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A B S T R A C T

The acceleration of deep neural networks (DNNs) on edge devices is gaining significant
importance in various application domains. General purpose graphics processing units (GPGPUs)
are typically used to explore, train and evaluate DNNs because they offer higher processing and
computational capability compared to CPUs. However, this comes at the cost of increased power
consumption required by these devices for operation, which prevents efficient deployment of
networks on edge devices. In the Internet of Things (IoT) domain, Field programmable gate
arrays (FPGAs) are considered a powerful alternative since their flexible architecture can run the
DNNs with much less energy. The enormous amount of effort and time required for the entire
end-to-end edge-aware deployment urged us to develop DeepEdgeSoc, an integrated framework
for deep learning (DL) design and acceleration. DeepEdgeSoc is an overarching framework under
which DNNs can be built. DeepGUI, a visual drag-and-drop DNN design environment, plays an
important role in accelerating the network design phase. In DeepEdgeSoc, the networks can be
quantized and compressed to suite the underlying edge devices in terms of size and energy.
DeepEdgeSoc goes beyond the software level by converting the networks to appropriate FPGA
implementations that can be directly synthesized and integrated within a System-on-Chip (SoC).

. Introduction

The availability of large amounts of data and the advancement in the processor industry have pushed deep learning (DL) to
ecome the backbone for numerous application areas. Major sectors such as healthcare, the autonomous driving industry and security
urveillance are increasingly relying on DL algorithms to solve their day-to-day challenges. Although DL is replacing the traditional
and-crafted methods, it comes at the cost of higher computational complexity. Therefore, data-centers are considered a suitable
nvironment for the operation of DL networks. Nevertheless, there is a constant need for edge computing, i.e., to move DL networks
rom data-centers to user locations due to many reasons. For example, communication latency between data-centers and users limits
pplication speed. Privacy requirements may also pose additional legal issues in data transfer to and from data-centers. Finally,
oving processing to the edge provides additional protection against security threats such as sniffing. Trying to achieve plausible
erformance at the edge has always been a challenge. This is because it is not possible to leverage high-speed general-purpose
raphics processing units (GPGPUs), with their enormous power requirements, at the edge. Furthermore, in contrast to the bulky
ardware in data-centers, edge devices, such as car sensors and security cameras, tend to have small sizes. Moreover, environmental
nd operational constraints of edge devices require special care when moving from the center to the edge.

To overcome these limitations and perform computations closer to the user, appropriate embedded hardware platforms should
e used. Advances in Internet of Things (IoT) technologies have led to the use of smart sensors that take over some of the processing
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Fig. 1. Trade-offs between data-center and edge computation.

urden from data-centers. The responsibilities of such sensors range from simple data pre-processing to full execution of algorithms,
here data-centers become superfluous. Undoubtedly, the higher the performance expectations of the sensor, the more complicated

he hardware required and the more energy consumed. For example, in computer vision and image processing applications, the
ntelligent camera sensor must capture and process sequential images within a designated energy budget while maintaining run-
ime speed and result quality. Fig. 1 illustrates the trade-off that should be made based on how much computation is expected
rom the sensors. Shifting computation to the edge increases energy efficiency at the expense of more complex sensors and less
evelopment flexibility. On the other hand, sensors can be simple signal transducers when the power-hungry data-center handles
he computational tasks. Field Programmable Gate Arrays (FPGAs) have emerged as a credible solution that can meet latency and
nergy requirements and close the performance-energy gap. In a previous work, the authors illustrated the efficiency of running
convolutional neural network (CNN) on an FPGA as compared to its GPGPU counterpart [1] and the literature is full of similar
ork. However, this does not mean that accelerating DL on edge FPGAs is a straightforward procedure. This is due to the large
evelopment gap that software developers encounter when trying to target the FPGAs to run their networks.

Originally, when it comes to DL research, a significant amount of experimentation time is spent on implementing and debugging
ovel DNN models from scratch. Furthermore, modifying and upgrading existing network architectures require noteworthy efforts.
ince the resulting network uses the floating-point data type, it is less suitable to be directly deployed on an edge embedded device
uch as the FPGA due to the large memory footprint and increased power consumption required for operation. Therefore, additional
ptimizations are required in the quantization and compression of the network. Once the software version of the compressed network
as been created, an efficient mapping into the hardware design space must be performed, which requires additional time and effort.

Taking all these challenges into account, we bridge the DL software–hardware development gap by introducing DeepEdgeSoC,
n overarching framework that accelerates the design phase of DL research. DeepEdgeSoC provides a graphical interface that allows
esearchers to design, visualize and export complicated DL architectures. The DeepEdgeSoC framework accelerates the end-to-end
L design process and facilitates efficient edge-aware deployment. Specifically, we provide a powerful graphical interface to design
NNs from scratch, as well as parse and import existing Open Neural Network Exchange [2] (ONNX) models. Once the network is
esigned or imported, the computational flow is represented visually as a directed acyclic graph (DAG). This means that DL layers
an be added, modified or deleted with just a few clicks. Furthermore, the hyper-parameters of each layer can be easily tweaked
ia the graphical interface. Network arithmetic (e.g., the height and width of a given layer’s output feature maps) can be performed
utomatically during and after building the model. In addition to that, the DeepEdgeSoC framework allows quantization of network
arameters and activation functions to arbitrary bitwidths. Finally, the hardware version of the network can be obtained thanks to
ur DNN2HLS sub-framework, which includes efficient hardware implementations for numerous DL layers and operations. Although
eepEdgeSoC primarily targets Xilinx FPGAs, it can be extended to support FPGA chips from other vendors (such as Intel/Altera)
2
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Fig. 2. The DeepEdgeSoC framework. DeepEdgeSoC is capable of converting existing network models into visually editable graphs thanks to the Tracer module.
Also, novel network architectures can be graphically designed and modified using DeepEdgeSoC. The floating-point version of the network be exported directly
along with training and evaluation scripts. Furthermore, a fixed-point version of the network can be created for post-training quantization (PTQ) and/or
quantization-aware training (QAT) using the Fixifier module. Network parameters can be arranged in an appropriate format to be used in the hardware
implementation, which can be readily obtained through DNN2HLS.

as well as other embedded platforms. To better explain the DeepEdgeSoC workflow, we provide two illustrative case studies in
which we implement a CNN to classify a subset of 43 different German traffic signs and an LSTM-based bubble detector. We start
the process by designing the network from scratch, as in the first example, or importing it using the DeepGUI, as in the second
example. Then we train the networks to get a valid floating-point version. Afterwards, we compress the networks to get an acceptable
fixed-point representation. Lastly, we obtain the hardware implementations of the networks and we port them to the PYNQ-Z1 FPGA
development board using DNN2HLS. To assess the quality of the resulting system, we provide a comparison between the performance
of the FPGA-based implementations and the implementations on a GPGPU as well as other embedded platforms, namely NVIDIA
Jetson Xavier and RaspberryPi 3B+. Currently, DeepEdgeSoC mainly supports parsing PyTorch-based ONNX models [3] as input
networks. Also, it is only possible to export the designed networks as PyTorch models. However, this work can be easily extended
to support other frameworks such as Tensorflow and Keras.

