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Abstract. Document layout analysis involves understanding the ar-
rangement of elements within a document. This paper navigates the
complexities of understanding various elements within document images,
such as text, images, tables, and headings. The approach employs an
advanced Transformer-based object detection network as an innovative
graphical page object detector for identifying tables, figures, and dis-
played elements. We introduce a query encoding mechanism to provide
high-quality object queries for contrastive learning, enhancing efficiency
in the decoder phase. We also present a hybrid matching scheme that
integrates the decoder’s original one-to-one matching strategy with the
one-to-many matching strategy during the training phase. This approach
aims to improve the model’s accuracy and versatility in detecting vari-
ous graphical elements on a page. Our experiments on PubLayNet, Do-
cLayNet, and PubTables benchmarks show that our approach outper-
forms current state-of-the-art methods. It achieves an average precision
of 97.3% on PubLayNet, 81.6% on DocLayNet, and 98.6% on PubTa-
bles, demonstrating its superior performance in layout analysis. These
advancements not only enhance the conversion of document images into
editable and accessible formats but also streamline information retrieval
and data extraction processes.

Keywords: Detection Transformer · Document Layout Analysis · Graph-
ical object detection

1 Introduction

Systems for Document Intelligence (DI) is essential in enhancing the efficiency of
automating large-scale document processing tasks, primarily focusing on extract-
ing and understanding content within these documents. These systems are piv-
otal in key business intelligence operations such as document retrieval, text recog-
nition, and content categorization, which rely heavily on extracting information
and transforming documents into a structured, machine-readable format. This
process seamlessly integrates the information extracted into further document
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Fig. 1: Diverse layouts and element types in the DocLayNet Dataset, including
elements such as captions, footnotes, formulas, and more. It underscores the
challenges in document layout analysis, like interpreting dense text and catego-
rizing diverse elements.

processing workflows. As a result, significant improvements have been achieved
across various industries, including banking, finance, and healthcare [1,2]. Docu-
ment Layout Analysis (DLA) has become a key component in Document Intelli-
gence due to its deriving structured formats from unstructured documents. This
structuring is vital for accurately identifying and extracting essential document
data. DLA encompasses two primary aspects: physical layout analysis, which
identifies and spatially categorizes physical page elements like text, images, and
tables, and logical layout analysis, which assigns semantic roles to these elements,
such as titles, paragraphs, and headers, while understanding their hierarchical
and reading order relationships. This analysis is essential for converting scanned
documents into editable and searchable formats. However, it faces challenges due
to the diversity of document layouts, the varying sizes and shapes of elements,
and the complexity of accurately interpreting these elements across different
documents.

Previously, remarkable progress has been made in document layout analysis
through deep learning techniques, including advanced technologies like Faster
RCNN [3] and Mask RCNN [4], as well as other specialized frameworks [5,6].
These methods, effective in specific scenarios such as table detection and the
layout analysis of academic papers [7,8,9,10,11], sometimes face limitations in
wider applications across various tasks [12]. The advancement of Transformer-
based networks [13,14,15,16,17,18,19,20] marks a significant advancement over
traditional convolutional neural networks (CNNs), primarily due to their global
attention mechanisms and Non-Maximum Suppression (NMS) free design. How-
ever, these models still show constraints in precisely detecting textual regions, es-
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pecially in identifying small-scale text areas such as headers, footers, and section
titles. For example, DINO [19], a leading Transformer-based detection model [19],
experiences a notable drop in detection accuracy for these small text regions on
the DocLayNet dataset [21]. Fig. 1 shows complex layouts from DocLayNet, with
details like captions and footnotes. To improve DLA, we need better algorithms
for handling different documents, from academic papers to magazines.

