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Robust Co-Design of Canonical Underactuated Systems for Increased
Certifiable Stability

Federico Girlanda1,2, Lasse Shala1, Shivesh Kumar1,3 and Frank Kirchner1,4

Abstract— Optimal behaviours of a system to perform a
specific task can be achieved by leveraging the coupling between
trajectory optimization, stabilization, and design optimization.
This approach is particularly advantageous for underactuated
systems, which are systems that have fewer actuators than
degrees of freedom and thus require for more elaborate control
systems. This paper proposes a novel co-design algorithm,
namely Robust Trajectory Control with Design optimization
(RTC-D). An inner optimization layer (RTC) simultaneously
performs direct transcription (DIRTRAN) to find a nominal tra-
jectory while computing optimal hyperparameters for a stabi-
lizing time-varying linear quadratic regulator (TVLQR). RTC-
D augments RTC with a design optimization layer, maximizing
the system’s robustness through a time-varying Lyapunov-based
region of attraction (ROA) analysis. This analysis provides a
formal guarantee of stability for a set of off-nominal states.
The proposed algorithm has been tested on two different
underactuated systems: the torque-limited simple pendulum
and the cart-pole. Extensive simulations of off-nominal initial
conditions demonstrate improved robustness, while real-system
experiments show increased insensitivity to torque disturbances.

I. INTRODUCTION

Different living organisms have evolved diverse locomo-
tion strategies and physical characteristics to adapt to their
unique environments. Similarly, for underactuated systems a
combined optimization of structural parameters and motion
control is important to effectively accomplish the desired
tasks. A design optimization tunes the system’s hardware
parameters, such as link lengths or the center of mass
position, of a system to allow for executing the described task
with the desired behaviour. For trajectory tracking control,
reaching the goal requires to search for a motion trajectory
and to compute the control policy that permits the closed-
loop trajectory following. Typically, the best trajectory is
obtained via a trajectory optimization step, while the con-
trol input is computed by a specifically defined controller.
A traditional approach to find the best trade-off between
mechanical design and motion planning is to iterate between
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Fig. 1. Robust co-optimization for the optimal fitness of the desired motion.

the two processes [1]. Instead, concurrent design (co-design
[2]) aims to automate this process by numerically optimizing
both the motion and design parameters, a strategy that
has demonstrated superior results [3]–[9]. An example of
gradient-based co-design methods have been proposed in [9].
Here, the optimization for robot design and motion planning
is handled on two levels. On the lower level, an efficient
state-of-the-art constrained motion planner is implemented,
which is continuously differentiable. This last property is
then exploited on the higher level where the derivative of
the motion is embedded into a nonlinear program. Another
approach is the gradient-free co-design. For instance, Ha et.
al. [7] proposed a framework that had successfully optimized
designs for legged robots performing tasks that include
jumping, walking, and climbing up a step. Similarly, Fadini
et al. [8] introduced a bi-level optimization scheme that finds
the optimal actuator properties of a monoped in order to
improve energy efficiency. Both approaches are two-staged
and make use of variants of Monte-Carlo sampling to find
candidate robot designs, which are subsequently evaluated
through a motion planning stage. The covariance matrix
adaption evolution strategy (CMA-ES) [10] is a commonly
employed optimization strategy in this scenario. It uses a
Gaussian prior on candidate design parameters and estimates
a covariance matrix needed for the following sampling steps.
Another popular gradient free algorithm is Nelder-Mead
which has been used in the context of co-design of surgical
robots [11]. Recent studies in the literature are incorporating
non-idealities, such as measurement noise and parameter
variations, into co-optimization processes to reduce dis-
crepancies between theoretical predictions and real-world
performance [12]–[15]. For instance, Manchester and Kuin-
dersma [13] derived a tractable robust optimization algo-
rithm, namely DIRTREL, that combines direct transcription

ar
X

iv
:2

40
3.

