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Abstract— This paper presents a dataset containing
recordings of the electroencephalogram (EEG) and the
electromyogram (EMG) from eight subjects who were assisted
in moving their right arm by an active orthosis device. The
supported movements were elbow joint movements, i.e., flexion
and extension of the right arm. While the orthosis was actively
moving the subject’s arm, some errors were deliberately
introduced for a short duration of time. During this time, the
orthosis moved in the opposite direction. In this paper, we
explain the experimental setup and present some behavioral
analyses across all subjects. Additionally, we present an
average event-related potential analysis for one subject to offer
insights into the data quality and the EEG activity caused by
the error introduction. The dataset described herein is openly
accessible. The aim of this study was to provide a dataset
to the research community, particularly for the development
of new methods in the asynchronous detection of erroneous
events from the EEG. We are especially interested in the tactile
and haptic-mediated recognition of errors, which has not yet
been sufficiently investigated in the literature. We hope that
the detailed description of the orthosis and the experiment will
enable its reproduction and facilitate a systematic investigation
of the influencing factors in the detection of erroneous behavior
of assistive systems by a large community.
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I. INTRODUCTION

Exoskeletons and orthoses are frequently used to assist or
enable human movement (see [1]). They are even able to
augment classical therapy approaches such as mirror therapy
[2]. The electroencephalogram (EEG) can be used not only to
infer the intention to move but also to trigger the assistance
provided by an exoskeleton [1]. This has been shown to be
very important for successful neuro-rehabilitation [3], [4]. It
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can also be used to infer the subjective correctness of the
behavior of a robot that the human observes or interacts with,
as shown in several works such as by [5], [6], [7]. EEG
activity can also be used to enable the teaching of subjective
preferences to a prosthesis, as proposed by [8]. Furthermore,
misbehavior of an assistive device can be detected using the
error-related potentials (ErrPs) that occur when the brain
observes errors [9].

Inferring errors from EEG is challenging because it requires
asynchronous classification of relevant patterns in the EEG,
which often leads to many false positives due to long
interaction times with the system or long task times for
the system [10], [11], [12], [13]. While most studies focus
on how the brain evaluates erroneous behavior using visual
stimuli, according to our literature review, there is only one
study that uses tactile stimuli to elicit an ErrP [14]. Moreover,
it has only been shown that rather complex errors in behavior
elicit the ErrP or correlated changes in the frequency domain.
It has not yet been studied how the brain responds to simpler
errors that are quite obvious and may not require extensive
evaluation to assess correctness.

Based on the available literature, we believe that there is a
gap in the research on error-related activity. Modalities, other
than the visual modality, should also be studied more closely
during the interaction or as a source of feedback in terms of
what activities they induce in the brain. It is also necessary
to better understand what complexity in task, response, or
interaction errors is required to elicit the ErrP. Furthermore,
methods for continuous classification of error-related activity
and methods that allow to distinguish between different,
partially overlapping EEG activities, should be explored more
intensively. In this regard, there is a particular lack of openly
accessible data that would allow a larger research community
to contribute. Furthermore, the use of robots limits the number
of research groups that can conduct research on such problems.
For this reason, we recorded a dataset of 8 subjects wearing
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an active orthosis device that introduces simple errors in
its behavior. In addition, details about active elbow orthosis
are provided, as it is a fairly simple robotic system that
could allow other groups to replicate the work or extend
it. Furthermore, the experimental procedure has also been
described which would give relevant information about the
error complexity, subject instructions, and whether or not
subjects should respond explicitly to errors.

We hope that this first open-access dataset will enable
broader research on how assistive technology can be improved
by using EEG to provide more natural and individualized
support for activities of daily living. Such support is very
important for rehabilitation [15].