In this paper, we propose an approach to address the challenges of doc-
ument layout analysis, focusing on accurately identifying graphical elements
within pages, such as tables, figures, and formulas. We employ an advanced
Transformer-based object detection network [19], for its exceptional capability
in detecting various graphical page objects. Enhancing this capability, we intro-
duce a Query Encoding Strategy to provide high-quality object queries by taking
high-level query features from the backbone. These query features provide bet-
ter predictions for small graphical objects like page headers, footers, and titles,
combined with the decoder’s original queries to improve overall performance.
This mechanism is pivotal for contrastive learning, significantly improving the
efficiency of the model’s decoder phase and enabling more effective processing
of complex document layouts. Furthermore, our approach introduces a novel hy-
brid matching scheme that merges the decoder’s original one-to-one matching
strategy with an auxiliary one-to-many matching strategy. This integration, im-
plemented during the training phase, is key to boosting the model’s accuracy
and adaptability in recognizing diverse classes of graphical elements. By com-
bining the transformer’s object detection capabilities with our unique encoding
query and selection strategies, our method sets a new benchmark in document
layout analysis, significantly advancing the field’s ability to accurately detect
and interpret graphical elements within various documents.
We summarize the main contributions of this paper as follows:

• We introduce a Transformer-based framework for document layout analysis,
incorporating a ResNet-50 backbone. This framework is augmented with an
enhanced query encoding mechanism and innovative query-selection strate-
gies. By integrating these strategies, our approach sets a new standard in
document layout analysis. This significant advancement contributes to accu-
rately detecting graphical elements in various document types.

• We present a unique query selection scheme that blends the decoder’s orig-
inal one-to-one matching strategy with a one-to-many matching strategy.
This integration, crucial during the training phase, significantly enhances
the model’s accuracy and adaptability in detecting and categorizing various
graphical elements across different documents.

• We introduce an enhanced query encoding mechanism to improve the effi-
ciency of the model’s decoder phase and enable more effective processing of
complex document layouts.

• To validate the effectiveness of our approach, we conduct comprehensive
evaluations on three distinct datasets: PubLayNet, DocLayNet, and Pubta-
bles. These evaluations demonstrate the robustness and applicability of our
proposed method across various documents and layout challenges.
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2 Related Work

Layout analysis is crucial to extract data from digital documents effectively.
It involves understanding the spatial arrangement and relationships between
various elements like tables, text, figures, and titles. Before deep learning ap-
proaches [3,4,22], heuristic rule-based algorithms [23,24] were emplyed in layout
analysis. However, with technological advancements, convolutional neural net-
works (CNNs) became the primary method, providing significant improvements.
More recently, transformer-based architectures [13,25,26,27,15,16,28,18,19] have
emerged as the leading approach, show remarkable effectiveness in this domain.
This section aims to offer an in-depth review of these cutting-edge techniques,
exploring a variety of approaches in Document Layout Analysis (DLA).

Heuristic Rule-Based DLA. The document layout analysis using heuris-
tic techniques is generally categorized into top-down, bottom-up, and hybrid
approaches. Bottom-up methods [23,24] involve elementary processes such as
clustering and combining pixels to form uniform regions for akin objects while
segregating dissimilar ones. Conversely, top-down approaches [29,30] iteratively
divide the document image into various regions until distinct areas encompassing
similar objects are formed. While bottom-up strategies are capable of handling
intricate layouts, they require significant computational resources. On the other
hand, top-down methods are more efficient in terms of implementation speed but
lack versatility, showing optimal performance only with certain document types.
Hybrid methods [31,32] combine the strengths of both bottom-up and top-down
techniques, achieving both rapid and effective outcomes. Before the advent of
deep learning, these heuristic strategies were the leading methods for detecting
tables in documents.

