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Abstract
As data-driven AI systems become increasingly integrated into industry, concerns have recently arisen regarding potential
privacy breaches and the inadvertent leakage of sensitive user data through the exploitation of these systems. In this paper, we
explore the intersection of data privacy andAI-powered document analysis systems, presenting a comprehensive benchmark of
well-known privacy-preservingmethods for the task of document image classification. In particular, we investigate four differ-
ent privacymethods—Differential Privacy (DP), Federated Learning (FL), Differentially Private Federated Learning (DP-FL),
and Secure Multi-Party Computation (SMPC)—on two well-known document benchmark datasets, namely RVL-CDIP and
Tobacco3482. Furthermore, we investigate the performance of each method under a variety of configurations for thorough
benchmarking. Finally, the privacy strength of each approach is assessed by subjecting the private models to well-known
membership inference attacks. Our results demonstrate that, with sufficient tuning of hyperparameters, Differential Privacy
(DP) can achieve reasonable performance on the task of document image classification while also ensuring rigorous privacy
constraints, both in standalone and federated learning setups. On the other hand, while FL-based approaches present less
implementation complexity and incur little to no loss in performance on the task, they do not offer sufficient protection
against privacy attacks. By rigorously benchmarking various privacy approaches, our study paves the way for integrating deep
document classification models into industrial pipelines while meeting regulatory and ethical standards, including GDPR and
the AI Act 2022.
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1 Introduction

The rapid evolution of artificial intelligence (AI), notably
in computer vision [1, 2] and natural language processing
[3, 4], has revolutionized the field of document analysis,
with modern Deep Learning (DL)-based systems deliver-
ing superhuman performances across a row of document
understanding tasks [5–9]. Simultaneously, however, con-
cerns have been raised about potential privacy breaches and
the inadvertent leakage of sensitive user data through the
widespread use of such data-driven AI systems [10–15].

Numerous recent studies [12, 15–17] have shown that,
when not trained with rigorous privacy constraints, deep
learning (DL) models can readily become sources of infor-
mation leakage. Reconstruction of the training data statistics
[15, 18], inferring whether a sample comes from the training
data distribution [12–14], or model stealing [19, 20] are just a
few examples of potential privacy violations. If deep models

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-024-00469-8&domain=pdf


S. Saifullah et al.

with such vulnerabilitieswere to be directly trained onprivate
document data, which often contains sensitive information—
such as names, addresses, contact details, social security
numbers, financial particulars, and, most critically, an orga-
nization’s intellectual property—they could potentially be
exploited, leading to significant harm to individuals or orga-
nizations. As a result, the integration of these models into
industry and their adherence to regulatory and ethical stan-
dards, such as GDPR [21] and the AI Act 2022, still faces
substantial obstacles.

To address the aforementioned privacy challenges in AI-
powered systems, a number of privacy-preserving approaches
have been recently developed [22–28]. Most notably, Differ-
ential Privacy (DP) [22], Federated Learning (FL) [23, 24],
have demonstrated promising results across various appli-
cation domains such as medical imaging [29], time series
analysis [26], and natural language processing (NLP) [13,
14, 18, 30]. In the context of document AI, such privacy tech-
niques may be applied under different settings. For instance,
an organization providing document AI services may train
the models under global privacy constraints [22, 30] to safe-
guard its own private data, or under local privacy constraints
[31, 32], where each individual client only uploads a pri-
vate augmented data to the service, leaving no fingerprint
that can be traced to the client. On the other hand, federated
learning [23, 24] may be deployed for private aggregation
of data across multiple organizations or clients. In this sce-
nario, each party organization only locally trains the model
and uploads it to a global service provider, thus keeping its
own data on-site.

In this paper, we focus on document image classification,
a fundamental component of modern document processing
pipelines [5, 6, 33, 34], typically employed at an initial stage
to categorize or filter the documents prior to further process-
ing. NumerousDL-based classificationmodels [5–7, 33–36],
have been proposed in recent years for this task, showcasing
extraordinary performance gains as compared to their tra-
ditional counterparts [37, 38]. However, these models are
also data-driven, relying on unaltered document images as
input, and thus could easily become the target ofmembership
inference [12] or model inversion attacks [15]. In addition,
the unintentional memorization [17] of training samples in
these models could directly expose information about the
training dataset. Surprisingly, while a plethora of research
has been conducted on both document classification [5, 6,
35] and privacy in textual documents [13, 14, 18, 30], we
found no existing literature in the field that addresses the
issue of data privacy and potential information leakage from
AI-powered document image classification systems. In this
work, therefore, we investigate the potential of latest pri-
vacy preservation techniques [22, 23, 26, 28] in combination
with state-of-the-art DL-based document image classifica-
tion models to assess whether they can achieve sufficient

utility under strong privacy constraints. The main contribu-
tions of this paper are two-fold:

• We present a comprehensive performance benchmark of
four different state-of-the-art privacy methods—Differ-
ential Privacy (DP), Federated Learning (FL), Differen-
tially Private Federated Learning (DP-FL), and Secure
Multi-Party Computation (SMPC)—on two prominent
document benchmark datasets, RVL-CDIP and Tobacco
3482, for the task of document image classification. To
the best of authors’ knowledge, this is the first work in
this direction.

• In an extensive analysis, we assess the aforementioned
privacy approaches for the task of document image clas-
sification under a variety of settings, evaluating their
performance, practical feasibility, robustness to mem-
bership inference attacks (MIA), and impact on model
explainability.

2 Related work

2.1 Privacy preservingmachine learning (PPML)

Privacy Preserving Machine Learning (PPML) has garnered
significant attention in recent years, with numerous studies
exploring both the vulnerability of deep networks to privacy
attacks and developing safeguards in response.

2.1.1 Privacy attacks

The three most prominent types of privacy attacks are model
inversion [15, 18], membership inference [12], and model
extraction [19, 20].

Model Inversion: Model inversion attacks [15] may be
employed to reconstruct the training dataset statistics by uti-
lizing the model confidence information; for instance, by
applying this attack to a face recognitionmodel, Fredrikson et
al. [15]were able to reconstruct the faces of individuals based
on their associated identity labels. Similarly, Coavoux et
al. [15] demonstrated how a malicious eavesdropper may
recover information about sensitive private data samples
from their neural representations. Taking a step further,
Hitaj et al. [16] proposed a generative model capable of
reconstructing the training data in a collaborative learning
environment.

Membership inference: Shokri et al. [12] introduced
membership inference attacks (MIA) for machine learning
models, the goal of which is to determine whether a par-
ticular sample was part of the model’s training set. They
further demonstrated that MIAs can be successfully applied
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to DL models, even with only a black-box access to the tar-
get model, achieved by training multiple shadowmodels that
mimic the target model. A number of derivative works have
further explored membership inference attacks in other tasks
[10, 13, 14].

Model Extraction: Tramèr et al. [20] proposed model
extraction attacks for machine learning models, aiming to
steal the weights of target models by performing multiple
queries on them. Other works have extended this approach
to steal the training hyperparameters [39]. In a slightly dif-
ferent direction, Milli et al. [19] recently demonstrated how
gradient-based explanations of DL models may also be uti-
lized to extract model parameters.

2.1.2 Privacy defenses

Numerous methods have been developed recently to protect
against the aforementioned privacy attacks. Traditionally,
data anonymization [40] was a common approach for pro-
tecting an individuals’ information. However, this method
has proven to be insufficient in safeguarding against themore
recent re-identification attacks [10]. Recently, Mohassel et
al. [27] proposed a two-server model that utilizes securemul-
tiparty computation (SMPC) to train neural networks over
multiple partitions of the dataset. Similarly, Knott et al. [28]
introduced an SMPC framework for DL models that allows
the encryption of both models and data frommultiple parties
through secret sharing.

One of the most prominent techniques to safeguard
against privacy attacks is Differential Privacy (DP) [41],
which, by definition, offers strong privacy guarantees against
membership inference [12] and linkage attacks used for de-
anonymization [10]. To implement Differential Privacy (DP)
in a deep supervised learning setting, Abadi et al. [22] pro-
posed DP-SGD, a machine learning optimization method
that ensures strict privacy guarantees during model training.
Several derivatives of DP-SGD [30, 42] have recently been
proposed, aiming to enhance the technique to increase model
efficiency while maintaining robust privacy constraints.