The main contributions of this work can be summarized in the following points:

• An integrated DL framework that covers the development process of edge intelligence, starting with the design and training
of neural networks and ending with their hardware implementation.

• PyTorch quantization layers that use straight-through estimators (STE) for arbitrary precision.
• A parameterized hardware framework that comprises various DL layers, including linear, convolutional, recurrent and

activation layers in addition to skip connections.

The paper is structured as follows: in Section 2, we compare our work to the related work in the literature. In Section 3, we
provide technical details about each component of the framework. Section 4 provides two test cases that were implemented using
DeepEdgeSoC, namely German traffic signs classifier and bubble detector. Lastly, we discuss the paper in Section 5 and we analyze
the strengths and limitations of the study.

2. Related works

The vital role that FPGAs play in accelerating DNNs in IoT systems has attracted attention to the development of numerous
frameworks that perform the conversion of DNN models into equivalent hardware implementations.
3
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2.1. Frameworks for IoT sensors

Recently, researchers have shown increased interest in taking the challenge of pushing algorithms towards IoT devices. Smart
mbient Behavior Observation System (SABOS), proposed by Irfan et al. [4], is an IoT solution for monitoring elderly care homes
sing non-visual-based sensors while maintaining privacy. Interestingly, they introduced a data reduction algorithm to minimizes the
mount of traffic between SABOS and the cloud server. In their comprehensive survey, Adeel et al. [5] highlight the important role of
ireless Sensor Networks (WSNs) in disaster monitoring and management systems where battery lifetime of mobile nodes is critical.

urthermore, they compared various communication network technologies on which WSNs rely. Lin et al. introduced MCUNet [6],
framework that jointly explores neural architecture and schedules inference while targeting small-memory microcontrollers.

imilarly, a bi-directional co-design approach [7] is proposed to jointly optimizes DNN models and their deployment on FPGAs.

.2. Frameworks for deploying DNNs on FPGAs

The closest framework available in the literature is CNN2Gate [8] as it shares most of the features with our DeepEdgeSoC.
NN2Gate, built upon PipeCNN [9], is able to parse ONNX models, quantize them, export the parameters and generate the hardware

mplementation. fpgaConvNet [10] can also optimize the mapping Caffe or Torch CNNs onto FPGAs. hls4ml [11] is a framework
ainly designed for the development of FPGA-based trigger and data acquisition systems used in the field of particle physics.
his framework is capable of converting CNNs, including fully-connected layers, into corresponding High-Level Synthesis (HLS)

mplementations. Based on a template-driven workflow, CNN-Grinder [12] generates accelerated CNNs for programming low-end-
ow-cost FPGA System-on-Chip (SoC). FP-DNN [13] supports mapping Tensorflow CNNs, RNNs and Residual Nets onto low-end FPGA
oards. DeepHLS [14] converts Keras DNN descriptions to synthesizable C codes. It also supports floating-point and fixed-point data
ypes. Nevertheless, the previously mentioned frameworks, except PF-DNN, do not provide a mechanism to map Recurrent Neural
etworks (RNNs) to the FPGA and are mainly concerned with CNNs. Furthermore, the network description has to be available
eforehand and cannot be designed or extracted through a graphical interface.

.3. Frameworks for DNN visual design

Although Tensorboard [15] provides the ability to visualize DNNs, it is not possible to modify the computation graphs because
hey are read-only. There exist a number of DNN design frameworks that offer powerful drag and drop GUIs for DL design.
rototypeML [16], for example, facilitates modular DNN design with multiple inputs and outputs. It also supports skip connections,
hich are fundamental to ResNet-like architectures. DeepCognition DL Studio [17], Sony’s Neural Network Console [18] and IBM
atson [19] are integrated frameworks that enable developers to design, train and validate different DNN models. However, there

s still a gap between the powerful frameworks mentioned above and the deployment of DL on edge devices. This is due to the lack
f quantization support, as well as the ability to produce FPGA-friendly implementations.

Appendix contains detailed tables that show similarities and differences between our presented work and previous frameworks.

. Framework anatomy

Fig. 2 shows the overall architecture of the DeepEdgeSoC framework. It consists of 5 main components: Tracer, DeepGUI, Fixifier,
Exporter and DNN2HLS. Tracer is an interface module that parses ONNX representations of deep neural networks and converts them
into graphically presentable graphs. DeepGUI is a graphical interface for visualizing architectures, allowing researchers to add,
modify or delete layers without writing a single line of code. Fixifier is a modified version of PyTorch’s neural network module that
allows parameters and activation functions to be quantized on the fly to arbitrary bitwidths . The Exporter module automatically
extracts the parameters of each layer and prepares them in a suitable format for hardware use. DNN2HLS is an AXI4 stream-based
library that provides efficient hardware implementations for various DL layers and operations. The following subsections provide
informative explanations for each of the mentioned components.

3.1. The tracer module

The Tracer module allows researchers and developers to import existing models instead of having to redesign them from scratch.
Under the hood, this module takes a pre-processed ONNX network graph and converts it to a scope-aware graph. The resulting
hierarchical graph contains the computational nodes as well as their parameters and hyper-parameters. During this process, it is
possible for the user to exclude undesired nodes from the graph, i.e., shunt them. The FPGA hardware streaming architecture requires
each computational node to have a single input and a single output. Therefore, each node with multiple outputs is replaced by a
single output node of the same type, followed by a special node called Split. Similarly, each multiple input node is replaced by a
single input node of the same type, followed by another special node called Merge. To visualize the network, the graph visualization
algorithm by Gansner et al. [20] is used to assign the appropriate coordinates (𝑥, 𝑦) to each node while trying to avoid overlapping
with other nodes and edges as much as possible. Finally, the Tracer module exports the processed network graph to the DeepGUI
format. The exported graph is a union of node and edge sets. Each element in the node set is a network layer coupled with the
corresponding metadata such as the hyper-parameters, (𝑥, 𝑦) coordinates and the hierarchy level to which the node belongs. Elements
4

of the edge set are represented by an ordered pair of nodes, where each pair (𝑛𝑖, 𝑛𝑗 ) indicates a directed edge from 𝑛𝑖 to 𝑛𝑗 .



Internet of Things 21 (2023) 100665M.R. Al Koutayni et al.

t
s
D
m
t
c

l
d
d
t
s

3

p
T
a
a

s
a
p
t
u
t

b
i
b
w
c
b
c
q
i
t
p

3

f
a
a

3

i
i
D
F
l
d
s
c

3.2. DeepGUI

DeepGUI is a browser-based, portable framework that replaces programming effort with an easy-to-use drag-and-drop interface
hat accelerates the process of designing new networks from scratch and improving existing network models. In addition, DeepGUI
upports the design of hierarchical neural networks by enabling the grouping of associated network layers as a reusable module. In
eepGUI, it is easy to visually draw the network graph by adding or removing layers. Furthermore, a layer’s hyper-parameters can be
odified using a side palette. In contrast to the few platforms available for DL visualization, our presented framework goes beyond

he software-level design. Specifically, DeepGUI can automatically generate an edge computing-aware version of the network that
an be ported to the FPGA with negligible effort.

