
Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning Using
Graph Neural Networks and Transfer Learning

Johannes Pauli1∗, Maximilian Hoffmann1,2∗, Ralph Bergmann1,2
1 Artificial Intelligence and Intelligent Information Systems, University of Trier, 54296 Trier, Germany

{s4jopaul,hoffmannm,bergmann}@uni-trier.de, http://www.wi2.uni-trier.de
2 German Research Center for Artificial Intelligence (DFKI)

Branch University of Trier, Behringstraße 21, 54296 Trier, Germany
{maximilian.hoffmann,ralph.bergmann}@dfki.de
∗ These authors contributed equally to the work.

Abstract

Similarity-based retrieval of semantic graphs is a cru-
cial task of Process-Oriented Case-Based Reasoning
(POCBR) that is usually complex and time-consuming,
as it requires some kind of inexact graph matching. Pre-
vious work tackles this problem by using Graph Neu-
ral Networks (GNNs) to learn pairwise graph similari-
ties. In this paper, we present a novel approach that im-
proves on the GNN-based case retrieval with a Trans-
fer Learning (TL) setup, composed of two phases: First,
the pretraining phase trains a model for assessing the
similarities between graph nodes and edges and their
semantic annotations. Second, the pretrained model is
then integrated into the GNN model by either using fine-
tuning, i. e., the parameters of the pretrained model are
further trained, or feature extraction, i. e., the parame-
ters of the pretrained model are converted to constants.
The experimental evaluation examines the quality and
performance of the models based on TL compared to
the GNN models from previous work for three seman-
tic graph domains with various properties. The results
show the great potential of the proposed approach for
reducing the similarity prediction error and the training
time.

1 Introduction
Case-based reasoning (CBR) (Aamodt and Plaza 1994) is
a problem-solving paradigm that solves a new problem
(query) by using specific knowledge from previously ex-
perienced, concrete problem situations (bundled as cases
in a case base). This procedure relies heavily on simi-
larity computations between the query and each case of
the case base to find best-matching cases for the current
problem situation (so-called case retrieval), based on the
assumption that similar problems have similar solutions.
This paper focuses on the subdomain of Process-Oriented
CBR (POCBR) (Minor, Montani, and Recio-Garcı́a 2014;
Bergmann and Gil 2014) where the CBR methodology is ap-
plied to procedural knowledge in the form of workflows and
process descriptions. The cases in POCBR are commonly
represented as semantic graphs (Bergmann and Gil 2014)
with a relational structure of nodes and edges of different
types and with individual semantic annotations. When com-

Copyright © 2023 by the authors. All rights reserved.

puting pairwise similarities between semantic graphs, a sin-
gle global similarity is computed from individual local simi-
larities between nodes and edges of the graph and their types
and semantic annotations. The similarity measures to com-
pute local similarities usually involve manually-modeled
similarity knowledge such as data types, value ranges, and
ontologies, and use functions such as weighted sums or set
overlaps. The global similarity measures, on the other hand,
usually involve some kind of inexact graph matching to de-
termine how well the nodes and edges of the query graph
fit the nodes and edges of the case graph. However, find-
ing an optimal mapping is an NP-complete problem (Zeng
et al. 2009; Bunke and Shearer 1998; Hoffmann et al. 2022;
Zeyen and Bergmann 2020), which can result in long re-
trieval times and have negative effects on the overall system
performance and, ultimately, on the user experience.

To mitigate these issues, several approaches have been
proposed (Bergmann and Stromer 2013; Klein, Malburg,
and Bergmann 2019; Müller and Bergmann 2014), with
the most recent one by Hoffmann and Bergmann [2022]
using embedding methods based on Graph Neural Net-
works (GNNs). GNNs transform semantic graphs to low-
dimensional vector representations (so-called embeddings)
that can be transformed to graph similarities with vec-
tor similarity measures or Multi-Layer Perceptrons (MLPs).
The models are trained on the prediction error between
the predicted graph similarities and the labeled ground-
truth similarities, aiming to approximate the manually-
modeled ground-truth graph similarity measure based on
graph matching. However, the used GNNs are only trained
to predict the labeled global graph similarity without any
explicit consideration of local similarities, despite this in-
formation being available as a result of the labeling process
anyway. This can be problematic, as current work is not ca-
pable of training or applying local models separate from the
global model. Enabling this might increase flexibility, as lo-
cal models and global models can be used in different ap-
plication scenarios or a single local model can be used in
multiple global models. It might also improve performance,
because the local similarity labels can be used to reduce the
prediction error and the training time.

