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Abstract. Accurate estimation of intentions is a prerequisite in a non-
verbal human-machine collaborative search task. Electroencephalogra-
phy (EEG) based intent recognition promises a convenient approach for
recognizing explicit and implicit human intentions based on neural activ-
ity. In search tasks, implicit intent recognition can be applied to differ-
entiate if a human is looking at a specific scene, i.e., Navigational Intent,
or is trying to search a target to complete a task, i.e., Informational
Intent. However, previous research studies do not offer any robust mech-
anism to precisely differentiate between the intents mentioned above.
Additionally, these techniques fail to generalize over several participants.
Thus, making these methods unfit for real-world applications. This pa-
per presents an end-to-end intent classification pipeline that can achieve
the highest mean accuracy of 97.89± 0.74 (%) for a subject-specific sce-
nario. We also extend our pipeline to support cross-subject conditions
by addressing inter and intra-subject variability. The generalized cross-
subject model achieves the highest mean accuracy of 96.83 ± 0.53 (%),
allowing our cross-subject pipeline to transfer learning from seen subjects
to an unknown subject, thus minimizing the time and effort required to
acquire subject-specific training sessions. The experimental results show
that our intent recognition model significantly improves the classification
accuracy compared to the state-of-the-art.

Keywords: Intent recognition · Brain-machine interaction · Machine
learning.

1 Introduction

Enabling machines to understand humans and their implicit or explicit intents
accurately is a key objective of any efficient human-machine collaborative system
[22]. For instance, one of the tasks of an assistive robotic arm in a noisy industrial
scenario could be to hand over specific tools the human is searching for. If the
robotic arm knows that the person is searching for something, it can assist
with searching and handing over the desired object or tool. However, how can a
robotic arm be sure if a human is searching for something or just scanning the
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environment? Object selection with eye-tracking has been studied in multiple
literature [2, 3] to identify implicit intents. The EEG analysis in Kang et al. [1]
barely exceeds the chance level for distinguishing a search intent or a scene scan.

Another challenging task is to address the EEG variability. EEG signals are
highly non-stationary and can differ a lot across days or even within the same
day for the same user. Inter-subject variability refers to the differences in brain
signals between multiple subjects, and intra-subject variability refers to the dif-
ferences in brain activity for the same subject occurring in various repetitions
of the same task [13]. Inter and Intra- subject variability is unavoidable due
to the involved time-variant factors connected to the experimental recording
setup and underlying psychological and neurophysiological parameters. Ideally,
a real-world Brain-machine communication would need to be effective and effi-
cient at all times, i.e., across sessions and participants, without re-calibration. To
address these problems, we propose a combination of brain signals recorded via
Electroencephalography (EEG) and eye-tracking in a simulated working environ-
ment to investigate correlations between EEG data and the eye-tracking data for
two reasons (1) to create context from overt data by automatically labeling EEG
data based on the eye-tracking input (2) to build models for intention recogni-
tion based on this labeled EEG data. We use eye-tracking information only to
perform automatic labeling of the EEG data. Using eye-tracking information as
an interaction modality is beyond the scope of this paper.

The main objective of this paper is to predict different human implicit in-
tentions that occur during visual stimulus presentation, i.e., Navigational Intent
(Free viewing) and Informational Intent (Target searching). This research col-
lects the EEG data from various participants during a visual search task to
identify brain state transitions between those intentions and classify users’ im-
plicit intentions using machine learning classification algorithms. We investigate
a wide range of feature extraction methods and classification algorithms to pro-
vide the best setup for labeling Navigational and Informational Intent based on
EEG activity with plausible accuracy. Our main contributions to this paper are
as follows:

1. We design and develop an effective data acquisition paradigm and an end-
to-end classification pipeline to categorize human intents using EEG signals.

2. We extensively evaluate our classification pipeline for single-subject to show
a significant improvement compared to the existing state-of-the-art.

3. We extend the single-subject classification pipeline to enable the transfer of
EEG-based learning to cross-subject scenarios for the first time.

