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ABSTRACT
Games are used in multiple fields of brain–computer interface (BCI)
research and applications to improve participants’ engagement
and enjoyment during electroencephalogram (EEG) data collection.
However, despite potential benefits, no current studies have re-
ported on implemented games for Speech Imagery BCI. Imagined
speech is speech produced without audible sounds or active move-
ment of the articulatory muscles. Collecting imagined speech EEG
data is a time-consuming, mentally exhausting, and cumbersome
process, which requires participants to read words off a computer
screen and produce them as imagined speech. To improve this
process for study participants, we implemented a maze-like game
where a participant navigated a virtual robot capable of perform-
ing five actions that represented our words of interest while we
recorded their EEG data. The study setup was evaluated with 15
participants. Based on their feedback, the game improved their
engagement and enjoyment while resulting in a 69.10% average
classification accuracy using a random forest classifier.
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1 INTRODUCTION
A Brain-Computer Interface (BCI) attempts to decode a person’s
brain activity in order to understand their intentions and to inter-
act with external devices [7]. One active area in the BCI domain
is Speech Imagery BCI; speech imagery is the ability to produce
speech internally in the absence of any muscle movements and au-
dible sounds [13]. Speech Imagery BCI is an active area of research
and is regarded as a possible solution for multiple use cases across
various domains where normal (overt) speech is not suitable; for
example, in the industrial domain, where workers might not be able
to communicate efficiently using overt speech due to loud or noisy
environments, and in the medical domain to restore the communi-
cation pathways of patients with certain maladies which affect their
ability to produce overt speech, like Amyotrophic lateral sclerosis
(ALS) or certain forms of paralysis. One method of monitoring a
person’s brain activity for BCIs is using electroencephalography
(EEG) devices, which record the electrical activity of a person’s
brain using electrodes placed on the scalp [15]. EEG devices are
non-invasive and relatively cheap in comparison to other brain
imaging modalities [1]. In addition, the number of portable and
simple-to-use EEG equipment offered to the research community
has increased in recent years [1]. These factors contributed to a rise
in EEG-based BCI research.

Imagined speech EEG data collection studies are troublesome in
multiple ways. They are quite time-consuming; the time it takes
to set up the EEG headset with the participant depends on the
number of electrodes and the type of headset, but it usually exceeds
30 minutes [9]. Data processing is often conducted in a within-
participant manner, which necessitates collecting a large amount of
data from each participant [10, 14, 16, 20, 22]. This leads to a data
collection study being sometimes split over the course of multiple
sessions [14, 16, 22], resulting in the overall study lasting multiple
hours; for example, the study inMohanchandra and Saha [14] lasted
almost two hours for just the data collection. During those long data
collection studies, participants were almost always told the same set
of rules: to sit still by not moving any muscles, to minimise blinking,
not to produce any audible sounds, and to fully concentrate on the
word of interest [10, 14, 20, 24]. Most often, the target words are
presented to the participants in written form on a computer screen
for them to read and repeat silently when a cue is shown. One
variation which can be found in the literature is to ask participants
questions regarding the word of interest instead of showing them
the words to read [16, 20, 22].
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However, the tiring and demanding nature of EEG data collection
studies is common among other BCI applications. Lotte et al. [12]
argued that the solution to this can be seen as either improving the
processing elements, e.g. García-Salinas et al. [6] tried to use fewer
data from the participants to shorten the data collection duration,
or improving the human aspect of the procedure to make it less
cumbersome and more enjoyable from the participants’ perspective.
de Castro-Cros et al. [5], Rexwinkle et al. [21], Škola et al. [26]
all agreed that games help increase participants’ engagement and
enjoyment while mediating the repetitive nature of conventional
BCI studies, which in turn improved the participants’ overall user
experience. This falls under the concept of a game with a purpose
(GWAP) where participants play a game while important data about
a specific problem is collected from them in the background [21, 23].

However, the majority of BCI literature reported on GWAPs
implemented for Motor Imagery (MI) BCI studies [5, 21, 26], and
there are no current publications that reported on implemented
GWAPs for Speech Imagery BCI studies, despite their possible
benefits. In this work, we show that GWAPs can have a promising
effect on Speech Imagery BCI studies. We created a computer-
based maze-like game in which the participants interacted with
an industrial robot to produce words of interest in the form of
command words to control the robot in a teleoperation scenario.
The setup was tested in an actual EEG data collection study with 15
participants. Their qualitative feedback, in the form of unstructured
interviews, showed us that we were on the right track to improve
the enjoyment and engagement factors of the study. In addition, we
were able to produce accuracies significantly above chance level
for imagined speech classification, which meant that the game did
not negatively affect the EEG data quality1.