The rest of the paper is structured as follows. Section II
provides detailed information about the experimental design
and methods used to record the dataset. It also describes the
data format and the folder structure for a better understanding
of the dataset. Furthermore, Section III presents a preliminary
quality analysis of the recorded data in the form of response-
time analysis and event-related potential analysis. Finally, in
Section IV, we provide an overview of this experiment and
discuss future possibilities.

II. METHODS AND EXPERIMENTAL DESIGN

This section provides information about the experimental
design including details about subjects’ informed consent,
experimental setup & procedure, methods used for data
acquisition, and the formatting of the recorded dataset.

A. Participants

Eight healthy subjects (four male and four female; average
age 21.8 ± 2.4 years; right-handed; students) voluntarily
participated in the study. Some days before the start of
experiments, all subjects were invited to the lab for a
basic introduction and preliminary testing. This included
checking the fit of the used orthosis and measuring the head
circumference for determining their EEG cap size. All the
subjects gave their written informed consent and were told
that they could stop the experiment at any time without
consequences. The experiment lasted for 4.9 ± 0.6 hours on
average and all the subjects received a monetary compensation
of 10C per hour.

B. Experimental Setup and Procedure

An overview of all the protocols followed throughout the
experiment is provided in this section.

TABLE I: Start thresholds for each subject.

Subject
Code

Start Threshold
(Flexion)

Start Threshold
(Extension)

AQ59D 1.0 N · m 1.2 N · m

BY74D 0.8 N · m 1.2 N · m

AC17D 0.8 N · m 1.2 N · m

AW59D 0.7 N · m 1.2 N · m

AY63D 1.0 N · m 1.2 N · m

BS34D 1.2 N · m 1.4 N · m

AJ05D 1.0 N · m 1.2 N · m

AA56D 1.0 N · m 1.2 N · m

1) Subject Preparation: Before the start of the experi-
ments, the subjects were prepared with a 64-channel EEG
system and an eight-channel EMG system (see Section II-C.1
and II-C.2 for details). Furthermore, each subject was fitted
with an active orthosis (see Section I) on their right arm as
shown in Figure 1(a), and held a small air-filled ball in their
left hand. To trigger support from the orthosis, the subjects
were required to express their intention to move by applying a
force greater than a start threshold in the movement direction.
The required force varied among subjects, depending on their
strength. It was ensured that the start thresholds were large
enough to prevent unintended starts (refer to Section III).
After indicating their intention to move, the subjects were
instructed to ease their arm muscles as the orthosis took
control of the movement and applied adequate torque at the
elbow joint. A comprehensive list of the different thresholds
for each subject can be found in Table I.

2) Experimental Procedure: The subjects’ task was to
identify errors in the behavior of the orthosis. These errors
were deliberately introduced during flexion or extension
movements. Here, the term error refers to a momentary
change in the direction of orthosis movement for a short
duration of time (see Table II). Furthermore, the term
movement trial will be used to indicate a complete range of
flexion or extension movement.

In the first experimental run, subjects were asked to perform
30 movement trials (15 flexions and 15 extensions) with no
errors to obtain a baseline. The experimental run began only
after the subjects heard a start phrase from the experimenter.
This was followed by a training session where the subjects
got familiarized with how the errors felt and were instructed



Fig. 1: (a) Subject prepared with EEG and EMG electrodes wearing orthosis on their right arm (b) Visualization of the
different steps in the experimental procedure.

to squeeze the ball in their left hand as soon as they felt an
error. In each of the following runs, six errors were introduced
in a randomized sequence within 30 movement trials. The
order of occurrence of errors was varied individually for each
run (see Section II-B.3 for more details). Overall, as part of
the experiment, each subject performed 10 experimental runs
with six errors each and one baseline run without any errors.