Behind the scenes, DeepGUI traces the deep neural network graph and optimally maps each node to a corresponding hardware-
evel processing element (PE), while mapping each edge in the graph to a corresponding hardware-level stream. Fig. 3 illustrates a
esign example using DeepGUI. In this screenshot, a modular CNN with a skip connection was built. The palette on the left provides
ifferent DL layer types categorized by their functionalities. Moreover, the configuration palette on the lower left allows the user
o change the hyper-parameters of a particular layer. As can be seen in the figure, DeepGUI offers two export formats: Python for
oftware and C++ for hardware.

.3. Fixifier

Deep neural network compression plays an important role in the process of deploying DL algorithms on an edge-computing
latform. This is because portable edge devices are constrained by their battery capacity, on-chip resources and limited memory.
hus, the network architecture should be as lightweight as possible, consuming as little power as possible while maintaining
cceptable accuracy and speed. There are two main approaches for quantizing neural networks: Post-Training Quantization (PTQ)
nd Quantization-Aware Training (QAT) [21].

In PTQ, the model’s pre-trained parameters, as well as the activations are quantized to a fixed-point representation with
pecific bitwidths. While in QAT, the network is retrained under quantization constraints for parameters and activations. For both
pproaches, there should be a mechanism to quantize parameters and activations adopted by the DL layers. Existing DL frameworks
rovide fake quantization layers capable of converting network arithmetic from floating-point to 8-bit integer operations. Although
his may be suitable for processor architectures such as GPUs and CPUs, we are targeting FPGA platforms that allow the efficient
se of arbitrary bitwidths for arithmetic. Thus, 8-bit integer arithmetic is not always the optimal quantization scheme for a network
o be deployed on an FPGA.

We introduce DeepEdgeSoC’s Fixifier, a customized PyTorch neural network module that supports quantization using arbitrary
itwidths for parameters and activation functions. This module is mainly responsible for converting a floating-point-based network
nto a corresponding lightweight fixed-point network, hence the name ‘‘Fixifier’’. In Fixifier, the quantization operation for weights,
ias and activation of a particular layer can be performed or bypassed using a set of control flags. Moreover, the bitwidths for
eights and activation functions can be configured on the fly during training. What makes Fixifier so desirable is its backward

ompatibility with PyTorch’s original neural network module. In other words, if all quantization control flags are set to false, the
ehavior of Fixifier is identical to that of the original PyTorch module, whereas the quantization mode is activated as soon as the
ontrol flags are set correctly. In this case, PTQ can be applied simply by specifying the desired bitwidths and evaluating the resulting
uantized network directly. Fixifier supports the QAT quantization scheme by allowing parameter and activation quantization only
n forward propagation, while the quantization functions will be bypassed during back propagation. This trick, called a ‘‘straight-
hrough estimator’’ [22], is necessary because the quantization function is a piece-wise constant function that breaks the back
ropagation chain by its vanishing gradients.

.4. Exporter

The functionality of this module is to export each computational node’s parameters (i.e., weights and biases) to a hardware-
riendly format. The Exporter module allows parameters to be exported in two formats, namely floating-point and fixed-point. The
rbitrary fixed-point precision is suitable for deploying a quantized version of a network onto hardware. The Exporter module
utomatically detects the dimensions of each layer’s parameters and exports the corresponding array definition.

.5. DNN2HLS

After training and quantizing a deep neural network, substantial time and effort is needed to convert the software network model
nto a corresponding optimized hardware architecture. To accelerate this process, a mechanism is required to perform the mapping
nto hardware space. Consequently, a generic and flexible hardware library for various DL layers is required. Therefore, we introduce
NN2HLS, an optimized DL hardware framework that can efficiently transform DNNs into HLS hardware implementations for Xilinx
PGAs. This framework provides the basic DL layers such as convolution, pooling, non-linearity, linear and recurrent layers. Table 1
ists the supported DL layers and hyper-parameters that can be tuned via DeepEdgeSoC. The parallelization (unroll) factor in a layer
escribes the degree of parallelization in that particular layer. At the hardware level, DNN2HLS converts the DNN into a hardware
treaming architecture by mapping each layer to a separate hardware block. These blocks are then interconnected via AXI4 stream
5

hannels to form a pipeline. In contrast to the traditional computation flow, where each layer has to wait until all input is available, a
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Fig. 3. DeepGUI. This screenshot shows an example of how a simple modular ResNet model can be designed using the drag and drop interface. Also, it illustrates
he ability to tune the hyper-parameters and export the network in various formats, namely Python for software and C++ for hardware.

treaming layer can begin computation as soon as the previous layer provides the minimum required input. Thanks to C++ template
eneralization, hardware implementation of DNN layers is highly customizable. Specifically, each layer can be easily customized
y tuning hyper-parameters, data types and bitwidths used for parameters and activation functions within that particular layer.
his greatly minimizes the time spent on research and development, allowing for more prototyping. Currently, reusability of the
ame hardware module for multiple layers in a time division multiplexing manner is not supported. If the network, together with
ts parameters, does not fit on the selected FPGA, a larger FPGA with more available resources should be selected. Moreover, any
hange in the network layers or parameters requires the whole design to be re-synthesized.
6
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Table 1
Supported layers and their tunable hyper-parameters.

Layer Hyper-Parameters

Linear Input size, output size, parallelization factor
2D Convolution Input channels, output channels, input dims, kernel dims, stride, dilation, input groups, unroll factor
2D Max/Avg Pooling In/out channels, input dims, kernel dims, stride
2D Zero Padding In/out channels, input dims, padding rows (top+bottom), padding columns (left+right)
2D Batch Norm In/out channels, input dims
3D Convolution Input channels, output channels, input dims, kernel dims
3D Max Pooling In/out channels, input dims, kernel dims
RNN Input size, output size, parallelization factor
LSTM Input size, output size, parallelization factor
GRU Input size, output size, parallelization factor
ReLU –
LeakyReLU Slope
Sigmoid –
TanH –
Softmax –
Split In/out channels, input dims
Concat In/out channels, input dims

If the targeted platform is a pure FPGA, the architecture produced by DNN2HLS is sufficient to configure it and make the network
un. However, in the case of SoCs, the chip comprises two parts: the Programmable Logic (PL) and the Processing System (PS). This
eans that in addition to the architecture generated by DNN2HLS for the PL, the PS must be programmed to be able to communicate
ith it. There is no unique way to program the PS, as the code can change according to the intended application, the format of
vailable data, input and output devices, and the memory addresses. For this case, a PS code template in Python for PYNQ boards
nd in C++ for general use are provided.

In the following, we provide an overview of our custom hardware architectures for common DL layers.