Deep Learning-based DLA. With the rise of deep learning approaches [7,8,10],
Convolutional Neural Networks (CNNs) have performed better than traditional
rule-based algorithms in document analysis [33,34,35,36,37,38,39]. This devel-
opment represents a significant improvement in the precision and efficiency of
processing and understanding complex document layouts. Introducing Faster-
RCNN [3] marks a significant advancement in document object detection, facili-
tating effective page segmentation [40]. Subsequently, Mask-RCNN [4] set a new
benchmark in layout segmentation, particularly for newspapers. RetinaNet [22]
further contributes to this evolution by focusing on keyword detection in docu-
ment images, although its complexity limits its application to text region detec-
tion. For table detection and structural recognition, DeepDeSRT [7] introduces
an innovative image transformation approach that discerns table features for in-
put into a fully convolutional network employing skip pooling. The ICDAR2017
POD (Page Object Detection) benchmark, introduced by Saha et al. [41], uti-
lizes a transfer learning-based Faster-RCNN architecture to detect elements like
mathematical equations, tables, and figures. To address cross-domain challenges
in Document Object Detection, a new benchmark [42] is established, focusing
on domain adaptation strategies. More recently, a vision-based layout detec-
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tion benchmark [43] employs a recurrent convolutional neural network with a
VoVNet-v2 backbone, generating synthetic PDF documents from the ICDAR-
2013 and GROTOAP datasets to set new standards in scientific document anal-
ysis.

Transformer-Based DLA. Document layout analysis is rapidly advancing
with Transformer architectures, known for their positional embedding and atten-
tion mechanisms. These methods are known for their unique features like posi-
tional embedding and attention mechanism [44]. DiT [45] has set a new standard
in classifying document images, layout analysis, and table detection, employing
self-supervised training on extensive collections of unlabeled document images.
However, its application is limited to smaller datasets like PRIMA. Li et al. [46]
develop a method that combines different types of data to understand struc-
tured text in documents. However, this method struggles with text that has
similar meanings. Furthermore, the TILT [47] model simultaneously processes
textual, visual, and layout data through an encoder-decoder Transformer setup.
Another implementation of a transformer encoder-decoder in [48] establishes a
benchmark for the PubLayNet dataset [49], integrating text data extracted via
OCR. The LayoutLMv3 [50] model improves visual document understanding
by jointly learning from text, layout, and visual elements. It performs better
with large datasets but has limitations with smaller ones. Other recent mod-
els [51,52,53,54] also adopt joint pre-training strategies for various tasks, includ-
ing document visual question answering. The transformer-based architectures
have emerged as the leading approaches, show remarkable effectiveness in object
detection domain [13,14,25,26,17,27,15,16,28,55,18,19]. However, when employ-
ing DINO [19] or other Transformer-based networks in document layout analysis,
there’s a noted limitation in their performance with small graphical objects like
page titles, headers, and footers. To improve this, We enhance the hybrid query
mechanism and matching scheme. This strategy elevates our document layout
analysis, allowing for more precise and flexible detection and interpretation of
various document graphical elements.

3 Methodology

Our approach consists of four integral parts: First, a CNN-based backbone
network for extracting multi-scale features from document images. Second, a
transformer-based model is employed to detect graphical elements like titles,
figures, tables, and text on the pages. Third, we introduce an improved query
encoding mechanism, optimizing the model’s decoder phase to process com-
plex document layouts more effectively. Fourthly, we implement a unique query
selection scheme, blending the decoder’s one-to-one matching with a new one-
to-many strategy, enhancing accuracy in identifying various graphical elements
during training. These modules are collectively trained in an end-to-end manner.
The complete overview of our approach is shown in Fig. 2 and explained in detail
in the subsequent subsections.
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3.1 Backbone Multi-scale Features Network

For processing an input image I of size H×W×3, we use a ResNet-50 backbone
network to generate a series of feature maps at reduced resolutions: 1/4, 1/8,
1/16, 1/32, and 1/64 of the original size. Each map is refined using a 1×1 convo-
lution layer, which is crucial for reducing the channel count. This step is essential
to control the number of trainable parameters, making the process manageable,
especially with limited computational resources. After this reduction, each fea-
ture map has 256 channels, which are then input into the transformer network
to detect graphical objects on the page.