Before each run, the subjects were reminded to stand still
to avoid motion artifacts in the EEG and EMG data. They
were also asked to fixate their eyes upon a black cross against
the white wall in front of them to avoid eye artifacts in the
EEG data. It was also brought to their notice that if, for some
reason, they felt an error but forgot to squeeze the ball, they
shall just move forward with the run. The subjects were not
informed about missed errors during the experiment. At the
end of a run, the orthosis motor automatically disabled itself
and the subjects were informed about this via a stop phrase.
After five runs, a 15-minute break was given during which
the subjects could relax and take off the orthosis. A visual
summary of the whole experimental procedure is provided
in Figure 1(b).

TABLE II: Orthosis operating parameters.

Parameters Value

Number of errors 6

Duration of errors 250 ms

Fully Extended position -10◦

Fully Flexed position -90◦

Maximum deviation 0.3◦

Mean error position (Flexion) -42◦

Mean error position (Extension) -58◦

3) Error Introduction: At the start of each experimental
run, a distinct list of six random values between 1 and 30
(number of errors) was generated. This list, termed as the
error sequence, followed the following conditions:

• Values 1 and 2 must not be included.
• There must be a gap of at least two between two

consecutive numbers from the list.
• The list must be sorted in ascending order.

The values in the list corresponded to the trial numbers in



which errors were introduced. The Python3 random library
[16] was used to generate the random sequence.

Furthermore, whenever a movement trial began, the trial
number was matched with all numbers from the generated
error sequence. If a match was found, an error was deliberately
introduced near the Mean error position within the movement
trial. The error position varied for flexion and extension with
a Maximum deviation of 0.3◦ from the Mean error position

as mentioned in Table II.
In practice, if the orthosis were executing flexion before

the introduction of the error, it would transition into extension
for the specified duration of error (see Table II) and then
resume flexion until the end of the trial and vice-versa.

C. Data Acquisition

This section provides detailed information about the meth-
ods used for recording the EEG and EMG data. Additionally,
it also describes the process of synchronization of these two
types of data.

1) EEG Recording: The EEG data were recorded using
the 64-channel LiveAmp64 system from Brain Products
GmbH1 and an ActiCap slim electrode system2 with an
extended 10-20 layout. The reference electrode was placed
at FCz and the GND at AFz.

Great efforts were made to record high-quality EEG
data and minimize the noise in the data by keeping the
impedances of all 64 electrodes below a threshold of 5 kΩ.
This impedance check was performed both prior to and after
each experimental run. The EEG data were recorded using the
Recorder software3 (version 1.25.0001) from Brain Products
GmbH. The sampling rate was 500 Hz and the measurement
system used hardware filters that limited the bandwidth of
the data to a passband of 0.0 Hz - 131.0 Hz.

2) EMG Recording: To record bipolar EMG data, the
ANT mini eego amplifier4 was used. The EMG data were
recorded with a sampling rate of 1000 Hz using an adapted
eego SDK5 for Python. Eight channels were used, each
measuring the muscle activity of the following muscles on
both the arms:

• M. biceps brachii
• M. triceps brachii lateral

1https://www.brainproducts.com/solutions/liveamp/
2https://www.brainproducts.com/solutions/acticap/
3https://www.brainproducts.com/downloads/recorder

/
4https://www.ant-neuro.com/products/eego 8
5https://gitlab.com/smeeze/eego-sdk-pybind11/-/tr

ee/0ace9b329b7cf5f6d1da5d387d0f2a5c07e87ee7

• M. triceps brachii long head
• M. flexor digitorum superficialis

Before placing the electrodes, the skin was prepared with
Isopropyl alcohol (70% V/V). The electrodes were placed on
the muscle belly in accordance with the SENIAM guidelines
[17].

3) Synchronization of EMG & EEG Data: To enable
synchronization of EEG and EMG data for offline analysis,
an Arduino Nano board and the Sensor & Trigger extension
from the EEG system were used to mark start and end time
points of the EMG data recordings within the EEG data.
The EEG system was used as the main device to enable an
alignment of both data streams with respect to each other.
Despite the EEG data recordings starting before the EMG,
the marked events serve as reference points to align both
data streams. With this approach, an average time difference
below 8.5 ms between both data streams was achieved after
evaluating the synchronicity for all recorded data sets. This
result was arrived at by comparing the amount of recorded
EMG data against the marked events recorded by the EEG
system. Please refer to section II-D.3 for the specification of
the marked events in the EEG data.