10
96

6v
1 

 [
cs

.R
O

] 
 1

6 
M

ar
 2

02
4



with linear-quadratic control design to reason about closed-
loop responses to disturbances. Fadini [14] introduced a
simulation-based cost in a bi-level co-optimization algorithm
that aims to take into account a given set of disturbances.
The concept of robustness has also been explored through
ROA analysis [16], enabling the reasoning about stabilizable
state sets. A formal mathematical certificate of stabilizability
can also be provided. This methodology has mostly been
applied for stability analysis but it’s use in space-filling
algorithms like LQR-trees has obtained promising results
[17]–[19]. ROA estimation has already proven valuable in
co-design frameworks. In [15], where the volume of the
estimated region was used as an optimization cost for the
up-right stabilization of an Acrobot system, resulting in a
more robust closed-loop system against off-nominal initial
states. See [20] for an extension of [15] to pendubot system.
Additionaly, a bi-level optimization scheme was introduced
by [14] to compute a robust energy efficient design and
trajectory for a jumping monoped, considering a simulation-
based robustness cost to enhance result’s robustness.
This paper proposes a novel two layered gradient-free co-
design algorithm, namely RTC-D. The process involves co-
optimization among the cost matrices of a TVLQR con-
troller, the desired trajectory provided by DIRTRAN, and
the system’s design parameters. It aims to improve the real-
world applicability of the combined optimization result by
leveraging the volume of an estimated time-varying ROA. To
the best knowledge of the authors this metric has not been
studied in this context. We employ the CMA-ES optimization
strategy to determine the optimal decision variables. Our ap-
proach has been rigorously tested on two different canonical
underactuated systems: the torque-limited simple pendulum
and a cart-pole. These systems are inherently underactuated,
demanding a robust control approach. The specific case study
involves the swing-up problem, consisting in stabilizing the
pole in it’s up-right position. We validate our results through
extensive simulations of the system’s closed loop dynamics,
assessing the stabilizability of off-nominal initial conditions.
Furthermore, a real-world experiment has been implemented
to test a scenario subject to input torque noise.

Organization: Section II introduces a mathematical
description of the co-design problem and its components
including trajectory optimization, TVLQR control and ROA
estimation. Following this, Section III presents our proposed
robust co-design methodology for canonical underactuated
systems. Subsequently, in Section IV we present results from
applying this methodology to two different canonical sys-
tems namely torque limited pendulum and cart-pole system.
Section V concludes the paper.

II. MATHEMATICAL BACKGROUND

A. Co-Design Problem Description

A mechanical system with n indepedent degrees of free-
dom can be defined by a system’s description M(G,X,B,M)
where G is its topological graph, X = diag(X1, . . . ,Xn) ∈
R6n×n is the system matrix of body-fixed joint axis
screw coordinates with Xi ∈ R6, B = {B1, . . . ,Bn}

is the set of body frames with Bi ∈ SE(3) and M =
diag(M1, . . . ,Mn) ∈ R6n×6n is the matrix of mass-inertia
matrices of every moving body (Mi ∈ R6×6) in G. Given
M(G,X,B,M), it is straight forward to develop equations
of motion (EOM) for any mechanical system in closed-
form [21], [22]. The EOM can be used to develop a 1st
order ODE description of dynamics in terms of state-space
x = (q, q̇) ∈ R2n (with q and q̇ denoting the generalized
position and velocity coordinates respectively) and action-
space u ∈ Rp in the form ẋ = f(x,u). Given an initial
state description, x0, and the mechanical system’s model
M, a desired behavior can be achieved by optimizing its
corresponding cost model, which is composed of a final
cost model lf (xf ) and running cost model l (x,u), under
a given set of constraints imposed by the robot and the
environment. This typically entails solving an optimal control
problem (OCP). In a typical OCP, the design parameters of
M(G,X,B,M) are assumed to be constant.

We formulate co-design as a mathematical optimization
problem with the decision variables including the minimal
independent set of design space variables in M (while fixing
the robot topology G and joint axes screws X), state trajectory
x(t), and control policy u(x(t)). The overall cost function
of the co-design problem (ℓc, ℓcf ) may include the behavior
cost functions l and lf as well as robustness of the control
policy (e.g. volume of the region of attraction B of the
controller). The problem can be mathematically written as
the following.

min
M,x(·),u(·)

ℓcf (Bf , lf ) +

∫ tf

t0

ℓc(B, l)dt

subject to ẋ(t) = f(M,x(t),u(t)), ∀t ∈ [t0, tf ]

x(t0) = x0,x(t0) = xN

xmin ≤ x ≤ xmax,umin ≤ u ≤ umax

Mmin ≤ M ≤ Mmax

(1)

As expected, this is a complex mathematical optimization
problem with a very high dimensional space of decision
variables. Hence, deliberation should go into decomposing
the problem in a computationally tractable way.