This paper aims to address these issues by using Trans-
fer Learning (TL) (Kudenko 2014; Tan et al. 2018) in a
two-phased approach: In the pretraining phase, a model is



trained to predict the local similarities between nodes and
edges, and in the adaptation phase1, the pretrained model is
integrated into the training process of the graph embedding
model to predict global pairwise graph similarities. There-
fore, the currently used graph embedding models (Hoff-
mann and Bergmann 2022) are broken up into two mod-
els, one for embedding nodes and edges and for comput-
ing local similarities, and another one for embedding graphs
and for computing graph similarities. The goal is to improve
the currently used GNNs (Hoffmann and Bergmann 2022)
and ultimately increase the similarity prediction quality, re-
duce the overall training time, and improve the flexibility
of the training process. The paper is organized as follows:
Section 2 describes foundations on the used semantic graph
representation, the graph similarity computation as well as
current graph embedding models and related work. Further-
more, our approach to use TL for improving semantic graph
embedding and similarity prediction is presented in Sect. 3.
Section 4 evaluates the approach and compares it against ex-
isting models. Finally, Section 5 summarizes the work and
identifies areas for future work.

2 Foundations and Related Work
The foundations include the semantic workflow representa-
tion that is used in the concept and the experiments, as well
as the similarity assessment between pairs of these work-
flows. Further, work on approximating pairwise graph simi-
larities with GNNs and related work is presented.

Semantic Workflow Representation
We represent all workflows as semantically annotated di-
rected graphs referred to as NEST graphs, introduced by
Bergmann and Gil [2014]. More specifically, a NEST graph
is a quadruple W = (N,E, S, T ) that is composed of a set
of nodes N and a set of edges E ⊆ N × N . Each node
and each edge has a specific type from Ω that is indicated
by the function T : N ∪ E → Ω. Additionally, the func-
tion S : N ∪ E → Σ assigns a semantic description from
Σ (semantic metadata language, e. g., an ontology) to nodes
and edges. Whereas nodes and edges are used to build the
structure of each workflow, types and semantic descriptions
are additionally used to model semantic information. Figure
1 shows an exemplary NEST graph that represents a sand-
wich recipe. The mayo-gouda sandwich is prepared by exe-
cuting the cooking steps coat and layer (task nodes) with
the ingredients mayo, baguette, sandwich dish, and
gouda (data nodes). All components are linked by edges
that indicate relations, e. g., mayo is consumed by coat.
Semantic descriptions of task nodes and data nodes are used
to further specify semantic information belonging to the
workflow components, e. g., the semantic description of the
task node coat states that a spoon and a baguette knife are
needed to execute the task (Auxiliaries) and the esti-
mated time that the task takes is two minutes (Duration).

1Please note that the term “adaptation” refers to its meaning in
the context of TL in the remainder of the paper and is not referring
to the reuse phase in CBR.

mayo

coat layer

sandwich
dish

task	node data	node control-flow dataflow part-of

coat

Duration:	2	(Integer)

Auxiliaries:	Spoon,	Knife	(List)
baguette

gouda

Sandwich
Recipe

workflow
node edge edge edge

Figure 1: Exemplary Cooking Recipe represented as a NEST
Graph

Similarity Assessment
Determining the similarity between two NEST graphs, i. e.,
a query workflow QW and a case workflow CW, requires a
similarity measure that assesses the link structure of nodes
and edges as well as their semantic descriptions and types.
Bergmann and Gil [2014] propose a semantic similarity
measure that determines a global similarity between two
graphs based on local similarities, i. e., the pairwise similar-
ities of nodes and edges. The similarity between two nodes
with identical types is defined as the similarity of the se-
mantic descriptions of these nodes. The similarity between
two edges with identical types does not only consider the
similarity of the semantic descriptions of the edges, but in
addition, the similarity of the connected nodes as well. In
order to put together a global similarity by aggregating lo-
cal similarities, the domain’s similarity model has to define
similarity measures for all components of the semantic de-
scription, i. e., simΣ : Σ × Σ → [0, 1]. The global similar-
ity of the two workflows sim(QW,CW) is finally calculated
by finding an injective partial mapping m that maximizes
simm(QW,CW).

sim(QW,CW) = max{simm(QW,CW) |
admissible mapping m} (1)

A mapping is admissible if all mapped nodes as well as all
mapped edges with their source and destination nodes are
of the same type. The complex process of finding a map-
ping that maximizes the global similarity between a query
QW and a single case CW is tackled by utilizing an A*

search algorithm (see (Bergmann and Gil 2014) for more
details). However, A* search is usually time-consuming and
can lead to long retrieval times (Zeyen and Bergmann 2020;
Hoffmann et al. 2022) which motivates the use of automatic
learning methods such as GNNs (Hoffmann and Bergmann
2022).

Neural Networks for Semantic Graph Embedding
For the purpose of similarity-based retrieval in POCBR,
Hoffmann and Bergmann [2022] adapt two Siamese GNNs,
namely the Graph Embedding Model (GEM) and the Graph
Matching Network (GMN), which are shown in Fig. 2. Both



models learn to predict pairwise graph similarities by em-
bedding the graph structure and the semantic annotations
and types to a whole-graph vector representation, before ag-
gregating two of these vectors to compute a single similarity
value. Thereby, both models share the same general model

