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Abstract
Monitoring the state of currently running processes and reacting to ad-hoc situations dur-
ing runtime is a key challenge in Business Process Management (BPM). This is especially
the case in cyber-physical environments that are characterized by high context sensitivity.
MAPE-K control loops are widely used for self-management in these environments and
describe four phases for approaching this challenge: Monitor, Analyze, Plan, and Execute.
In this paper, we present an architectural solution as well as implementation proposals for
using MAPE-K control loops for adaptive workflow management in smart factories. We use
Complex Event Processing (CEP) techniques and the process execution states of a Work-
flow Management System (WfMS) in the monitoring phase. In addition, we apply automated
planning techniques to resolve detected exceptional situations and to continue process exe-
cution. The experimental evaluation with a physical smart factory shows the potential of the
developed approach that is able to detect failures by using IoT sensor data and to resolve
them autonomously in near real time with considerable results.
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1 Introduction

Business Process Management (BPM) (Dumas et al., 2018) is a research field of high inter-
est with different areas of usage, e.g., in companies, in public administration, or in smart
environments (Seiger et al., 2019) such as smart homes or smart factories (e.g., Schönig
et al., 2020; Marrella et al., 2017; Malburg et al., 2020a, b; Seiger et al., 2020; 2022). Smart
IoT environments that are characterized by high context sensitivity and huge amounts of
real-time data can particularly benefit from the advantages of applying BPM solutions (Jani-
esch et al., 2020). Although BPM research for smart environments has been attracting more
and more attention recently, it is still in its infancy. To control smart spaces on a higher
level in a more process-oriented way (Malburg et al., 2020b; Seiger et al., 2022), state-
of-the-art Workflow Management Systems (WfMSs) can be used. However, current WfMSs
and imperative process models are rather limited w.r.t. flexibility and often only provide
means to handle simple, mostly expected situations that must be fully specified within the
model (Reichert & Weber, 2012; Weber et al., 2004; Wieland et al., 2015). One main draw-
back of creating fully specified process models is the large effort in modeling and that not
all occurring situations are known in advance (Marrella et al., 2017). Thus, flexibility is
inevitably required in smart environments to react to expected and also unexpected situa-
tions by adapting faulty processes (Marrella et al., 2017; Malburg et al., 2020b; Wieland
et al., 2015).

There already are approaches that address these issues and use more advanced methods
(e.g., Case-Based Reasoning (CBR) (Weber et al., 2004; Grumbach & Bergmann, 2019) or
Automated Planning (Marrella et al., 2017; Marrella, 2019)) for adaptive workflow manage-
ment but they have either only been used to a limited extent in cyber-physical environments,
or they are only conceptual approaches that have not been evaluated in real-world appli-
cation scenarios. Additionally, related approaches mostly only address adapting processes
while not dealing with the concrete cause that implies the need for adaptation (Dadam &
Reichert, 2009; Pesic & van der Aalst, 2006). Simple triggers such as human intervention
are often not feasible for real-world scenarios and reveal the need for autonomous detection
and advanced adaptation techniques of failures in a holistic framework that is demonstrated
in a real-world application context.

In this paper, we present an approach for adaptive workflow management in smart facto-
ries by using the architectural blueprint of MAPE-K (Monitor, Analyze, Plan, and Execute
phases as well as the knowledge K (IBM, 2006)) control loops, which builds the basis to
develop self-managing software systems in cyber-physical environments (IBM, 2006; Muc-
cini et al., 2016) and which is also used in the context of BPM (Seiger & Aßmann, 2019;
Seiger et al., 2019). The approach combines Complex Event Processing (CEP) methods
for monitoring smart environments to derive high-level error events from low-level IoT
sensor data and AI planning techniques for BPM (Marrella, 2019) to adapt processes for
recovery and further execution. We enhance the current research by introducing a holistic
framework that is implemented, demonstrated, and evaluated with a physical smart factory
from Fischertechnik that simulates two independent shop floors. Incorporating this factory
for demonstration and evaluation of the approach strengthens the results and validates the
findings in a scenario that is closer to real-world production lines and, thus, facilitates the
transfer to them (Malburg et al., 2020b; Seiger et al., 2022).

