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Abstract. The engineering of reliable and trustworthy AI systems needs to mature.
While facing unprecedented challenges, there is much to be learned from other en-
gineering disciplines. We focus on the five pillars of (i) Models & Explanations, (ii)
Causality & Grounding, (iii) Modularity & Compositionality, (iv) Human Agency
& Oversight, and (v) Maturity Models. Based on these pillars, a new AI engineer-
ing discipline might emerge, which we aim to support using corresponding meth-
ods and tools for ‘Trust by Design’. A use case concerning mobility and energy
consumption in an urban context is discussed.
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1. Introduction

The current wave of Artificial Intelligence (AI) is characterised by Deep Learning [1,
2], Transformers [3, 4] and Large Foundation Models [5]. Whilst the impact of such
systems touches almost all veins of our society, it seems that we are reaching the limits
of controlled engineering of these large, highly interconnected, AI-based systems.

On the one hand, we see their complexity increase on an individual level, as well as
on their connected dependency levels, whilst on the other hand, we see a growing lack
of experience on the level of their design and engineering. The complexity of existing
AI models is often beyond our understanding, and the methods and processes to ensure
safety, reliability, and transparency are lacking. This poses serious risks at the level of
trustworthiness, particularly when it comes to critical applications with significant phys-
ical, economic, or social impact. The AI systems used in such applications are required –
for example by the European AI Act – to have been thoroughly designed, validated and
certified according to well-defined criteria.

Recent developments in Generative AI are based on so-called ‘Foundation Models’,
which can appear as Large Language Models (LLM) or as similar multi-modal mod-
els of still images, videos and others. The transformer architectures that generate these
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models convert huge amounts of text or other media content into statistical models of
co-occurrence of tokens (parts of words or other features).

Many are not aware that deep learning does not support a real understanding of
problems. At a first glance, these models for generative AI seem to understand human
language and creative expression. However, as they are uniquely based on producing
probabilistic assemblies of tokens, they do not even understand language itself. There
is no grammar involved or any form of semantics. They only reflect high-dimensional
statistical correlations.

Great disillusionment set in as problems, such as insufficient internal representation
of meaning (interpretability and transparency), susceptibility to changes in the input sig-
nal (robustness), lack of transferability to cases not covered by the data (generalisation)
and, last but not least, the thirst for big data and processing itself (efficiency, adequacy,
sustainability), became apparent. Some of these problems are a direct result of the mas-
sive use of deep learning black-box methods that depend solely on data [6].

To increase the grip and understanding of the outcomes of large neural models, new
approaches combine data-oriented machine learning with symbolic conclusions and the
explicit representation of knowledge [7, 8].

Such types of approaches are being advanced by the term ‘Trusted AI’. Trusted AI
aims to create a new generation of AI systems that guarantee functionality, allowing use
even in critical applications [9]. Developers, domain experts, users, and regulators can
rely on performance and reliability even for complex socio-technical systems. Trusted
AI is characterised by a high degree of robustness, transparency, fairness, and verifiabil-
ity, where the functionality of existing systems is in no way compromised, but actually
enhanced.

Foundation models are not trustworthy, because they lack any kind of understanding
of truth, facts, time, space, concepts, reasons, causes and effects. As they are not consis-
tent, transparent, robust and reliable, it is very risky to trust them in critical applications.
Even when they seem to give reasonable answers from time to time, it is impossible to
predict when they will fail and start to hallucinate.

We need to stop reinventing the wheel; learning from scratch, but understanding
nothing. Instead, we need to use existing knowledge, build on experiments and experi-
ence, formulate and validate new hypotheses and theories, in order to gain knowledge
and insight at a higher level, and to explain why events happen, predictions are made and
decisions or actions are taken. This requires a reinforced attention for engineering pro-
cesses with an aim to improve scientific progress where one can stand on the shoulders
of giants.

This paper therefore sets out five pillars of AI Engineering. Together, they form a
supportive framework that fosters ‘Trusted AI by Design’. Section 2 discusses the five
pillars and section 3 provides a use case in a smart city context.

2. Trusted AI Engineering

There is a dilemma to overcome in building trustworthy AI systems [10, 11, 9]: on the
one hand, we expect AI systems to decide autonomously and intelligently on our be-
half, which requires agency and delegation; on the other hand, we require them to be
predictable, verifiable, safe and accountable. Of course, there are limits to achieving all
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these goals and to guarantee correctness under all circumstances and domains. Instead,
there is a trade-off to be made between entirely predictable and correct versus plausible
and adaptive behaviour. What matters most is that expectations are managed to create
validated trust through experience, shared causal models and theory of mind. Therefore,
mutual awareness of assumptions, intentions, expectations and capabilities are required
to create a dialogue of trust in human-agent collaboration.