.5.1. Convolutional and pooling layer architecture
The convolutional layer is considered the basic feature extraction block, where one or more learned filters (kernels) are applied

o the input tensor by cumulatively multiplying each weight by the corresponding input value. For an input tensor of dimension
𝐶𝑖𝑛×𝐻𝑖𝑛×𝑊𝑖𝑛), a kernel tensor of dimension (𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×𝐾𝐻×𝐾𝑊 ) is needed to obtain an output tensor of dimension (𝐶𝑜𝑢𝑡×𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡).
𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡, 𝐻𝑖𝑛, 𝑊𝑖𝑛, 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡, 𝐾𝐻 and 𝐾𝑊 denote the number of input channels, the number of output channels, the input height, the
input width, the output height, the output width, the kernel height and the kernel width respectively. Normally, the kernel height
and width are smaller than those of the input tensor. Since the kernels are shifted line by line across the input, an output cannot be
computed until the appropriate number of lines are buffered in a special internal memory called the Line Buffer. The dimensions of
the line buffer are given as (𝐶𝑖𝑛 ×𝐾𝐻 ×𝑊𝑖𝑛). Synchronously with the line buffer, the input patches are copied to a Window Buffer of
size (𝐶𝑖𝑛×𝐾𝐻 ×𝐾𝑊 ) where they are made temporarily available for the convolution operation. The data inside the window buffer is
then passed to a multiplier array so that the convolution multiplications can be performed in parallel. The resulting partial products
are then passed to an adder tree to perform the accumulation part of the convolution operation and add the appropriate learned bias.
Finally, the resulting value is streamed out via the output buffer. Fig. 4 illustrates the hardware architecture of the 2D convolutional
layer. An important hyper-parameter, called the unroll factor, is tuned at design time to determine the degree of parallelization in
the convolutional layer. In case of no parallelization, the convolutional multiplications are performed sequentially using a single
multiplier. The next level of parallelization corresponds to performing (𝐾𝑊 ) multiplications in parallel, while processing the rows
in sequence. If the parallelization degree is further increased, the hardware architecture depicted in Fig. 4 emerges, where the
(𝐾𝐻 × 𝐾𝑊 ) multiplications are performed simultaneously. This means that the input channels are processed in sequence, unless
the parallelization is increased to perform the whole (𝐶𝑖𝑛 ×𝐾𝐻 ×𝐾𝑊 ) multiplications in a single clock cycle. Obviously, the unroll
factor is mainly responsible for the space–time-trade-off, since increasing this factor speeds up the convolution at the expense of
more hardware resources.

The pooling layer is implemented in a very similar manner using a set of line and window buffers. However, instead of the
multiplier array, a set of comparators is used to find the maximum (minimum) value of a given input patch in case of max (min)
pooling. For average pooling, an adder tree and a divisor are used to calculate the average input value. We refer the reader to our
past paper [1] for more analytical and technical details about convolutional and pooling layers. In that work, the reader can also
find further information about stride, dilation and group hyper-parameters.

3.5.2. Linear layer architecture
Linear layers (also known as ‘‘fully connected layers’’) play an important role in DL tasks such as feature extraction, classification

and regression. The name of this layer comes from the fact that every input contributes to every output by a certain factor, called
weight. Therefore, the total amount of weights in this layer is given as (𝑁𝑖𝑛 × 𝑁𝑜𝑢𝑡) where 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 are the input and output
izes, respectively. The output is calculated as the vector–matrix multiplication between the input vector and the weight array.
dditionally, a bias vector of size (𝑁 ) is added to the output.
7
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Fig. 4. Convolutional layer architecture.

The hardware realization of the linear layer consists of a set of multipliers, adders, a router, output accumulators, an output
ultiplexer and control logic as shown in Fig. 5. Each input value is read from the input stream and multiplied with the

orresponding weights. These partial multiplications are then used to update the output accumulators. An output multiplexer is
eeded to decide whether the values in the accumulators are ready to be streamed out (to the output stream) or still have to be
ent back to the adders for accumulation. The accumulators are initialized by the biases instead of zeros to save (𝑁𝑜𝑢𝑡) additions.

Using (𝑁𝑖𝑛 × 𝑁𝑜𝑢𝑡) multipliers would perform the task of the linear layer in a single clock cycle. However, this is usually not
feasible due to limited hardware resources. Another limitation is that only one value can be read from the input stream at a time.
Otherwise, the input values must be additionally buffered. Conversely, a single multiplier can be used to perform the total amount
of multiplications in (𝑁𝑖𝑛 × 𝑁𝑜𝑢𝑡) clock cycles, which is basically undesirable due to the very long latency for practical values of
𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡. Therefore, we offer the flexibility to choose the degree of output parallelization by introducing the parallelization
factor (𝑝) of this layer. In this case, a router is needed to conduct the accumulated values for updating the corresponding subset of
accumulators. The control logic is then required to orchestrate the work of the different hardware blocks. Particularly, the control
logic determines when to pop a value from the input stream, which subset of weights to be used by the multipliers, when to initialize
the accumulators, where the partial accumulations should be routed, and whether the calculation is finished.

3.5.3. Batch normalization layer architecture
The use of batch normalization layers is considered advantageous in DL because they speed up the training and handle the

internal covariate shifts. This type of layer processes every input channel separately and therefore maintains the same number of
channels at its output. After training and during inference, the running mean 𝜇 and variance 𝜎2 are used to normalize the input 𝑥,
as in Eq. (1).

�̂� =
𝑥 − 𝜇
𝜎2

(1)

Afterwards, each output feature map 𝑧 is calculated by multiplying the corresponding normalized input feature map �̂� by a learned
channel weight 𝛾 and adding a learned channel bias 𝛽, as shown in Eq. (2).

𝑧 = 𝛾 ⋅ �̂� + 𝛽 (2)

The aforementioned operations (especially division) are expected to require a huge amount of on-chip resources. Thus, these two
steps are folded into a single step by finding the relationship between the final output 𝑧 and the original input 𝑥 by substituting
Eq. (1) into Eq. (2):

𝑧 = 𝛾 ⋅ �̂� + 𝛽 = 𝛾 ⋅
𝑥 − 𝜇
𝜎2

+ 𝛽 (3)

hich leads to:

𝑧 = 𝑊 ⋅ 𝑥 + 𝐵 (4)

here:

𝑊 =
𝛾
𝜎2

𝐵 =
−𝛾 ⋅ 𝜇
𝜎2

+ 𝛽 (5)

In this case, we only need to calculate the constant parameter vectors 𝑊 and 𝐵 offline and store them on-chip instead of storing
, 𝜎2, 𝛾 and 𝛽. Furthermore, the batch normalization can be performed using a single multiplication by 𝑊 and a single addition
o 𝐵 instead of the division mentioned before. It is noticeable that the size of 𝑊 and 𝐵 is equal to the number of input channels.
n other words, all values in a particular input feature map 𝐶𝑖 are multiplied by the same 𝑊 [𝑖] and added to the same 𝐵[𝑖]. The
nput tensor is streamed in channel-last manner, i.e., consecutive stream values are taken from consecutive channels. Therefore, the
eights and biases must be queried in a round-robin fashion. The 𝑊 and 𝐵 vectors are illustrated as ring buffers in Fig. 6.
8
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Fig. 5. Linear layer architecture.

Fig. 6. Batch normalization architecture.

