nunnari and Sonntag 2021; Sonntag et al. 2020; Zacharias et al. 2018].

The planned multimodal multisensor interfaces in No-IDLE will be based on the multisensor-pipeline (MSP)
7
, our

lightweight, flexible, and extensible framework for prototyping MMI based on real-time sensor input [Barz et al. 2021a].

The MSP ecosystem will benefit from the developments in No-IDLE, because novel modules will be released as open

source to the research community. No-IDLE will take advantage from recent and upcoming developments in the BMBF

Project GeAR
8
(ends in September 2022): we are developing methods that reduce the human effort in the process of

annotating mobile eye tracking data as described in [Barz and Sonntag 2021]. In GeAR, we target semi-automatic

annotation for analytical applications (post-hoc) rather than real-time interactive model training, which is integrated

into the application itself.

5 EXISTING APPLICATION DOMAINS AND DEMO SCENARIOS AT DFKI IML

We build the MMI and HCI components of this project upon four past application domains and demo scenarios, which

we detail in the respective figure captions:

• Interactive Doctor Feedback (use case from BMBF Ophthalmo-AI
9
) project (see figure 5)

• Interactive Image Classification in VR (see figure 6)

• Explanatory IML (use case from XAINES project, see figure 7): In XAINES, we develop models that provide

explanations for predictions in an explanation-feedback loop, which can serve to improve the model based on

human feedback, and to personalize explanations. These models will serve as a starting point for developing

interactive DL models for the No-IDLE photo book use case.

• The multimodal interaction systems in No-IDLE will be build based on our experience and outcomes from

recent research projects (SciBot, GeAR). This includes methods for real-time interpretation of multimodal

sensor streams such as mobile eye tracking data [Barz et al. 2022, 2021b; Barz and Sonntag 2021; Barz et al.

2020b; Bhatti et al. 2021; Kapp et al. 2021] (for an example, see figure 8), but also pen-based input signals [Barz

et al. 2020a]. In addition, we will use and further develop our framework for building multimodal, real-time

interactive interfaces, the multisensor-pipeline [Barz et al. 2021a].

6 CONCLUSION

We presented the anatomy of the No-IDLE prototype system (funded by the German Federal Ministry of Education

and Research) and described basic and fundamental research in interactive machine learning while addressing users’

behaviours, needs, and goals. We decribed goals and scienfific challenges that centre around the desire to increase

the reach of interactive deep learning solutions for non-experts in machine learning, followed by a methodology for

interactive machine learning combined with multimodal interaction which will become central when we start interacting

with semi-intelligent machines in the upcoming area of neural networks and large language models. Future work

7
https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline

8
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/gear

9
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/ophthalmo-ai

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/gear
https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/ophthalmo-ai
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Fig. 5. High level overview of our proposed method in the IDL workflow of the Ophthalmo-AI project (BMBF). Given a retinal image,

our DL models will generate 3 types of predictions (DR grade, lesion region, visual explanation) simultaneously. Ophthalmologists

can observe the predictions and provide feedback for model fine-tuning.

ℝ4096

fc7
ℝ1000

final layer

AlexNet

PCA t-SNE
ℝ4096 ℝ50 ℝ3

image classification

interactive re-positioning

fine-tuning

virtual reality

Fig. 6. Architecture of our approach in [Prange and Sonntag 2021] based on PCA and t-SNE dimensionality reduction. Based on a

pre-trained AlexNet we calculate 3D coordinates for each image. In VR, information related to a particular image is displayed if the

user looks at it.

includes "No-IDLE meets ChatGPT". The overall objective of this follow-up project will be to leverage the opportunities

arising from large language models and technologies for the No-IDLE project. No-IDLE aims to enhance the interaction

between humans and machines for the purpose of updating deep learning models, integrating cutting-edge human-

computer interaction techniques and advanced deep learning approaches. Considering the recent advances in LLMs

and their multimodal capabilities, the overall objective of "No-IDLE meets ChatGPT" should be well motivated.
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Visual explanation:

Natural Language Inference (NLI) Commonsense Reasoning Visual Question Answering (VQA)

P:A 2-3 year old blond child is kneeling  
    on a couch.

H:The child has brown hair.

→ Contradiction

The child would not have brown 
hair if he/she was blond.

Question: What would not be true 
about a basketball if it had a hole in it 
but it did not lose its general shape?

A: punctured, B: full of air, C: round

→ Answer B

Air cannot stay in any object 
that has a hole in it.

Image:

Question: What is the person doing?

→ Skiing

… because they are on skis and in 
a skiing outfit. 

D
at
a

Ta
sk

Ex
pl
.

Fig. 7. Examples of existing datasets with human explanations for natural language inference [Camburu et al. 2018], commonsense

reasoning [Rajani et al. 2019], and visual question answering [Park et al. 2018a]. Explanations are either free-form (bottom line) or

subsets of the input data (highlights in blue). These datasets can be used for both learning to generate natural language explanations

as well as simulating explanatory feedback fed to the model in the sense of explanatory IML, see [Teso and Kersting 2019], where in

each human-in-the-loop step, the learner explains its prediction to the user, and the user can provide explanatory feedback back to

the model in order to improve it. Whereas explanatory IML mainly focuses on correcting right for the wrong reason behaviour, we we

will also explore how to use explanatory feedback to adapt models to user-specific input data.

Fig. 8. Our prototype based on Microsoft’s HoloLens 2 classifies and augments fixated objects in real-time [Barz et al. 2021b]. It

displays classification labels and the duration of recent attention events to the user as a hologram. The demo video can be viewed here:

https://www.youtube.com/watch?v=bdNClVz9ylE. In No-IDLE, we plan to enable interactive model adaptation based on foundation

models: For instance, the user could create a specific instance of "reflex camera" and name it "Nikon camera" via speech (as shown in

the image). This is related the COPDA project which aims to establish and maintain object relations like ownership. Other examples

include that users may correct wrong classifications or teach new classes to the ML system in a mixed-initiative dialogue.
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