A fundamental difference between traditional software and AI systems is that the
outcomes are not necessarily deterministic, but probabilistic, and that there may be more
than one ”correct answer”. Hence, the goal is shifting from guarantees of correctness
towards verifying for plausibility. In the section below we discuss the five pillars of our
trustworthy AI engineering framework.

2.1. Models and Explanations

Explicit models2 of the world or a suitable context in question enable reliable predictions
of the behaviour of AI systems, both in the scope of training and outside, because they
generalise knowledge beyond the limited and biased scope of the training data. Given a
certain context, which can be very narrow or broad, explicit models represent concepts,
relationships and rules that are always true in that context. For example, the laws of
gravity are applicable to the whole universe. Models can be created by experts or learned
from experience and data. Combinations of different types of models are particularly
useful and insightful. For example, neuro-symbolic approaches are used to achieve this
[13, 14, 15, 16, 17]. In this way, models promote transparency and explainability and,
thus, make it possible to render the behaviour of the AI systems understandable and
plausible. In simulations, models can enable the understanding – through experiments –
of situations that are difficult or impossible to access otherwise. Often, synthetic data can
be used to maintain privacy and avoid dangerous conditions.

Because models depend on a given context or domain, it is essential that agents
using those models are aware of their competence in the given situation and are able to
apply suitable models or adapt to situations gracefully when changing or leaving their
scope of competence.

2.2. Causality and Grounding

X Y

Z

Figure 1.: Correlation
vs. Causation

Causality refers to the ability to identify and predict cause-
and-effect relationships, i.e. which effects are the results of
which causes and why [18]. An AI system that can under-
stand causal relationships is able to make informed predic-
tions and solve complex problems.

The need to move from correlation to causation is in-
creasingly urgent (see figure 1, where the dotted line indi-
cates correlation and the arrows indicate asymmetric causal
relationships). If we want to explain why certain predictions
are made or decisions are taken, it is essential to know and act on their causes.

2The term ‘model’ is used extensively in the ML community. It is necessary, however, to distinguish between
the statistical models of ML and the semantic models of knowledge engineering. Here, we refer to the latter.
See also in [12] for a unified taxonomy of AI.
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Causal inference is concerned with the resulting effect when a corresponding event
(cause) occurs, according to a given causal model. Causal inference asks whether
an event indeed causes a certain effect by determining the likelihood that one event
was the cause of another. In contrast to statistical correlations, causal relationships
are directed and asymmetrical.

Counterfactuals refer to alternative choices that could have been made in the past and
the corresponding effects that they might have caused. Therefore, they allow for
exploring possibilities to find alternative outcomes according to a causal model,
allowing to change policies accordingly in the future.

Causal discovery allows for determining whether a change in one variable (representing
a state, action or event) indeed causes a change in another, in order to distinguish
between correlated and causal relationships in data and to derive corresponding
causal models.

Closely related to causality is understanding the anchoring (grounding) of meanings
in the real context. A deep understanding of context and meaning requires not only pro-
cessing data, but also capturing the real-world phenomena that the data represents, such
that predictions, decisions and actions are based on them. Layers of abstractions are fun-
damental for building rich architectures. Semantic models, such as ontologies, are repre-
sentations of concepts, their attributes and relationships. They contribute to trustworthy
AI systems by explaining and constraining the meaning of those concepts.

2.3. Modularity and Compositionality

One of the fundamental design principles of (software) engineering is modularity. Mod-
ularity guarantees that complex systems are broken down into understandable and man-
ageable parts (functions and features) and assembled into system architectures. This in-
creases the reliability of the individual components and their assemblies as systems of
systems. It is much easier to verify smaller components than big monolithic artefacts.
The evolution in software engineering from structured to modular and object-oriented
programming enabled the design and construction of complex systems. In well-designed
systems the transitions between successive components can be controlled and protected,
making them explainable such that errors can be detected and repaired effectively. The
pre- and post-conditions of each component can be validated and orchestrated in increas-
ingly complex systems of systems.

