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Prediction of the longitudinal dispersion coefficient (LDC) is essential for the river and water resources
engineering and environmental management. This study proposes ensemble models for predicting LDC
based on multilayer perceptron (MULP) methods and optimization algorithms. The honey badger opti-
mization algorithm (HBOA), salp swarm algorithm (SASA), firefly algorithm (FIFA), and particle swarm
optimization algorithm (PASOA) are used to adjust the MULP parameters. Then, the outputs of the
MULP-HBOA, MULP-SASA, MULP-PASOA, MULP-FIFA, and MULP models were incorporated into an inclu-
sive multiple model (IMM). For IMM at the testing level, the mean absolute error (MEAE) was 15, whereas
it was 17, 18, 23, 24, and 25 for the MULP-HBOA, MULP-SASA, MULP-FIFA, MULP-PASOA, and MULP mod-
els. The study also modified the structure of MULP models using a goodness factor which decreased the
CPU time. Removing redundant neurons reduces CPU time. Thus, the modified ANN model and the sug-
gested IMM model can decrease the computational time and further improve the performance of models.

� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The quality of water-both surface and ground water- is affected
by a variety of contaminants emanating from air, industries, sew-
age, and agriculture [12]. The contaminants can be physical, chem-
ical or biological. For control of physical, chemical and biological
pollution, it is essential to determine the transport of pollutants
in natural streams [9]. While pollutants in receiving streams are
dispersed and mixed in all three dimensions, longitudinal disper-
sion is predominant [4]. The longitudinal dispersion coefficient
(LDC) determination [20,22] can be done experimentally or math-
ematically. Experimentation is often costly and time-consuming.
The LDC determination is challenging because different parameters
influence the mixing process. Because of the difficulty of estimat-
ing the transverse profiles of flow velocity, it is not easy to theoret-
ically determine LDC [4]. LDC prediction is complicated because
different factors affect it. Different factors and inputs should be
identified to model LDC. The inputs of models may have uncertain-
ties. These uncertainties may decrease the accuracy of the final
outputs. Since LDC prediction is an important topic, developing
robust models is necessary. While numerical models may be used
for predicting LDC, they may be time-consuming. Numerical mod-
els may include complex equations. Therefore, modelers should
develop robust alternatives to these models. Hence, in recent years
LDCs have been predicted using soft computing models.

High accuracy, flexibility, and efficiency are the advantages of
soft computing models [22]. Parsaie and Haghiabi [25] predicted
LDC using empirical formulas, radial basis functions, and MULP.
Results showed that the MULP model was suitable for predicting
LDC. For predicting LDC in rivers, Noori et al. [21] evaluated the
d opti-
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reliability of artificial neural networks (ANN), adaptive neuro-fuzzy
inference system (ANFIS), and support vector machines. Although
the models predicted LDC satisfactorily, they had high uncertainty.

Alizadeh et al. [1] used four metaheuristic algorithms to train
ANN models, including genetic, imperialist competitive, bee, and
cuckoo search algorithms, to predict LDC. They found that meta-
heuristic algorithms enhanced the accuracy of conventional ANN
models. Using evolutionary polynomial regression, Balf et al. [5]
accurately predicted LDC, with the coefficient of determination
and root mean square error of 0.82 and 79 m2/s, respectively.
Nezaratian et al. [20] used several empirical and data-driven mod-
els to predict LDC, and based on Monte Carlo simulation, most of
these models were highly uncertain for upper LDC values. Ghiasi
et al. [10] found that the hybrid granular computing - ANN model
(GRC-ANN) was the best model for estimating the LDC in rivers.
Utilizing subset selection by maximum dissimilarity, Riahi-
Madvar et al. [27] found that ANFIS hybridized with FFA would
perform better than ANFIS. Goliatt et al. [12] combined Gaussian
Process Regression (GPR) and evolutionary feature selection (FS)
to estimate LDC in streams. They found that an integrated GPR
model based on an FS approach produced the minimum root mean
square error.

Based on previous studies, these models have different draw-
backs. Each model, such as ANN, ANFIS, and SVM, has its own
advantages and disadvantages [24]. Previous studies inserted input
data into individual models [11]. When individual models are used,
the results may not be accurate. An additional drawback of prior
models is their time-consuming nature. Modelers have not
attempted to reduce computational costs when using these mod-
els. Computational costs can be reduced by modifying the structure
of these models. By developing novel ensemble models and modi-
fying the structure of ANN models, this study attempts to address
these research gaps. Various types of ensemble models exist. A
Bayesian model averaging (BMA) is an ensemble model. While this
model can be successfully used to estimate variables, it has some
disadvantages. It is difficult to calculate posterior distributions
and prior distributions [24]. However, statistical computations of
models can be complex and time-consuming. For predicting LDC,
we propose a novel ensemble model as a robust alternative to
the BMA models. Even though the ANN model is an individual
model, modelers can convert it to an ensemble model. As an
ensemble model, an ANN receives the outputs of other models as
inputs to estimate target variables. Multiple models can be incor-
porated into an ANN model without requiring computational com-
plexity, such as calculating posterior and prior distributions. ANNs
receive outputs from individual models. Clearly, the modeling pro-
cess is not complicated or difficult. This ensemble model has
broader applications than just predicting LDCs. It can be used for
estimating different variables such as solar radiation, runoff, and
sediment load. The IMM model requires outputs of ANN models
for predicting outputs, so we modify the structure of ANN models
to satisfy modeling processes and reduce computation time.