Fig. 2: Overview of our approach for Document Layout Analysis. The input im-
age is processed through a CNN backbone to extract features, which are then
passed to a Transformer encoder-decoder network. The encoder processes the
features globally, while the decoder uses object queries to interact with the en-
coded features and predict bounding boxes and classes for each object in the
image. Our approach incorporates an enhanced query encoding mechanism to
improve decoder efficiency and a query selection scheme that combines one-to-
one and one-to-many matching strategies, improving accuracy and adaptability
in identifying various graphical elements across documents.

3.2 Document Layout Analysis with the transformer Framework

Recent progress in Transformer-based object detection [20,13,14,56,16,28,18,19]
has revolutionized document analysis. These advanced methods outperform pre-
vious models like Faster-RCNN [3] and Mask-RCNN [4], mainly because they
don’t require manual techniques such as anchor generation process and NMS.
Our approach employs the DINO [19] model, a state-of-the-art network, to detect
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graphical elements in document images. Our approach includes a transformer
network with a unique structure. It has an encoder that processes variously
scaled feature maps from a CNN backbone and a decoder that generates the
final results. The encoder’s task is to generate detailed proposals for graphi-
cal elements in the pages, guiding the decoder’s positional embeddings for the
queries. This decoder uses a deformable attention mechanism for better effi-
ciency in self and cross-attention processes. It also applies contrastive denoising
for the object queries, helping the model learn faster. It is highly adaptable,
especially during shifts in document types, and it focuses on lower-dimension
image features, which often need more data to be included in traditional trans-
former training. The effectiveness of our transformer-based approach is validated
through its impressive performance in detecting graphical page objects on well-
known benchmarks like PubLayNet, DocLayNet, and PubTables.

3.3 Query Encoding Strategy

In the query encoding strategy, we enhance the query mechanism to improve the
detection of small graphical objects in document images by combining backbone
query features with decoder original queries. This approach creates high-quality
object queries, increasing accuracy in identifying the small elements within an
image. Here’s a detailed explanation:

High-level Query Features from Backbone: In our approach, we initially
extract high-level features from the early layers of a CNN backbone, such as
the ResNet-50. These initial layers are adept at capturing intricate details and
textures, including edges, corners, and specific patterns. This level of granularity
is crucial for identifying smaller objects within an image. For each processed
image, we adjust the dimensions of feature maps C4 and C5 to align with C3
and then concatenate them. The combined feature map undergoes processing
through two 3×3 convolutional layers, resulting in a feature map Ch comprising
64 channels. Then, we employ the RoIAlign algorithm [57] to extract features
based on its bounding box bj = (xj1, yj1, xj2, yj2) with many MLPs , where
(xj1, yj1) and (xj2, yj2) are the coordinates of the upper-left and lower-right
corners, respectively. The high-level query features are then defined as:

Qh = MLP (RoIAlign(Fh, bj)) (1)

Here, Qh refers to the query features and Fh denotes features from backbone.
Next, we apply a self-attention mechanism, as described in [44], to the high-level
query features Qh and decoder orignal query features Qd. This mechanism en-
ables the model to prioritize and weight the importance of different aspects of the
high-level features, thus enhancing the overall feature representation. Following
the self-attention step, we determine the cross-correlation (similarity) between
the outputs Q′

h and Q′
d, using cosine similarity [58]. The process is formalized

as follows:
Qe = similarity(Q′

d, Q
′
h) (2)
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Here, Q′
h refers to the query features from the backbone after self-attention,

while Q′
d denotes the original decoder queries after self-attention. The final step

involves integrating these refined queries Qe with the original queries from the
decoder, enhancing the overall feature extraction and analysis.