When designing trustworthy AI systems, there are several important aspects that
should be considered to guarantee the characteristics of trustworthy AI. In principle,
these aspects apply to all software systems. However, they are of the greatest relevance
for complex, intelligent systems for critical applications. AI engineering should make use
of the lessons learned from software engineering and apply its engineering principles,
such as design patterns and architectures.

An attempt to model design patterns for neuro-symbolic systems is made in [12, 19].
Two examples (see figure 2 show data-driven and knowledge-driven patterns. They are
based on a visual language and taxonomy.

An important advantage of modular systems is that compositional patterns of sub-
systems can be identified and defined, which increases their reliability and documenta-
tion through reuse [20].
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Figure 2. Modular Design Patterns for Hybrid Learning and Reasoning Systems

It is important to stress that software architectures are not merely static artefacts,
but they rely on the interplay between structures and events – the organising principles
and the dynamic evolution of complex systems [21]. Neither structure nor events are
meaningful on their own, but require and depend on each other. In an extrapolated view,
this relationship may be applied to the combination of learning and reasoning. Meaning
emerges from a system’s structure and its components, when it is operated in a dynamic
context of perceiving and acting.

The principle of compositionality also applies to knowledge models and languages
[22]: larger constructs are created by joining together smaller units with specific, under-
standable, and verifiable tasks. Abstract relationships can thus be traced back to their
components. These aspects are applied when designing complex systems and should also
become a matter of course for AI systems.

2.4. Human Agency and Oversight

Human agency and oversight mean that, in any case, a human being should have the
overview, final decision, and responsibility for the actions of an AI system (human em-
powerment). Even if many tasks are increasingly being transferred to autonomous AI
systems (agents), the principle that humans supervise, assess, and approve actions still
applies. Keeping in mind the above-mentioned dilemma in building trustworthy AI sys-
tems, delegation of tasks needs to be interpretable by both humans and (software) agents
– in particular, when humans and agents collaborate as hybrid teams in a symbiotic part-
nership. It is necessary that suitable task descriptions are handed over to the agents and
that they understand and execute them in the relevant context, considering the models,
explanations and causal relationships explained above.

When considering the collaboration and competition in hybrid teams of humans and
autonomous agents, we consider many-to-many situations where multiple humans and
multiple agents form hybrid teams. The purpose of the agents is to empower humans
with providing their complementary capabilities, such as fast and precise information
exchange and analysis of large data sets. Agents can play many different roles, but the
responsibility for decisions remains, in principle, with humans, for example by verifying,
validating and approving proposals for decisions. An essential aspect of meaningful col-
laboration is to make mutual assumptions and expectations explicit, such that they can be
used in deliberation and communication. This is a prerequisite for appropriate delegation
of tasks and the accurate and concise descriptions of their underlying intentions.

For collaborative decision-making (CDM), it is essential that each human and agent
is aware of each others’ points of view and has a notion of the others possess points of
view that might differ from one’s own - which is known as a Theory of Mind (ToM).
ToM is defined as the human cognitive ability to perceive and interpret others in terms
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of their mental states and it is considered an indispensable requirement of human social
life [23, 24, 25, 26, 27, 28]. Rather than reasoning only with one’s own beliefs, desires,
goals, intentions, emotions, and thoughts, a person or agent with the awareness of others’
states of mind can consider different and mindful acts, depending on a perceived context.
This ability allows them to more easily understand, predict, and even manipulate the
behaviour of others [29].

Trustworthiness in interacting with artificially intelligent systems emerges from ex-
perience and as a combination of various properties, such as fairness, robustness, trans-
parency, verification, and accuracy [30]. AI systems are trusted when we have confidence
in the decisions that they take, i.e. when we understand why they are made [31], even
when we disagree.

2.5. Maturity Models

Maturity of software is commonly denoted by means of Maturity Models3, which are
frameworks that can be used in the process of planning and engineering, as well as in
the process of road mapping. An extensive overview of AI maturity models is written by
Sadiq et al [32].

In previous work [33] we presented a maturity-model that expressed the level of
cooperation of an AI entity (agent) that acts in a human-AI team. The model can be
used to reflect on expected capacities, roles and responsibilities of AI entities that act
in a Human-AI team. The maturity model classifies the level of cooperation along two
dimensions, level of agency and level of communication. It was represented by means of
a two-dimensional matrix.