Thus another innovation of this study is the modification of the
structure of ANN models. In order to simplify the modeling pro-
cess, it is useful to adjust the structure of an ANN model. Some
of neurons of ANN models are inactive during the modeling pro-
cess. These neurons can be identified and removed from the mod-
eling process. Due to the number of inactive hidden neurons, the
modelling process may be time consuming Thus, the other aim of
the article is to develop a novel structure for ANN models. This
modified ANN model can be useful when modelers encounter a
large number of data. Our main objective is to use modified ANN
models and a novel ensemble model to predict LDC. The present
study develops an IMM model for computing LDC. Khatibi and
Nadiri [14] used IMM models to predict groundwater levels and
2

showed that the IMM improved individual model accuracy in
two steps.

In Step 1, input and output variables were used to train inde-
pendent intelligence models using the basic input and output vari-
ables. Step 2 begins once step 1 is completed, and it must be fully
implemented. As input for step 2, step 10s results were used. The
first step of this study was to estimate LDC using individual ANNs.
An ANN model was used as an IMM model (combiner) in the sec-
ond step to predict the LDC based on the outputs of individual ANN
models. Therefore, the main contribution of this paper is the intro-
duction of the IMM model for predicting LDC. Modifying the struc-
ture of ANN models is another innovation of the paper.

The computational time and cost of an ANN may be high.
This paper uses structural learning to optimize the hidden layer
of an ANN. Using this method, we can reduce computation time
and cost. Finally, this paper uses new optimization algorithms to
train ANN models. In the second section of this paper, we discuss
the methods. The third section explains data collection. In the
fourth section, results and discussion are presented. The fifth
section concludes the paper.

2. Material and method

2.1. Structure of ANN model

The MULP model is one of the well-known ANN models. There
are different types of computational layers in MULPs. Layer one
handles input data. The second layer, called the hidden layer, con-
tains the activation function which processes the data. A neuron is
MULP’s small processor. Layers are connected by connections
called weights [8]. In the final layer, the output is given.

Fig. 1a and b illustrate the structure and mathematical of
MULP. The number of units in an ANN should be sufficient
so the network can estimate values based on many data
points [8].

The number of hidden units can be affected by several factors,
including the learning method and the number of input and output
units [30,31]. Reducing the number of hidden units reduces the
computational time of modeling [30].

This study evaluated the effect of hidden units in each layer and
built an eliminating learning algorithm with a proposed goodness
factor (Fig. 1c). [16] introduced a goodness factor to remove redun-
dant units from a computational system. In layer k, the unit with
the smallest goodness factor is regarded as the most useless unit,
labeled as ‘‘bad.” In the first step, the number of hidden units is
determined. Next, the connection weights and biases are deter-
mined using training algorithms. In the next level, the goodness
factor is used to determine ineffective neurons.

This study used optimization algorithms for adjusting the MULP
parameters since traditional training algorithms may fall into the
local optimum [11].

2.2. Optimization algorithms

The MULP parameters were adjusted using optimization algo-
rithms. This paper uses algorithms that are highly accurate, flexible
for coupling with machine learning models, and have a high poten-
tial for global searches. Due to these factors, we used the SASA,
HBOA, PASOA, and FIFA in this study. These optimization algo-
rithms are used because of their advanced operators. The fast con-
vergence and high accuracy are the advantages of these algorithms.

2.2.1. Structure of honey badger optimization algorithm (HBOA)
HOBA is a newmetaheuristic optimization algorithm developed

by Hashim et al. [13]. Based on honey badgers’ intelligent foraging



Fig. 1. A: mathematical model of ann, b: structure of ann model, and c: mathematical model of goodness factor.

M. Gholami, E. Ghanbari-Adivi, M. Ehteram et al. Ain Shams Engineering Journal xxx (xxxx) xxx
behavior, a search strategy was developed mathematically to solve
optimization problems [13]. For finding food sources, honey bad-
gers smell, dig or follow honeyguide birds. HBOA has two modes.
3

First, the digging mode is used, and then the honey mode is used.
When honey badgers dig, they use their olfactory sense to find and
select the best location for catching their prey.



Fig. 2. a: the digging step: the external outline refers to the smell intensity and the inner circular illustrates the prey location and b: the HBOA flowchart.
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The honeyguide bird guides the honey badger to find beehives
in the latter mode. The following equation determines the ini-
tial population of honey badgers, as described in [13] as follows.

HoBi ¼ LBi þ ra UPi � LBið Þ ð1Þ
where HoBi: the location of the ith honey badger, ra: the random
number, UPi and LBi: the upper and lower bounds of the decision
variable Using their olfactory senses, honey badgers find food.
HBs are closer to their prey when the smell intensifies [13].