Aggregator

Propagation 
Layer

Embedder

Graph 
Similarity 0.65

OR

G1 G2

G1 G2

Figure 2: GEM (left branch) and GMN (right branch) (taken
from Hoffmann and Bergmann [2022])

architecture that consists of four parts: The embedder maps
the node and edge features to the initial node and edge vec-
tors in the vector space. The propagation layer then accumu-
lates information for each node in its local neighborhood via
message passing. More specifically, the vector representa-
tion of a single node is updated by merging the vector repre-
sentation of this node with the vector representations of the
neighboring nodes, connected by an incoming edge. After
multiple propagation iterations, the aggregator converts the
set of node representations into a whole-graph representa-
tion. The graph similarity of two graphs can finally be com-
puted based on their representations in the vector space, e. g.,
with the help of a vector similarity measure such as cosine
similarity. Both models differ in the concrete realization of
the propagation layer and the graph similarity. These vari-
eties induce a trade-off between expressiveness and perfor-
mance, with the GMN being more expressive than the GEM
but also computationally more expensive (see Hoffmann and
Bergmann [2022] for more details). A general shortcoming
of both models, however, is the missing explicit integration
of local similarity knowledge, motivating this work for using
GEM and GMN in a TL setup to improve similarity predic-
tions.

Related Work
We consider approaches as related that deal with TL in
the environment of CBR and specifically POCBR, or ap-
ply Deep Learning (DL) methods in the research field of
CBR. Approaches using TL in CBR are of limited number.
The work of Klenk, Aha, and Molineaux [2011] discusses
the perspective that solution reuse as part of the CBR cy-
cle can be considered as TL, since it involves the transfer
of knowledge from previous cases to new problems. In this
context, other methods for case reuse, e. g., (Müller 2018),
can be seen as contributing to TL in this respect. Herold
and Minor [2018] investigate the feasibility of using on-

tologies for TL in POCBR. They try to find an automated
ontology-based learning approach for knowledge transfer
between two domains, while earlier work (Minor et al. 2016)
is based on the manual creation of ontologies. There are also
approaches, e. g., (Aha, Molineaux, and Sukthankar 2009),
where CBR methods are used to support or improve TL
methods, which we want to mention for the sake of com-
pleteness.

A greater research interest can be observed for the use of
DL methods in CBR (Leake and Crandall 2020). Mathisen,
Bach, and Aamodt [2021] and Amin et al. [2020] utilize
Siamese neural networks in CBR retrieval to learn similar-
ity measures used in aquaculture and natural language pro-
cessing tasks, respectively. Leake, Ye, and Crandall [2021],
Liao, Liu, and Chao [2018], and Ye, Leake, and Cran-
dall [2022] discuss the application of DL methods in the
reuse phase of CBR. Leake, Wilkerson, and Crandall [2022]
use neural networks to learn features in CBR tasks. In a
more narrow sense, regarding the integration of DL meth-
ods in the retrieval of POCBR, the work of Klein, Mal-
burg, and Bergmann [2019] and the work of Hoffmann and
Bergmann [2022], on which the present work builds, are
related. They have in common that they learn vector rep-
resentations of semantic graphs and evaluate the learned
similarity function in a retrieval scenario. The approach of
Klein, Malburg, and Bergmann [2019] only learns on struc-
tural properties of semantic graphs, while Hoffmann and
Bergmann [2022] additionally consider the semantic infor-
mation and types of nodes and edges. The proposed ap-
proach differs from the aforementioned works in the sense
that it is the first work to combine the above topics. In
particular, TL is used to improve the generalization ca-
pability of the DL models developed by Hoffmann and
Bergmann [2022] to improve on the task of similarity-based
retrieval.

3 Transfer Learning for Improving Semantic
Graph Embedding Models

The global similarity between two semantic graphs can be
determined from the local similarities, that is, their node and
edge similarities. However, the computation of graph sim-
ilarities using GEM or GMN lacks the opportunity to take
this teaching input into account, possibly reducing the pre-
diction quality. The approach proposed in this paper aims at
integrating local similarity knowledge into GEM and GMN
by utilizing a network-based deep TL strategy (Pan and Yang
2010; Kudenko 2014; Tan et al. 2018). Thereby, a neural
network trained on the source task, i. e., to predict local sim-
ilarities, is transferred and adapted to the target task, i. e.,
to predict pairwise graph similarities with GEM and GMN,
to aim at improving prediction quality of the GNNs. While
pairwise graph similarity prediction consists of a single step
with only one training procedure, our approach is composed
of two separate phases, i. e., pretraining and adaptation, that
both perform a training step (see Fig. 3). The knowledge
transfer is conducted in the adaptation phase, where the neu-
ral network, which is pretrained to predict local similari-
ties, becomes a part of GEM or GMN in the target domain



fine tune same
model on target task

Feature ExtractionFine Tuning

Pr
et

ra
in

in
g

Embedder

Propagation

extract
features

A
da

pt
at

io
n

Aggregation

target task

input source task

Source Domain

Target Domain

Propagation

Aggregation

target task

Figure 3: Pretraining and Adaptation Phases of Deep Trans-
fer Similarity Learning.