Combining Features for Enhanced Detection: In the next step, we inte-
grate two distinct types of features to boost detection capabilities. High-level
features, represented by Qh, allow the model to understand the overall layout
and context of the document. On the other hand, we have the original trans-
former query features, which are adept at capturing specific object information.
The enhanced features Qe are obtained from self-attention on Qh and decoder
original queries Qd. This concatenation is particularly beneficial for detecting
small graphical elements, such as page headers, footers, and titles, which might
be missed by the decoder’s original query features alone. Combining these fea-
tures enhances the model’s detection sensitivity to these smaller elements. The
combined query features, which we denote as Qt, are formed by concatenating
the decoder original query features with the enhanced query features Qe:

Qt = Concat(Qd, Qe) (3)

This combination of features from both the high-level and the decoder queries
enriches the feature set provided to the model, leading to a more robust detec-
tion mechanism for various objects within complex documents.

Integration with Decoder’s Original Queries: By merging previously gen-
erated queries with the original decoder queries, our model performs better in
identifying elements in document images. This integration enhances the model’s
ability to detect prominent and subtle features within complex document layouts,
making it especially effective for predicting small or easily overlooked objects.
The process of query integration and output generation is formulated as:

o = Decoder(Qt, E|A) (4)

Here, our model utilizes a set of decoder queries, denoted by Qt, and correspond-
ing outputs from the Transformer decoder, represented as o. The refined image
features, processed by the Transformer encoder, are symbolized by F , while A
represents the attention mask, specifically designed for the denoising task [59].
In this way, this query mechanism combines the strengths of both abstract and
detailed image features, facilitating thorough and precise detection of diverse
elements within intricate document structures.

3.4 Query Selection Strategy

Our research introduces an innovative hybrid matching scheme for analyzing
complex documents. This approach uniquely combines two query strategies, one-
to-one and one-to-many matching, to enhance the detection and understanding
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of various elements in detailed documents. Initially, we observe that the one-to-
many strategy led to duplicate predictions, as shown in Table 5. To optimize this,
we utilized one-to-many matching during the first half of our training iterations,
then shifted to one-to-one matching for the remainder. This transition markedly
improved accuracy and reduced duplications.

As a key feature of our hybrid approach, the one-to-many matching branch
is designed to enhance object detection in complex document layouts. This in-
novative branch enables the association of a single detected object with multiple
ground truths, a significant advancement over traditional one-to-one matching
methods. We integrate original decoder queries with high-quality object queries
generated in the one-to-many strategy. These object queries are generated by
merging high-level query features from the backbone as explained in subsec-
tion 3.3. It is particularly useful in complex document layouts where traditional
one-to-one matching might struggle. By enabling an object to be matched with
several ground truths, the model better understands the document’s content, es-
pecially in overlapping or closely packed elements. The total loss in ono-to-many
strategy is as follows:

L1−m
cls =

Nobj∑
i=1

|ĝi − pi| ·BCE(pi, ĝi) +

Nno∑
j=1

pj ·BCE(pj , 0) (5)

L1−m
reg =

Nobj∑
i=1

ĝi · LGIoU (bxi, b̂xi) +

Nobj∑
i=1

ĝi · LL1(bxi, b̂xi) (6)

L1−m = L1−m
cls + L1−m

reg (7)
where ĝi is the ground truth, pi is the actual prediction. In the one-to-one match-
ing branch, a traditional approach in object detection models, each detected
object is directly aligned with a corresponding ground truth. This method is
straightforward and effective in scenarios where objects are clearly separated
and easily identifiable. It eliminates duplications generated in the one-to-many
strategy, ensuring more accurate predictions. The total loss in the one-to-one
matching strategy is as follows:

L1−1 = L1−1
cls + L1−1

reg (8)

This hybrid approach retains the benefits of the traditional method, like elimi-
nating the need for Non-Maximum Suppression (NMS), and does not add any
extra computational cost. The combination of these two methods in a single
model allows for more accurate and efficient object detection in a wide range of
scenarios, significantly improving the performance of document analysis tasks.