Ii ¼ r2 � S
4pdis2i

ð2Þ
4

S ¼ HoBi � HoBiþ1ð Þ2 ð3Þ

disi ¼ HoBprey � HoBi ð4Þ
where S: the source strength, HoBi: the location of the ith HB,
HoBiþ1: the location of the i + 1th HB, disi: the distance between prey
and the ith Honeybadger, r2: the random number, HoBprey: the prey
position, and Ii: the smell intensity. A honey badger’s digging action
is similar to a cardioid shape in Fig. 2a. Eq. (5) simulates the cardioid
motion:



Fig. 3. Proposed flowchart of SSA.

Fig. 4. Proposed flowchart of FFA.

M. Gholami, E. Ghanbari-Adivi, M. Ehteram et al. Ain Shams Engineering Journal xxx (xxxx) xxx
HoBnew ¼ HoBprey þ F � g� I � HoBprey þ F � rand1 � a� disi

� cos 2prand2ð Þ � 1� cos 2prand3ð Þð Þð Þ ð5Þ
where HoBnew: the new location of the honey badger; rand1, rand2,
and rand3: the random numbers; a: the density factor; g: the con-
troller parameter; and F: the flag. F is computed as follows, accord-
ing to [13].

F ¼ 1 if rand4ð Þ 6 0:50
�1 else

� �
ð6Þ

a ¼ C � exp
�it
itmax

� �
ð7Þ
5

where C, and it are constant value (2), the number of iterations
(NOI), respectively; and itmax: the maximum number of iterations
(MNI). Honey badgers follow a honeyguide bird to get to beehives
during the honey phase. This behavior can be simulated using Eq.
(8):

HoBnew ¼ HoBprey þ F � rand4 � a� disiHoBnew

¼ HoBprey þ F � rand4 � a� disi ð8Þ
The HBOA flowchart is shown in Fig. 2b.

2.2.2. Structure of salp swarm algorithm (SASA)
Mirjalili et al. [19] developed the SASA to solve optimization

problems. SASA mimics the salps’ behavior in nature. Salp chains



Fig. 5. Proposed flowchart of PSO.

Fig. 6. Structure of IMM.

Table 1
Details of data points for this study [7,15,6,26;2].

Parameter Minimum Maximum Median Standarad deviation Average

LDC (m2/s) 0.0047 1798.60 14.93 192.18 71.53
Shear velocity

(m/s)
0.001 0.99 0.0543 0.007 0.065

Velocity (m/) 0.022 1.74 0.43 0.31 0.48
Flow depth 0.034 19.9 0.71 2.3 1.41
Width 0.2 867 27 11.06 56.77
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Table 2
Error indices for comparing models.

Index Equation

Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNU

i¼1 LDCiob�LDCiesð Þ
NU

r

Mean absolute error (MEAE)
MEAE ¼

PNU

i¼1 LDCiobs�LDCiesj j
NU

Nash Sutcliff efficiency
NSE ¼ 1�

PNU

i¼1 LDCi0b�LDCiesð Þ2PNU

i¼1 LDCi0b�LDC
�
iob

	 
2

Percent Bias
PBIAS ¼

PN

i¼1 LDCiobs�LDCiesð ÞPN

i¼1 LDCiobsð Þ
Centered Root Mean Square

Difference Error CRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNU

i¼1 LDCiobs�LDC
�
iobs

	 

� LDCies�LDC

�
ies

	 

NU

r

LDCi0b: the measured data, LDCies: the estimated data, LDC
�
iob: the average observed

data, LDC
�
ies: the average estimated data, NU: the number of data.
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contain a leader salp, followed by the rest of the salps. Food sources
indicate the swarm’s target. Like other swarm algorithms, SASA
creates a set of salps with random positions. The fitness of each
salp determines which one is the best. As a food source, the salp
chain searches for the best place. Eq. (9) is utilized to change the
position of the leader [19].

Leli ¼
foodi þ r1 upi � lowið Þr2 þ lowið Þ  r3 P 0
foodi � r1 upi � lowið Þr2 þ lowið Þ  r3 < 0

� �
ð9Þ

where Leli: the leader’s location, foodi: the location of food
source, upi and lowi: the upper and lower bound of variables, and
r2, and r3: random numbers. r1 is computed as follows:

r1 ¼ 2e �
4l
Lð Þ2 ð10Þ

where L is the MNI, and l is the NOI. The SASA updates the followers’
positions after updating the leaders’ positions.
Fig. 7. Pearson correlation coefficien

7

salpi
j ¼

1
2

salpi
j þ salpi�1

j

� �
ð11Þ

where salpi
j: the ith follower location within the j-th dimension.

SASA’s advantages are its simplicity, speed, and ease of hybridiza-
tion with other techniques. The algorithm has another unique
advantage. There is only one parameter (r1), which balances explo-
ration and exploitation. Fig. 3 illustrates the structure of SASA.