(Peters, Ruder, and Smith 2019). In this scenario, we ex-
tract the embedder from GEM and GMN and then pretrain
it to predict local similarities (see Fig. 2). The embedder is
well-suited, as it is the only part of the GNN architecture
that processes semantic descriptions and types of nodes and
edges, which are used to compute the local similarities (see
Sect. 2). As already mentioned in the motivation, training
the embedder individually has three key advantages: First, it
can be used standalone to predict local similarities in vari-
ous scenarios, increasing flexibility. For instance, it can be
used with other similarity measures such as feature-based
approaches (Bergmann and Stromer 2013) or to predict lo-
cal similarities in a matching algorithm (Bergmann and Gil
2014). Second, the trained embedder can be reused for mul-
tiple model instances of GEM or GMN, thus, reducing the
training effort for these models. Third, the overall precision
of the similarity predictions can be improved, as the embed-
der is directly trained with labeled local similarities, instead
of being indirectly trained as part of the whole GNN via the
labeled global similarity.

Pretraining
In the pretraining phase, the embedder is trained to predict
local similarities of nodes and edges by, first, embedding
their semantic descriptions and types and, second, aggre-
gating the embedding vectors to pairwise similarities. The
encoding methods of the semantic descriptions and types
can be reused from GEM and GMN (see Hoffmann and
Bergmann [2022] for more details). We propose to train two
separate embedders, one for nodes and one for edges, since
their semantic descriptions may be structured differently.

Analogous to GEM and GMN, the pretrained embedder
is trained as a Siamese neural network, which is the de-facto
standard in metric learning tasks (see Chicco [2021] for an
overview). This means that local similarities are learned by
embedding two nodes or edges with identical networks and
aggregating the two embedding vectors to a single similar-
ity value. The parameters are shared between the two net-
works and trained by minimizing a loss function, which
measures the difference between the ground-truth local sim-
ilarity and the predicted similarity in the vector space. The
embedding procedure can be performed with any kind of

neural network architecture and mainly depends on the do-
main of the semantic descriptions. In previous work (Hoff-
mann and Bergmann 2022), embedders for sequence and
graph-structured data in the form of Recurrent Neural Net-
works (RNNs) and GNNs are presented, which are both ap-
plicable in this scenario. The final step of computing a local
similarity between the embedding vectors is conducted by
an MLP, as also used in the GMN, since it is expressive and
easy to compute.

The training examples for pretraining are composed of
pairs of semantic descriptions as well as types of nodes
and edges. Each training pair is thereby labeled with the
ground-truth similarity value in the range of [0, 1], which
is determined using local similarity measures (see Sect. 2).
Please note that these local similarities are already available
from the process of generating labeled data for GEM and
GMN and, thus, result in no additional cost. The training
is a regression-like problem, where any standard regression
loss function such as the Mean Squared Error (MSE) can be
used. To optimize the parameters of the neural network ac-
cording to the MSE loss value, any optimizer using stochas-
tic gradient descent, e. g., the Adam optimizer (Kingma and
Ba 2015), can be used.

Adaptation
In the adaptation phase of the TL approach, the pretrained
embedder is integrated into GEM and GMN by replacing
the standard, untrained embedder (see Sect. 2). This adap-
tation to the task of the target domain is mainly imple-
mented in two ways in the literature (Peters, Ruder, and
Smith 2019), either by feature extraction or by fine-tuning.
In feature extraction, similar to classical feature-based ap-
proaches (Koehn, Och, and Marcu 2003), the trainable pa-
rameters of the pretrained embedder are converted to con-
stants (“frozen”), and the model will not be further trained
in the training procedure of GEM and GMN. Alternatively
in a fine-tuning setup, the parameters of the pretrained em-
bedder are used as non-random initializations (Dai and Le
2015) and are further trained, i. e., fine-tuned, during the
training procedure of GEM and GMN. On the one hand,
the general advantage of using feature extraction over fine-
tuning is the reduced training effort of the graph embedding
models, as the “frozen” weights and biases do not have to
be trained. On the other hand, there can be further potential
for improvement of prediction quality when fine-tuning the
pretrained embedders w. r. t. the source task. Either way, the
adaptation is expected to reduce the training time due to a
non-random initialization of the neural network parameters.
Since there are many factors that affect the choice of the
adaption method (see Peters, Ruder, and Smith [2019] for
more information), both methods are further examined and
evaluated in the remainder of this paper.

4 Experimental Evaluation
To evaluate the impact of integrating local similarities into
GEM and GMN, the results of the model training with and
without the use of TL are compared. Therefore, we conduct
an experiment that consists of two parts: The first part is



concerned with pretraining different embedder variants to
find the best-performing one. The best-performing variant is
then used in the second phase of the experiment, where it is
adapted to GEM and GMN via TL. We examine the quality
of the predictions in terms of the MSE between the predicted
similarities and the ground-truth similarities. Furthermore,
the training time is measured to quantify the impact of TL
on the performance of the training procedure, which is im-
portant across all DL scenarios. The following hypotheses
are investigated:

H1 The integration of local similarities into GEM and
GMN based on TL generally improves the prediction
quality of the similarities.

H2 The integration of local similarities into GEM and
GMN based on TL generally reduces the training
time.