4 Experimental Setup

Datasets and Evaluation Criteria. Our study employs three benchmark
datasets to evaluate the efficacy of the proposed method: PubLayNet [49] Pub-
Tables [60] and DocLayNet [21]. We adopt the mean Average Precision (mAP)



10 T. Shehzadi et al.

metric in line with COCO-style [61] standards to evaluate our approach. We
compute precision across a spectrum of Intersection over Union (IoU) thresh-
olds, from 0.50 to 0.95, increasing in 0.05 steps. This IoU range is essential for
evaluating our model’s accuracy in category-specific tasks. Our mAP calcula-
tion, averaged across these IoU levels, follows the established Microsoft COCO
benchmark, facilitating a standardized comparison with other models. We fur-
ther refine our assessment by calculating Average Precision (AP) at specific IoU
thresholds of 0.50 and 0.75, offering a focused analysis of the model’s performance
at these recognized benchmarks. It clearly explains our model’s proficiency in
accurately classifying various categories.

Implementation Details. Our network is trained on RTXA600 GPUs, uti-
lizing a ResNet-50 network as the backbone, which is pre-trained on ImageNet.
We employ the AdamW algorithm for optimization, with a batch size of 16.
The training duration is set to 12 epochs for both PubLayNet and PubTables
datasets, and extended to 24 epochs for the DocLayNet dataset. We implement
a learning rate reduction strategy, decreasing it by a factor of 10 later in the
training process. Our approach includes a multi-scale training technique, where
images are resized to various lengths without exceeding a maximum size limit.
For the testing phase, we resize images to have a shorter side of 640, optimizing
image handling during model evaluation.

Table 1: Evaluation on the DocLayNet Benchmark. A comparative anal-
ysis of outcomes on the DocLayNet Test Dataset. Here, Mask represents Mask
R-CNN and Faster indicates Faster R-CNN. In this comparison, the perfor-
mances of Mask R-CNN, Faster R-CNN, and YOLOv5 are referenced from [21],
and the results for the DINO model are derived from [62]. The best results are
highlighted in bold.

Classes Mask Faster YOLOv5 DINO Zhong et al. [62] Ours
Caption 71.5 70.1 77.7 85.5 83.2 85.6
Footnote 71.8 73.7 77.2 69.2 69.7 70.0
Formula 63.4 63.5 66.2 63.8 63.4 64.7
List-item 80.8 81.0 86.2 80.9 88.6 83.5
Page-footer 59.3 58.9 61.1 54.2 90.0 91.3
Page-header 70.0 72.0 67.9 63.7 76.3 77.8
Picture 72.7 72.0 77.1 84.1 81.6 84.7
Section-header 69.3 68.4 74.6 64.3 83.2 82.9
Table 82.9 82.2 86.3 85.7 84.8 86.1
Text 85.8 85.4 88.1 83.3 84.8 85.4
Title 80.4 79.9 82.7 82.8 84.9 86.3
All 73.5 73.4 76.8 74.3 81.0 81.6
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5 Results and Discussion

5.1 DocLayNet

Table 1 summarizes the performance of our approach compared to other ap-
proaches on the DocLayNet dataset, with results measured in mean Average
Precision (mAP) for different document elements. Our method outperforms pre-
vious networks like Mask R-CNN [57], Faster R-CNN [63], YOLOv5 [64], DINO,
and the document analysis approach of Zhong et al. [62], particularly in recog-
nizing ’Caption,’ ’Page-footer,’ ’Page-header,’ and ’Title,’ achieving the highest
overall mAP at 81.6%. This comprehensive evaluation across various classes high-
lights the effectiveness of our approach in accurately detecting and classifying
elements in a wide array of document layouts.