2.2.3. Structure of firefly algorithm (FIFA)
Yang (2009) developed the FIFA based on the flashing patterns

of fireflies. FIFA is flexible, simple, and easy to use [31]. A firefly is
attracted to another firefly regardless of its gender. The firefly with
less brightness goes toward the firefly with more brilliance. A fire-
fly’s brightness is determined by its objective function. The follow-
ing equation is used to compute the distance between two fireflies:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
k¼1

f ik � f jk
	 
2

vuut ð12Þ

where rij: the distance between two fireflies i and j, f ik: the location
of firefly i in the kth dimension, and f jk: the location of firefly j in the
kth dimension, and D: the number of dimensions. After calculating
the distance between two fireflies, the next place of the firefly is
determined.

f 0i ¼ f i þ b0e
�crm f i � f j

	 
þ dei ð13Þ

where f 0: the new location of firefly, f i: the location of the ith firefly,
f j: the location of the jth firefly, ei: the random parameter, d: the
scaling factor, b0: the initial brightness, and m: a positive number.
One of the advantages of FIFA is the diversity of its solutions. The
first step involves determining the initial location of fireflies. In
the second step, each firefly’s objective function is computed. Each
firefly’s location is updated using Eq. (13). The process contin-
t between inputs and outputs.



Fig. 8. Sensitivity Analysis for a: Population size and b: maximum number of iterations.
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ues until the stop condition is satisfied. The structure of SASA is
shown in Fig. 4.

2.2.4. Structure of particle swarm optimization (PASOA)
PASOA is an optimization method for continuous nonlinear

functions. [17]. With PASOA, the memory usage is lower, while
the learning speed is higher [3]. The algorithm can simulate coop-
eration and competition among individuals in a population of par-
ticles. Particles’ positions and velocities are randomly altered
during each iteration to accelerate them towards their personal
best and global locations. The following equations update the posi-
tion and velocity of the particles:

VEi;d t þ 1ð Þ ¼ xVEi;d tð Þ þ c1ran1 Pi;d tð Þ � LOi;d tð Þ	 

þ c2ran1 Pg;d tð Þ � LOi;d tð Þ	 
 ð14Þ

LOi;d t þ 1ð Þ ¼ LOi;d tð Þ þ VEi;d t þ 1ð Þ ð15Þ

where VEi;d t þ 1ð Þ: the new velocity of particles, VEi;d tð Þ: the velocity
of the ith particle at iteration t, d: the dimension index, Pi;d tð Þ: the
local best position, Pg;d tð Þ: the global solution, LOi;d t þ 1ð Þ: the loca-
tion of the ith particle, x: the inertia weight, and c1 and c2: the
acceleration coefficients. Small inertia weights are used for local
searches, while large inertia weights explore large search spaces.
The structure of PASOA is shown in Fig. 5.

2.2.5. Hybrid ANN models
A key issue in modeling is selecting the optimal MULP parame-

ters (weight and bias). The ANN parameters are optimized based
on the following steps:

1) The MULP is run at the training stage.
2) If the stop condition is met, the MULP moves to the testing

level; otherwise, it goes to the third level.
3) For an optimization problem, MULP parameters are the deci-

sion variables. The locations of agents in algorithms show
the value of decision variables.

4) The locations of agents are updated using operators of opti-
mization algorithms. MULP parameters are updated when
the location of agents is updated.

5) The MULP runs based on the new parameters.
6) The RMSE (objective function) is used to determine the qual-

ity of solution.

7) The model goes to step 2 if the stop convergence occurs;

otherwise, it goes to step 3.
8

2.2.6. Structure of IMM models
An IMM fosters collaboration among individual models [28]. So,

the advantages of multiple individual models are incorporated into
the structure of IMM. Thus, IMM improves individual models’
accuracy. As seen in Fig. 6, the individual models (MULP-HBOA,
MULP-SASA, MULP-PASOA, and MULP-FIFA) were run individually
in the first step. Final results were obtained by integrating the out-
puts of individual models into an ANN. While there are several
types of ensemble models, IMM has several advantages. Models
like Bayesian model averaging require complex computations,
but IMM can be easily implemented. The IMM model does not
need prior and posterior distributions of variables. The number of
input neurons were 5 based on Fig. 6. The number of hidden layers
and hidden neuros were 1, 3.
3. Data set

For predicting LDC, this study used optimized MULP and IMM
models. Data were required for training and testing. Using the
open-source literature, we collected data from 30 streams. The
495 sample points were split into 396 training points and 99 test-
ing points. Four input variables, including channel width (CW),
flow depth (FD), flow velocity (FV), and shear velocity (SV), had
the greatest impact on LDC, as shown by previous studies. Thus,
this study used CW, FD, FV, and SV to predict LDC. Table 1 shows
the details of data points. The input data are normalized to use
in the next levels.

Model accuracy was assessed using several indices. Table 2
shows the equations of indices.
4. Results and discussion

4.1. Determination of Pearson correlation coefficient between LDC and
input data

This section examined the Pearson correlation coefficient
between inputs and outputs. The heat map of correlation between
inputs and LDC is shown in Fig. 7. Velocity and shear velocity
showed the highest and lowest correlations with LDC, respectively.
The previous studies confirm this finding. Gholami et al. [11] stated
that the velocity and shear velocity had the highest correlation
with LDC. This study used all inputs to achieve the best accuracy
and the best performance.
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4.2. Determination of random parameters

An optimization algorithm’s performance depends mainly on
random parameters (RPs). This section determined the best values
of RPs using sensitivity analysis. Sensitivity analysis shows how
the objective function varies with random parameter values. For
the best values of random parameters, the objective function is
9

the lowest. The size of population and the MNI should be deter-
mined before the optimization process begins In Fig. 8a and 8b,
we illustrate how we determine the size of the population and
the maximum number of iterations (MAXNI) based on sensitivity
analysis.