B. Trajectory Optimization
Trajectory optimization is a way of solving OCP where

one solves for an open loop state and effort trajectory while
optimizing the behavior cost model (lf , l). Direct methods
discretize the trajectory optimization problem directly, con-
verting it into a constrained parameter optimization problem
[23]. This discretization is also referred as transcription.
Transcription and the use of x[·],u[·] as decision variables
leads to the so-called direct transcription (DIRTRAN). The
time discretization is done for N points, the knot-points.

min
x[·],u[·]

lf (x [N ]) +

N−1∑
k=0

l(x [k] ,u [k])

subject to x [k + 1] = fd(x [k] ,u [k]), ∀k ∈ [0, N − 1]

x [0] = x0

xmin ≤ x ≤ xmax,umin ≤ u ≤ umax



The resulting open-loop trajectory (x⋆,u⋆), usually referred
as nominal trajectory, has to satisfy the discrete dynamic’s
fd constraints while minimizing the standard additive-cost
optimal control objective l = (x[k]−xN )TQT (x[k]−xN )+
uTRTu and final cost lf = (x[k]− xN )TQTf (x[k]− xN )
where (QT ,QTf ) denote the running and final state regular-
ization cost matrices respectively and RT denotes the effort
minimization cost matrix to reach the goal state xN ∈ R2n.
This optimization problem can be solved using commercial
sequential-quadratic programming (SQP) solvers, such as
SNOPT [24]. The set of hyperparameters of DIRTRAN is
defined as the set HT = {QT ,RT ,QTf}.

C. Trajectory Stabilization

The stabilization of a nominal trajectory defined in a finite
time interval t ∈ [t0, tf ] can be achieved via Time-Varying
LQR (TVLQR) [23]. TVLQR aims to minimize the error
coordinates x̄ = (x−x∗) and ū = (u−u∗) , where ∗ denote
states of the nominal trajectory obtained from trajectory
optimization step. For this, a time-varying linearization using
a Taylor series approximation is performed, resulting in a
time-varying linear system in the error coordinates:

ẋ = A(t)x̄(t)−B(t)ū(t) (2)

The quadratic cost function is defined as:

J = x̄T (t)QCf x̄(t)+

∫ tf

0

(
x̄T (t)QC x̄(t) + ūT (t)RC ū(t)

)
dt

where QC = QT
C ⪰ 0, QCf = QT

Cf ⪰ 0 and RC = RT
C ≻

0. The optimal cost-to-go can be written as a time-varying
quadratic term and the controller gain K(t) be found by
solving the differential Riccati Equation (DRE). The optimal
tracking control policy is given by:

π(x,u) = u⋆(t)−K(t)x̄

= u⋆(t)−R−1
C BTS(t)(x− x⋆(t))

The solution of the DRE provides the optimal cost-to-go
J⋆(x, t) = x̄TS(t)x̄, a function that returns the accumulated
cost when running the optimal controller from any initial
state to the goal. The set of hyperparameters of TVLQR
controller is defined as the set HC = {QC ,RC ,QCf}.

D. Region of Attraction Estimation

The region of attraction of a closed-loop system is defined
as the set of states around a fixed point that are guaranteed to
be stabilized by the controller. Most often, it is difficult, if not
impossible, to determine analytically and an estimation has to
be considered. The estimation methods which are available
in the literature can be classified in two main categories:
Lyapunov-based and Non-Lyapunov methods [25]. Lyapunov
analysis can be employed to obtain a formal guarantee of
stability for an inner estimate of the ROA. The Lyapunov
function V is a generic function of the state such that

V (x⋆) = 0 and V (x) > 0, V̇ (x) < 0 ∀x ∈ X\{x⋆}
If the above conditions hold for the fixed point x⋆, then it is
globally asymptotically stable. Sublevel sets B = {x|V (x) <
ρ}, ρ > 0, of a Lyapunov function are then used as

approximations of the region of attraction [26]. For closed
loop dynamics under LQR control, the cost-to-go matrix
S can be used to construct a suitable quadratic Lyapunov
function. Setting V = x̄TSx̄ makes the estimation to be a
matter of finding a suitable ρ. In the time-varying case each
knot point of the nominal trajectory is associated to a ROA,
hence a vector ρ ∈ RN

+ has to be estimated. In this case, the
resulting ROA is also called funnel [16]. Two methods for
computing the funnel are described below:

1) Sum of Squares (SOS): In the case of polynomial
dynamics, SOS optimization can be used to express the
estimation task as an optimization problem. Polynomial,
non-linear dynamics can always be obtained via Taylor
approximation. The idea is that every initial state state taken
in the estimated ROA of the knot point k must end up,
following the system’s dynamics, inside the ROA estimate
associated to k+1. An estimation procedure for each couple
of knot points is then considered. Each estimation process is
a bilinear alternation between two optimizations [27]:

Multiplier Step:
max
γi,λi

γi

subject to − (V̇ − ρ̇i) + λi(V − ρi)− γi is SOS

λi is SOS

γi > 0

Rho Step:
max
ρi

ρi

subject to − (V̇ − ρ̇i) + λi(V − ρi) is SOS

λi is SOS

ρi > 0

Given a meaningful initial guess of ρ, these two steps have
to be alternatively solved until a convergence condition. This
condition can be, for instance, related to the overall magni-
tude of ρ . After a time-invariant ρN has been determined, a
bilinear alternation for each couple of knot points has to be
solved going backwards for k ∈ [0, N −1]. By means of the
S-procedure [28], we are constraining the Lyapunov function
to change slower than ρ for all the states at the boundary of
the ROA. This is sufficient for the dynamics to completely
stay inside the funnel [23].

2) Simulation based: The methodology proposed in [19]
is based on simulations and falsifications. Initially, a funnel
hypothesis is proposed, then each trajectory knot point is
verified through sampling and simulations. Given a desired
trajectory (x∗,u∗) defined for N knot points, the initial ROA
guess k is set as an open ball with radius ρk > 0, centered
at x̄k:

B(x̄k, ρk) := {xk : V (x̄n) < ρn}.

Assume that a stabilizable region BN around the goal state
is given. For each node a set of samples is obtained and
simulated through the end of the nominal trajectory. A
simulation is considered successful if the sampled initial
condition has been stabilized to the goal region, xN ∈ BN .



If so, the verified ROA remains valid. If the simulation fails
the initial region guess and the following ones are shrunk
accordingly to the following rule:

ρi,new = min(V (x̄i), ρi,old), ∀i ∈ [k,N − 1] .

III. PROPOSED CO-DESIGN FRAMEWORK

In order to solve the problem described in Section II-A, a
bi-level co-optimization algorithm has been conceived which
aims to seek shared optimality between design optimization,
trajectory optimization and trajectory stabilization with the
aim of optimizing the final robustness of the control scheme.
The trajectory optimization and stabilization tasks have been
solved through DIRTRAN and TVLQR control, respectively.
This allows the introduction of explicit constraints on the mo-
tion variables, which is not possible in Differential Dynamic
Programming (DDP) where the constraints are introduced as
weighted costs in the optimization.

Optimization
Strategy
CMA-ES

Trajectory Optimization
DIRTRAN
x(t), u(t)

Trajectory Stabilization
TVLQR

K(t), S(t)

Funnel Estimation
SOS/Sampling

ρ(t)

Cost
Computation
Funnel Volume

ℓc

RTC

Optimization
Strategy
CMA-ES

RTC Optimal
Cost

Funnel Volume
ℓc,RTC

D

Fig. 2. RTC-D algorithm scheme.

These two choices are also compatible with the funnel
estimation process. The volume of the time-varying ROA was
chosen as a metric for the system’s robustness and calculated
as the sum of the volumes of the ROAs at each knot
point. The gradient-free CMA-ES method has been chosen
to optimize the decision variables. This method operates by
adapting the covariance matrix of the search distribution for
a population of candidate solutions, which are referred to
as individuals. CMA-ES does this efficiently with limited
evaluations, giving preference to individuals that perform
better during the optimization process.

A. RTC

The inner-layer of the proposed algorithm, namely RTC,
is concurrently optimizing the nominal trajectory and the
stabilizing controller, for fixed design parameters M. This
has been implemented by considering the hyperparameters
of the trajectory optimization HT and stabilizing controller
HC as decision variables for the optimization problem. We
have assumed the decision variables to stay inside some
reasonable bounds to restrict the search space. At each
iteration, the optimizer proposes a new set of hyperparameter
cost matrices. They are used to compute a new nominal

trajectory (x∗,u∗) via DIRTRAN method as explained in
Section II-B and a stabilizing control policy π∗ via TVLQR
method as explained in Section II-C. These quantities are
necessary to compute the ROA of the stabilizing controller.
Finally, the volume ℓc of the estimated funnel is used by
the CMA-ES strategy to weigh each initially proposed set of
costs and provide better HT ,HC such that the volume of the
resulting ROA is maximized. We iterate this process until a
predefined maximum number of evaluations of the objective
function.