D. Dataset and Format

This section provides a description of the data format,
along with detailed information about the dataset and the
recorded events.

1) Data Format: The recorded EEG data follows the
BrainVision Core Data Format 1.0, consisting of a binary data
file (.eeg), a header file (.vhdr), and a marker file (.vmrk)6. For
ease of use, the data can be exported into the widely adopted
BIDS format as described in [18]. Furthermore, for data
analysis, processing and classification, two popular options
are available - MNE (Python)7 and EEGLAB (MATLAB)8.
Additionally, an example illustrating the process of reading
the provided data files can be found in the data repository.
In contrast, the EMG data is stored in the .txt format, where
each column represents a separate EMG channel.

2) Dataset Description: In this section, the dataset’s folder
structure is explained along with the convention used for
naming the files.

6https://www.brainproducts.com/support-resources/
brainvision-core-data-format-1-0/

7https://mne.tools/stable/reading raw data.html
8https://sccn.ucsd.edu/eeglab/index.php

https://www.brainproducts.com/solutions/liveamp/
https://www.brainproducts.com/solutions/acticap/
https://www.brainproducts.com/downloads/recorder/
https://www.brainproducts.com/downloads/recorder/
https://www.ant-neuro.com/products/eego_8
https://gitlab.com/smeeze/eego-sdk-pybind11/-/tree/0ace9b329b7cf5f6d1da5d387d0f2a5c07e87ee7
https://gitlab.com/smeeze/eego-sdk-pybind11/-/tree/0ace9b329b7cf5f6d1da5d387d0f2a5c07e87ee7
https://www.brainproducts.com/support-resources/brainvision-core-data-format-1-0/
https://www.brainproducts.com/support-resources/brainvision-core-data-format-1-0/
https://mne.tools/stable/reading_raw_data.html
https://sccn.ucsd.edu/eeglab/index.php


a) Folder Structure: This section describes the hier-
archical folder structure of the recorded dataset. At the
highest level, there are three folders, namely EEG, EMG, and
Metadata. The Metadata folder contains a .txt file for each
subject, segregated by a unique code, which consists of meta-
information about the subject as well as the measurement sets.
In addition to these files, there is also a short description.txt

file with some general information about the whole study.

Furthermore, within each of the modality folders (EEG

or EMG), there is an additional level of folders segregated
by subject codes. Inside the EEG folder, each subject sub-
folder is further divided into two sub-folders viz. data and
imp. The data folder consists of the actual measurement
files as described in section II-D.1. In total, there is one
baseline set without any errors stored inside another sub-folder
named baseline without error and 10 sets with deliberate
errors introduced. Each header file (.vhdr) also contains
the impedance values of every electrode before the set.
Conversely, each header file inside the imp folder contains
impedance values after each set. All in all, all impedance
values, before and after the set, are available within the header
files (.vhdr). It has to be noted that, for some subjects, an
additional set was recorded for safety purposes and included
in this dataset under a sub-folder named additional sets.
For more detailed information, please refer to the Metadata
readme files included within the dataset.

b) Naming Convention for Data Files: A consistent
naming convention was followed for all our files dividing
the filename into five parts. The first part was the date
of acquisition in yyyymmdd format (e.g. 20230424), fol-
lowed by the subject code (e.g. AC17D). The third part
included the experiment identifier, in this case, orthosisEr-

rorIjcai, followed by multi indicating that subjects could
hear and see (multiple modalities) during the experiments.
For baseline runs, the suffix baseline set plus the set num-
ber (e.g 1 or 2) was added while for experimental runs
with errors, only the run number was appended at the
end (e.g. set5). As an example, a filename would look
like 20230424 AC17D orthosisErrorIjcai multi set1.txt. It is
important to note that, the term set was used to represent
the data files associated with the corresponding experimental
run.