Federated Learning (FL) [23] is another popular approach
to privacy preservation. In FL, the optimization of a machine
learning model is distributed among multiple parties, allow-
ing them to keep their data confidential while safely con-
tributing it to model training. FL has been combined with DP
inmultiple derivative works [25, 26] to provide even stronger
privacy constraints. For a detailed overview of different types
of privacy attacks and defenses, we refer the reader to related
surveys [10, 11].

2.2 Document image classification

There is extensive literature on the subject of document image
classification. Early work in this area mainly focused on
exploiting structural similarity [43], feature matching [37],
or classical machine learning approaches such as K-Nearest
Neighbors [44] or Hidden Markov Models [38] to distin-
guish between different classes of documents. For a detailed
overview of classical techniques, we refer the reader to a
related survey [45].

With the advent of deep learning, the field of document
image classification has experienced significant improve-
ment, recently witnessing a surge in both image-based
unimodal [5, 6, 33] and multimodal techniques [7, 36, 46,
47]. Afzal et al. [5] were the first to achieve breakthrough
performance in document image classification by leveraging
the potential of transfer learning in conjunction with deep
convolutional neural networks (CNNs). Ferrando et al. [6]
leveraged recent advances in convolutional neural networks
along with parallel training techniques in deep learning to
significantly improve performance in image-based classifica-
tion. Saifullah et al. [35] recently introduced DocXClassifier,
a state-of-the-art transformer-inspired CNN that not only
attains the highest performance in image-based classification
but also possesses the property of being inherently explain-
able. Recent works [48, 49] have also explored the use of
Vision Transformers (ViTs) [50] for the document image
classification task but have found it challenging to surpass
CNNs using basic training approaches, even on sufficiently
large datasets. However, a recent study [51] has shown that
extensive pre-training enables ViTs to achieve performance
levels comparable to those of CNNs but at the cost of addi-
tional training and increased complexity.

In the multimodal domain, document classification meth-
ods typically involve preprocessing documents to extract the
layout and textual content from the images. Subsequently,
visual, textual and layout features are utilized in combina-
tion to perform the classification task. Several approaches,
including multi-stream models [46, 47] and transformer-
based models [7, 36, 52], have recently been proposed in
this area, demonstrating exceptional performance improve-
ments.

Despite numerous advances in the field, there is a scarcity
of literature actively addressing the problem of privacy
preservation in both image-based and multimodal document
classification. Moreover, we suspect that multimodal tech-
niques, which extract both image and text data from the
input, will open up new opportunities for various types of
privacy attacks to extract information. Therefore, it is now
of paramount importance to explore state-of-the-art privacy
protection methods in this area, ensuring that existing and
future document image classification systems can be safely
deployed.

123



S. Saifullah et al.

Fig. 1 An overview of standalone privacy techniques, differential pri-
vacy (DP) and secure multiparty computation (SMPC) in comparison
to standard model training

3 Methods

In this section, we briefly describe the different privacy
preservation techniques that we have investigated in this
study.

3.1 Differential privacy (DP)

Differential privacy (DP) [41] provides a formal definition
for information release from an algorithm and, by definition,
offers rigorous privacy guarantees against various types of
privacy attacks [12, 15]. In this work, we focus on example-
level privacy under the global approximate-DP (also known
as (ε, δ)-DP) setting, formally defined as follows:

Definition 1 A randomized algorithm M : D → R with
domain D and range R is (ε, δ)-differentially private if for
all S ⊆ R and for all datasets D, D′ ∈ D that differ at most
in one record:

P[M(D) ∈ S] ≤ eε
P[M(D′) ∈ S] + δ

where the term P[M(D) ∈ S] refers to the probability that
the output of the algorithm M when applied to the dataset
D lies in the subset S. Note that this a general definition
of (ε, δ)-DP and may be applied to any kind of randomized
algorithmM and datasetD, both which may vary under dif-
ferent settings. Similarly, the definition of adjacency between

the datasets D, D′ may also vary between tasks. In this work,
since we are dealing with a classification task that involves
image-label pairs, we consider two datasets as adjacent if
they differ only in a single image-label pair, similar to the
previous work [22].

Intuitively speaking, the above definition of DP ensures
that any output generated by the algorithm M on similar
inputs (D, D′) is difficult to distinguish. Meanwhile, the
magnitude of this indistinguishability is captured by the two
privacy parameters ε and δ, with ε denoting the upper bound
on the overall privacy leakage and δ representing the prob-
ability of failure in preserving this bound. Consequently,
smaller values of the pair (ε, δ) indicate stronger privacy
guarantees.

3.1.1 DP-SGD

For the practical implementation of global approximate-DP
in a machine learning setting, Abadi et al. [22] proposed
the Differentially Private Stochastic Gradient Descent (DP-
SGD) optimization algorithm, which ensures example-level
privacy under (ε, δ)-DP during the training process of a
machine learningmodel. This is achieved by first clipping the
per-example gradients of the training samples to a fixed norm
C and then adding Gaussian noise n ∼ N (0, σ 2C2) to the
gradients during the model optimization step, ensuring that
themodel’s overall dependence on each input sample remains
minimal. Where the noise multiplier σ determines the pri-
vacy strength, with higher values corresponding to lower ε.
Its value is generally determined based on the available pri-
vacy budget (ε, δ), the privacy accountant [22, 53–55] which
tracks the privacy loss ε, total number of optimization steps
T , and the data sampling rate q.

For the image classification task, apart from differences in
the optimization step, the training routine in DP-SGD largely
remains the same as that of the standard supervised setting,
including the input, target, model, and loss function (see
Fig. 1). However, unlike standard supervised learning, where
samples are randomly drawn from the dataset using a uniform
distribution, DP-SGD [22] employs Poisson sampling, in
which each sample is independently drawn from the dataset
with a fixed sampling rate q = B

‖D‖ , where B is the train-
ing batch size, and D is the training dataset. Note that while
initially designed for the standard SGD optimizer, extending
DP-SGD [22] to other machine learning optimizers, such as
Adam [56], is straightforward. For a complete pseudocode
of the DP-SGD/Adam algorithm, refer to Appendix A.2.1. In
this work, we investigated both DP-SGD and DP-Adam for
various deep learning models for the task of document image
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Fig. 2 An overview of the federated learning-based privacy techniques,
federated averaging (FedAVG), federated ensembling (FedENS), and
federated differential privacy (FedAVG-DP)

classification. For the practical implementation of these algo-
rithms, we utilized the Pytorch Opacus1 [57] library in this
work.

3.2 Federated learning

Federated Learning (FL) represents a class of privacy-
preserving techniques designed to train a centralizedmachine
learning model in a distributed manner. This is achieved
by executing model optimization updates across multiple
remote clients while keeping the local data of each client pri-
vate. One such algorithm is Federated Averaging (FedAVG)
[23], which allows each client to safely contribute its private
data to the trainingof a global centralizedmodel.Given a total
number of Nc clients contributing their data to the training
process, in each training round of the FedAVG algorithm, a
subset fc of clients is randomly sampled to perform Elocal

local training epochs to train the localmodels. Theweights of
the localmodels are then sent to the central server, averaged to
obtain the global model, and then sent back to the clients for
the next round of local training. To assess the effectiveness
of the FedAVG algorithm, we explored various configura-
tions in this work, involving the total number of clients Nc,
the fraction of sampled clients fc, and the individual training
hyperparameters.

1 https://github.com/pytorch/opacus.

In addition to FedAVG, we also assessed the performance
of Federated Ensembling (FedENS) [26] in this work. In the
FedENS algorithm, each client trains its local model on its
respective local dataset using a standard training procedure.
Subsequently, model ensembling is carried out on the result-
ing local models to evaluate their performance on the global
test dataset. In this work, we performed model ensembling
using weighted softmax averaging over the model outputs,
with each model’s weight assigned proportional to its perfor-
mance on the corresponding local validation set.

Finally, we also investigated a combined setting of
FedAVG with Differential Privacy (DP), namely FedAVG-
DP, with several configurations. This approach provides even
stronger privacy constraints by not only ensuring that the
local data of each party remains on-site, but also guaran-
teeing that their respective gradient updates remain private.
A comparison of the various federated learning approaches
investigated in this work is illustrated in Fig. 2. For the prac-
tical implementation of FL-based algorithms, we utilized the
Flower Federated Learning Framework2 [58]. The complete
pseudocodes of all three algorithms FedAVG, FedENS, and
FedAVG-DP are provided in Appendix A.2.2.