The rest of the paper proceeds as follows. In Section 2, we present the related
works concerning intent recognition and inter and intra-subject variability. Sec-
tion 3 describes the data recording setup with recording devices and the overall
recording procedure. Section 4 discusses the signal processing algorithm, includ-
ing feature extraction techniques. Section 5 illustrates the model performance
for a subject-wise and cross-subject scenario. Section 6 concludes the paper with
some discussions and limitations.
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2 Related Work

In the recent development of human-machine collaborative systems [22, 15], in-
tent recognition [14] plays a major role in making the collaboration much more
efficient and successful. Recognition of human intentions using EEG signals offer
strong research interest due to their quality of giving insights into the human
mind and the ability to communicate or interact with external devices such as
wheelchairs and intelligent robots [16, 14]. In Slanzi et al., the authors propose a
physiological-based analysis for predicting web users’ click intention by combin-
ing EEG responses and pupil dilation [4]. Authors design ten questions for each
website concerning finding certain information within the website. Participants
follow a navigation path from the home page to the page where information
is present. The authors chose a wide range of features like Hjorth parameters,
Petrosian Fractal Dimension, Higuchi Fractal Dimension Hurst exponent, and
statistical features to train the model. However, the performance of the clas-
sifiers is not satisfactory. This study achieved a maximum accuracy of 71.09%
with logistic regression, which may not be sufficient for real-world scenarios.

Recent research shows that EEG-based intent recognition can understand the
implicit intention, even when a human does not express his thoughts. For ex-
ample, in Kang et al., authors develop advanced interactive web service engines
which rely on identifying brain connectivity patterns related to the user’s Navi-
gational and Informational intentions through visual experiments based on static
web images [1]. In this work, the authors analyze the differences in phase-locking
value (PLV) to classify users’ Navigational and Informational intentions. Au-
thors use Support Vector Machines, Näıve Bayes, and Gaussian Mixture Model.
However, accuracies mostly fall between 50% to 77% for all classifiers, which is
not sufficient for real-world deployment where precise estimation of intents is of
utmost importance to make the system robust.

Existing studies focus on subject-specific evaluation, which is not the best
case for real-world settings where a generalized setup could save considerable
training time and effort. Due to the complexity and high dimensionality of brain
signals, intent recognition accuracy and signal interpretability heavily depend
on feature vector representation in a sophisticated manner. Moreover, EEG sig-
nals reflect the fluctuations of the voltages from different cortical regions of the
human brain over a time period [17]. It becomes necessary to effectively combine
both spatial and temporal information to capture the uncertainties generated by
inter, and intra-subject variability [17, 13]. In Wei et al., authors use hierarchical
clustering to explore the associations between EEG features and cognitive states
to tackle inter and intra-subject variability within a large-scale dataset of EEG
collected in a simulated driving task [18]. A subject transfer framework detects
drowsiness, which reduces the calibration time by 90%. Still, some amount of
training is needed. Other research studies that address these variabilities use
a completely different EEG-based paradigm like Motor Imagery [19] or P300
speller [20] to reduce task-based calibration time. So far, the possibility of han-
dling inter and intra-subject variability in improving intent recognition for visual
search tasks is unexplored.
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3 Data Acquisition Setup

Fifteen healthy subjects (age: 20 to 30 years) participated in the experiment
without prior training or knowledge. Before the start of the experiment, partici-
pants were informed about the experiment process and asked to sign an informed
consent form for the scientific use of the recorded data. The study was approved
by the ethical review board of the Faculty of Mathematics and Computer Sci-
ence at Saarland University1. The experiment was performed in a dim light room
with minimum distractions from external noises, or electronic devices, where the
voluntary participants are asked to sit in a comfortable chair to prevent unneces-
sary muscle movements to minimize noise and artifacts in the EEG signals which
could unfold from mental stress, electrical interference, and other physiological
motor activity [5, 6]. The display resolution of the monitor was set to 1920 x
1080 pixels, the screen brightness is set to 300, 00 cd/m2, the distance between
the user and the screen is set to 60 cm, and the eyes of the user are about the
same height as the center of the screen.
Recording devices: EEG signals were recorded with a LivAmp 64 amplifier
by Brain Products2. The sampling frequency was set to 500 Hz. The 10-20 in-
ternational system of electrode placement was used to locate the electrodes [7].
Electrode impedances were kept below 25 kΩ throughout the duration, as it is a
common practice for noise reduction in the EEG recordings [8]. Tobii pro fusion3

is used to collect eye-tracking information, which is only used for automatically
labeling the EEG data.