B. RTC-D

To complete the solution of our co-design problem, an
outer CMA-ES optimization layer, namely D, with the ca-
pability to vary the design parameters in M has been added.
Specifically, we consider the minimal independent set of
design space variables in M (while fixing the robot topology
G and joint axes screws X). Also, in this case the decision
variables are constrained inside some reasonable bounds
which may be inspired from manufacturing constraints or
availability of off-the-shelf parts. Compared to RTC, the
resulting process is more computationally expensive due
to the increased number of optimization layers. On the
other hand, the solver has now more power to improve
the objective function. The optimization strategy proposes
a new set of design parameters for each iteration. The RTC
layer fixes them and then determines an optimal stabilized
trajectory along with the related funnel volume. A different
set of design parameters is then provided by the D CMA-ES
optimizer to perform the same operation. Eventually, designs
that maximize the ROA volume computed in the inner layer
will be preferred by the solver. Similar to RTC, we iterate
this process until a predefined maximum number of objective
function evaluations.

IV. RESULTS AND DISCUSSION

In this section the optimization results and their ver-
ification is presented1. Two underactuated systems have
been considered for simulated and experimental verification:
torque-limited simple pendulum [29] and cart-pole [30] (Fig-
ure 3). The common task is to solve the well-known swing-
up problem. In particular, the optimization parameters were
inspired by the real hardware available in the Underactuated
Robotics Lab of the DFKI Robotics Innovation Center. The
computations related to the simple pendulum have been
handled by a having 2x 8-core Xeon E5-2630 v3 (Haswell)
machine with 128GB of ECC RAM. The computations for
the cart-pole have been performed by a 2-core 4-thread 2.70
GHz Intel(R) Core(TM) i7-7500U computer with 8 Gb of
RAM. A maximum of 3 parallelized cost computations have
been considered for both the systems.

The controller and trajectory cost matrices have been
assumed to be the same i.e. QT = QC = Q =
diag(Q11, . . . , Q2n2n) and RT = RC = R =

1The open-source code implementation is available at
https://github.com/dfki-ric-underactuated-lab/robust codesign



Fig. 3. Experimental Systems: Cart Pole (left) and Simple Pendulum (right)

diag(R11, . . . , Rpp) during the optimization in order to de-
crease the overall number of decision variables and hence to
reduce the computational complexity. For simplicity, the final
cost matrices for the trajectory optimization and TVLQR
controller were fixed as QTf = QCf = 100I2n×2n.

A. Linear Inverted Pendulum

We consider an off-the-shelf Quanser linear inverted pen-
dulum (cart-pole) with n = 2 DOFs and p = 1 actuated
DOF for testing the RTC algorithm. Since, it is a commercial
system, we are only interested in optimizing the swing-
up controller.We additionally fix velocity related cost terms
Q33 = Q44 = 1 to reduced the decision variables. We let
a subset of hyperparameters including Q11, Q22 and R11 to
vary during the co-design process. As can be seen in Table
I, the implemented algorithm resulted in an improvement of
the funnel volume by a factor of 2.17. In Figure 4 (left), a
comparison between initial and final optimized funnels has
been shown. A projection of the estimated ROA onto reduced
state-spaces have been considered. Each ellipse represents
the ROA associated with a knot point along the related opti-
mal trajectory. State-space coverage improvement is evident
from the overlap of the initial and final funnels. The ROA
estimation has been implemented through the simulation-
based method introduced in Section II-D with a minor
modification in the shrinking policy. In our implementation,
just one region is shrunk at a time. The final estimated region
is associated with a certificate of stability that depends on
the number of simulations performed during the estimation.
The verification of such a guarantee has been implemented
via extensive sampling and simulation. Off-nominal initial
states inside the RTC funnels are almost always stabilized.
Also an experimental verification on the real system has
been implemented. An impulsive torque disturbance has been
introduced to check the controller’s robustness. As shown in
Figure 5 (left), the optimized set-up is able to reject the
disturbance that cause the initial controller, referred to as
DIRTRAN, to fail.