Experimental Setup
The experiments are performed with three case bases from
different domains, namely workflows of a cooking domain
CB-I (Hoffmann et al. 2020), a data mining domain CB-
II (Zeyen, Malburg, and Bergmann 2019), and a manufac-
turing domain CB-III (Malburg, Hoffmann, and Bergmann
2023). CB-I consists of 40 manually modeled cooking
recipes that are extended to 800 workflows by generaliza-
tion and specialization of ingredients and cooking steps (see
Müller [2018] for more details), resulting in 660 training
cases, 60 validation cases, and 80 test cases. The workflows
of the data mining domain (CB-II) are built from sample
processes that are delivered with RapidMiner (see Zeyen,
Malburg, and Bergmann [2019] for more details), resulting
in 509 training cases, 40 validation cases, and 60 test cases.
CB-III contains workflows that stem from a smart manu-
facturing IoT environment and represent sample production
processes. The case base consists of 75 training cases, nine
validation cases, and nine test cases.

While the GNNs in the adaption phase use pairs of se-
mantic graphs and their respective ground-truth similarity as
training input, the embedders are pretrained based on the se-
mantic annotations and the types of the nodes2 from each
graph. The examples of the pretraining phase sum up to
14259 training cases, 1439 test cases, and 1219 validation
cases for CB-I, 8539 training cases, 1032 test cases, and 670
validation cases for CB-II, and 2136 training cases, 242 test
cases, and 265 validation cases for CB-III. The number of
graph pairs and node pairs used as examples for training,
testing, and validation is exactly the square of the respec-
tive numbers of graphs and nodes given before, as there is
a ground-truth similarity value calculated for each possible
graph and node pair, respectively.

The training examples are used as training input for the
neural networks, while the validation examples are used to
monitor the training process. The models using TL use the
same hyperparameter settings as the respective base models.

2We do not use the edges for pretraining, since they are not
semantically annotated in the evaluated domains. The approach,
however, supports doing this.

The training of all models and for both phases, i. e., pretrain-
ing and adaption, runs for 40 epochs, and a snapshot of the
model is exported after each epoch. The models with the
lowest validation error within these 40 exported models are
used as reference. The MSE determines the out-of-sample
prediction accuracy of the GNNs by computing the squared
difference between the predicted values of the GNNs and the
actual similarity values for all pairs of graphs in the test data
set. In addition, the training time is determined as the time
interval between the start of training and the time when the
validation loss permanently falls below a certain threshold ϵ.
Measuring this time indicates how well a model converges,
and enables a comparison regarding training effort between
different models.

We evaluate three different model architectures for the
embedders, mainly based on related work (Hoffmann and
Bergmann 2022): (1) A Recurrent Neural Network (RNN)
processes the encoded node information as sequence data.
(2) An Attention Neural Network (ANN) (Vaswani et al.
2017) that uses attention mechanisms to give more weight
to certain elements of the node information than others
(see Bahdanau, Cho, and Bengio [2015] and Vaswani et
al. [2017] for more details on attention). (3) A GNN that
processes the node information in a tree-based structure. All
experiments are computed on a single NVIDIA Tesla V100-
SXM2 GPU with 32 GB graphics RAM.

Experimental Results
Table 1 shows the validation loss w. r. t. the MSE of all evalu-
ated, pretrained embedders for all three case bases. The em-
bedders with the lowest MSE values are highlighted in bold
font and are used within the adaptation phase for the respec-
tive domain. For both CB-I and CB-III, the best MSE can
be observed by the RNN while the GNN achieves the low-
est MSE value for CB-II. This shows variations between the
embedder architectures for the different domains, which is
in-line with other experimental results, e. g., (Hoffmann and
Bergmann 2022).

Table 1: Evaluation Results of the Pretraining Phase.
RNN ANN GNN

CB-I 0.0004 0.0215 0.0080
CB-II 0.0197 0.0645 0.0170
CB-III 0.0045 0.0183 0.0078

Table 2 shows the results of the experiments for the adap-
tation phase. The models using TL are labeled with super-
scripts indicating the methods used to adapt the pretrained
embedder to the downstream task, namely feature extraction
(FE) and fine-tuning (FT). The table shows the loss on the
test data w. r. t. the MSE and the time span (in seconds) to
fall below a certain threshold ϵ for all evaluated models and
for all three case bases. The value of ϵ is set to be the low-
est validation loss that is reached by all compared models
of the same domain. The models are grouped according to
their underlying model architecture. This results in a differ-
ent threshold for each model architecture and all domains.
The lowest MSE and time span values are highlighted in



Table 2: Evaluation Results of the Adaptation Phase.