2 METHODS
Our objective was to create a game where the words of interest
for the training of the Speech Imagery BCI were presented as in-
game actions for a robot. We wanted to build the game based on
a possible real-world Speech Imagery BCI use case. We decided
on a teleoperation industrial setting where the participant would
control a robot to move it between two factories. A participant
would be able to play, and when they figured out which action to
perform, they would indicate that they were ready to repeat the
word of interest on cue. Simultaneously, we would be recording
their EEG data. However, caution is needed in designing GWAPs for
BCI studies because some mental states, e.g. stress and fatigue, have
a noticeable effect on EEG signals [5, 21]. Lotte et al. [12] discussed
other specific key points for designing games to improve BCI data
collection studies. The game should be relevant to the study. It
should show participants feedback regarding their actions during
the study, as this could help motivate them for longer periods
of time. It should provide pre-training to show the participants
what to expect during the actual study and to make them more
comfortable with the actions they would perform afterwards. Lastly,
self-paced studies, i.e. allowing the participants to proceed at their
own pace, improved their overall experience. All the upcoming
requirements and elements were chosen to cater to the regulations
and requirements of EEG studies while implementing our idea.

1Our other publication [19], focused on the EEG processing side of this study

2.1 Word Selection
This research was conducted at the German Research Centre for
Artificial Intelligence (DFKI) at Saarland University in Germany,
which has a large number of English-speaking staff and students;
therefore, English was chosen as the main language for the study.
We had certain requirements for the words of interest: the words
had to be either known and easy to pronounce or easily understand-
able by non-native English speakers who had adequate language
proficiency; the words had to be suitable for robot commands; and
they needed to be from at least two different word categories to
enable suitable game dynamics. A suitable choice that fit all these
requirements was to use directions Up, Left, and Right, and actions
Pick, and Push. The words had to be presented shuffled Up, Left,
Pick to avoid block-wise presentation Up, Up, Up, which can cause
label leakage due to classifying arbitrary brain states, e.g. fatigue,
rather than valuable information from cognitive processing [11].

2.2 Game Implementation
The game needed to be fairly straightforward to avoid causing
any stress or confusion. Each command must be very clear to the
participant. Otherwise, the EEG signals of interest might get con-
taminated by brain activity related to confusion. The game needed
many distinct levels because each participant had to provide multi-
ple samples of each word. We wanted to show a variety of word
combinations across multiple levels to avoid repetition while en-
suring that each word was evenly represented at each level. We
used GDevelop2 for developing our game. It is an open-source
game development software built on the concept of event-based
programming. We built a 2D maze-like game in which a participant
controlled a robot to navigate from one factory to another while
pushing away boxes and picking up gears.

Figure 1 shows an overview of what a level looked like from a
zoomed-out view. We zoomed the camera on the robot while the
participant was playing to allow the participant to focus on the
upcoming step and not further on. We added black borders around
each step to make it easy for a participant to recognise which word
to produce by always moving from one square to another. In the
left panel in Figure 2, we show what the actual view looked like
to the player in the end. We chose this robot asset because it had
an industrial look, which fit our scenario, and it was front-facing,
which made it easier for participants to remember the directions.
We chose the box asset for Push and the gear asset for Pick because
they fit the aesthetics of the game and, more importantly, because
they were distinct from one another to prevent any confusion. All
three assets had movement animations implemented to make the
game visually pleasing; the robot had an idle state movement of
moving its arms and wheels, and both the box and gear assets had
a rotational movement around their axes.