The paper is structured following the Design Science Research (DSR) methodology for
information systems research as proposed by Hevner et al. (2004): Section 2 describes
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fundamental concepts covering the used physical smart factory, automated planning in com-
bination with BPM as well as related work (Rigor–Knowledge Base). Further, Section 3
presents the proposed research artifact as a framework for implementing a MAPE-K control
loop for self-management of manufacturing processes to increase the flexibility and adaptiv-
ity in failure situations (Develop/Build). Section 4 examines the suitability of the developed
research artifact in an experimental evaluation where it is used to automatically monitor
and analyze manufacturing processes in a smart factory and to plan adaptations with AI
planning techniques in case of failures (Justify/Evaluate). By using the experimental evalu-
ation, it is also shown that the created artifact is potentially useful for real production lines
(Relevance–Environment). Finally, Section 5 concludes the paper and shows areas of future
work.

2 Foundations and related work

As defined in the Design Science Research (DSR) (Hevner et al., 2004) methodology,
the rigor of the proposed approach is based on a knowledge base consisting of relevant
foundations, methods, and models that are presented in the following sections. More adap-
tivity in managing production processes can be facilitated with MAPE-K control loops if
the technology for implementing each of the individual phases is well-matched. The pro-
posed approach combines Complex Event Processing (CEP) for monitoring with automated
planning for (re-)planning production processes. We use a physical smart factory from Fis-
chertechnik that allows us to conduct close to reality research. The model is controlled in
a process-oriented way by using a service-based architecture and state-of-the-art Workflow
Management Systems (WfMSs) (see Section 2.1). We also introduce the basics for autonomic
MAPE-K control loops in Section 2.2 and for automated planning in BPM in Section 2.3. In
addition, we present related work for adaptive workflow management and for implementing
MAPE-K control loops in BPM research in Section 2.4.

2.1 Physical smart factories for business process management research

Learning Factories (Abele et al., 2017) are gaining importance in education, training, and
Industry 4.0 research (cf. Simons et al., 2017; Prinz et al., 2016; Seiger et al., 2020). They
are used for developing and evaluating research artifacts in a laboratory and experimen-
tal environment before moving to real production settings. Instead of relying entirely on
simulated data for developing and evaluating research artifacts, physical models provide
much more realistic data and run-time behavior such as ad-hoc interventions (Malburg
et al., 2020b; Seiger et al., 2022). For this reason, the developed artifacts are more eas-
ily transferable to real-world production lines and, thus, relevant for these environments
(Relevance–Environment in DSR (Hevner et al., 2004)). In our research (Klein & Bergmann,
2019; Malburg et al., 2020a, b, 2021; Hoffmann et al., 2022), we use a physical smart factory
from Fischertechnik.1 The custom model simulates two independently working production
lines consisting of two shop floors that are linked for the exchange of workpieces. Figure 1
illustrates the used smart factory. Each shop floor consists of 5 identical resources: a sorting

1Fischertechnik is a company that produces modules for simulating factories on a small scale. More gen-
eral information can be found at https://www.fischertechnik.de/en/simulating/industry-4-0 and information
regarding our custom model at https://iot.uni-trier.de.

https://www.fischertechnik.de/en/simulating/industry-4-0
https://iot.uni-trier.de
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Fig. 1 The physical smart factory. (Source: Malburg et al. (2020b))

machine with color detection, a multi-processing station with an Oven (OV) and a Milling
Machine (MM) connected by a Workstation Transport (WT), a High-Bay Warehouse (HBW)
for unfinished and finished workpieces, and a Vacuum Gripper Robot (VGR). In addition,
the first floor has a PunchingMachine (PM) and a HumanWorkstation (HW), and the second
floor a Drilling Machine (DM). The HW is a special resource that allows simulating human
interaction during production, e.g., conducting a manual quality inspection of the product.
It is equipped with multiple, programmable buttons that control and report the result of the
human activity, e.g., the workpiece tolerances are insufficient. Each shop floor is further
equipped with 13 light barriers, 16 switches, and 3 capacitive sensors for control of the
actuators consisting of 16 motors, 4 compressors, and 8 valves. The resources are enhanced
with sensors mounted on moving parts, motors, and compressors for condition and pressure
monitoring for predictive maintenance (Klein & Bergmann, 2019). Moreover, NFC reader-
s/writers are integrated into the stations, resulting in 28 communication points. This allows
each workpiece to be tracked and required manufacturing operations and parameters to be
retrieved and adjusted during production. A camera module is placed above the two shop
floors to track the workpieces in the shop floor by object detection techniques (Malburg
et al., 2021). The workpieces used for simulating the production are small cylindrical blocks
(height = ∼ 1.4 cm, diameter = ∼ 2.6 cm) of varying colors, each equipped with an NFC
tag, which contains information regarding the individual workpiece such as an identifier,
the type (i.e., color), the current production state, and timestamped production history. The
sensors and actuators of the processing stations are connected to Fischertechnik TXT con-
trollers; 6 Raspberry PIs and 2 Arduinos are used for managing the additional sensors and
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Fig. 2 Class diagram of provided capabilities for each resource. (Based on: Malburg et al. (2020a))

the camera, which are all linked via Ethernet to a central network switch. Apache Kafka is
used as a database to store the smart factory IoT sensor data over time.