3.5.4. Recurrent layer architecture
Unlike feed forward networks, in which the current output is derived from the current input independently of the past, Recurrent

Neural Networks (RNNs) are a family of neural networks that produce their output or sequence of outputs based on a temporal
input sequence. At the core of recurrent networks, a memory cell is required to maintain information from the past. Intuitively,
one can feed the output back as an auxiliary input to preserve the memory effect. This implementation, known as Classic or Vanilla
RNN, suffers from vanishing or exploding gradients. That is, the gradients might quickly decay to zero or approach infinity during
training, which prevents the convergence of the trained network and consequently limits its memory range to short input sequences.
To overcome this issue, Hochreiter and Schmidhuber [23] introduced the Long Short-Term Memory networks (LSTMs) where the
gradients are allowed to flow unchanged without vanishing. Besides, the problem of exploding gradients can be easily solved by
squashing or clipping the gradients. As a result, LSTMs are able to overcome the gradient issues and therefore process longer input
sequences. Traditional problems such as speech recognition, video analysis and object tracking can be efficiently addressed using
DL thanks to LSTMs.
9
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Fig. 7. LSTM architecture.

An LSTM layer can be characterized mainly by its input size (𝑆𝑖𝑛) and its hidden or output size (𝑆𝑜𝑢𝑡). Internally, LSTMs employ
different memories, the hidden state (ℎ𝑡) and the cell state (𝑐𝑡), each of size 𝑆𝑜𝑢𝑡. Furthermore, 4 different gates work together

to control the contribution of the input and the memories to the output. The following formulae describe the mechanism behind
LSTMs:

𝑖𝑡 = 𝜎(𝑥𝑡 ⋅𝑊𝑥𝑖 + ℎ𝑡−1 ⋅𝑊ℎ𝑖 + 𝑏𝑖) (6)

𝑜𝑡 = 𝜎(𝑥𝑡 ⋅𝑊𝑥𝑜 + ℎ𝑡−1 ⋅𝑊ℎ𝑜 + 𝑏𝑜) (7)

𝑓𝑡 = 𝜎(𝑥𝑡 ⋅𝑊𝑥𝑓 + ℎ𝑡−1 ⋅𝑊ℎ𝑓 + 𝑏𝑓 ) (8)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡 ⋅𝑊𝑥𝑔 + ℎ𝑡−1 ⋅𝑊ℎ𝑔 + 𝑏𝑔) (9)

hile the internal state update formulae are given as below:

𝑐𝑡 = 𝜎(𝑔𝑡 ⋅ 𝑖𝑡 + 𝑐𝑡−1 ⋅ 𝑓𝑡) (10)

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡) (11)

where 𝑖𝑡, 𝑜𝑡, 𝑓𝑡 and 𝑔𝑡 are the input, output, forget and cell gate tensors, respectively, each having the size (𝑆𝑜𝑢𝑡). 𝑊𝑥∗, 𝑊ℎ∗ and
∗ are the input weight, hidden state weight and bias tensors which have the size (𝑆𝑜𝑢𝑡 × 𝑆𝑖𝑛), (𝑆𝑜𝑢𝑡 × 𝑆𝑜𝑢𝑡) and (𝑆𝑜𝑢𝑡), respectively.
unctions 𝜎(.) and 𝑡𝑎𝑛ℎ(.) are the Sigmoid and TanH activations, respectively. The subscripts 𝑡 and 𝑡 − 1 denote the current and the

previous temporal step, respectively.
Fig. 7 shows the hardware architecture for LSTM. It is clear from Formulae (6)–(9) that multiply–accumulate operations (MACs)

must be performed between the weights (𝑊𝑥∗, 𝑊ℎ∗) and the corresponding tensors (𝑥𝑡, ℎ𝑡−1). Therefore, an accumulator block is
sed, consisting of an adder, a result accumulator cell (ACC), and a multiplexer to route the accumulated value. The workflow
ithin an LSTM layer begins by reading an input value 𝑥𝑡 from the input stream and consequently replicating it four times to be
ultiplied by the corresponding weights 𝑊𝑥∗. Meanwhile, the internal state ℎ𝑡−1 is also multiplied by its corresponding weights 𝑊ℎ∗.

Once the multiplications are done, the results are forwarded to the activation functions (𝑆𝑖𝑔𝑚𝑜𝑖𝑑, 𝑇 𝑎𝑛𝐻) as mentioned in the gates’
ormulae. Finally, the internal states (ℎ𝑡, 𝑐𝑡) are updated according to the update Formulae (10) and (11), as mentioned earlier. An
STM layer can be dynamically accelerated by specifying the parallelization factor during the design phase (default value is 1) so
hat more accumulations can be performed in parallel, reducing the total number of clock cycles required for inference.

.5.5. Zero padding layer architecture
As we go deeper into a DNN, the feature maps almost always shrink in height and width while the number of channels increases.

his causes the input feature maps of a particular layer to become slightly smaller than what that layer expects. In order to fix this
10
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Fig. 8. Zero padding architecture.

Fig. 9. ReLU architecture.

issue, a zero padding layer is required in between. In particular, adding a set of zero-valued rows and/or columns at the borders
solves this problem and adapts the input to the next layer.

Fig. 8 shows the hardware architecture of the zero padding layer. A padding decision maker keeps track of input feature maps
horizontally and vertically by reading the values of two counters (namely, row and column counters). Based on that, it decides
whether to shunt the input to the output or push out a zero instead. The decision signal controls the multiplexer, which routes the
correct value to the output.

3.5.6. Activation layer architectures
ReLU. The rectified linear unit (ReLU) is a very famous activation function that, despite being very simple to implement, plays
an important role in adding non-linearity to a DNN and allowing it to work as a general function approximator. Unlike other
activation functions (e.g., Sigmoid), the ReLU function is efficient, fast to compute, and does not suffer from vanishing gradients
during training. At its core, it clones every positive value from the input to the output while setting negative values to zero. Fig. 9
shows our implementation of the ReLU function in hardware. Interestingly, the sign bit of the input value can be used to drive the
multiplexer. In other words, if the input is positive, the sign bit is zero and the multiplexer passes the input to the output. Otherwise,
a zero is pushed into the output stream.