B. Simple pendulum

We consider a torque-limited simple pendulum with n =
p = 1 for testing the full RTC-D algorithm. The limit in the
input torque renders it as one of the simplest underactuated
system. Firstly, the RTC optimization is implemented with
fixed design parameters, resulting in a funnel volume in-
crease of 3.18 times as noted in Table I and visually shown in
Figure 4 (right). Then, the mass m and the link length l have

been chosen as decision variables for the design optimization
in the outer loop. As we are aware that, in the case of
this system, reducing m and l makes the torque limit less
penalizing for the swing-up, we are expecting our algorithm
to push these decision variables towards their lower limit.
Applying RTC-D resulted in an optimized ROA volume that
has increased to almost 4 times the initial value as reported
in Table I. This improvement is shown in the funnel plots of
Figure 4 (right). RTC-D execution was stopped after almost
1500 cost function evaluations with a final execution time
of 3 hours. Almost 90% of the computational cost can be
attributed to the ROA estimation phase. As expected, the
best design is the one that exhibits the least underactuation.
Both values of m and l tend to decrease, which convince us
about the sanity of the choices made by the outer loop of the
codesign process. For this system, the ROA was computed
via SOS, and the resulting region is coming with a formal
guarantee of stability. Firstly, the verification of such a certifi-
cate was implemented in simulation. The simulated system’s
closed-loop dynamics has been tested with 1000 off-nominal
initial states sampled inside the ROA. The controller was able
to stabilize all of the unexpected initial states by bringing the
state evolution to join the nominal trajectory. To assess the
real world applicability of RTC-D, an experiment has also
been implemented on the physical system. The initial and
the optimized versions have been tested in accomplishing the
swing-up task while being affected by an impulsive torque
disturbance. The experimental trajectories have been plotted
with respect to the RTC-D funnel in Figure 5 (right). Only the
initial trajectory is not able to recover the desired behaviour,
i.e. to come back inside the funnel.

V. CONCLUSION AND OUTLOOK

This paper presented a novel gradient free co-design
algorithm, namely RTC-D, which provides optimal design
parameters, nominal trajectory and stabilizing controller by
taking into account their mutual dependencies. Our approach
has been tested on two canonical underactuated systems:
a torque-limited simple pendulum and a cart-pole. The
results demonstrated an increased volume of ROA, and
were validated both in simulation and through real-world
experiments. In contrast to the approach described in [14],
the inner optimization layer (RTC) is implemented through
DIRTRAN which allows for the introduction of explicit state
and input constraints and TVLQR which allows for the
incorporation of robustness analysis through time-varying
ROA estimation. This approach offers an intuitive perspective
and can potentially provide a stability guarantee for off-
nominal states around the optimal trajectory, especially when
employing the SOS-based estimation method. It’s worth
noting that this estimation method was not implemented
in [15], where the focus was on considering the volume
of a sample-based region around the desired fixed point.
During the empirical analysis of the optimization process,
we observed that design optimization consistently mitigates
underactuation. However, when dealing with the Cart-pole
system, we encountered challenges due to the increased
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TABLE I
RTC-D OPTIMIZATION RESULTS

Initial Decision Variables Optimal Decision Variables Volume
System m (kg) l (m) Q11 Q22 R11 m (kg) l (m) Q11 Q22 R11 ℓ∗c/ℓ

0
c Time (h)

Cart-pole (RTC) 0.23 0.18 10.00 10.00 10.00 - - 10.91 12.57 6.09 2.17 3.55
Pendulum (RTC) 0.70 0.40 10.00 1.00 0.10 - - 9.50 1.20 1.64 3.18 0.40

Pendulum (RTC-D) 0.70 0.40 10.00 1.00 0.10 0.61 0.40 9.98 1.00 3.39 3.90 3.00

system complexity. The dimensional increase affects the
computational cost of ROA estimation and, in the case of
SOS-based estimation, its functionality. In our opinion, a
deeper analysis on handling this problem should follow this
work. As an alternative to SOS-based estimation, we used
a simulation-based method. While it doesn’t provide a strict
formal stabilizability guarantee, it yields a viable cost for the
co-optimization process. Another alternative would be to use
analytical region of attraction estimation as proposed in [31],

whenever available. We then would approach the increased
computational complexity with a C++ implementation and an
increased use of parallelization. We also plan to extend this
formulation to address the co-design of some simple hybrid
dynamical systems such as AcroMonk [32], hopping leg [33]
and RicMonk [34]. As a future development, extending the
RTC-D scheme to accommodate multiple tasks simultane-
ously could offer a powerful solution for more complex
robotic systems such as humanoids [35].
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