Fig. 3: Visual analysis of our approach on the DocLayNet dataset. Here, blue
color represents ground truth, red denotes prediction by our approach. It illus-
trates the model’s proficiency in identifying small layout elements, specifically
highlighting its accuracy in detecting page titles, headers, and footers.
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Fig. 3 illustrates the visual results of our document layout analysis approach
on the DocLayNet dataset. It displays document page with our model’s pre-
dictions compared to the actual ground truth (GT). In these visual examples,
ground truth annotations are outlined in blue, and our model’s predictions are
in red. This comparison aims to showcase our model’s precision in identifying
small layout elements, such as page titles, headers, and footers. Using contrasting
colors demonstrates the accuracy of our approach in detecting and classifying
the intricate details of document layouts.

5.2 PubLayNet

We also evaluate and compare our approach with previous document analysis
approaches on the PubLayNet dataset. The results of these comparisons are
detailed in Table 2. The results indicate that our approach significantly outper-

Table 2: Evaluation on the PubLayNet Benchmark. A comparative anal-
ysis of results on the PubLayNet Validation Set. The results highlight the effec-
tiveness of our approach. The best results are highlighted in bold.

Method Text Title List Table Figure mAP
Faster R-CNN [49] 91.0 82.6 88.3 95.4 93.7 90.2
Mask R-CNN [49] 91.6 84.0 88.6 96.0 94.9 91.0
Naik et al. [11] 94.3 88.7 94.3 97.6 96.1 94.2
Minouei et al. [65] 94.4 90.8 94.0 97.4 96.6 94.6
DiT-L [45] 94.4 89.3 96.0 97.8 97.2 94.9
SRRV [66] 95.8 90.1 95.0 97.6 96.7 95.0
DINO [19] 94.9 91.4 96.0 98.0 97.3 95.5
TRDLU [48] 95.8 92.1 97.6 97.6 96.6 96.0
UDoc [53] 93.9 88.5 93.7 97.3 96.4 93.9
LayoutLMv3 [50] 94.5 90.6 95.5 97.9 97.0 95.1
VSR [67] 96.7 93.1 94.7 97.4 96.4 95.7
Zhong et al. [62] 97.4 93.5 96.4 98.2 97.2 96.5
Our 98.0 94.2 97.3 98.6 98.5 97.3

forms previous methods, demonstrating its superior performance in document
analysis.

5.3 PubTables

We also evaluate our approach and compare it with previous table detection
approaches on PubTables dataset. The results of these comparisons are detailed
in Table 3. The results clearly demonstrate that our approach outperforms pre-
vious table detection approaches, highlighting its effectiveness and efficiency in
accurately identifying and classifying table elements within complex documents.
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Table 3: Comparative Analysis of Results on the PubTables Validation Set. The
best results are highlighted in bold.

Method Detector mAP AP50 AP75

Smock et al. [60] Faster R-CNN 82.5 98.5 92.7
Smock et al. [60] DETR 96.6 995 98.8
Minouei et al. [8] Sparse R-CNN+PVT 98.2 - -

Our DINO 98.6 99.8 99.1

5.4 Ablation Study

In our ablation study, we explore the impact of object query selection, the ef-
fectiveness of matching strategies, and the influence of the quantity of learnable
queries in our Transformer-based model. This investigation is designed to ob-
serve how these key components individually and collectively affect our model’s
precision and functionality in analyzing complex document layouts.

Table 4: Detailed Ablation Analysis on the PubLayNet Validation Dataset.
Method Text Title List Table Figure mAP