3.1 Experimental Procedure

The Experiment consists of 3 parts: (i) Navigational Intent or Free viewing, (ii)
Target presentation, and (iii) Informational Intent or target searching. Figure 1
shows the experimental sequence. We designed the Experiment in Unity [9],
where the industrial scenes are as close to the original working scene in an
industrial context. The recording steps are as follows:

1. The participant glances over the input scene without knowing the target to
get the overall overview of the scene.

2. The participant is shown a specific target tool as an image.
3. The participant searches for the shown target object in the input scene by

looking around.
4. As soon as the participant finds the tool, the target object boundary ap-

pears with a red color which later changes to green color, ensuring that the
participant found the correct tool.

The recorded dataset consists of 5 sessions for each subject recorded on the same
day with short breaks in between sessions. Each session comprises 30 scenes for

1 https://erb.cs.uni-saarland.de/
2 https://brainvision.com/products/liveamp-64/
3 Tobii Pro AB. Tobii pro lab. 2014, https://www.tobiipro.com/siteassets/tobii-
pro/user-manuals/Tobii-Pro-Lab-User-Manual/
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Fig. 1. Setup of the search task. The participant is shown the image on the left without
a concrete target. Afterward (middle), the target is shown to the participant. The par-
ticipant searches the target in the scene, and by gaze tracing, the object is highlighted
and selected if the participant fixates on it for more than 2 seconds (right).

both Navigational and Informational Intent. Each session consists of different
images, resulting in a total of 150 in the unique input scenes resembling the
industrial working conditions of manufacturing or production units.

4 Methods

This section presents different methods we used for EEG data signal processing,
including pre-processing and feature extraction. We assemble the dataset for the
individual subject using the following steps.

4.1 Data Preprocessing

Typically, EEG signals contain external noises and artifacts like muscle move-
ment, eye blinks, etc., while recording [21]. Therefore, it is necessary to prepro-
cess the recorded data before extracting meaningful information for further anal-
ysis. We preprocess the data in MATLAB4 using functions from the EEGLAB
toolbox [10]. Below are the preprocessing steps to clean the data:

1. Filtering: High-pass filtering at a cutoff frequency of 1Hz is applied as
recommended by [11] to remove low-frequency noise and low-frequency shifts
before using the independent component analysis (IIR Filter, pop-iirfilt
from EEGlab). A notch filter with a lower cutoff frequency of 48 Hz and
an upper cutoff frequency of 52 Hz is applied to remove power line noise [6]
which is followed by a low pass filtering done at a cutoff frequency of 40 Hz
(IIR Filter).

2. Artifact rejection: We do electrode rejection using pop clean rawdata

from EEGLAB as poor electrode-to-skin contact, broken recording device,
and low signal quality hinder the quality of signals. Electrodes with a large

4 MATLAB version 9.3.0.713579 (R2017b). 2017.
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portion of noise are removed based on their standard deviation and chan-
nels, which poorly correlate with other channels. The rejection threshold for
channel correlation is 0.8.

3. Re-referencing: All electrodes are re-referenced to a common average ref-
erence, as it minimizes uncorrelated signal and noise sources through aver-
aging.

4. Independent Component Analysis (ICA): Since EEG data collected
in a single channel is a composition of all neuron potentials in an area, the
recordings between electrodes can be highly correlated [10]. We clean the
data using Independent Component Analysis, which removes unwanted arti-
facts embedded in the data (muscle, eye blinks, or eye movements) without
removing the affected data segments. We apply Second-Order Blind Iden-
tification (SOBI) algorithm as an ICA decomposition algorithm, following
a subsequent automated IC Label rejection (muscle, heart, and eye compo-
nents with a 95% threshold).