Sigmoid and TanH. The Sigmoid function 𝜎(𝑡) is given as:

𝜎(𝑡) = 1
1 + 𝑒−𝑡

(12)

while the TanH function 𝑡𝑎𝑛ℎ(𝑡) is given as:

𝑡𝑎𝑛ℎ(𝑡) = 𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡
(13)

The implementation of such computationally-expensive mathematical functions (since they consist of exponentiation and division)
on FPGA is a challenging process. FPGAs provide powerful acceleration solutions for various algorithms, but typically have limited
on-chip computation and storage resources. A naive, straightforward implementation of a computationally-expensive function might
quickly exceed the available resources. Furthermore, executing such an implementation might incur major delays that affect the
overall run-time of a particular algorithm. An alternative way to implement these functions is to convert them into look-up tables
by storing sampled function values in a vector. In such manner, a sought function value can be looked-up in the table instead of
being calculated. For this purpose, an input 𝑡 should be converted to an index corresponding to the nearest function value.
11
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Softmax. We consider the implementation of the Softmax function:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥1|(𝑥1, 𝑥2,… , 𝑥𝑛)) =
𝑒𝑥1

∑𝑛
𝑖=1 𝑒

𝑥𝑖
(14)

Implementing a multi-variable function as a look-up table can quickly become impractical. This is because in the general case the
values of the function 𝑦 = 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛) must be stored in an n-dimensional look-up table, whereas only a 1-dimensional look-up
table is needed for single-variable functions. The size of the multi-variable look-up table grows exponentially with the number of
variables. For the n-dimensional Softmax function, we need to generate an n-dimensional look-up table. If we consider an example
of 𝑛 = 4 where each variable is in the range [−5,+5] and we sample this range to 128 values, we get a look-up table of size:

𝑆 = (128)4 = 268, 435, 456 (15)

Therefore, we follow the same methodology proposed by [24] where the Softmax function is decomposed into two functions, namely
𝑓1(𝑥) = 𝑒𝑥 and 𝑓2(𝑥) =

1
𝑥 . Since these two functions are unbounded, we need to choose a suitable input range for our application.

ext, we create two look-up tables, 𝑒𝑥𝑝 for the function 𝑓1(𝑥) and 𝑖𝑛𝑣 for the function 𝑓2(𝑥). Now for each set of inputs: 𝑥1, 𝑥2,… , 𝑥𝑛:

• every 𝑒𝑥𝑖 is looked-up in the 𝑒𝑥𝑝 table.
• the sum of 𝑒𝑥𝑖 is calculated to get the Softmax’s denominator.
• the inversion of the sum 𝑖𝑛𝑣_𝑠𝑢𝑚 is looked-up in the 𝑖𝑛𝑣 table.
• every Softmax value is calculated as: 𝑒𝑥𝑖 ∗ 𝑖𝑛𝑣_𝑠𝑢𝑚.

As can be seen, we need 3 loops to cover all inputs, and we need to perform 𝑛 + 1 look-ups.
In the special case of the 2-variable Softmax function, it is possible to obtain a single-variable Softmax function that matches

he Sigmoid function:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥1|(𝑥1, 𝑥2)) =
𝑒𝑥1

𝑒𝑥1 + 𝑒𝑥2
⟶ 𝜎(𝑡) = 1

1 + 𝑒−𝑡
(16)

his can be done by dividing the numerator and the denominator by the non-zero value 𝑒𝑥1 :

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥1|(𝑥1, 𝑥2)) =
𝑒𝑥1

𝑒𝑥1 + 𝑒𝑥2
= 1

1 + 𝑒𝑥2−𝑥1
= 1

1 + 𝑒−(𝑥1−𝑥2)
= 𝜎(𝑥1 − 𝑥2) (17)

That is, by setting 𝑡 = 𝑥1−𝑥2, one can easily converts the two-variable Softmax function into a single-variable Sigmoid function. Now
we can simply calculate 𝑡 and use the exact same Sigmoid table generated previously. This is very efficient for binary classification
tasks such as face detection, where each output is classified as either face or background.1

4. Case studies

This section presents two examples of using DeepEdgeSoC to design and implement DNNs with different layer types. In the first
example, a network consisting of convolutional, pooling layers and skip connections is designed from scratch. The capabilities of
DeepEdgeSoC are further illustrated by the second example, in which a convolutional recurrent network is implemented.

4.1. German traffic sign classification

We demonstrate how the end-to-end design process is accelerated using our proposed framework by experimenting with an
example network model for traffic sign classification. For this purpose, the German Traffic Sign Recognition Benchmark [25] (GSTRB)
dataset, which consists of 43 different traffic sign classes is used. GSTRB is distributed on 40,482 RGB images, each of size 48 × 48.
The dataset is split into a training set (35,600 images), a validation set (3,609 images) and a test set (1,273 images).

We conduct this experiment in three phases. First of all, a network is designed from scratch using the DeepGUI. Afterwards, the
network is exported and trained in full-precision mode. Then, we move to the quantization mode.

4.1.1. Network design phase
In this phase, the DeepGUI web client is used to design a simple CNN network that performs the task of traffic sign classification.

The input image is first passed to a 7 × 7 convolutional layer, which produces 32 channels for the output feature maps. A non-
linear activation function, namely ReLU, is then applied to these feature maps. Subsequently, the dimensions are reduced using a
max-pooling layer (kernel size = 2 × 2). Afterwards, the resulting feature maps are fed to 2 branches. The first branch consists of
two convolutional layers (kernel size = 4 × 4), each with a ReLU activation and a max-pooling layer (kernel size = 2 × 2). The
second branch contains a convolutional layer (kernel size = 7 × 7) along with a ReLU activation and a max-pooling layer (kernel
size = 5 × 5). Throughout both branches, the number of channels is kept at 32. The output of both branches is then concatenated
along the channel dimension and passed to the fully connected layer with output size 43 followed by a log softmax layer. Since the
second branch has less propagation delay, a FIFO buffer must be inserted in this particular branch after the max-pooling layer to
synchronize the two branches. Fig. 10 illustrates the example network used in this work.

1 The Python3 source code for converting the Sigmoid and softmax functions to look-up tables is available under: https://github.com/dfki-av/FunctionLUT/.
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Fig. 10. The architecture of the CNN-based traffic sign classification algorithm. For the convolutional/pooling layers, the numbers between brackets indicate
the kernel size, while the other number indicates the number of output channels. The number for the fully connected layer indicates the input/output sizes of
that particular layer.

Table 2
PYNQ-Z1 Resource utilization for the floating-point implementation of the traffic sign classifier.

Resources Used Available Util

Block RAM Tile 545 280 195%
DSPs 69 220 31%
CLB Flip Flop 47,788 106,400 45%
CLB LUTs 40,556 53,200 76%

4.1.2. Full-precision phase
The full-precision version of the network is exported and trained for 100 epochs using the SGD optimizer with an initial learning

ate of 0.05. Validation is performed at the end of each epoch, and the learning rate is further reduced by a factor of 0.1 every time
he validation loss does not improve for 3 consecutive epochs. The batch size used for training is 64. The negative log-likelihood
oss is used as it is suitable for multi class training tasks.

The performance of the network is evaluated using the test set, and the achieved test accuracy is 91.52%. After the network
raining is completed, the weights are exported to the appropriate C++ header file format. The VHLS implementation is also obtained
rom DeepEdgeSoC. In Vitis HLS, the hardware network is first cross-checked by simulation. Afterwards, the algorithmic high-
evel description of the network is converted into the corresponding RTL representation using high-level synthesis. The PYNQ-Z1
valuation board, which contains an xc7z020-clg400-1 SoC chip, is used for prototyping. The PL clock frequency is set to 250 MHz.
he utilization and the on-chip resources can be seen in Table 2.