The population size (POPU) of the HBOA ranged from 100 to
500. With POPU = 200, the HBOA had the lowest objective function
value. The lowest objective functions were provided by POUP = 300,
POPU = 400, and POPU = 400, respectively, for SASA, FIFA, and
PASOA. The MNI of the HBOA ranged from 50 to 200. With
POPU = 100, the HBOA had the lowest objective function value.
MAXNI = 150, MAXNI = 200, and MAXNI = 200 provided the lowest
objective functions for PASOA, FIFA, and SASA.
4.3. Investigation of the accuracy of models

This section investigates the accuracy of models and determines
the best model with the highest accuracy. The MEAE values for the
models are shown in Fig. 9a. The IMM decreased the MEAE of
trained MULP-HBOA, MULP-SASA, MULP-FIFA, MULP-PASOA, and
MULP models by 12%, 17%, 26%, 30%, and 36%, respectively. For
the IMM, the MEAE during testing was 15, whereas it was 17, 18,
23, 24, and 25 for the MULP-HBOA, MLP-SASA, MULP-FIFA,
MULP-PASOA, and MULP models. Among optimization algorithms,
HBOA gave the best accuracy. MULP-HGBOA decreased training
MEAEs of MULP-SASA, MULP-FAFA, and MULP-PASOA by 5.8%,
15%, and 25%, respectively, MULP-HBOA decreased testing MEAEs
of MULP-SASA, MULP-FAFA, and MULP- PASOA by 5%, 26%, and
30%, respectively. Since a honeyguide bird helps search agents
escape local optimums, HBOA performed better than the other
optimization algorithms. The operators of optimization algorithms
affect accuracy. An algorithm that uses advanced operators is the
most accurate.

The NSE values for the models are shown in Fig. 9b. MULP and
IMM had the lowest and highest NSE at the training level. At the
testing level, the NSE of the IMM, MULP-HBOA, MULP-SASA,
MULP-FIFA, MULP-PASOA, and MULP models was 0.92, 0.90, 0.89,
0.87, 0.85, and 0.82, respectively. The PBIAS values for the models
are shown in Fig. 9c. At the testing level, PBIAS of the IMM, MULP-
HBOA, MULP-SSA, MLP-FIFA, MULP-PASOA, and MULP models was
2, 6, 7, 8, 12, 12, 14%, respectively.

A Taylor diagram graphically evaluates the accuracy of models
using CRMSE, correlation coefficients, and normalized standard
deviations (Fig. 10). The correlation coefficients of the IMM,
MULP-HBOA, MULP-SASA, MULP-FIFA, MULP-PASOA, and MULP



Fig. 11. CPU times of models with and without goodness factor.

Fig. 12. a: Values of nfe for different algorithms, b: R2 values of models.
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model was 0.94, 0.88, 0.78, 0.77, and 0.68. The IMM and the MULP
models had the best and worst performances among other models.
The closet models to the reference point (Observed data) are ideal.
As can be seen from Fig. 10, The HBOA outperformed other algo-
rithms because HBOA used advanced operators for local and global
searches. The traditional MULP models did not achieve the high
precision because it did not use advanced tool for setting
parameters.

The CPU time of models with and without goodness factors is
shown in Fig. 11. CPU times for MULP-HBOA, MULP-SASA, MULP-
FIFA, MULP-PSOA, and MULP were reduced from 124 to 88 s, 146
to 112 s, 155 to 134 s, 167 to 139 s, and 169 to 141 s by employing
the goodness factor. In general, these results were found:

1) The IMM was better than the hybrid and standalone MULP
models. Different advantages of MULP are incorporated into
the structure of IMM. As IMM uses the advantages of multi-
ple MULP models, it can achieve the most accurate results.

2) MULP produced the poorest outputs due to its lack of
advanced algorithms for adjusting its parameters. The
results of MULP indicated that advanced algorithms are
essential for getting the most accurate results.

3) 3)There are differences between the outputs of HBOA and
other optimization algorithms. HBOA is more accurate
because it uses more advanced operators.

4.4. Discussion

The IMM and optimized MULP models were used to estimate
LDC in this study. Previous studies attempted to predict LDC. For
predicting LDC, Memarzadeh et al. [18] developed a whale opti-
mization algorithm with a MAE of 46.930. Using the IMM model,
the current study increased model accuracy by 63%.
10
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Gholami et al. [11] merged multiple intelligent models to pre-
dict LDC. The committee machine had a MAE of 19.026. Using the
IMM model, the current study increased model accuracy by 10%.
Overall, the IMM performed better than previous models. Using
the IMM model, the best accuracy is achieved by combining the
advantages of multiple individual models. At the same time, the
IMM model uses no complex process to estimate target variables.
The previous studies confirmed IMM models’ high accuracy.