3) Recorded Events: To keep track of all the events
occurring during the set, these events were recorded and
stored in marker files (.vmrk). The marker files are located

within the data folder of each subject under EEG (see section
II-D.2 for data structure). The first recorded event (after the
start of a set) was named S1 and it marked the start of the
EMG recording for synchronization purposes (see section
II-C.3 for detailed information). The event S1 also occurred
at the end of the EMG measurement. The next recorded
event was S64 which marked the start of flexion movement.
Similarly, the start of an extension movement was marked
by the event S32. In order to mark a trial without errors,
the event S48 was added around the Mean error position as
mentioned in Table II. The event S96 occurred as soon as an
error was introduced in the trial. Additionally, if the subject
squeezed the ball, the recorded event S80 was written to the
marker file.

III. ANALYSIS OF DATA QUALITY

In the following, we performed some basic analysis on
the recorded data to give proof of data quality and to briefly
describe evoked EEG activity as well as muscle activity.
Furthermore, to ensure data quality, invalid measurement sets
were excluded from the data repository. The excluded sets
of all subjects are listed below in the form of subject code,
set number followed by the reason for excluding the set. The
excluded sets are as follows:

• AA56D, set8: orthosis shutdown by max. current limit.
• AC17D, baseline set1: too much noise in EEG.
• AJ05D, baseline set1: error in event recording.
• AJ05D, set8: too much noise in the EEG.
• AJ05D, set9: too much noise in the EEG.
• AQ59D, set1: orthosis did not start.
• AW59D, set1: too much noise in the EEG.
• AY63D, baseline set1: subject played with the air-filled

ball during experiment.

Each of the rejected sets was excluded and supplemented by
an additional measurement set (as mentioned in Section II-
D.2.a). Although the data quality was kept as high as possible,
we observed a 50 Hz noise for some measurement sets and
EEG channels, introduced by the orthosis. The 50 Hz noise
was also observed in the EMG data.

A. Behavioral analysis

For response-time analysis, we analyzed the response times
for the incorrect events (error events). As mentioned above,
the subjects were instructed to squeeze an air-filled ball after
recognizing an error. The time between the error event (S96,



TABLE III: Results of response-time (RT) analysis. (A)
Median RT for each subject over 10 datasets. (B) Median RT
for each set over 8 subjects.
µ± σ : mean ± standard deviation.

(A) Analysis 1 (B) Analysis 2

subject RT dataset RT

AQ59D 0.67 s set 1 0.72 s

BY74D 0.61 s set 2 0.73 s

AC17D 0.83 s set 3 0.70 s

AW59D 0.72 s set 4 0.71 s

AY64D 0.67 s set 5 0.70 s

BS34D 0.68 s set 7 0.74 s

AJ05D 0.91 s set 6 0.80 s

AA56D 0.89 s set 8 0.76 s

set 9 0.68 s

set 10 0.74 s

µ± σ 0.75±0.11 µ± σ 0.73±0.03

true label) and response to the event (S80) was calculated
for all events.

According to the experimental design, we expected a total
of 480 responses to error events (6 error events × 10 datasets
× 8 subjects = 480 error events). However, we found 9 false
negative cases (i.e., the ball was not squeezed, even after
an error event occurred) and 5 false positive cases (i.e., the
ball was squeezed, even when the error event did not occur).
Hence, a total of 471 error event-response pairs (480 error
events - 9 false negatives) were used to compute response
time. We obtained a median value of 0.72 s over 471 error
event-response pairs.

We also performed two additional analyses. First, we
calculated the response time averaged over all 10 sets for each
subject (see, Table III-(A)). We also calculated the response
time averaged over all 8 subjects for each set (see, Table
III-(B)).