GEM GEMFE GEMFT GMN GMNFE GMNFT

Training Time (s) 13273 12070 15078 123432 59523 137524
MSE 0.0767 0.0712 0.0661 0.0028 0.0017 0.0024

Training Time (s) 8970 6707 8306 81724 24012 73960
MSE 0.0882 0.0841 0.0709 0.0068 0.0054 0.0063

Training Time (s) 260 171 47 1452 598 745
MSE 0.2035 0.1867 0.1838 0.0237 0.0206 0.0193

C
B

-I
I

C
B

-I
II

GEM GMN

C
B

-I ϵ = 0.022 ϵ = 0.006

ϵ = 0.084

ϵ = 0.215

ϵ = 0.008

ϵ = 0.033

bold font, grouped by base model and domain.
The qualities w. r. t. MSE show a significant influence of

TL on the base models. Both for GEM and GMN, the models
using TL consistently outperform the base models, regard-
less of the domain. Thereby, the two adaptation methods fea-
ture extraction and fine-tuning show different effects for the
three case bases. The use of fine-tuning in GEMs leads to an
MSE decrease between 10 % and 20 %, while feature extrac-
tion decreases the MSE between 5 % and 8 %. The results
of the GMN variants are also promising: GMNFE has the
best overall MSE values for CB-I and CB-II with an MSE
decrease over the base model of about 39 % and 21 %, re-
spectively. GMNFT decreases the MSE by about 14 % for
CB-I and 7 % for CB-II. In terms of CB-III, fine-tuning out-
performs feature extraction with a 5 % lower MSE.

The training times also show promising results of the
TL models. Thereby, feature extraction reduces the training
time independent of the model architecture in all domains.
GEMFE , for instance, undercuts the threshold ϵ between
9 % and 34 % faster than the base models. GMNFE follows
this trend and undercuts ϵ between 52 % and 71 % faster than
the base models. Fine-tuning has a positive effect on training
time only in CB-II and CB-III, whereas in CB-I it has a neg-
ative effect. GEMFT shows a 7 % and 82 % and GMNFT

a 10 % and 49 % decrease in training time compared to the
base models for CB-II and CB-III, respectively. Hence, for
GMN, feature extraction outperforms fine-tuning in terms of
training time, while for GEM this is only true for CB-I and
CB-II.

In conclusion, the experiments indicate the potential of
the proposed approach for reducing the prediction error and
the training time. The improved prediction error is likely
caused by the explicit use of additional label local similari-
ties that are not used by the base models. In most cases, fine
tuning also outperforms feature extraction which suggests
that GEM and GMN can benefit from the additional train-
ing of parameters in the adaptation phase. Hypothesis H1 is
therefore accepted due to a positive effect of TL across all
evaluated domains and base models. The results regarding
training time are overall very positive, except for GEMFT

and GMNFT of CB-I. It is not clear why these two cases lead
to worse results when using TL. As a rule of thumb, feature
extraction should be preferred for minimizing training time.
Thus, we only partly accept H2 but report a high potential

for a reduction of training time.

5 Conclusion and Future Work
This paper explores the potential of using TL to predict
GNN-based similarities of semantic graphs. The proposed
approach splits two existing GNN architectures, that is the
GEM and the GMN, into two parts that are trained individ-
ually to predict local and global similarities. The resulting
models can be used in a similarity-based retrieval, in the con-
text of POCBR, to predict the similarities of pairs of seman-
tic graphs. The models with and without TL are evaluated,
focusing on changes in retrieval quality and training time.
The experimental results indicate that the integration of lo-
cal similarities can improve the similarity evaluation quality
of both models and reduce training times.

The evaluated implementation of the proposed approach
pretrains separate models for each domain, which can lead
to a significant training effort for multi-domain setups or
when frequently changing the domain definition. Future
work could investigate performing GNN model pretraining
in the sense of unsupervised learning on a large collection
of unlabeled graph data, deriving generic, transferable, and
domain-independent knowledge that encodes intrinsic graph
properties. Further, analogous to Lu et al. [2021], one can ar-
gue that there is a divergence between the two steps of pre-
training and adaptation due to different optimization goals
targeting the source domain and the target domain, respec-
tively. The pretraining process might currently ignore the
need to quickly adapt to the downstream task with a few
fine-tuning updates, which could be further analyzed in fu-
ture work. Additionally, future approaches could consider
both node and edge-level and graph-level tasks for pretrain-
ing since solely pretraining on nodes and edges may be sub-
optimal for graph-level similarity assessment, as performed
with GEM and GMN, where capturing structural similarities
of local neighborhoods may be more important than captur-
ing pairwise local similarities. In addition, a focus of future
work should be to perform a more comprehensive evaluation
of the proposed approach, and particularly the different em-
bedder variants, to measure the impact for a higher number
of domains and DL setups.

Acknowledgements This work is funded by the German
Federal Ministry for Economic Affairs and Climate Action
under grant No. 22973 SPELL.