To allow the participants to navigate the game at their own pace,
we used the spacebar as the game controller. Pressing it caused a
black screen to appear for two seconds, duringwhich the participant
focused on which command they had to say, and when a white cross
appeared in the middle of the screen for two additional seconds, as
a cue, the participant would produce the imagined speech. Figure
2 shows an example of a sequence where a participant would say
2https://gdevelop-app.com/

https://gdevelop-app.com/
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Figure 1: Level Overview

Right during the last two seconds. The choice of using the spacebar
to control the game came to mind because a lot of games utilise the
spacebar in their controls, and it might feel normal to the partici-
pants; for example, Google’s Dino Game 3, and Nintendo’s Super
Mario4. Each word interaction lasted approximately six seconds,
where roughly two seconds were spent figuring out which word to
say, two seconds for preparation after the space press, and two sec-
onds to produce imagined speech. We chose 25 words per level, so
each level would take roughly two and a half minutes to complete.
After four levels, the participant would have been collecting data
for 10 minutes. Afterwards, they would take a small break, adhering
to the general recommendations for conducting BCI studies [25].
To fit the game perspective, we added an end-of-level screen to
inform the participants that they had successfully finished the level
by reaching the factory.

An important point to highlight is that the robot always per-
formed the correct command, meaning it was not controlled using
the EEG signals. The game was a medium to present the words
more interactively than just reading them off the screen. The partic-
ipants were informed of this beforehand because the study was not
based on their thinking otherwise. In the end, the game consisted
of each participant performing 400 imagined speech repetitions,
where each of the five words Up, Left, Right, Pick, and Push was
repeated 80 times. An additional tutorial level was created so the
participants would become accustomed to the command words and
the game mechanics.

2.3 EEG Processing
We processed each user’s imagined speech EEG data using a Ran-
dom Forest classifier with four-fold cross-validation and Common
Spatial Patterns [8] as features. We used accuracy as our main eval-
uation metric. In our previous publication [19], we discuss in depth
our EEG data processing methods.

3https://dino-chrome.com/en
4https://en.wikipedia.org/wiki/Super_Mario

Figure 2: Game control sequence for the word Right.

3 EXPERIMENT
We received the approval of the Ethical Review Board of the Faculty
of Mathematics and Computer Science at Saarland University5 to
conduct the study. At the beginning of each study, the participant
was greeted, and the study purpose and procedure were explained
in detail to them. After signing a consent form allowing us to col-
lect and use their EEG signals, we fixed a 64-channel LiveAmp
EEG headset6 on the participant’s head. Afterwards, the participant
played the tutorial level until they felt accustomed and comfortable
with the words and the game mechanics. After finishing the study,
an informal spoken interview was conducted with each participant
to evaluate how they perceived the study and the game. We specifi-
cally asked them what they liked and disliked about the game and
if they had any feedback regarding how to improve the game setup.
We structured the data collection pipeline in a client-server archi-
tecture to allow real-time data processing. The setup was running
on two separate PCs, and the server was able to classify the data in
real-time. However, the classification accuracies in the results were
calculated offline after the study7.

4 RESULTS
4.1 Resulting Dataset
The dataset included four female and eleven male participants who
were all right-handed. The participants’ ages ranged from 20 years
old to 35 years old, with an average age of 26.8. The participants
were non-native English speakers of four different nationalities,
but they all had adequate English knowledge due to their studies
and professions. All of the participants provided written consent to
collect and use their EEG data for scientific purposes.

4.2 Study Feedback
After each data collection session, we conducted an informal spoken
interview with each participant to obtain feedback on the study.
Five participants had previously participated in other imagined
speech EEG data collection studies, and all five stated that the game
provided a more interactive and interesting study environment. It
did get boring after a while due to the game’s simplicity, but they
said it made them concentrate more frequently over the course
of the study than in the other studies. The remaining participants
5https://erb.cs.uni-saarland.de/
6From Brain Products GmbH: https://www.brainproducts.com/
7Our codebase and game are available on GitHub https://github.com/AMSelim/Master_
Thesis
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stated that the game became slightly boring in the long run because
it was a bit predictable. However, when we described how standard
imagined speech studies were typically conducted, as reported in
the literature, they felt that the game was heading in the right
direction in terms of making the study engaging.

One participant noted that the robot’s forward movement was
an oversimplification that they might wish to change from a purely
game perspective. Another participant said they liked how the robot
looked because it helped them remember the phrases, especially Up
because they were scared they might say Forwards instead, but the
game perspective with the top view of the robot, helped them avoid
making any mistakes. Another participant enjoyed the animation
of the assets because it drew their attention to the game and study
rather than allowing their thoughts to wander. All 15 participants
agreed that producing imagined speech required intense concen-
tration to focus on producing it correctly while minimising their
thoughts. The notion that the robot always performed the correct
command made them feel more relaxed because they were afraid
of making mistakes which might have derailed the study.