.1.3. Fixed-precision phase
As can be seen in the first phase, the chip is over-utilized by the resulting full-precision hardware implementation. This is because

loating-point arithmetic consumes plenty of on-chip resources. Therefore, a trimmed-down version of the network is obtained by
xploiting quantization. First of all, we export the pre-trained network and attempt to quantize it without performing any training
teps (i.e., PTQ). The resulting network is evaluated using the test dataset. We choose 4 quantization bits for the weights and biases
f the convolutional layers and the fully connected layer. The mechanism for selecting the optimal combination of quantization bits
or the parameters and the activations is beyond the scoop of this work and therefore not discussed here. Since the accuracy has
ropped notably to 71.17%, QAT must be performed. After training the network for 100 epochs using the same hyper-parameters
entioned in the previous design phase, the achieved test accuracy is 90.89%. Since the accuracy drop in this case is acceptable

0.63% abs.; 0.688% rel.), we proceed to the hardware implementation. At this stage, the quantized parameters are exported and
he same hardware implementation as in the previous section is used. However, the data type is changed from floating-point to
ixed-point before the high-level synthesis process is performed again. The FPGA chip utilization is drastically reduced, as shown
n the 3 table. The exported RTL modules can then be imported into Vivado IP Integrator (IPI), where the interface between the
L and the PS is configured. Subsequently, the integrated system can be synthesized into a bitstream that can be used directly to
onfigure the FPGA. The same PYNQ-Z1 board is used to deploy the obtained bitstream of the traffic sign classification network.

.1.4. Comparison and discussion
The results of both phases reveal that, thanks to the quantization, the network could be compressed to fit the chip. To illustrate

he efficiency of the accelerated FPGA implementation, a comparison is made with the original implementation on the GPGPU used
or training, the GeForce GTX 1070. Network inference is performed on both platforms, and the run-time and energy consumption
13
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Table 3
PYNQ-Z1 Resource utilization for the fixed-point implementation of the traffic sign classifier.

Resources Used Available Util

Block RAM Tile 145 280 52%
DSPs 42 220 19%
CLB Flip Flop 21,201 106,400 20%
CLB LUTs 22,653 53,200 43%

Table 4
FPGA vs. GPU performance analysis for the traffic sign classifier.

Platform Run-Time [ms] Energy [mJ]

FPGA (ours) 4.80 5.28
GeForce GTX 1070 1.33 35.91

Table 5
FPGA vs. different embedded platforms performance analysis for the traffic sign classifier.

Platform Run-Time [ms] Energy [mJ]

FPGA (ours) 4.80 5.28
NVIDIA Jetson Xavier (GPU) 5.05 30.30
NVIDIA Jetson Xavier (CPU) 8.49 119.71
RaspberryPi 3B+ 97.31 506.01

per frame are measured for each platform. In order to measure the image run-time, the average run-time per image is calculated
after running the inference on the entire test set (1,273 images). For the power measurement, only the dynamic energy consumed
for image inference is considered: 𝐸𝑖𝑚𝑎𝑔𝑒 = (𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝛥𝑇𝑖𝑚𝑎𝑔𝑒, where 𝑃𝑡𝑜𝑡𝑎𝑙 is the total power consumed during computation,
𝑃𝑖𝑑𝑙𝑒 is the power consumption in idle mode, i.e., without inference and 𝛥𝑇𝑖𝑚𝑎𝑔𝑒 is the image run-time.

Table 4 shows that the run-time delay for one image on the GPU is 1.33 ms while it is 4.80 ms on the FPGA. Furthermore, the
nergy consumption per image on the GPU reached 35.91 mJ compared to 5.28 mJ on the FPGA. In summary, although the FPGA
mplementation is 3.6× slower, it is 6.8× more energy efficient compared to its GPU counterpart.

To provide a fair comparison, the FPGA implementation is compared to two existing embedded platform, namely NVIDIA Jetson
avier and RaspberryPi 3B+. NVIDIA Jetson Xavier consists of a 512-Core Volta embedded GPU with Tensor Cores, 8-Core ARM
8.2 64-Bit CPU and 16 GB 256-Bit RAM. Moreover, RaspberryPi 3B+ employs a Broadcom BCM2837B0, Quad core Cortex-A53
ARMv8) 64-bit SoC CPU running at a maximum frequency of 1.4 GHz with 1 GB SDRAM. The original PyTorch model obtained by
he GPU is deployed on these devices. No quantization is performed on these embedded platforms because they use floating-point
s the native data type for computations. In a live demo scenario, an image should be processed immediately after capture. Thus,
mage batches are not used for inference.

Table 5 illustrates the run-time delay and energy consumption per image for the mentioned platforms.
To visualize the numerical results, Fig. 11 shows the performance analysis for the different embedded platforms mentioned

bove. The numbers on the arrows illustrate the factors by which the performance differs for different implementations.

.2. Bubble detection

In this section, we give another example of deep neural network design using DeepEdgeSoC by implementing the convolutional
ecurrent neural network (CRNN) presented by Tan et al. in [26]. The network plays an important role in monitoring continuous
ladder irrigation (CBI) by making the correct decision to flush sterile fluid through the catheter into the bladder. This is essential
o prevent blood clot formation and retention after hemorrhagic surgeries on prostate and bladder, allowing the free flow of urine.
he authors have used a CRNN to detect the presence of an air bubble in the measured fluid and therefore improve the reliability
f blood measurement. In this experiment, the pre-trained network is imported instead of designing it from scratch. Afterwards, the
uantization step is performed by first trying the PTQ and then moving to QAT. Finally, the hardware implementation is exported
nd the deployment is performed on the FPGA.

.2.1. Network setup phase
In this phase, we examine the aforementioned CRNN network and import it to DeepEdgeSoC. The network expects a 80 × 70

rayscale image. In the beginning, the first convolutional layer generates 8 feature maps using its 5 × 5 kernels. Afterwards, a
ax-pooling layer reduces the dimensions using a 2 × 2 pooling kernel. The second convolutional layer unifies the 8 feature maps

o a single feature map by applying 5 × 5 convolutional kernels. Subsequently, the output feature map is scaled down using a 2 × 2
ooling layer. A ReLU activation function is appended to each convolutional layer. The resulting feature map is then flattened before
eing sent to the first LSTM layer (360 × 32) whose output is forwarded to the second LSTM layer (32 × 32). Lastly, a linear layer
14

s used to classify the input image as bubble or no bubble. Fig. 12 illustrates the CRNN for bubble detection.
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Fig. 11. Performance analysis for different embedded platforms; FPGA, JX GPU, JX CPU and RPi3B+ denote the performance of our PYNQ-Z1, Jetson Xavier
embedded GPU, Jetson Xavier embedded CPU and Raspberry Pi 3B+ CPU respectively.

Fig. 12. The architecture of the Convolutional Recurrent Neural Network (CRNN)-based bubble detection network. The numbering annotation is used in a similar
manner as in Fig. 10. However, the number for the LSTM layer indicates the input/output sizes of that particular layer.

Table 6
PYNQ-Z1 Resource utilization for the floating-point implementation of the bubble detector.