3.3 Securemultiparty computation (SMPC)

Secure Multi-Party Computation (SMPC) enables multiple
parties to perform computations on shared data through
secret-sharing while maintaining the privacy of each indi-
vidual party’s data. SMPC holds significant potential for
deep learning applications in collaborative environments, as
it facilitates encrypted training and evaluation of machine
learning models among multiple parties. Knott et al. [28]
recently introduced CrypTen, a well-established frame-
work for integrating SMPC-based encryption with stan-
dard Pytorch models. In this work, we specifically utilized
CrypTen [28] to investigate SMPC in the context of model
hiding. In model hiding, the model is first trained using a
standard training procedure and then encrypted using secret-
sharing, as illustrated in Fig. 1. When a client requires access
to the model for making predictions on its own data, it also
encrypts the data before sending it to the model, and in
return receives an encrypted result from the model, which
can then be safely decrypted by the client. A major advan-
tage of SMPC-basedmodel hiding compared to other privacy
approaches is that the training procedure remains unchanged,
and any pre-trained model can be easily encrypted. In this
work, we investigated the overall impact of encryption on the
classification performance and inference time of the models.

2 https://github.com/adap/flower.
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4 Experiments and results

In this section, we present the results of our experiments
conducted in this work to assess the performance of different
privacy preservationmethods for the task of document image
classification.

4.1 Datasets

To thoroughly investigate the performance of different pri-
vacy preserving approaches, we conducted our experiments
on two publicly available datasets, namely RVL-CDIP [34]
and Tobacco34823, both of which have been extensively uti-
lized in the field of document image classification [5, 6, 34]
for benchmarking the performance of deep document clas-
sification models. RVL-CDIP [34] is a large-scale document
dataset which consists of 400K labeled document images dis-
tributed across 16 document categories and has a balanced
class distribution. The dataset is partitioned into training,
testing, and validation sets of sizes 320K, 40K, and 40K,
respectively. Tobacco3482, on the other hand, is a com-
paratively small-scale dataset, consisting of 3482 labeled
document images grouped into 10 classes and featuring an
imbalanced class distribution. In this work, we partitioned
the dataset into training, testing, and validation sets of sizes
2504, 700, and 278, respectively.

4.2 Models

To perform a comprehensive comparative analysis of differ-
ent privacy preserving approaches with standard non-private
training, we investigated a total of 8 deep learning models,
including state-of-the-art models which have been shown to
perform exceptionally well on the document image classifi-
cation task in the past. From the work of Afzal et al. [5], we
investigated the following models: AlexNet [59], ResNet-50
[1], and VGG-16 [60]. From the work of Ferrando et al. [6],
we investigate the EfficientNet-B4 [61], which showed the
highest performance on the RVL-CDIP [34] dataset at the
time. From the work of Saifullah et al. [35], we inves-
tigated both ConvNext-B [2] and DocXClassifier-B [35]
models, which demonstrate the current state-of-the-art per-
formance in image-based document classification on both
RVL-CDIP [34] and Tobacco3482 datasets. Finally, since
Vision Transformers (ViTs) have also been explored in mul-
tiple recent studies [48–51] and show promising results, we
also investigated two standard ViTs—namely, ViT-B/16 [50]
and ViT-L/32 [50]—to assess their performance in compar-
ison to the CNN architectures under private training.

3 https://www.kaggle.com/datasets/patrickaudriaz/tobacco3482jpg.

4.3 Training setup

To reproduce the performance of the models under non-
private setting and to train the models under DP-excluded
federated learning setups, we adopted the same training
configurations as proposed in the original studies [5, 6,
35]. In particular, to train AlexNet [59], VGG-16 [60], and
ResNet-50 [1], we initialized the models with ImageNet [62]
pre-trained weights and then fine-tuned them on the target
document datasets (RVL-CDIP [34] or Tobacco3482) with
SGD optimizer and input images resized to a fixed resolution
of 224 × 224. When training ViTs (ViT-B/16 [50] and ViT-
L/32 [50]), we maintained the same approach but employed
the Adam optimizer. EfficientNet-B4 [61] was also trained
in a similar fashion but with a multi-GPU setting and input
images of resolution 384× 384, following the approach out-
lined by Ferrando et al. [6]. Finally, for the ConvNext-B [2]
andDocXClassifier-B [35]models,we employed the training
strategy proposed in [35], which involves training the mod-
els with Adam optimizer, images of resolution 384 × 384,
and advanced regularization and data augmentation strate-
gies applied during the process.

For experiments involving DP, we excluded all types of
data augmentation and regularization techniques from the
training process since the noise added by DP-SGD/Adam
itself acts as a strong regularizer. Consquently, all the models
were trained with the same setup, except for the image res-
olutions, which remained consistent with those used in non-
private training. Furthermore, given previous findings that
domain-specific pre-training in a DP environment can yield
significant performance improvements [63], we investigated
private training on the Tobacco3482 dataset under two set-
tings: Tobacco3482ImageNet and Tobacco3482RV L−CDI P .
In the Tobacco3482ImageNet setting, models were
initialized with ImageNet pre-trained weights, while in the
Tobacco3482RV L−CDI P setting, they were initialized with
RVL-CDIP [34] pre-trained weights in order to assess the
effectiveness of document-specific pre-training in enhancing
the utility of private training.

4.4 Evaluating differential privacy (DP-SGD/Adam)

4.4.1 Experimental setup

In this experiment,we trained all themodels on target datasets
(RVL-CDIP [34] and Tobacco3482) under differential pri-
vacy (DP), utilizing either the DP-SGD or DP-Adam algori
thm—whichever proved best suited for the specific model
architecture—as explained in Sect. 3.1.1. To track privacy
loss, we employed the Rényi Differential Privacy (RDP)
accountant [54] and searched for the noisemultiplier σ based
on the maximum target privacy budgets of εtarget ∈ {5, 10}
and δ = 1

‖D‖ over a fixed number of training epochs,
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where D is the target training dataset. For details on various
types of privacy accountants and their significance, refer to
Appendix A.1. Since it has been shown in multiple previous
works that the DP-SGD/Adam algorithm is highly sensitive
to the choice of hyperparameters [14, 30], such as the learn-
ing rate η, batch size B, and gradient clipping norm C , we
determined the best set of hyperparameters for differentmod-
els using a grid-search, the details of which are presented in
Sect. 4.5. In addition, since training the models under DP
necessitates the removal of batch normalization layers (BN),
we substituted these layers with group normalization (GN)
wherever necessary. We trained all the models for a fixed
number of target epochs and report the test accuracy and
privacy loss ε of the models that performed the best on the
respective validation sets.

4.4.2 Experimental results

The results of these experiments are summarized in Table 1.
For eachmodel and dataset, we present the accuracy achieved
by the baseline models, as well as the best accuracy and ε

achieved under the DP settings εtarget ∈ {5, 10}.
Results on RVL-CDIP: It is evident that, with ImageNet pre-
training on RVL-CDIP, achieving strong privacy constraints
was accompanied with a significant loss of performance
across all models. Interestingly, it can be observed that the
larger CNNs, including VGG-16 [60], ConvNext-B [2], and
DocXClassifier-B [35], slightly outperformed the smaller
CNNs and showed comparable performance to each other for
the εtarget = 5 setting. However, for slightly less rigorous
privacy constraints with εtarget = 10, it can be noticed that
the ConvNext-B [2], and DocXClassifier-B [35] performed
considerably better than all other models. In addition, it can
be noticed that the DocXClassifier-B [35] model converged
much faster in this setting with a much lower privacy loss of

ε = 6.7 compared to other models. It is also noticeable that
EfficientNet-B4 [61] performed considerably worse than the
others for both εtarget = 5 and εtarget = 10 settings, possi-
bly due to the substitution of BN layers with newly initialized
GN layers. Notably, ResNet-50 [1], despite also undergo-
ing BN layer replacement, seemed to be less impacted in
terms of its performance. Finally, it can be observed that,
despite achieving comparable performance to CNNs under
non-private training, ViTs severely underperformed under
both DP settings.