4.3 Classification Results
Speech Imagery BCI studies usually compare their accuracies against
the chance level. However, the standard method for calculating the
chance level, i.e., dividing 100% by the total number of classes, was
criticised because it could only be achieved if we had an infinite
number of samples [4]. Based on the work of Combrisson and
Jerbi [4], we computed an adjusted chance level of 28% instead of
20% as the significance threshold for our evaluation. We were able
to achieve a maximum accuracy of 96%, a minimum accuracy of
50.25%, and an average accuracy of 69.10%, which was computed
by summing the participants’ accuracies and dividing by the total
number of participants. The prediction was correct, i.e. true pos-
itive, when the classifier’s prediction equalled the true label and
was wrong when it equalled any of the other four labels.

5 DISCUSSION
According to the participants’ feedback, using the game in the data
collection study proved to be promising for increasing their engage-
ment. In addition, it improved their overall experience because the
study lasted for an average of 90 minutes8, which was quite long,
but the game made it tolerable. However, the game was too simple;
we made it simple on purpose to eliminate any external influence
that might have affected the EEG signals of interest, but we might
have caused an oversimplification. The fact that we could not find
any prior work for GWAPs used in Speech Imagery BCI studies
meant that we did not have any work to base our design on, and we
had to be extra cautious not to make the game difficult as it might
have produced other EEG signals that would have contaminated
our signals of interest.

Making the game move at each participant’s pace turned out
to be important. It made the participants feel more at ease and
allowed us to account for each participant’s individual needs be-
cause some participants got tired more often than others, requiring

8The imagined speech EEG data was only one-half of the EEG data recorded, with
the other half being for overt speech EEG data, which is why the full study lasted 90
minutes

more frequent and longer breaks. Being straightforward about the
game mechanics proved to be very beneficial. All participants ex-
pressed concern that making any mistakes would derail the entire
study, and they were anxious about it. Therefore, when we assured
them that the robot would always perform the correct action, they
became more relaxed, which is required in BCI studies.

The game itself did not negatively affect the classification results.
Our 69.10% average accuracy is above the 28% adjusted chance
level. This result is comparable to those of other studies. Qureshi
et al. [18] achieved a 40.3% maximum classification accuracy and a
32.9% average accuracy for five words and eight participants, while
Pawar and Dhage [17] achieved a 63.67% average accuracy also for
five words and eight participants. Our previous publication [19]
discussed the full EEG processing and results in detail.

However, further testing is needed to determine whether GWAPs
can potentially improve EEG data quality. We would have been
able to better evaluate the effects of the game on the system if we
had a control group which did not use the game. Further studies
are needed for an in-depth evaluation of the effects of GWAPs on
Speech Imagery BCI.We believe our approachwas a step in the right
direction because, despite the oversimplification, the participants
commented on being more attentive and focused in the long run.
Future studies should focus on finding the line where the game
is considered relevant, interesting, and simple, yet not boring. In
addition, using modalities such as eye tracking could help correctly
evaluate a participant’s visual attention and focus during a study
[2, 3] and determine which game elements might be distracting.

6 CONCLUSION
In this paper, we described our GWAP-based Speech Imagery BCI
EEG data collection method. We tested our game in a study where
15 participants wore a 64-channel EEG headset and produced imag-
ined speech while playing our teleoperation maze-like game to
control an industrial robot using five commands Up, Left, Right,
Pick, and Push. The game was a medium to present the words of
interest but was not EEG-controlled. We evaluated our newly de-
veloped approach using an informal interview. The game proved to
be useful by increasing participants’ enjoyment and engagement.
However, the game design and mechanics might have been over-
simplified. The game did not negatively affect the imagined speech
classification as we were able to achieve an average accuracy of
69.10%, which is comparable to other imagined speech EEG studies.
Based on the participants’ feedback, we discussed the different game
aspects and how each affected the study. Implementing GWAPs for
Speech Imagery BCI studies requires more research to determine
whether games could actually improve the EEG signal quality and
to further study when a game is considered simple yet still engaging
enough without contaminating the EEG signal. With this work, we
provided useful insights and a first step into this promising field of
GWAP-based Speech Imagery BCI training.
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