B. Event Related Potentials (ERP) Analysis

For ERP analysis, we analyzed the EEG data using
EEGLAB9. We preprocessed the data as follows. The raw
EEGs were downsampled to 250 Hz, re-referenced to an
average reference, and filtered between 0.1 Hz and 15 Hz.

9https://sccn.ucsd.edu/eeglab/index.php

The FCz channel, used as a reference in the EEG recording,
was recalculated as an EEG channel for ERP analysis.
After preprocessing, the artifacts were rejected by visual
inspections which means that only clean EEG data were
used for EEG segmentation. The artifact-free EEG data were
segmented into epochs from 0.1 s to 1 s after each event type
(correct/incorrect). Epochs were averaged within each event
type with a baseline correction (−0.1 s until stimulus onset).

For averaging epochs, we only used the error events
with correct responses i.e., true positive cases (the ball was
squeezed when error events occurred). Figure 2 shows the
ERPs averaged over all epochs for each event type (S48:
correct event, S96: incorrect event) for Subject AQ59D. The
ERP morphology, i.e., the shape and distribution on the
scalp suggest that the introduction of errors elicits a P300
component, more specifically a P3b [19] component. This
may be elicited by infrequently occurring odd events to which
subjects respond, i.e., task-relevant events [20]. In the case of
this subject, we could not observe an error-related potential,
which is usually evoked by the recognition of errors.

IV. CONCLUSION

We presented and described an open-access dataset of
EEG and EMG data obtained from eight subjects who were
assisted by an active orthosis device in moving their right
arm. Behavioral analysis showed that the errors were very
well recognized by the subjects. Introduced errors were a
momentary change in the direction of movement of the
orthosis for a short amount of time. The errors were simple
and easy to detect. The appearance of an average event-related
potential (ErrP) in the form of P3b indicates that the subject
recognized the erroneous events as odd events. One reason that
the error introduction did not elicit an error-related potential
in the EEG could be due to the simplicity of the error. On the
other hand, the very dominant P3b could also overlay the ErrP.
These conclusions are very preliminary due to the analysis of
only one subject. We hope that the dataset provided and the
detailed information about the experimental setup would allow
its replication. This would enable the research community
to systematically investigate the relationship between odd-
event detection and erroneous event evaluation, evoked in
the brain. A better understanding of this relationship would
help to develop future approaches that could allow automatic
adaptation of an assistive device to a subject’s subjective
needs.

https://sccn.ucsd.edu/eeglab/index.php


Fig. 2: ERPs averaged over all epochs (trials) within each event type: correct event (S48) and incorrect event (S96) for
Subject AQ59D.
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Fig. 3: Computer Aided Design (CAD) model side and
front view of the active orthosis device. The actuator mount
and mechanical stop are colored for better visibility. The
connection to the shoulder orthosis can be seen in Figure
1(a) of the paper.

APPENDIX I
ACTIVE ORTHOSIS DEVICE

The orthosis device (Figure 3) was mainly built from off-
the-shelf components and in-house manufactured parts (e.g.
3D printed or water jet cut) resulting in a simple and cost-
effective design. The orthosis consists of an upper arm and
a forearm structure connected and driven by an actuator. To
compensate for the weight of the device and thereby enhance
wearer comfort, the upper arm structure is attached to a strap
that is sewn on a shoulder orthosis (see Figure 1(a)).

To transmit forces to the wearer’s arm, the elbow orthosis
connects to the human body via an upper arm and a forearm
interface. The cuffs consist of silicone pads cast on bent,
water-jet-cut aluminum sheet parts. The sheet parts transmit
the interaction forces between the orthosis and the wearer
and can be deformed elastically to an individual arm shape.
The silicone pads provide soft contact points to the human
tissue and also friction between the arm and interfaces to
keep the orthosis in place.