Norouzi et al. [23] reported that IMM was the best model for
estimating the oblique weir discharge coefficient. Shabani et al.
[28] found that the IMM model with a correlation coefficient of
0.81 and an RMSE of 0.69 accurately predicted CO2 emissions.
Fig. 13. Structure of MLP with a
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The paper also showed that optimization algorithms improved
model accuracy. An optimization algorithm has advantages and
disadvantages. The optimization algorithms use different operators
to solve optimization problems. As a result, they provide different
levels of accuracy. HBOA was found to be the most accurate opti-
mization algorithm in this study. HBOA’s advanced operators pro-
vided the best results.

Individual models can be guided to promising exploration areas
using the intensity parameter (I). The honey and digging phases
improve the solution update process by balancing exploration
and exploitation. The number of functional evaluations (NFE)
(NFE = Population size* the maximum number of iterations) is an
nd without goodness factor.



Table 3
Comparison of the accuracy of IMM with previous studies.

Author Model Results

Wang and Huai [29] Regression analysis MEAE = 49.68
NSE = 0.68

Rezaei Balf et al. [5] Evolutionary polynomial
regression

MEAE = 47.076
NSE = 0.776

Ghiasi et al. [10] ANN MAE = 60.98
Ghiasi et al. [10] ANFIS MAE = 34.87
Memarzadeh et al.

[18]
Whale optimization algorithm MAE = 26.84–

198
Arya Azar et al. [4] ANFIS R2 = 0.91
Gholami et al. [11] Optimized ANN R2 = 0.91
Gholami et al. [11] Optimized ANFIS R2 = 0.90
Gholami et al. [11] Optimized support vector

machine
R2 = 0.94

Gholami et al. [11] committee machine R2 = 0.94
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index for evaluating optimization algorithms. With the lowest NFE,
the algorithm had the lowest computational cost. The NFE for dif-
ferent algorithms is shown in Fig. 12. The HBOA and SSA had the
lowest NFEs, as displayed in Fig. 12a. Thus, HBOA outperformed
other algorithms. Fig. 12b shows the R2 values of different models.
The testing R2 value of MULP-HBOA, MUL-SASA, MULP-FIFA,
MULP-PSOA, and MLP models were 0.97, 0.92, 0.89, 0.85, and
0.82, respectively.

Fig. 13 shows the effect of the goodness factor on the structure
of an MULP model. The goodness factor decreases the hidden units
of hidden layers, as shown in Fig. 13. The CPU time decreases when
the number of redundant units decreases. Thus, a goodness factor
is an effective method to modify the structure of ANN model
because it can decrease CPU time and redundant neurons. The
modified and unmodified structure of ANN model had four input
neurons. The number of hidden neuron of unmodified ANN models
was higher the number of hidden neurons of modified ANN mod-
els. Table 3 compares the accuracy of IMM with other models.

Using a regression model, Wang and Huai [29] predicted LDC.
Specifically, their model had an MAE of 49.68 and an NSE of 0.68.
The IMM model had NSE and MAE of 0.97 and 15, respectively.
The IMM performed better than the regression model. Balf et al.
[5] estimated LDC using an evolutionary polynomial regression
model. The MEAE and NSE were 47.07 and 0.77, respectively.
Therefore, the IMM performed better than their model. Ghiasi
et al. [10] used an ANN to estimate LDC. The ANN model had an
MAE of 60.98. Therefore, IMM had better performance than their
model. Memarzadeh et al. [18] predicted LDC using a whale opti-
mization algorithm. During the calibration and verification periods,
their MEAE ranged from 26.94 to 198. The IMM model had a lower
MEAE than the whale optimization algorithm. Gholami et al. [11]
estimated LDC based on a support vector machine model. The R2

of their model was 0.94. The IMM model showed an R2 of 0.98
and 0.97 during training and testing. The IMM improved the results
of previous research in this section.
5. Conclusion

Because open channels have a complex mixing mechanism,
determining LDC can be difficult. The highly stochastic and nonlin-
ear nature of LDC has made its estimation challenging. This study
estimated the LDC in natural streams using ensemble models and
optimized MULPs. As an ensemble model, IMM was created using
the outputs of individual models. MULP parameters were adjusted
using HBOA as a new optimization algorithm. The models’ input
included flow width, depth, velocity, and shear velocity. The IMM
decreased the MEAE of MULP-HBOA, MULP-SASA, MULP-FIFA,
MULP-PASOA, and MULP models by 12%, 17%, 26%, 30%, and 36%,
respectively, at the training level. In this article, the ensemble
12
models provided better prediction accuracy than the individual
models. Unlike other ensemble models such as Bayesian model
averaging, which may be extremely difficult to develop, the IMM
can be easily implemented to predict LDC Also, the paper showed
that optimization algorithms enhanced the precision of standalone
MULPs.