References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and system
approaches. AI Commun. 7(1):39–59.
Aha, D. W.; Molineaux, M.; and Sukthankar, G. 2009.
Case-based reasoning in transfer learning. In McGinty, L.,
and Wilson, D. C., eds., Case-Based Reasoning Research
and Development, 8th International Conference on Case-
Based Reasoning, ICCBR 2009, Seattle, WA, USA, July 20-
23, 2009, Proceedings, volume 5650 of Lecture Notes in
Computer Science, 29–44. Springer.
Amin, K.; Kapetanakis, S.; Polatidis, N.; Althoff, K.-D.; and
Dengel, A. 2020. DeepKAF: A Heterogeneous CBR &
Deep Learning Approach for NLP Prototyping. In Ivanovic,
M., ed., International Conference on INnovations in Intelli-
gent SysTems and Applications, 1–7. Piscataway, New Jer-
sey: IEEE.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
Bengio, Y., and LeCun, Y., eds., 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings.
Bergmann, R., and Gil, Y. 2014. Similarity assessment and
efficient retrieval of semantic workflows. Inf. Syst. 40:115–
127.
Bergmann, R., and Stromer, A. 2013. MAC/FAC Re-
trieval of Semantic Workflows. In Chutima Boonthum-
Denecke, and G. Michael Youngblood., eds., Proceedings
of the Twenty-Sixth International Florida Artificial Intelli-
gence Research Society Conference, FLAIRS 2013, St. Pete
Beach, Florida, USA, May 22-24, 2013. AAAI Press.
Bunke, H., and Shearer, K. 1998. A graph distance metric
based on the maximal common subgraph. Pattern Recognit.
Lett. 19(3-4):255–259.
Chicco, D. 2021. Siamese neural networks: An overview.
In Cartwright, H. M., ed., Artificial Neural Networks - Third
Edition, volume 2190 of Methods in Molecular Biology.
Springer. 73–94.
Dai, A. M., and Le, Q. V. 2015. Semi-supervised se-
quence learning. In Cortes, C.; Lawrence, N. D.; Lee, D. D.;
Sugiyama, M.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, 3079–3087.
Herold, M., and Minor, M. 2018. Ontology-based represen-
tation of workflows for transfer learning. In Gemulla, R.;
Ponzetto, S. P.; Bizer, C.; Keuper, M.; and Stuckenschmidt,
H., eds., Proceedings of the Conference ”Lernen, Wissen,
Daten, Analysen”, LWDA 2018, Mannheim, Germany, Au-
gust 22-24, 2018, volume 2191 of CEUR Workshop Pro-
ceedings, 139–149. CEUR-WS.org.
Hoffmann, M., and Bergmann, R. 2022. Using graph em-
bedding techniques in process-oriented case-based reason-
ing. Algorithms 15(2):27.
Hoffmann, M.; Malburg, L.; Klein, P.; and Bergmann, R.
2020. Using siamese graph neural networks for similarity-

based retrieval in process-oriented case-based reasoning. In
Watson, I., and Weber, R. O., eds., Case-Based Reasoning
Research and Development - 28th International Conference,
ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings, volume 12311 of Lecture Notes in Computer Science,
229–244. Springer.
Hoffmann, M.; Malburg, L.; Bach, N.; and Bergmann, R.
2022. Gpu-based graph matching for accelerating similar-
ity assessment in process-oriented case-based reasoning. In
Keane, M. T., and Wiratunga, N., eds., Case-Based Reason-
ing Research and Development - 30th International Confer-
ence, ICCBR 2022, Nancy, France, September 12-15, 2022,
Proceedings, volume 13405 of Lecture Notes in Computer
Science, 240–255. Springer.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In Bengio, Y., and LeCun, Y., eds.,
3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015.
Klein, P.; Malburg, L.; and Bergmann, R. 2019. Learn-
ing workflow embeddings to improve the performance of
similarity-based retrieval for process-oriented case-based
reasoning. In Bach, K., and Marling, C., eds., Case-Based
Reasoning Research and Development - 27th International
Conference, ICCBR 2019, Otzenhausen, Germany, Septem-
ber 8-12, 2019, Proceedings, volume 11680 of Lecture
Notes in Computer Science, 188–203. Springer.
Klenk, M.; Aha, D. W.; and Molineaux, M. 2011. The case
for case-based transfer learning. AI Mag. 32(1):54–69.
Koehn, P.; Och, F. J.; and Marcu, D. 2003. Statistical
phrase-based translation. In Hearst, M. A., and Ostendorf,
M., eds., Human Language Technology Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, HLT-NAACL 2003, Edmonton, Canada,
May 27 - June 1, 2003. The Association for Computational
Linguistics.
Kudenko, D. 2014. Special issue on transfer learning.
Künstliche Intell. 28(1):5–6.
Leake, D., and Crandall, D. J. 2020. On bringing case-
based reasoning methodology to deep learning. In Watson,
I., and Weber, R. O., eds., Case-Based Reasoning Research
and Development - 28th International Conference, ICCBR
2020, Salamanca, Spain, June 8-12, 2020, Proceedings, vol-
ume 12311 of Lecture Notes in Computer Science, 343–348.
Springer.
Leake, D.; Wilkerson, Z.; and Crandall, D. J. 2022. Ex-
tracting case indices from convolutional neural networks:
A comparative study. In Keane, M. T., and Wiratunga,
N., eds., Case-Based Reasoning Research and Develop-
ment - 30th International Conference, ICCBR 2022, Nancy,
France, September 12-15, 2022, Proceedings, volume 13405
of Lecture Notes in Computer Science, 81–95. Springer.
Leake, D.; Ye, X.; and Crandall, D. J. 2021. Supporting
case-based reasoning with neural networks: An illustration
for case adaptation. In Martin, A.; Hinkelmann, K.; Fill,
H.; Gerber, A.; Lenat, D.; Stolle, R.; and van Harmelen, F.,
eds., Proceedings of the AAAI 2021 Spring Symposium on
Combining Machine Learning and Knowledge Engineering