DINO-Queries (Qd) 94.9 91.4 96.0 98.0 97.3 95.52

Hybrid-Queries (Qd +Qe) 98.0 94.2 97.3 98.6 98.5 97.3

Influence of object query selection In the ablation study, we observe the
impact of object query selection, which is crucial for detecting small graphical
objects like page headers, footers, and titles in document layout analysis. The
study examines the enhanced query mechanism that combines high-level back-
bone features with decoder original query features. By integrating the refined
query features with the original queries, we observe a significant improvement,
as shown in Table 4, to accurately predict and identify smaller elements within
document layouts. This comparison shows how high-quality object queries im-
prove document analysis. It demonstrates that modifying query integration can
significantly enhance the model’s performance and accuracy.
Influence of matching strategy In our document layout analysis approach,
employing one-to-one and one-to-many matching strategies provides a compre-
hensive approach, as shown in Table 5. In our setup, Qd represents the standard
decoder queries, while Qe represents the enhanced queries. The data indicates
that the best mean Average Precision (mAP) is obtained when these two sets of
queries are used together, which leads to better training results. It’s particularly
effective to start training with Qd and Qe and then transition to using just Qd

halfway through the training process. One-to-one matching using Qd, aligning
each prediction with a single ground truth, is efficient for clear, distinct objects,
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Table 5: Performance comparison using various query combinations as input to
the decoder on PubLayNet dataset. Here, Qd represents the original decoder
queries, while Qe signifies the enhanced queries. The highest mean Average Pre-
cision (mAP) is achieved by combining the original DINO queries with the en-
hanced queries, indicating improved performance during training with overlap in
predictions. A training approach that uses Qd+Qe for the initial half of training
epochs before switching to Qd is shown to be effective.

Qd Qd +Qe NMS-free mAP AP50 AP75

✓ ✗ ✓ 95.5 - -
✗ ✓ ✗ 98.4 98.8 97.7
✓ ✓ ✓ 97.3 98.5 97.4

ensuring straightforward training. On the other hand, one-to-many matching
employing Qd + Qe allows a single prediction to correspond to several ground
truths, adeptly handling complex layouts with overlapping or closely packed ele-
ments. This dual strategy leverages the strengths of both approaches, enhancing
the model’s ability to accurately detect and classify a wide range of object types
in various document layouts.
Influence of Learnable queries Quantity The quantity of learnable queries
in Transformer-based models like DINO significantly affects their performance
in document layout analysis, as observed in Table 6. More queries enable finer
detection of detailed elements and improve overall accuracy, but there’s a need
for balance. Excessive queries can increase computational demands and risk over-
fitting, while too few may miss intricate details. Thus, optimizing the number
of queries is crucial for efficient processing, balancing computational resources,
and ensuring adaptability across various document types and complexities.

Table 6: Performance comparison using different numbers of learnable queries to
the decoder input on PubLayNet Dataset. The best-performing results are high-
lighted in bold, illustrating the optimal number of queries required for best model
performance. As indicated, the model generally improves with more queries, up
to a point, after which the performance decreases, suggesting an optimal query
range for efficient detection across various object sizes.

N AP AP50 AP75 APs APm APl

100 95.3 96.7 95.8 35.8 65.3 89.2
200 96.5 97.3 96.6 43.5 71.8 96.4
300 97.3 98.5 97.4 43.8 72.7 96.7
400 96.4 98.2 97.0 43.1 60.7 96.1
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6 Conclusion

This paper introduces a approach for analyzing document layouts, focusing on
accurately identifying elements like text, images, tables, and headings in docu-
ments. We introduce a hybrid query mechanism that enhances object queries for
contrastive learning, improving the efficiency of the decoder phase in the model.
Moreover, during training, our approach features a hybrid matching scheme that
combines the decoder’s original one-to-one matching with a one-to-many match-
ing branch, aiming to increase the model’s accuracy and flexibility in detecting
diverse graphical elements on a page. We evaluate our approach on benchmark
datasets like PubLayNet, DocLayNet, and PubTables. It demonstrates superior
accuracy and precision in layout analysis, outperforming current state-of-the-art
methods. These advancements significantly aid in transforming document im-
ages into editable and accessible formats, streamlining information retrieval and
data extraction processes. The implications of our research are substantial, af-
fecting areas such as digital archiving, automated form processing, and content
management systems. This work represents a significant contribution to docu-
ment analysis and digital information management, setting new benchmarks and
paving the way for future advancements.
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