5. Channel interpolation: The channels marked as bad are interpolated us-
ing spherical interpolation, pop interp. The motivation behind channel in-
terpolation is to avoid bias when calculating the average reference.

6. Epoching: We use preprocessed data to extract specific time windows from
the continuous EEG signal, with reference to the stimulus onset from the
preprocessed data. We took equal duration for Navigational and Informa-
tional Intent within each sample, as the feature extraction module expects
the input to have the same dimensions. We also removed the period in the
Informational part where the eyes are resting because the participant is only
fixating on the object successfully located, see section 3.1.

4.2 Feature extraction

In this section, we present methods to assemble a feature vector using PyEEG
[12] and Common Spatial Pattern (CSP) [21]. PyEEG is an open-source python
module for EEG feature extraction [12]. We extract 15 features to generate a fea-
ture vector for further investigation. Table 1 shows the list of features extracted
for each EEG channel. CSP extracts features from EEG data in a maximally
discriminative manner. CSP’s basic principle is applying a linear transformation
to project the multi-channel EEG signal data to a lower-dimensional spatial
subspace. The transformation results in the maximization of the variance of one
class while minimizing the variance of other classes at the same time.

4.3 Classification algorithms

Similar to past studies [21, 1], we use Random Forest (RF) and Näıve Bayes
classifiers (NB) to distinguish the EEG signals according to the users’ implicit
intention. Table 2 shows the hyper-parameters. We used default values for other
parameters. RF uses bootstrap aggregation with multiple decision tree models.
This strategy helps to improve predictive performance as compared to a single
model. NB is a probabilistic machine learning model that uses algorithms based
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Table 1. List of extracted features from PyEEG

Feature name Description

Power spectral intensity distribution of signal power over frequency
bands: delta, theta, alpha, beta, and gamma

Petrosian Fractal Dimension ratio of number of self-similar pieces versus
magnification factor

Hjorth mobility and complexity mobility represents the proportion of the
standard deviation of the power spectrum
Complexity represents the change in frequency

Higuchi Fractal Dimension computes fractal dimension of a time
series directly in the time domain

Detrended Fluctuation designed to investigate the long-range
Analysis correlation in non-stationary series

Skewness measure of asymmetry of an EEG signal

Kurtosis used to determine if the EEG data has peaked
or flat with respect to the normal distribution

Minimum, Maximum, and measure of variability of an EEG signal
Standard deviation

on the Bayes theorem. Each algorithm shares a common assumption, i.e., every
pair of classified features is independent.

5 Experimental Evaluation

In this section, we present our results for subject-wise and cross-subject scenar-
ios. We provide the best setup which is capable of generalizing across different
participants. Kang et al. [1] are closely related to our work. We show their high-
est achieved accuracy as a baseline in all our box plots, depicted by a horizontal
line. Since there exists no cross-subject evaluation on the search tasks, therefore,
we cannot compare our cross-subject analysis.

5.1 Subject-wise Analysis

We performed data assembly, training, and evaluation of the test set for each
subject individually. To evaluate our classification pipeline, we use 80% of the
data as the training set and 20% as the test set. The test set is assembled ran-
domly at the start of the pipeline to keep it close to the online classification setup.
We use hyperparameter optimization with grid search five-fold cross-validation,
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Table 2. List of hyperparameters

Classifier Hyperparameter

Random Forest Number of trees, maximum depth, splitting criteria,
maximum number of features, minimum samples to split in a node,
and minimum number of data points in a leaf node.