Results on Tobacco3482ImageNet: In the Tobacco
3482ImageNet setting, a similar trend was observed, with
ConvNext-B [2] and DocXClassifier-B [35] models exhibit-
ing comparably better performance under both settings:
εtarget = 5 and εtarget = 10. On the other hand, it is notice-
able that the ResNet-50 [1] and EfficientNet-B4 [61] models
performed extremely poorly in this scenario, again due to
the substitution of the BN layers. Moreover, ViTs once again
exhibited subpar performance in comparison to the CNNs
under bothDP configurations.Overall, the performance dete-
rioration induced by DP was notably significant across all
models in this setting, likely due to the extremely small size
of the dataset.

Results on Tobacco3482RVL-CDIP: In the
Tobacco3482RV L−CDI P setting, we observed dramatic per-
formance improvements across allmodels, primarily attributed
to the document-specific pre-training. Notably, all DP mod-
els under both settings achieved performance significantly
closer to that of the baseline models. The ResNet-50 [1] and
EfficientNet-B4 [61] models also performed significantly
better in this scenario compared to the Tobacco3482ImageNet

setting.Meanwhile, the ConvNext-B [2] model again outper-
formed others, achieving an accuracy of 92.44% and 92.43%
on the εtarget = 5 and εtarget = 10 settings, respectively.
Consistent with the previous trends, ViTs lagged behind the

Fig. 3 Validation accuracy versus ε over the number of training
epochs for each model in the Tobacco3482RV L−CDI P setting. It can
be observed that ConvNext-B [2] and DocXClassifier-B [35] achieved

significantly faster convergence compared to other models, leading to
higher performances with lower privacy loss
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CNNs in this setting aswell. For theTobacco3482RV L−CDI P

setting, we also analyze the convergence of each model in
terms of the validation accuracy and privacy loss ε obtained
over the number of epochs, as illustrated in Fig. 3. As evident
from the figure, in this setting, both the ConvNext-B [2] and
DocXClassifier-B [35] models achieved convergence in the
first few epochs, while the other models, including the ViTs,
exhibited amuch slower convergence on both εtarget = 5 and
εtarget = 10 settings. This demonstrates that with domain-
specific pre-training, unlike other models, the ConvNext-B
[2] and DocXClassifier-B [35] models are capable of achiev-
ing higher performances even at much lower privacy loss
(ε ≈ 1).

4.5 Hyperparameter evaluation for differential
privacy

4.5.1 Experimental setup

To determine the optimal set of hyperparameters for train-
ing the models under differential privacy (DP), we con-
ducted a grid search over three crucial parameters: learning
rate η, batch size B, and gradient clipping norm C . We
initially performed the search exclusively on the ResNet-
50 [1] model using both optimizers, DP-SGD and DP-
Adam, across all three dataset settings: RVL-CDIP [34],
Tobacco3482RV L−CDI P , and Tobacco3482ImageNet . Since

Fig. 4 Performance evaluation of the DP-SGD (top) and DP-Adam
(bottom) algorithms on ResNet-50 [1] model with varying learn-
ing rates (η) and batch sizes (B) under a gradient clipping norm
of C = 1.0. The highest performance achieved on each dataset is
highlighted in blue. As shown, on ResNet-50 [1], DP-Adam severely
under-performed compared to DP-SGD on all three dataset settings:
RVL-CDIP, Tobacco3482ImageNet and Tobacco3482RV L−CDI P (color
figure online)

the DP-SGD/Adam-based optimization is extremely com-
putationally intensive, requiring hundreds of GPU hours for
training on large datasets, for the RVL-CDIP [34] dataset,
we opted to tune the hyperparameters on a smaller subset of
50,000 training samples in combination with early stopping
to prune the ineffective training runs.

4.5.2 Experimental results

Throughout our tuning experiments, we noticed a significant
dependence of the model performance on both the choice
of the optimizer and the hyperparameters. Moreover, even
with the sameoptimizer, themodels sometimes demonstrated
different trends across the three dataset settings: RVL-CDIP
[34], Tobacco3482RV L−CDI P , and Tobacco3482ImageNet .

DP-Adam vs DP-SGD: In Fig. 4, we compare the perfor-
mance of the DP-SGD and DP-Adam algorithms on the
ResNet-50 model with different settings of learning rates
(η) and batch sizes (B) and a fixed gradient norm of C =
1.0. Overall, it can be noticed that the Adam optimizer
underperformed by awidemargin compared to the SGDopti-
mizer for the different settings of learning rate η and batch
size B on the ResNet-50 model. This trend was observed
across all searched values of the gradient clipping norm
C ∈ {0.1, 0.5, 1.0, 2.0, 5.0, 10.0}.
Learning Rate versus Batch size: We also conducted an anal-
ysis of the hyperparameters for each optimizer individually

Fig. 5 Performance evaluation of the DP-SGD algorithm on ResNet-
50 model with varying learning rates (η) and batch sizes (B) under two
settings of gradient clipping norm, C = 0.1 (top) and C = 10.0 (bot-
tom). The highest performance achieved on each dataset is highlighted
in blue. As shown, larger batch sizes and clipping norms, coupled with
smaller learning rates yielded better performance (color figure online)
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Fig. 6 Performance evaluation of the DP-Adam algorithm on ResNet-
50 model with varying learning rates (η) and batch sizes (B) under
two settings of gradient clipping norm, C = 0.1 and C = 10.0. The
highest performance achieved on each dataset is highlighted in blue. As
shown, for DP-Adam algorithm, larger batch sizes and smaller learning
rates yielded better performance, regardless of the clipping norm (color
figure online)

across multiple values of the gradient clipping norm C . In
Fig. 5, we compare the performance of DP-SGD on ResNet-
50 [1] between two settings of gradient clipping norm C ∈
{0.1, 10.0}. As evident from the figure, for DP-SGD, larger
batch sizes (B) generally yielded better performance. Mean-
while, smaller learning rates (η) coupled with larger values
of gradient clipping norm C or vice versa yielded better
results. These trends remained consistent with the DP-SGD
algorithm across all three dataset settings, RVL-CDIP [34],
Tobacco3482ImageNet , and Tobacco3482RV L−CDI P . On the
DP-Adam algorithm, we observed a slightly different trend,
with larger batch sizes (B) coupled with smaller learning
rates (η) yielding better results, irrespective of the value of
the gradient clipping norm C . This behavior can be observed
in Fig. 6,wherewe compare the performance ofDP-Adamon
ResNet-50 [1] under two settings of gradient clipping norm
C ∈ {0.1, 10.0}.
Variable Impact of Hyperparameters Across Models: Based
on the analysis of hyperparameters on the ResNet-50 [1]
model, we selected the most suitable parameters for training
the model under DP and maintained the same configuration
for other models. However, although the hyperparameters
derived from ResNet-50 [1] performed well for private train-
ing of traditional CNNarchitectures, includingAlexNet [59],
VGG-16 [60], and EfficientNet-B4 [61], we did not find them
to be the most suitable for modern architectures, including,
ConvNext-B [2],DocXClassifier-B [35], andViTs (ViT-B/16

[50] and ViT-L/32 [50]). For these models, we observed
that DP-Adam generally produced significantly better results
compared to DP-SGD and also exhibited different perfor-
mance trends. Therefore, to determine the optimal training
hyperparameters for these models, we conducted a sepa-
rate grid-search for the ConvNext-B [2] and ViT-B/16 [50]
models, following the same approach as done for ResNet-50
[1]. The optimal hyperparameter configurations derived for
ConvNext-B [2] and ViT-B/16 [50] were then translated to
DocXClassifier-B [35] and ViT-L/32 [50], respectively. In
contrast to the behavior observed on ResNet-50 [1], for the
ConvNext-B [2] model, we noticed a general trend where
larger values of batch sizes (B), gradient clipping norms
(C), and learning rates (η) yielded better results. Likewise,
on ViTs, we observed that larger values of gradient clipping
norms (C) and learning rates (η), coupled with moderate
batch sizes (B), worked the best.