Resources Used Available Util

Block RAM Tile 233 280 83%
DSPs 429 220 195%
CLB Flip Flop 73,320 106,400 67%
CLB LUTs 79,928 53,200 150%

4.2.2. Full-precision phase
DeepEdgeSoC is used here to generate the hardware implementation of the given pre-trained network. As stated in the original

paper, the accuracy of this network is 97.4%. Since the network is relatively small (59099 parameters), the PYNQ-Z1 development
board is again chosen for this experiment. By following the same development process as before, i.e., simulation first then high-level
synthesis, we obtain an implementation that is too large to fit on the chip ( Table 6).

4.2.3. Fixed-precision phase
This time, the network parameters are quantized to 5 bits. A quantized version of the network is obtained by first applying PTQ.

In this case, the accuracy drops notably to 82.41%. Therefore, the network must be re-trained using the same hyper-parameters
mentioned in the original work. As a result, the accuracy reaches 96.61% which has a negligible difference (0.76% abs.; 0.81% rel.)
with the full-precision accuracy.

Table 7 illustrates the resource utilization of the FPGA implementation using the previously mentioned implementation
procedure. The operating frequency is 166.67 MHz and the input is processed frame-by-frame, i.e., one frame is fed to the network
at a time.

4.2.4. Comparison and discussion
The average values of the inference run-time and energy consumption per frame are measured on GeForce GTX 1070 and PYNQ-

Z1 using the whole testset (15454 images). The average results mentioned in Table 8 are obtained by taking the dynamic energy
15
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Table 7
PYNQ-Z1 Resource utilization for the fixed-point implementation of the bubble detector.

Resources Used Available Util

Block RAM Tile 49 280 18%
DSPs 30 220 14%
CLB Flip Flop 9,056 106,400 9%
CLB LUTs 8,439 53,200 16%

Table 8
FPGA vs. GPU performance analysis for the bubble detector.

Platform Run-Time [ms] Energy [mJ]

FPGA (ours) 1.38 0.83
GeForce GTX 1070 1.03 13.66

Table 9
FPGA vs. different embedded platforms performance analysis for the bubble detector.

Platform Run-Time [ms] Energy [mJ]

FPGA (ours) 1.38 0.83
NVIDIA Jetson Xavier (GPU) 1.83 21.46
NVIDIA Jetson Xavier (CPU) 2.69 39.24
RaspberryPi 3B+ 32.83 154.32

Table 10
Resource utilization summary on xa7a25t-cpg238-1I for the fixed-point based implementation.

Resources Used Available Util

Block RAM Tile 44 90 48%
DSPs 20 80 25%
CLB Flip Flop 9,183 29,200 31%
CLB LUTs 14,000 14,600 95%

into consideration. The inference takes 1.38 ms on the PYNQ-Z1 board, while it needs 1.03 ms on the GPU. However, a single frame
rocessing consumes only 0.83 mJ on the FPGA compared to 25.87 mJ on the GPU. This makes the PYNQ board 1.3× slower but
1.2× more energy efficient than the GPU.

Similarly to the previous case study, we show a comparison with other embedded platforms in Table 9.
Since the FPGA chip can be selected in the HLS step, the bubble detection network was synthesized several times for different

PGAs. It was found that the chip xa7a25t-cpg238-1I from the Artix7 family is the smallest chip on which the network fits.
Table 10 shows the on-chip resource utilization for the given network and highlights how small this chip is compared to the

reviously used PYNQ-Z1. Since the chip is not physically present in our lab, we could not perform timing or power measurements.

. Discussion and future works

In this work, we have presented DeepEdgeSoC, an integrated framework that optimizes the DL workflow based on a graphical
nterface that facilitates the design, visualization and export of various DL architectures. A powerful feature of DeepEdgeSoC is the
bility to parse and import existing network models using the Tracer module. Furthermore, DeepEdgeSoC provides both floating-
oint and fixed-point models of the network. Using the DNN2HLS framework, the network can be automatically mapped to the
ardware design space. The network parameters required to run the network can be obtained using the Exporter module. To better
xplain the workflow with DeepEdgeSoC, we presented an illustrative case study in which we used a CNN to identify a subset of
3 different German traffic signs. To evaluate the consistency of the resulting implementation, we compare the performance of the
PGA-based implementation to the performance of the GPGPU-based implementation, as well as other embedded platforms, such
s NVIDIA Jetson Xavier and RaspberryPi 3B+. Finally, we enrich the results of this work by providing another implementation
xample of a CRNN network for bubble detection.

While this work contributes to the acceleration of DL on the edge, it has some limitations. First of all, DeepEdgeSoC does
ot provide a mechanism to automatically find the optimal combination of quantization bits for a given network. A brute-force
earch could take decades even for a small network that consists of only a few layers, as the total number of possible combinations
rows exponentially with the size of the DNN. Thus, our framework should be able to determine the appropriate quantization bit
ombination(s) by employing a smarter search algorithm. Secondly, changing the parallelization factors in each hardware layer
eads to a new hardware implementation of the same software network. Each hardware implementation is characterized by its own
otal latency, resource utilization, and ultimately energy consumption. Automatic exploration of the design space to find the optimal
mplementation would further improve the results. Lastly, we do not yet provide a mechanism to partition large DNNs in case they
16
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Table A.11
Comparison with related works.
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HLS4ML [24] × × × × ✓ × ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ × × ×
fpgaConvNet [10] × × × × ✓ × ✓ ✓ ✓ × × × × × × × ✓ ✓

CNN2Gate [8] × × × × ✓ × × ✓ × ✓ ✓ × ✓ ✓ ✓ × ✓ ✓

Caffeine [27] × × × × ✓ × * ** ✓ × × × × × × × ✓ ×
CNN-Grinder [12] × × × × ✓ × ✓ ✓ ✓ × ✓ × × × × × ✓ ×
CascadeCNN [28] × × × × ✓ × * ✓ ✓ × ✓ × × × × × ✓ ×
FP-DNN [13] × × × × ✓ ✓ ✓ ** × ✓ ✓ × × × ✓ × × ×
deepHLS [14] × × × × ✓ × * ✓ ✓ × ✓ × × × ✓ × × ×
LeFlow [29] × × × × ✓ × × × ✓ × × × × × ✓ × × ×
PipeCNN [9] × × × × ✓ × ✓ × × ✓ × × × × × × × ×
FINN [30] × × × × ✓ × ✓ ✓ ✓ × ✓ × × ✓ × ✓ × ×

PrototypeML [16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ✓ ✓ × × × ×
DL Studio [17] ✓ ✓ × × ✓ ✓ × × × × × × × ✓ ✓ × ✓ ×
Sony’s NNC [18] ✓ ✓ × × ✓ ✓ ✓ ✓ × × × × × × × × × ×
IBM Watson [19] ✓ ✓ × × ✓ ✓ × × × × × × ✓ ✓ ✓ ✓ ✓ ×
Tensorboard [15] ✓ × ✓ ✓ ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ *** × × ×

* We could not get precise information about these features.
** Caffeine and FP-DNN support only 16-bit quantization.
*** Through ONNX.
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Appendix. Deeper comparison with related works

Table A.11 show the similarities and differences between our proposed work and the most related previous frameworks.
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