Naive Bayes Gaussian distribution with variance smoothing parameter

as it is a common practice for EEG classification [21]. Table 2 shows the pa-
rameters that influence the classification performance for both classifiers. The
combination that yields the best classification accuracy is identified as the op-
timal meta-parameters for each subject. Finally, we use the test set to evaluate
the performance of the trained classifier. The horizontal line shows the accuracy
of the state-of-the-art. Results obtained for all subjects with the CSP feature ex-
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Fig. 2. Subject-wise accuracy using common spatial pattern with RF and NB classi-
fiers. The Horizontal line shows the baseline. Triangle, orange line, and circular dots
show the mean, median, and outlier values, respectively

traction technique are shown as a box plot in Figure 2. From the plot, it is evident
that all subjects achieved admirable accuracy. For random forest, mean accuracy
lies between 90.79% and 97.18%. The standard deviation falls in the range of
0.73 and 5.06. The highest mean intent recognition accuracy of 97.18% is at-
tained by subject S5. Moreover, other subjects, Si, i ∈ {1, 2, 5, 7, 8, 10, 13, 14, 15}
achieve mean accuracy above 95%. As compared to Random Forest, Naive Bayes
performs slightly worse, especially for subject S1, where the mean accuracy is
88.73%. However, for subjects Si, i ∈ {3, 6, 15} Naive Bayes achieves better re-
sults with a mean accuracy of 96.55%, 93.16%, and 96.95% respectively. For
Naive Bayes, the mean accuracy lies between 88.73% and 97.89%, and the stan-
dard deviation is between 0.74 and 3.57. Subject S5 also attains the highest mean
accuracy for the Naive Bayes classifier. Overall, for the CSP feature extraction
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technique, both the classifier perform similarly to mean accuracy. Figure 3 shows
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Fig. 3. Subject-wise accuracy using assembled feature vector (FV) using RF and NB
classifiers. The Horizontal line shows the baseline. Triangle, orange line, and circular
dots show the mean, median, and outlier values, respectively

the results obtained from the assembled feature vector using the PyEEG toolbox
with Random Forest and Naive Bayes classifiers. We use the same hyperparam-
eters to compare different feature extraction techniques and classifiers, as shown
in Table 2. Both the classifiers perform worse as compared to CSP. The mean
accuracy lies between 81.07% and 93.93% with RF and 64.73% and 83.93% with
NB. Figure 4 shows the confusion matrix for subject S5 (which achieved the
highest overall mean accuracy) using CSP and assembled feature vector with
PyEEG. The diagonal elements show the number of correct classifications, while
off-diagonal elements show misclassification. We have a balanced dataset be-
tween the two classes, with the highest number of correct predictions for CSP
compared to PyEEG.
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Fig. 4. Confusion Matrix for subject S5
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5.2 Cross-subject analysis

For the cross-subject case, we study two types of variability. Inter-subject: differ-
ences in brain activity across subjects. Intra-subject: differences in brain activity
for the same subject occurring in multiple repetitions of the same task.

Inter-subject: Table 3 shows the result for inter-subject variability where
each subject is taken as a test subject while the remaining subjects are in the
training set. Thus, we acquire the test set from a different subject which is not a
part of the training data. The performance evaluation is done using Random for-
est (RF) and Naive Bayes (NB) on the feature vector from CSP and assembled
feature vector (FV) from the PyEEG toolbox. We compute the results using grid
search five-fold cross-validation. We use the same parameters for hyperparameter
optimization (shown in Table 2). Since we do not fix the random state of classi-
fiers, we iterate the experiment 5 times to compute mean accuracy and standard
deviation. The highest mean accuracy of 96.83% with RF-FV is achieved when
S8 is taken as the test set with Si, i ∈ {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15} as
train set. Hyperparameter tuning plays a significant role in achieving optimal
performance with an exhaustive and wide range of combinations. Overall, RF
with assembled feature vectors performs best for all subjects.