4.6 Evaluating FedAVG and FedENS

4.6.1 Experimental setup

To assess the overall feasibility of Federated Learning for
private training, we carried out experiments with a single
group of participants for the RVL-CDIP [34] dataset and
with two groups for the Tobacco3482 datasets, comparing
the performance between FedAVG and FedENS. To sim-
ulate the local data for each client, we randomly shuffled
the original training dataset and then created Nc equal par-
titions from it, which were subsequently assigned to each
client. To evaluate the FedAVG algorithm on RVL-CDIP
[34], we employed the following configuration: The num-
ber of clients Nc was set to 8, clients sampled per round fc
to 0.25, local epochs Nlocal to 1, and total number of rounds
NR to 40. On the other hand, to evaluate the FedENS algo-
rithm, all local models were separately trained for a total of
Nlocal epochs (set to 40) and ensembled at the end. For the
Tobacco3482 dataset, we experimented with two different
settings; (A) Nc = 2, fc = 1.0, Nlocal = 1, NR = 40 and
(B) Nc = 4, fc = 0.5, Nlocal = 1, NR = 40.

4.6.2 Experimental results

The results of these experiments are shown in Table 2. As
shown in the table, for the RVL-CDIP [34] dataset, FedAVG
significantly outperformed FedENS across all models while
also ensuring strong privacy with a client sampling rate of
fc = 0.25. This is a noteworthy result as, with a factor
fc = 0.25, the local dataset partitions of all clients were not
trained on for a total of 40 epochs, in contrast to FedENS, and
yet FedAVG demonstrated superior performance. A possible
explanation of this is that the model averaging in FedAVG
has a regularization effect, reducing the effects of overfitting,
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and, consequently, yielding better results. We observed simi-
lar performance trends on the Tobacco3482 dataset, where in
the Tobacco3482RV L−CDI P setting, the models sometimes
outperformed even the baseline models. Notably, the best
performing model, ConvNext-B [2], achieved an accuracy
of 95.86% and 95.71% in settings A and B of FedAVG,
respectively. Moreover, we noticed a slight deterioration in
performance across all models in setting B for both FedAVG
and FedENS. However, since the number of participants in
this scenario is twice as high as in setting A, it also ensures
better privacy in comparison, and therefore, the performance
loss is expected Finally, on the Tobacco3482ImageNet setting,
we noticed that both FedAVG and FedENS achieved similar
results across all models. Interestingly, both ConvNext-B [2]
and EfficientNet-B4 [61] significantly outperformed other
models in this scenario. Moreover, we observed that the ViTs
demonstrated a consistent trend similar to the case of DP-
based private training, performing sub-optimally compared
to the CNNs in all three dataset settings: RVL-CDIP [34],
Tobacco3482ImageNet , and Tobacco3482RV L−CDI P

4.7 Evaluating federated learning with differential
privacy (FedAVG-DP)

4.7.1 Experimental setup

To thoroughly evaluate the combined setting of FL with
DP, we investigated the same client configurations for each
dataset setting: RVL-CDIP [34], Tobacco3482ImageNet , and
Tobacco3482RV L−CDI P , as done for the FL experiments
(outlined in Sect. 4.6). Moreover, to train each local model
under DP, we searched for the noisemultiplier σ based on the
target privacy budgets of (εtarget ∈ {5, 10},δ = 1

‖Dlocal‖ ) over
the total number of optimization steps T per client. Where,
Dlocal denotes the local training dataset of each client, and T
is defined as the product of the total number of local optimiza-
tion steps per epoch, total number of local epochs Nlocal , total
number of rounds NR and the client sampling rate fc. Since
training the models under DP is significantly difficult com-
pared to the standard FL training setup, we raised the number
of local epochs Nlocal to 4 in this setting and simultaneously
reduced the total number of FL rounds to 10 to maintain con-
sistencywith the total number of epochs in the standaloneDP
and FL setups. Moreover, the total number of rounds were
increased by a factor of 1

fc
for each run to ensure a target

privacy loss of εtarget is achieved on each client over the
complete federated learning run. Finally, deviating slightly
from the standalone FL setup in this scenario, we trained the
models with a sampling rate of fc = 0.5 instead of fc = 0.25
on the RVL-CDIP [34] dataset.

4.7.2 Experimental results

The results of these experiments are shown in Table 3. Over-
all, we observed similar trends in this scenario to those
found in the standalone DP case, with significant perfor-
mance degradation introduced by DP across all models.
For instance, on the RVL-CDIP [34] dataset, we noticed
that the larger models, including VGG-16 [60], ConvNext-B
[2], and DocXClassifier-B [35], outperformed others under
the εtarget = 5 setting. Moreover, the performance of
ConvNext-B [2] and DocXClassifier-B [35] showed a slight
improvement under εtarget = 10. On the other hand, ResNet-
50 [1] andEfficientNet-B4 [61] once again performed poorly,
possibly due to the re-initialization of the normalization
layers. Similarly, both ViTs exhibited relatively poor per-
formance, consistent with the standalone DP setting.

On the Tobacco3482 dataset, once again, in the
Tobacco3482ImageNet setting, severe degradation of per-
formance was observed across all models, with ResNet-50
[1] and EfficientNet-B4 [61] failing to converge even with
a larger epsilon, εtarget = 10. In addition, the perfor-
mance degradation was further amplified as the number of
clients were increased from Nc = 2 to Nc = 4. On the
other hand, in the Tobacco3482RV L−CDI P setting, domain-
specific pre-training once again led to dramatic performance
improvements across the majority of models. Surprisingly,
however, the ViTs in this scenario severely unperformed in
comparison to the CNNs. Meanwhile, the DocXClassifier-B
[35] model exhibited the best performance across different
client settings and privacy levels (ε). Overall, the results indi-
cate that Federated Averaging with Differential Privacy has
promising potential, especiallywhen combinedwith domain-
specific pre-training.

4.8 Evaluating SMPC for model hiding

In this section, we present the results of our evaluation of
CrypTen-basedSecureMulti-PartyComputation (SMPC) for
model hiding.

4.8.1 Experimental setup

CrypTen, being a relatively recent framework, currently lacks
support for all types of PyTorch layers. As a result, the
majority of models in our evaluation set were found to be
unsupported by CrypTen. For this experiment, therefore,
we only evaluated the first three models-AlexNet, VGG-
16, and ResNet-50-since these were easily supported by
CrypTen. We kept a simple experimental setup for this sce-
nario, in which we encrypt the baseline models, encrypt the
test set samples, and simply perform encrypted inference.
In addition, we only performed these experiments for the
Tobacco3482RV L−CDI P dataset setting.
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Table 4 Performance and inference time comparison of baseline document image classification models with their private counterparts encrypted
using SMPC

Dataset Model AccBaseline SMPC (Crypten)

Reported Ours Acc Inference time Inc

Tobacco3482 (RVL-CDIP pre-training) AlexNet 90.04 89.57 89.57 4×
VGG-16 91.01 94.14 94.14 103×
ResNet-50 91.13 90.14 90.14 32×

As shown, SMPC resulted in a significant increase in inference costs, up to a factor of 100

4.8.2 Experimental results

The results are shown in Table 4. For each model, we present
the test set accuracy achieved under encrypted inference and
the increase in inference time caused by the encryption com-
pared to the baseline model. It is evident from the results
that the model and data encryption essentially causes no
performance loss. However, it does introduce a significant
computational overhead. For instance, while the increase in
inference time is tolerable for AlexNet [59], it continues to
increase as the model complexity increases, reaching 32×
and 103× times that of baseline for the ResNet-50 [1] and
VGG-16 [60] models, respectively. This shows that while
CrypTen and SMPC appear to have promising potential in
that they do not incur performance degradation, there is still
much work to be done to make them more efficient for prac-
tical use.

4.9 Evaluating privacy strength usingmembership
inference attacks

In this section, we present the results of our experimental
setup, in which we apply Membership Inference Attacks
(MIA) to both non-private and private models, in order to
quantitatively assess and compare the privacy strength of
different privacy preservation methods investigated in this
work.

4.9.1 Experimental setup

The details of the experimental setup are outlined as follows:
we assume that a malicious adversary has query access to
the target model, along with some samples from the original
training dataset, and their objective is to determine whether a
specific data sample was part of the model’s training dataset
or not. Formally, let ftarget represent the target model, fatt
denote an attackmodel, andDtrain denote the training dataset
on which the target model ftarget was trained. Then, given a
sample xi , the attackmodel fatt attempts to ascertainwhether
the sample xi was part of the training dataset Dtrain . In
this work, we explored the simplest form of attack, where
the adversary first queries the target model ftarget to obtain

the loss (based on a given loss function L) and prediction
scores for each sample xi . In our experiments, we chose
L as the cross-entropy loss, typically used for multi-class
classification problems. Subsequently, using the loss, pre-
diction scores and the true class label of each sample xi , the
adversary then generates an input for the attack model as
xi,att = [L( ftarget (xi )),P( ftarget (xi )), xi,label ] along with
its target label yi = 1 or yi = 0, depending on whether
the sample is a member of the original training dataset or
not. We refer to the samples that were part of the train-
ing dataset as member samples, which form the member
dataset Dmem = {xi,att , yi = 1}. An equal number of sam-
ples from the original test set Dtest are extracted to form
the non-member samples, yielding the non-member dataset
Dnon−mem = {xi,att , yi = 0}. The non-member and member
datasets are then combined to produce the training dataset
Datt = Dnon−mem ∪ Dmem on which the attack model is
trained.