Horizontally, levels of agency range from human-controlled to fully autonomous
[34, 35, 36]. Artificial Intelligence is based on the principles of autonomy and agency.
Autonomy, the quality or state of being self-governing, is required to avoid purely pre-
dictable and reactive behaviour [37]. Whenever an AI entity commits on contributing to
a team intention, it has to balance its level of autonomy with required levels of interac-
tion. The model distinguishes four levels of agency with respect to an AI entity acting in
a team (Human Trusted, Situational Autonomy, Preferred Autonomy and AI Trusted).

Vertically, levels of communication vary from merely sharing information about
alignment of tasks, to forms of interaction in which an agent takes into account the men-
tal state of others. Communication is a prerequisite for deliberation, delegation of tasks
and sharing of knowledge within an ecosystem. We distinguish four levels of commu-
nication, varying from simple sharing information about coordination of tasks to higher
orders of interaction that include the exchange of information about the learning process
and each others’ mental states. The maturity model distinguishes four levels of commu-
nication (Task Alignment, Co-Learning, Mental Modelling and Motivating).

We extended the maturity model with a third axis (see figure 3). The maturity
model, named the AI Interaction Maturity Model, manifests itself in the form of a three-
dimensional cube. the third axis can be used to express the impact of a particular AI
team member on the social level, varying from an individual level (silo-ed situation) to
organisational, industrial domain-specific and societal level.

3Another note on the term ‘model’, as it is an ambiguous term; where-as in software engineering it may refer
to a computational model, theoretical model or architectural model, we use the term model here to refer to an
engineering framework, commonly denoted with the term ‘maturity model’.
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Figure 3. The AI Interaction Maturity Model extends the Collaborative Agent Maturity Model by including a
third axis that reflects the impact of an AI entity on the social level.
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Figure 4. A causal model for living and working in the urban context.

3. Trusted Urban AI Scenario

As an example for applying the above-mentioned AI engineering concepts, we propose
a scenario in an urban context.

Urban life has many peculiar characteristics [38, 39, 40, 41, 42, 43]. Some causal
relationships in an urban context, focusing on energy consumption and mobility, are
shown in figure 4. We are concerned with modelling and understanding human behaviour
in an urban context (sustainable smart city), particularly when humans are part of hybrid
teams together with agents.
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The interactions in an urban environment are diverse, complex and conflicting. Many
interests of hybrid actors are related and depend on each other. In the urban context, an
overall goal for sustainable use of resources could be the reduction of energy consump-
tion.

Using causal models, adopting and implementing the engineering disciplines and
using a maturity model, as explained above, improves our understanding and control of
systems that we design and apply in this urban context. The consumption of various types
of energy is affected by the need and desire to move about the city and to heat buildings
at home and at work (and for leisure, shopping, etc.). As shown in fig. 4, values and
duties are the main sources that drive urban behaviour and external factors, such as the
weather, influence decision-making. This causal model explains the relationships among
several important behavioural aspects, but it is not deterministic. Individual behaviour is
influenced by exogenous variables and cooperative behaviour results in complex inter-
actions. A shared goal can be seen and modelled as an effect, that is caused by one or
more interventions (actions or events). Consequently, in order to decide and plan which
actions to take, it is necessary to understand which actions or events cause the intended
effects. For example, your goal can be to arrive at a destination at a given time (work,
home, leisure, etc.). By reasoning back which actions are required to get you there, piece
by piece, a connected causal path can be constructed to determine the departure time and
modes of traffic along the route. Due to shared intentions and causal models, humans and
agents can mutually trust each other regarding their actions and outcomes.

The urban context comes with a multidisciplinary stakeholder field, involving a land-
scape of IT systems varying from traditional components in data sharing platforms to AI-
enabled services. A modular approach for both design and realisation of software mod-
ules and AI models is crucial to keep the systems at their reuired levels of interoparability
and scalability. Roadmapping of AI based systems, inside buildings as well as between
various buildings and their interaction with human engineers is facilitated by means of
the AIMM model.

4. Conclusions

As the field of Artificial Intelligence is still, and again, facing tremendous and over-
whelming changes and progress, there is a strong and quickly growing need for trust in
AI systems. The goal of Trust by Design is proposed to be based on the five engineering
principles of (i) Models & Explanations, (ii) Causality & Grounding, (iii) Modularity
& Compositionality, (iv) Human Agency & Oversight, and (v) a Maturity Model. Our
intention is to develop the insights above further into practical methods and tools, based
on a design pattern language, to benefit the AI community and its users. The context of
energy consumption and mobility in an urban context serves as applied setting setting
in various projects, validation of our suggested 5 pillars for controlled engineering and
further experimentation in the field of human-AI ecosystems.
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