Table 3. Inter-subject accuracy (%) for each subject as a test set with remaining
subjects as train set

Classifier P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean

NB-FV 78.75 88.30 66.74 54.24 62.74 82.12 54.61 65.68 78.61 51.73 65.61 73.30 58.25 76.27 68.37 68.35

± 0.14 ± 0.0 ± 0.14 ± 0.29 ± 0.40 ± 0.63 ± 0.15 ± 0.17 ± 0.17 ± 0.01 ± 1.01 ± 0.16 ± 0.14 ± 0.01 ± 0.01 ± 0.09

RF-FV 85.95 93.05 83.88 89.57 90.63 93.61 83.75 96.83 87.71 88.06 77.70 75.86 79.57 79.80 96.73 86.84

± 0.43 ± 0.65 ± 0.64 ± 1.32 ± 0.47 ± 0.58 ± 0.83 ± 0.53 ± 1.04 ± 0.56 ± 1.69 ± 1.95 ± 1.25 ± 0.78 ± 0.17 ± 0.25

NB-CSP 50.00 65.25 77.78 71.09 65.41 77.13 61.15 67.55 63.89 65.62 72.66 73.86 71.74 65.15 52.31 66.70

± 0.0 ± 0.0 ± 0.0 ± 0.15 ± 0.22 ± 0.0 ± 0.0 ± 0.14 ± 7.10 ± 0.0 ± 0.0 ± 0.13 ± 0.0 ± 0.0 ± 1.22 ± 0.48

RF-CSP 50.00 53.05 68.47 71.09 53.29 63.19 54.46 59.57 61.74 69.86 65.90 68.97 66.16 61.82 50.41 61.18

± 0.0 ± 6.1 ± 4.76 ± 0.84 ± 6.07 ± 6.99 ± 3.39 ± 4.06 ± 1.36 ± 2.18 ± 3.42 ± 2.71 ± 2.83 ± 1.98 ± 0.69 ± 0.97

Intra-subject: For intra-subject estimation, we use one complete session from
all the subjects and treat it as a test set while the remaining four sessions are in
the training set. Since we do not fix the random state of the classifiers, we iterate
5 times and, thus, demonstrate the results in terms of the mean and standard
deviation of classification accuracy. The same hyperparameters are tuned (shown
in Table 2). Table 4 shows the mean accuracy, RF with assembled feature vector
using PyEEG performs significantly better than other classifiers and feature
extraction techniques. These results also align with the inter-subject analysis
where RF-FV works best.

6 Conclusion and Discussion

This paper proposes a classification pipeline to classify users’ intentions based on
EEG data. The final prediction of the model is highly dependent on the meth-
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Table 4. Intra-subject mean accuracy (%)

Classifier FV CSP

RF 92.46 ± 0.40 82.06 ± 2.05
NB 67.66 ± 0.44 71.88 ± 0.23

ods used for data acquisition, preprocessing algorithms, computing features, and
the choice of the classification algorithm. We evaluated our pipeline for subject-
specific and cross-subject scenarios. In the case of the subject-specific analysis,
our evaluation demonstrates that the CSP feature extraction method performs
best for both Random Forest and Naive Bayes classifiers achieving a maximum
mean accuracy of 97.18% and 97.89%, respectively. Our work is a significant im-
provement compared to state-of-the-art, which makes our pipeline applicable to
a real-world setting. However, for PyEEG, our pipeline could only achieve a max-
imum mean accuracy of 93.93% and 83.93% for Random Forest and Naive Bayes
classification algorithms, respectively. We also extend our pipeline to adapt to
the cross-subject scenario by combining the subject-specific dataset. Our cross-
subject model achieves the highest mean accuracy of 96.83% and 92.46% for
inter and intra-subject variability, respectively. The implementation pipeline en-
ables generalizing brain signals across different subjects, capable of reducing the
necessity of exhaustive subject-specific training sessions and training processes
with tedious calibration. We also recommend using PyEEG with a Random For-
est classifier since it generalizes well over all the subjects while being comparable
to other strategies for a subject-wise scenario. In the future, we would like to ex-
tend our implementation approach with a multi-modal intent recognition model
for discovering users’ intentions with complicated scenes. Additionally, it would
be interesting to use data recorded on different days from the same subject and
handle this type of variability.
Limitations: In this study, we claim that our intent recognition pipeline is gen-
eralized from trained subjects to the new unseen subject. However, we do not test
this with subjects from diverse age groups or subjects with special conditions.
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