To accommodate different wearers, both upper arm and
forearm structure lengths can be adjusted. While the upper
arm length is fixed after adjustment, the forearm interface is
attached to a slider. This prismatic joint adds a passive degree
of freedom to the system that not only adjusts the forearm
length but also compensates for misalignments between
the axes of rotation of the elbow and orthosis. For further
individual adjustment, the forearm interface can be inclined.

The actuator is a T-MOTOR AK80-6 with a rated torque of
6 N · m (12 N · m peak). This drive belongs to the category
of so-called quasi-direct-drives or proprioceptive actuators

([21]). These comprise a high torque density motor combined
with a low gear ratio transmission. Such actuators feature
high intrinsic back-drivability and simultaneously allow for
accurate high-bandwidth force control. The quasi-direct-drive
actuation paradigm has been introduced in rehabilitation
robotics throughout the last years, e.g., in [22], [23]. For
communication with the AK80-6, we used a USB to CAN
interface and the driver software of [24]. We operated the
drive in position control mode using the onboard low-level
controller. In addition to the software limits, a mechanical
stop constrains the range of motion of the orthosis device
from the hard limit (upper arm and forearm structure in
parallel) to a flexion of −130°, for safety reasons.

The orthosis was powered by a laboratory power supply
set to a voltage of 24 V and a current of up to 3 A. An
emergency stop was connected in series with the actuator in
case of malfunctions, and a 2400 µF, 100 V rated capacitor
was also added in parallel with the actuator for transient
voltage suppression. Cable glands were used as strain reliefs
to protect the data and power cable connectors from damage.

APPENDIX II
RESPONSE LISTENER AND EVENT TRIGGER BOARD

Whenever the subject felt an error in the orthosis device,
they would press the air-filled ball in their left hand. The
state of this ball was recorded by the Response Listener, a
microcontroller that continuously read 16-bit analog inputs
and transmitted the pin states, through a serial connection,
to the Python script. This script then converted the pin states
into single-byte values and sent them serially to the Event

Trigger Board which is an ATmega328-based microcontroller
board (Arduino Nano11).

Additionally, other events such as the error introduction,
start of flexion or extension, and no-error movement trial
were also sent as unique single-byte arrays to the Event

Trigger Board. This board read the byte values serially and
mapped them into transistor-transistor logic (TTL) output
signals. These signals were eventually recorded into the
electroencephalogram (EEG) marker files, as described in
Section II-D.3.

APPENDIX III
CALIBRATION SEQUENCE AND SAFETY MEASURES

For calibrating the zero-reference position of the orthosis,
the subjects were asked to fully extend their arms to the

11https://store.arduino.cc/products/arduino-nano

https://store.arduino.cc/products/arduino-nano


Fig. 4: Different operating positions of the orthosis. (A) Zero-
reference position for the experimental run. (B) Comfortable
start position and extension limit during movement trial. (C)
Flexion limit during movement trial. (D) Positions around
which errors were introduced.

hardware limit of the elbow motor. After this calibration, the
orthosis would move to a more comfortable start position
which was termed the Fully Extended position (see Figure
4). As a safety measure, the range of motion of the orthosis
was restricted between the Fully Extended position and Fully

Flexed position (both inclusive). On reaching the range limits,
the elbow motor stopped automatically and held the position
until the subjects crossed the start threshold. Moreover,
another layer of safety was added by restricting the maximum
supply current and forcing motor torque limits.

Furthermore, the start thresholds for flexion and extension
were calibrated individually. Initially, the threshold values
were set to 1.0 N · m for flexion and 1.2 N · m for extension.
To determine the appropriate threshold value for flexion,
multiple flexion movement trials were performed by the
subjects until they arrived at a force that felt neither too
weak nor too strong. In contrast, to establish the optimal start
threshold for each subject for extension, they were asked to
rest their arms in the Fully Flexed position and the lowest
value at which no unwanted extensions occurred was selected.
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