In future studies, other ensemble models can be used to pre-
dict LDC. The next study should also consider the impact of input
uncertainty and model parameters on the output data.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Alizadeh MJ, Shabani A, Kavianpour MR. Predicting longitudinal dispersion
coefficient using ANN with metaheuristic training algorithms. Int J Environ Sci
Technol 2017. doi: https://doi.org/10.1007/s13762-017-1307-1.

[2] Ahmad Z. Prediction of longitudinal dispersion coefficient using laboratory and
field data: relationship comparisons. Hydrol Res 2013;44(2):362–76.

[3] Ansari HR, Gholami A. An improved support vector regression model for
estimation of saturation pressure of crude oils. Fluid Phase Equilib
2015;402:124–32.

[4] Arya Azar N, Ghordoyee Milan S, Kayhomayoon Z. The prediction of
longitudinal dispersion coefficient in natural streams using LS-SVM and
ANFIS optimized by Harris hawk optimization algorithm. J Contam Hydrol
2021. doi: https://doi.org/10.1016/j.jconhyd.2021.103781.

[5] Balf MR, Noori R, Berndtsson R, Ghaemi A, Ghiasi B. Evolutionary polynomial
regression approach to predict longitudinal dispersion coefficient in rivers. J
Water Supply Res Technol AQUA 2018. doi: https://doi.org/10.2166/
aqua.2018.021.

[6] Carr ML, Rehmann CR. Measuring the dispersion coefficient with acoustic
Doppler current profilers. J Hydraul Eng 2007;133(8):977–82.

[7] Deng ZQ, Singh VP, Bengtsson L. Longitudinal dispersion coefficient in straight
rivers. J Hydraul Eng 2001;127(11):919–27.

[8] Ehteram M, Ferdowsi A, Faramarzpour M, Al-Janabi AMS, Al-Ansari N, Bokde
ND, et al. Hybridization of artificial intelligence models with nature inspired
optimization algorithms for lake water level prediction and uncertainty
analysis. Alex Eng J 2021;60(2):2193–208.

[9] Ghaemi A, Zhian T, Pirzadeh B, Hashemi Monfared S, Mosavi A. Reliability
based design and implementation of crow search algorithm for longitudinal
dispersion oefficient estimation in rivers. Environ Sci Pollut Res 2021. doi:
https://doi.org/10.1007/s11356-021-12651-0.

[10] Ghiasi B, Sheikhian H, Zeynolabedin A, Niksokhan MH. Granular computing-
neural network model for prediction of longitudinal dispersion coefficients in
rivers. Water Sci Technol 2019. doi: https://doi.org/10.2166/wst.2020.006.

[11] Gholami A, Amirpour M, Ansari HR, Seyedali SM, Semnani A, Golsanami N,
et al. Porosity prediction from pre-stack seismic data via committee machine
with optimized parameters. J Pet Sci Eng 2022;210:110067.

[12] Goliatt L, Sulaiman SO, Khedher KM, Farooque AA, Yaseen ZM. Estimation of
natural streams longitudinal dispersion coefficient using hybrid evolutionary
machine learning model. Eng Applications Computational Fluid Mech 2021.
doi: https://doi.org/10.1080/19942060.2021.1972043.

[13] Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W. Honey
Badger Algorithm: new metaheuristic algorithm for solving optimization
problems. Math Comput Simul 2022. doi: https://doi.org/10.1016/
j.matcom.2021.08.013.

[14] Khatibi R, Nadiri AA. Inclusive Multiple Models (IMM) for predicting
groundwater levels and treating heterogeneity. Geosci Front 2021;12
(2):713–24.

[15] Kashefipour SM, Falconer RA. Longitudinal dispersion coefficients in natural
channels. Water Res 2002;36(6):1596–608.

[16] Matsunaga Y. A modified back propagation algorithm that automatically
removes the redundant hidden units by competition. IEICE Trans Inf & Syst
1995;79(3):403–12.

[17] Kennedy J, Eberhart, RC. Particle swarm optimization. Paper IEEE 1995.
[18] Memarzadeh R, Zadeh HG, Dehghani M, Riahi-Madvar H, Seifi A, Mortazavi SM.

A novel equation for longitudinal dispersion coefficient prediction based on
the hybrid of SSMD and whale optimization algorithm. Sci Total Environ
2020;716:137007.

[19] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm
Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng
Softw 2017;114:163–91.

[20] Nezaratian H, Zahiri J, Kashefipour SM. Sensitivity analysis of empirical and
data-driven models on longitudinal dispersion coefficient in streams. Environ
Process 2018. doi: https://doi.org/10.1007/s40710-018-0334-3.