In this work, we investigated the performance of MIA
attacks on both the RVL-CDIP [34] and Tobacco3482
datasets, considering four different model types: non-private
baseline model, DP model with εtarget = 5, FedAVG model
with 4 clients, and FedAVG-DP model with εtarget = 5 and
clients set to 4 and8 for theTobacco3482 andRVL-CDIP [34]
datasets, respectively. To generate the attack dataset Datt , on
RVL-CDIP [34],we randomly selected40Ksamples from the
training set and combined themwith the 40K test set samples.
Subsequently, we divided the Datt dataset into two subsets,
allocating 50% for training the attack model and the remain-
ing 50% for evaluating its performance. On the Tobacco3482
dataset, we focused solely on evaluating MIA attacks in the
Tobacco3482RV L−CDI P setting due to its superior perfor-
mance. In this scenario, the attack dataset Datt consisted of
700 randomly selected training samples and 700 test sam-
ples, with the same train/test split ratio as in the RVL-CDIP
[34] case. We experimented with multiple types of attack
models; however, we found the GradientBoosting classifier
[64] to work the best in our experiments.
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4.9.2 Experimental results

To evaluate and compare the performance of MIA on each
target model, we plot the Receiver Operating Characteristic
(ROC) curves of the corresponding attack models fatt , for
the RVL-CDIP [34] and Tobacco3482 datasets in Fig. 7 and
Fig. 8, respectively. In addition, we present the Area Under
theROCCurves (AUC), attack precision, and attack recall for
each setting in Table 5. From the behavior of the ROC curves
on the RVL-CDIP [34] dataset, it is evident that the non-
private baseline models were considerably more vulnerable
to the membership inference attacks. Notably, some mod-
els such as ResNet-50 [1], VGG-16 [60], ViT-B/16 [50], and
ViT-L/32 [50] appeared to be particularly susceptible in non-
private setting compared to others. It can also be observed
that, while the FedAVG setting does allow for client-level
data privacy, it only performed slightly better against the
attack compared to the non-private baseline, sometimes even
exhibiting a vulnerability level similar to the baseline models
(such as in the case of ViT-B/16 [50] and ViT-L/32 [50]).

In a stark contrast, the DP-SGD/Adam and FedAVG-DP
settings, on the other hand, ensured a very high level of pri-
vacy. Across all settings, it is evident that when differential
privacy (DP) was applied to the models, the attack model
fatt could only perform as well as a random classifier. Sim-
ilar observations can be drawn from Table 5, where, for all
targetmodels, it is evident that the attackmodel fatt achieved
significantly better performance in inferring samplemember-
ship for the non-private baseline models compared to the DP
models. Finally, on theTobacco3482RV L−CDI P setting, sim-
ilar trends can be observed from the ROC curves (see Fig. 8),
with the non-private baseline and FedAVG models exhibit-
ing significantly higher vulnerability to the attack compared
to the DP models. Notably, it can also be observed that the
ViTs (ViT-B/16 [50] and ViT-L/32 [50]) appeared to be con-
siderably more vulnerable overall compared to the CNNs in
this setting.

4.10 Assessing the impact of privacy onmodel
interpretability

4.10.1 Experimental setup

In this section, we briefly assess the impact of various
privacy preservation methods on the interpretability of
the model. For this analysis, we specifically select the
DocXClassifier-B [35] model due to its property of being
inherent interpretable and exclusively analyze the results on
the Tobacco3482RV L−CDI P setting. In particular, we gen-
erate attribution maps for various document image samples
under four different settings: non-private baseline, DP set-
ting with εtarget = 5, FedAVG setting with 4 clients, and
FedAVG-DP setting with εtarget = 5 and 4 clients.

4.10.2 Experimental results

The results are depicted in Fig. 9, where we visualize the
image attribution maps generated by the DocXClassifier-B
[35] model for two randomly selected samples from each
of the 10 document categories in the Tobacco3482 dataset.
It is evident from the figure that different privacy preser-
vation methods led to drastically different attribution maps,
indicating a significant change in the underlying focus of the
model under differentmethods. It can be noticed that formost
samples, the attributions produced under the DP-SGD/Adam
settingwere significantly noisier compared to othermethods.
On the other hand, the model under the FedAVG setting pro-
duced smoother and more concentrated maps, focusing on
overall regions where the text is present. Finally, FedAVG-
DP showed characteristics of both DP and FedAVG, with its
maps also being noisy but tending to focus on crucial class-
specific regions.

5 Discussion

In this section, we summarize the key observations from our
study associated with different privacy methods and discuss
their practical implications in the context of document image
classification.

5.1 Privacy-utility tradeoffs of different privacy
methods

Several key findings were revealed from our study regarding
the privacy-utility tradeoff of various privacy methods when
applied to document image classification. In the following
sections, we discuss these findings to present a comprehen-
sive overview of our results.

DP Provides Rigorous Privacy Guarantees at the Cost of
Utility: Through our analysis of the effectiveness of various
privacy methods against membership inference attacks (see
Sect. 4.9), it became evident that DP, in both standalone and
federated (DP-FL) settings, offers rigorous protection against
privacy attacks. However, from the general performance
trends of DP on various configurations (see Sect. 4.4.2 and
Sect. 4.7.2), it was also observed that if not managed appro-
priately, DP can result in severe performance declines for
document image classification, both in standalone and feder-
ated settings. Notably, this decline was more pronounced in
federated settings (DP-FL) as compared to standalone set-
tings, with its severity increased with an increase in the
number of clients. However, the utilization of document-
specific pre-training proved effective in mitigating these
performance degradations. Therefore, when achieving high
model utility is imperative and document-specific pretrain-
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Fig. 7 ROC curves illustrating the classification performance of the
MIA model fatt on each target model ftarget for the RVL-CDIP [34]
dataset. As shown, the attack classifier overall performed the worst on

DP and FedAVG-DP approaches, whereas it showed the best perfor-
mance on the non-private baseline models

Fig. 8 ROC curves illustrating the classification performance of the MIA model fatt on each target model ftarget for the Tobacco3482 dataset.
As shown, the attack classifier overall performed the worst on DP and FedAVG-DP approaches, whereas it showed the best performance on the
non-private baseline models
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Fig. 9 Attention heatmaps generated by the DocXClassifier model on
the Tobacco3482 dataset. For each of the 10 dataset classes (rows),
heatmaps for two randomly selected samples (columns) are shown.
It can be observed that when the model was trained under DP and

FedAVG-DP settings, it produced noisier heatmaps compared to the
FedAVG setting. This demonstrates a notable shift in the underlying
focus of the model under different privacy approaches

123



Towards privacy preserved document image classification: a comprehensive benchmark

ing is not feasible, DP may not be the most viable option,
especially when dealingwith a large number of clients in fed-
erated settings. However, in cases where privacy is of utmost
importance, the utilization of DP is essential to prevent any
leak of private information about the models or the training
datasets.

FL Provides Better Utility but Insufficient Protection: In
a striking contrast to DP, the Federated Learning (FL)
approaches, FedAVG and FedENS, incurred only minor per-
formance losses across all configurations, and this trend
remained consistent across themodels, irrespective ofwhether
the document-specific pre-training was utilized. In some
instances, we observed that FedAVG even led to an improve-
ment inmodel performance compared to the baseline setting,
potentially due to the regularization effect introduced by
averaging the models after each training round. However,
from our analysis in Sect. 4.9, it was quite evident that FL-
based approaches fail to provide sufficient protection against
membership inference attacks. These findings suggest that,
as long as strong privacy guarantees are not required, FL
approaches may be effectively applied for distributed train-
ing of document image classifiers while ensuring the privacy
of local client data.