(AAAI-MAKE 2021), Stanford University, Palo Alto, Cali-
fornia, USA, March 22-24, 2021, volume 2846 of CEUR
Workshop Proceedings. CEUR-WS.org.
Liao, C.; Liu, A.; and Chao, Y. 2018. A machine learn-
ing approach to case adaptation. In First IEEE International
Conference on Artificial Intelligence and Knowledge Engi-
neering, AIKE 2018, Laguna Hills, CA, USA, September 26-
28, 2018, 106–109. IEEE Computer Society.
Lu, Y.; Jiang, X.; Fang, Y.; and Shi, C. 2021. Learning
to pre-train graph neural networks. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, 4276–4284. AAAI Press.
Malburg, L.; Hoffmann, M.; and Bergmann, R. 2023. Ap-
plying MAPE-K control loops for adaptive workflow man-
agement in smart factories. Journal of Intelligent Informa-
tion Systems.
Mathisen, B. M.; Bach, K.; and Aamodt, A. 2021. Using
extended siamese networks to provide decision support in
aquaculture operations. Appl. Intell. 51(11):8107–8118.
Minor, M.; Bergmann, R.; Müller, J.; and Spät, A. 2016.
On the transferability of process-oriented cases. In Goel,
A. K.; Dı́az-Agudo, M. B.; and Roth-Berghofer, T., eds.,
Case-Based Reasoning Research and Development - 24th
International Conference, ICCBR 2016, Atlanta, GA, USA,
October 31 - November 2, 2016, Proceedings, volume 9969
of Lecture Notes in Computer Science, 281–294. Springer.
Minor, M.; Montani, S.; and Recio-Garcı́a, J. A. 2014.
Process-oriented case-based reasoning. Inf. Syst. 40:103–
105.
Müller, G., and Bergmann, R. 2014. A Cluster-Based Ap-
proach to Improve Similarity-Based Retrieval for Process-
Oriented Case-Based Reasoning. In Torsten Schaub; Ger-
hard Friedrich; and Barry O’Sullivan., eds., ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22
August 2014, Prague, Czech Republic - Including Presti-
gious Applications of Intelligent Systems (PAIS 2014), vol-
ume 263 of Frontiers in Artificial Intelligence and Applica-
tions, 639–644. IOS Press.
Müller, G. 2018. Workflow Modeling Assistance by Case-
based Reasoning. Springer.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learning.
IEEE Trans. Knowl. Data Eng. 22(10):1345–1359.
Peters, M. E.; Ruder, S.; and Smith, N. A. 2019. To tune or
not to tune? adapting pretrained representations to diverse
tasks. In Augenstein, I.; Gella, S.; Ruder, S.; Kann, K.; Can,
B.; Welbl, J.; Conneau, A.; Ren, X.; and Rei, M., eds., Pro-
ceedings of the 4th Workshop on Representation Learning
for NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2,
2019, 7–14. Association for Computational Linguistics.
Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; and Liu,
C. 2018. A survey on deep transfer learning. In Kurková,
V.; Manolopoulos, Y.; Hammer, B.; Iliadis, L. S.; and Ma-
glogiannis, I., eds., Artificial Neural Networks and Machine

Learning - ICANN 2018 - 27th International Conference on
Artificial Neural Networks, Rhodes, Greece, October 4-7,
2018, Proceedings, Part III, volume 11141 of Lecture Notes
in Computer Science, 270–279. Springer.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Guyon, I.; von Luxburg, U.; Ben-
gio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 5998–6008.
Ye, X.; Leake, D.; and Crandall, D. J. 2022. Case adapta-
tion with neural networks: Capabilities and limitations. In
Keane, M. T., and Wiratunga, N., eds., Case-Based Reason-
ing Research and Development - 30th International Confer-
ence, ICCBR 2022, Nancy, France, September 12-15, 2022,
Proceedings, volume 13405 of Lecture Notes in Computer
Science, 143–158. Springer.
Zeng, Z.; Tung, A. K. H.; Wang, J.; Feng, J.; and Zhou, L.
2009. Comparing stars: On approximating graph edit dis-
tance. Proc. VLDB Endow. 2(1):25–36.
Zeyen, C., and Bergmann, R. 2020. A*-based similarity
assessment of semantic graphs. In Watson, I., and Weber,
R. O., eds., Case-Based Reasoning Research and Develop-
ment - 28th International Conference, ICCBR 2020, Sala-
manca, Spain, June 8-12, 2020, Proceedings, volume 12311
of Lecture Notes in Computer Science, 17–32. Springer.
Zeyen, C.; Malburg, L.; and Bergmann, R. 2019. Adap-
tation of scientific workflows by means of process-oriented
case-based reasoning. In Bach, K., and Marling, C., eds.,
Case-Based Reasoning Research and Development - 27th
International Conference, ICCBR 2019, Otzenhausen, Ger-
many, September 8-12, 2019, Proceedings, volume 11680 of
Lecture Notes in Computer Science, 388–403. Springer.