[21] Noori R, Deng Z, Kiaghadi A, Kachoosangi FT. How reliable are ANN, ANFIS, and
SVM techniques for predicting longitudinal dispersion coefficient in natural

https://doi.org/10.1007/s13762-017-1307-1
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0010
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0010
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0015
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0015
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0015
https://doi.org/10.1016/j.jconhyd.2021.103781
https://doi.org/10.2166/aqua.2018.021
https://doi.org/10.2166/aqua.2018.021
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0030
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0030
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0035
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0035
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0040
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0040
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0040
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0040
https://doi.org/10.1007/s11356-021-12651-0
https://doi.org/10.2166/wst.2020.006
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0055
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0055
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0055
https://doi.org/10.1080/19942060.2021.1972043
https://doi.org/10.1016/j.matcom.2021.08.013
https://doi.org/10.1016/j.matcom.2021.08.013
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0070
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0070
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0070
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0075
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0075
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0080
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0080
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0080
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0090
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0090
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0090
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0090
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0095
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0095
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0095
https://doi.org/10.1007/s40710-018-0334-3


M. Gholami, E. Ghanbari-Adivi, M. Ehteram et al. Ain Shams Engineering Journal xxx (xxxx) xxx
rivers? J Hydraul Eng 2016. doi: https://doi.org/10.1061/(asce)hy.1943-
7900.0001062.

[22] Noori R, Mirchi A, Hooshyaripor F, Bhattarai R, Torabi Haghighi A, Kløve B.
Reliability of functional forms for calculation of longitudinal dispersion
coefficient in rivers. Sci Total Environ 2021. doi: https://doi.org/10.1016/j.
scitotenv.2021.148394.

[23] Norouzi R, Arvanaghi H, Salmasi F, Farsadizadeh D, Ghorbani MA. A new
approach for oblique weir discharge coefficient prediction based on hybrid
inclusive multiple model. Flow Meas Instrum 2020. doi: https://doi.org/
10.1016/j.flowmeasinst.2020.101810.

[24] Panahi F, Ehteram M, Ahmed AN, Huang YF, Mosavi A, El-Shafie A. Streamflow
prediction with large climate indices using several hybrid multilayer
perceptrons and copula Bayesian model averaging. Ecol Ind 2021;133:108285.

[25] Parsaie A, Haghiabi AH. Predicting the longitudinal dispersion coefficient by
radial basis function neural network. Modeling Earth Syst Environ 2015. doi:
https://doi.org/10.1007/s40808-015-0037-y.

[26] Riahi-Madvar H, Ayyoubzadeh SA, Khadangi E, Ebadzadeh MM. An expert
system for predicting longitudinal dispersion coefficient in natural streams by
using ANFIS. Expert Syst Appl 2009;36(4):8589–96.
13
[27] Riahi-Madvar H, Dehghani M, Parmar KS, Nabipour N, Shamshirband S.
Improvements in the explicit estimation of pollutant dispersion coefficient in
rivers by subset selection of maximum dissimilarity hybridized with ANFIS-
Firefly Algorithm (FFA). IEEE Access 2020. doi: https://doi.org/10.1109/
ACCESS.2020.2979927.

[28] Shabani E, Hayati B, Pishbahar E, Ghorbani MA, Ghahremanzadeh M. A novel
approach to predict CO2 emission in the agriculture sector of Iran based on
Inclusive Multiple Model. J Clean Prod 2021. doi: https://doi.org/10.1016/j.
jclepro.2020.123708.

[29] Wang Y, Huai W. Estimating the longitudinal dispersion coefficient in straight
natural rivers. J Hydraul Eng 2016;142(11):04016048.

[30] Watada J. Structural learning of neural networks for forecasting stock prices,
in: International Conference on Knowledge-Based and Intelligent Information
and Engineering Systems, Springer, Berlin, Heidelberg, 2006, October, p. 972-
79.

[31] Yang XS. Firefly algorithms for multimodal optimization. In International
symposium on stochastic algorithms, Springer, Berlin, Heidelberg, 2009,
October, p. 169-78.

https://doi.org/10.1061/(asce)hy.1943-7900.0001062
https://doi.org/10.1061/(asce)hy.1943-7900.0001062
https://doi.org/10.1016/j.scitotenv.2021.148394
https://doi.org/10.1016/j.scitotenv.2021.148394
https://doi.org/10.1016/j.flowmeasinst.2020.101810
https://doi.org/10.1016/j.flowmeasinst.2020.101810
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0120
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0120
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0120
https://doi.org/10.1007/s40808-015-0037-y
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0130
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0130
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0130
https://doi.org/10.1109/ACCESS.2020.2979927
https://doi.org/10.1109/ACCESS.2020.2979927
https://doi.org/10.1016/j.jclepro.2020.123708
https://doi.org/10.1016/j.jclepro.2020.123708
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0145
http://refhub.elsevier.com/S2090-4479(23)00112-0/h0145

	Predicting longitudinal dispersion coefficient using ensemble models and optimized multi-layer perceptron models
	1 Introduction
	2 Material and method
	2.1 Structure of ANN model
	2.2 Optimization algorithms
	2.2.1 Structure of honey badger optimization algorithm (HBOA)
	2.2.2 Structure of salp swarm algorithm (SASA)
	2.2.3 Structure of firefly algorithm (FIFA)
	2.2.4 Structure of particle swarm optimization (PASOA)
	2.2.5 Hybrid ANN models
	2.2.6 Structure of IMM models


	3 Data set
	4 Results and discussion
	4.1 Determination of Pearson correlation coefficient between LDC and input data
	4.2 Determination of random parameters
	4.3 Investigation of the accuracy of models
	4.4 Discussion

	5 Conclusion
	Declaration of Competing Interest
	References