SMPC Enables Encrypted Information Sharing but at High
Computational Costs: CrypTen-based model-hiding, which
was investigated in this study, presented several advantages
and disadvantages of its own. As this approach simply
encrypts the data and models, unlike other methods, SMPC
required no additional training, allowing users to use exist-
ing document classification models for inference in a private
manner. Therefore, in practical scenarios, SMPC can be an
effective approach for sharing data andmodels betweenmul-
tiple partieswhile keeping the local data of each party private.
However, it must be noted that SMPC provides a similar
level of protection to FL approaches, meaning it does not
guarantee protection against privacy attacks. For instance,
the membership inference attacks could still be applied to
the model once its output has been revealed after decryption.
Because of its simplicity, we believe SMPC can be a promis-
ing approach for introducing privacy into existing document
analysis pipelines. However, unlike other privacy strategies,
the current implementations of SMPC come with consider-
able inference costs, evenwhenGPUs are utilized. Therefore,
we believe further improvements are necessary to make this
approach viable for practical applications.

5.2 Analyzing the factors impacting DP/DP-FL utility

Training document image classification models under DP
was found to be particularly challenging, as the model util-
ity under DP depends on several factors. In the following,

we discuss these factors and suggest recommendations for
achieving optimal performance.

Pre-training Significantly ImprovesModel Utility: SinceDif-
ferential Privacy (DP) can severely hinder the convergence
of deep learning models during training [13, 14, 22], we
found that model pre-training (both in and out of domain)
helped significantly in improving the performance of the
models under DP. In Sect. 4.4.2, we observed that the mod-
els with reinitialized normalization (BN) layers, specifically
EfficientNet-B4 [61] and ResNet-50 [1], performed signifi-
cantly worse compared to other models that were fine-tuned
directly from unaltered ImageNet weights. This suggests
that the reinitialization of these layers essentially caused
the models to be trained from scratch, whereas ImageNet
pre-training contributed towards improving model conver-
gence under DP. Similarly, in the Tobacco3482RV L−CDI P

setting, we observed dramatic performance improvements
across all models when document-specific pre-training was
utilized. Based on these findings, our general recommen-
dation is that whenever DP is applied to private sensitive
document datasets, pre-training the models using large pub-
licly available datasets should be considered to achieve an
optimal privacy-utility trade-off.

Modern CNNs Designs Help Improve Utility: One impor-
tant finding was that across different dataset settings, modern
CNN architectures like ConvNext-B [2] andDocXClassifier-
B [35] outperformed the previous state-of-the-art CNN
models such as ResNet-50 [1] or EfficientNet-B4 [61]. Addi-
tionally, they demonstrated faster convergence compared to
othermodels, achieving both better privacy and higher utility.
Therefore, our recommendation is to prefer recent models
over older architectures to achieve a better privacy-utility
trade-off.

ViTsSignificantlyUnder-performcompared toCNNs:Another
noteworthy observation was that the ViTs [50] were signif-
icantly more prone to overfitting compared to the CNNs,
resulting in relatively poorer performances under DP. This
tendency was observed across all settings and was especially
visible in the Tobacco3482RV L−CDI P setting, where even
with document-specific pretraining, the ViTs [50] failed to
achieve comparable performance to the CNNs. In the future,
it will be worthwhile to explore self-supervised pretraining
of ViTs [50] on large public datasets before fine-tuning them
under DP to enhance their utility.

Tuning Hyperparameters is Essential for Achieving Opti-
mal Utility: DP introduces additional hyperparameters such
as noise scale σ , expected batch size B, and gradient clip-
ping norm C , all of which were observed to have variable
effects on model performance. As a result, these parameters
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must be specifically tuned to find an optimal compromise
between privacy and performance. We recommend tuning
the three parameters-learning rate η, batch size B, and gra-
dient clipping norm C-in combination with a fixed number
of training epochs and a pre-defined target privacy budget
εtarget that automatically determines the noise scale σ . Since
DP-SGD/Adam also introduces significantly higher train-
ing costs in terms of GPU memory and compute power,
we recommend tuning these hyperparameters first on a
smaller subset of samples before training the models on large
datasets.

5.3 Implementation challenges of different privacy
methods

We encountered several practical difficulties when imple-
menting the different privacy methods, which are briefly
discussed below.

Constraints on Training Routines and Model Architectures
for DP/DP-FL: First, by definition, differential privacy (DP)
restricts the use of batch normalization layers in deep learning
models. This limitationmakes it impossible to utilize existing
pre-trained models that incorporate BN layers. Additionally,
differential privacy (DP) prohibits the use of stratified sam-
pling during the training process, a method often employed
to address data imbalance issues. This constraint can lead
to additional performance degradation when dealing with
imbalanced datasets.

High Training Costs of DP/DP-FL: Training deep learning
models with DP-SGD/Adam generally requires an extensive
amount of GPU memory and processing power, especially
with increasingmodel size and image resolution. In addition,
the current implementation of DP-SGD/Adam in Pytorch
Opacus [57] does not support mixed-precision training,
which adds an additional overhead on training time. As a
result, specific GPUs with exceptionally high virtual mem-
ory were necessary to train the models under DP. In addition,
for training larger models independently or in a federated
environment, a distributed training setup was necessary to
achieve feasible training times. In this work, we utilized the
NVIDIA A100-40GB GPU, which offers 40GB of total vir-
tual memory, for all our DP-related experiments.

Limited Support of SMPC across Model Architectures:
While SMPC offers a straightforward means of providing
encryption-based privacy, we faced challenges when apply-
ing it to a broad range of models. Specifically, we noted that
the current implementation of this method is quite limited
and does not support complex model layers. This makes it
difficult to apply the approach to more recent architectures

such as ConvNext-B [2], DocXClassifier-B [35], and ViTs
[50].

5.4 Privacy-interpretability tradeoff: practical
implications

Our results in Sect. 4.10.2, where we qualitatively assess the
impact of various privacy methods on the interpretability
of DocXClassifier, also led to some important findings. In
particular, our observations revealed that when the model
was trained under DP, it resulted in significantly noisier attri-
bution maps, which shows that DP negatively impacted the
interpretability of the model. In contrast, within the FL set-
ting, the model produced notably smoother maps compared
to the baseline, which slightly improved their interpretability.
However, it occasionally over-smoothed, failing to con-
cretely highlight the most important areas. Compared to the
two approaches, the FL-DP setting offered a middle ground,
where the noise from DP and the smoothing effect from FL
balanced out each other, resulting in slightly improved inter-
pretability compared to the standalone DP case.

Based on these observations, we recommend that in cases
where model interpretability is crucial, FL approaches may
be prioritized over DP to achieve some degree of privacy
while also ensuring enhanced interpretability. However, in
cases where DP is necessary for privacy concerns, we rec-
ommend combining it with FedAVG to achieve slightly
improved interpretability while maintaining similar privacy
levels. Overall, our findings suggest that enhancing the
model’s privacy may lead to a potential trade-off with its
interpretability. Therefore, exploring newer approaches in
the future to achieve an optimal balance for this trade-off
would be worthwhile.

5.5 Advancing secure AI: the broader impact of this
study

Despite facing a number of practical challenges in imple-
menting differential privacy for document image classifi-
cation, we succeeded in achieving sufficiently high perfor-
mances on both large and small datasets, while maintaining
robust privacy guarantees (ε = 5). Furthermore, through a
comprehensive evaluation of the different privacy approaches
under various configurations and hyperparameters, we were
able to establish clear guidelines for achieving the most opti-
mal privacy-utility tradeoffs in different scenarios.With these
guidelines, we believe that our work will significantly accel-
erate the adoption of private document classification models
in real-world applications, thus advancing the development
of more secure and fortified automated document analysis
pipelines thatmeet the standards ofmodern regulatory guide-
lines, including the GDPR [21] and the AI Act 2022.
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Additionally, while our research primarily focuses on doc-
ument image classification, there exist several other tasks in
the document domain, such as table detection and recogni-
tion, layout analysis, and handwritten text recognition, all of
which have the potential to leak critical private information.
Yet, in our review of the existing literature, we noticed that
while there is a significant amount of research focusing on
privacy for textual document analysis tasks, notmuch empha-
sis was placed on the visual tasks. Therefore, we anticipate
that our work will highlight the importance of privacy in the
domain of visual document analysis and encourage further
research in this area.

6 Conclusion

In this study, we conducted a comprehensive evaluation of
well-known privacy-preserving methods in the context of
document image classification. Our findings reveal that the
application of thesemethods results in varyingdegrees of per-
formance loss, influenced by various factors such as model
architecture, size of the dataset, weight initialization, and
training hyperparameters. Notably, our results demonstrate
that, with sufficient hyperparameter tuning, differential pri-
vacy (DP) can achieve satisfactory utility in both standalone
and collaborative learning settings, while simultaneously
ensuring rigorous privacy guarantees. In addition, significant
performance boosts can be achieved through domain-specific
pretraining, making it preferable in most scenarios. On the
other hand, our results demonstrate that while federated
learning-based approaches incur only a marginal loss in
performance on the task and introduce client-level data pri-
vacy, these approaches fail to provide sufficient protection
against sophisticated privacy attacks. Finally, encryption-
based methods also showed promise in providing privacy
but the significant inference costs of their current implemen-
tations make them impractical for this task. To the best of the
authors’ knowledge, our work is the first that comprehen-
sively explores modern privacy approaches in the domain
of document image classification, paving the way for inte-
grating privacy into modern automated document analysis
pipelines.

Appendix A

A.1 Privacy accounting

To account for privacy loss (ε), we used the Rényi DP [54]
privacy accountant in our work. However, there also exist
other privacy accountants, such as, Gaussian DP [53], or Pri-
vate Random Variable (PRV) Accountant [55]. Generally,
all these accountants are an improvement over the moments

accountant proposed by Abadi et al. [22], however, we have
usedRDP [54] in thiswork since it is not only themostwidely
used accountant [13, 14, 30], but also provides a strict upper
bound over the privacy loss.

Given the data sampling rate q, a given noise multiplier σ

and target privacy budget (ε, δ), RDP can be used to estimate
the overall privacy loss over a fixed number of training steps.
Numerical optimization can then be used in combinationwith
the RDP estimation to obtain a suitable value of σ for a
fixed target privacy budget (ε, δ). In this work, we perform
this numerical optimization for all DP-related experiments to
compute the required noise multiplier for the target epsilon
εtarget , given a total number of training epochs.

A.2 Privacy algorithms

A.2.1 DP-SGD/Adam

In this work, we employed both DP-SGD and DP-Adam to
train the target models under differential privacy (DP). For
the sake of completeness, the pseudocode for both algorithms
is included in Algorithm 1.

Input: L(θ) = 1
B

∑
i L(θ, xi ), Dataset

D = (x1, y1), . . . , (xN , yN ), learning rate η, gradient
clipping norm C , noise scale σ , sampling rate q, target
(ε, δ), privacy accountant M, total training steps T

Init: Initialize θ0 randomly
for each step t = 1, . . . , T do

B ← (sample a batch of size B with sampling probability q)
for each xi ∈ B compute

// Compute gradient
g(xi ) ← ∇θtL(θt , xi )
// Clip gradient
ḡ(xi ) ← g(xi )/max(1, ||ḡ(xi )||2

C )

end
// Add noise
g̃ ← 1

B (
∑

i ḡ(xi ) + N (0, σ 2C2I)
if Algorithm is DP-SGD then

// Call SGD Update
θt+1 ← θt − ηg̃

else if Algorithm is DP-Adam then
// Call Adam Update
mt ← β1mt−1 + (1 − β1)g̃
vt ← β2vt−1 + (1 − β2)g̃2

mt ← mt
1−β t

1

vt ← vt
1−β t

2

θt+1 ← θt + η mt√
vt+τ

end
print M.get_privacy_spent(q, σ, t, δ)

end
Algorithm 1: DP-SGD/Adam

123



S. Saifullah et al.

A.2.2 Federated learning algorithms

The pseudocodes for the FedAVG, FedENS, and FedAVG-
DP algorithms are given in Algorithm 2, Algorithm 4, and
Algorithm 3, respectively.

Input: Learning rate η, total clients Nc, clients sampling rate fc,
total federated learning rounds NR

Server Executes:
Init: θ0, m ← fcNc
for each round r = 1, . . . , NR do

Sr ← (sample a set of m clients from Nc)

for each client k ∈ S in parallel do
θk,r ← ClientUpdate(k, θr−1)

end
θr ← ∑

k∈Sr

nk
n θk,r

end
end
ClientUpdate (k, θ):

Input: L(θ) = 1
B

∑
i L(θ, xi ), Dk of size ‖Dk‖

B ← (sample a batch of size B)
for each epoch e = 1, . . . , Nlocal do

for each b ∈ B compute
if Optimizer is SGD then

// Call SGD Update
θ ← θ − η∇θL(θ, b)

else if Optimizer is Adam then
// Call Adam Update
g̃ ← ∇θL(θ, b)
mt ← β1mt−1 + (1 − β1)g̃
vt ← β2vt−1 + (1 − β2)g̃2

mt ← mt
1−β t

1

vt ← vt
1−β t

2

θ ← θ − η mt√
vt+τ

end
end

end
return θ

Algorithm 2: FedAVG

Input: Learning rate η, total clients K, clients sampling rate C ,
total FL rounds T

Server Executes:
Init: θ0, m ← CK
for each round t = 1, . . . , T do

St ← (sample a set of m clients from K )

for each client k ∈ S in parallel do
θk,t ← ClientUpdate(k, θt−1)

end
θt ← ∑

k∈St

nk
n θk,t

end
end
ClientUpdate (k, θ):

Input: L(θ) = 1
B

∑
i L(θ, xi ), Dk of size ‖Dk‖

θ ← DP-SGD(L(θ),Dk) or DP-Adam(L(θ),Dk)
return θ

Algorithm 3: FedAVG-DP

Input: Learning rate η, total clients Nc
Server Executes:

Init: θ0
S ← (get the set of all Nc clients)
for each client k ∈ S in parallel do

θk ← ClientUpdate(k, θ0)
end
Evaluate model ensemble {θ1, . . . , θNc } on test set

end
ClientUpdate (k, θ):

Input: L(θ) = 1
B

∑
i L(θ, xi ), Dk of size ‖Dk‖

B ← (sample a batch of size B)
for each epoch e = 1, . . . , Nlocal do

for each b ∈ B compute
if Optimizer is SGD then

// Call SGD Update
θ ← θ − η∇θL(θ, b)

else if Optimizer is Adam then
// Call Adam Update
g̃ ← ∇θL(θ, b)
mt ← β1mt−1 + (1 − β1)g̃
vt ← β2vt−1 + (1 − β2)g̃2

mt ← mt
1−β t

1

vt ← vt
1−β t

2

θ ← θ − η mt√
vt+τ

end
end

end
return θ

Algorithm 4: FedENS

A.3 Hyperparameter evaluation

A.3.1 Default hyperparameters

The default set of hyperparameters used in this work are
presented in Table 6

Table 6 Full list of default hyperparameters that were used in our study

Parameter Value

Privacy budget (ε, δ) ({5, 10}, 1/‖Dtrain‖)
Gradient clipping norm (C) 10.0

Optimizer SGD

Learning rate (η) 0.05

Learning rate decay False

Epochs (E) 40

Weight decay (λ) 0

Noise multiplier (σ ) Computed such that privacy budget
(ε, δ) is spent after E epochs

Total federated rounds (NR) 40 for FL; 1q 40 for FedAVG-DP
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Table 7 Training
hyperparameters that were used
to fine-tune the models under
DP and FedAVG-DP settings

Dataset Parameters ResNet-50 ConvNeXt ViT

RVL-CDIP Optimizer SGD Adam Adam

Batch size (B) 2048 4095 4095

Clipping norm (S) 10.0 10.0 2.0

Learning rate (η) 0.05 5.0e − 3 1.0e − 3

Tobacco3482ImageNet Optimizer SGD Adam Adam

Batch size (B) 512 1024 256

Clipping norm (S) 10.0 10.0 10.0

Learning rate (η) 0.01 5.0e − 3 1.0e − 3

Tobacco3482RV L−CDI P Optimizer SGD Adam Adam

Batch size (B) 512 256 256

Clipping norm (S) 10.0 10.0 10.0

Learning rate (η) 0.01 5.0e − 3 1.0e − 3

A.3.2 Tuned hyperparameters

The hyperparameters that were selected for each dataset for
different private settings are listed in Table 7.
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