In order to control the physical smart factory in a process-oriented way, previous work
(Malburg et al., 2020a, b; Seiger et al., 2022) presents a service-based architecture with
semantic annotations that abstracts from low-level resource functionalities and allows other
systems such as WfMSs to invoke the smart factory services remotely. Figure 2 illustrates a
class diagram as an overview of the capabilities provided by the resources. The capabilities
can be divided into 1) simple (“getter-and-setter”) functionalities that are used to retrieve
IoT sensor data or to specify general equipment parameters and 2) manufacturing function-
alities that perform a physical activity in the smart factory. Both types of capabilities are
separated with a dashed line in Fig. 2. For example, the manufacturing functionality for
executing a transport of a workpiece with the VGR is called pickUpAndTransport and
has two parameters (start and end) for receiving variable start and end positions. Due to
the variety of pickup and drop off positions, there are 81 possible configurations2 for this
capability in the first shop floor and 64 in the second one. Each of these configurations has

2The superscript number above the individual methods in Fig. 2 illustrates this.
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different preconditions and effects, such as light barriers at specific physical positions that
must be interrupted. For this reason, each parameter configuration must be implemented by
an individual web service with its specific semantic annotations. All in all, this results in
256 web services for the manufacturing functionalities in the smart factory.

By using semantic annotations for each resource functionality, it is possible to describe
what preconditions must be satisfied to execute the activity and the effects that must hold
after successfully executing the service in the physical world, i.e., the smart factory. In
Fig. 3, a part of the semantic annotations of a web service with its preconditions and effects
is illustrated. Instances of classes from the domain ontology are represented by violet rectan-
gles, and the classes themselves by orange ellipses. Green rectangles with rounded corners
depict data properties and edges denote relations, i.e., object properties by a solid line and
data properties by a dashed line. During execution of the depicted service, all preconditions
are checked before the execution of the service is started in the smart factory. For exam-
ple, it is checked whether the VGR, the HBW, and the oven are ready. This is required to
ensure that a check of the corresponding light barriers is possible and that the correspond-
ing resource is ready for the transport. In addition, it is checked whether the light barrier
at the HBW is interrupted, which indicates that the bucket with the workpiece is located at
this position, and whether the light barrier at the storage place of the oven is not interrupted,
which in turn indicates that the place can be used. Effects are checked after each service
invocation. For example, after the successful transport, the workpiece is now located at the
storage place of the oven and its corresponding light barrier must be interrupted.
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Fig. 4 Sheet metal manufacturing process as BPMN 2.0 model

By using the described service-based architecture, it is possible to model and execute
BPMN 2.03 processes that consist of BPMN-compliant service tasks.4

The BPMN 2.0 process in Fig. 4 illustrates a sheet metal manufacturing process. Sheet
metal production serves as a placeholder for industrial manufacturing processes. It is charac-
terized by a high degree of individualization, since each piece of sheet metal is manufactured
individually for a customer according to the corresponding requirements. This leads to pro-
cesses that are not completely standardized. Although a similar sequential control-flow is
often followed, the processes sometimes vary greatly in terms of parameter settings. In
addition, some machines in the factory can be used for several tasks during sheet metal pro-
duction: For example, the milling machines can be used to mill sheet metals but also for
drilling holes with certain sizes and numbers of holes. Thus, it is possible to use several
machines beside the respective machine in the other production line for certain activities,
e.g., in cases of failures during production that in turn require more adaptive workflow
management for a flexible execution.

2.2 MAPE-K control loops

When executing processes in smart environments that are characterized by high dynamics,
the execution is always at risk of failures without already known solutions. MAPE-K con-
trol loops (IBM, 2006) provide a blueprint for self-managing information systems that is
applicable in process execution scenarios (Seiger et al., 2019; Seiger & Aßmann, 2019). The
entity of interest is the managed element, which can generally be any part of an information
system. We focus on managed elements in the form of processes, as visualized by the exam-
ple process in Fig. 5 and discussed in BPM-related literature (cf. Seiger et al., 2019; Seiger
& Aßmann, 2019). The following explanations and its examples are based on IBM (2006),
Seiger et al. (2019), and Seiger & Aßmann (2019) and especially target cyber-physical
environments in which MAPE-K control loops are frequently applied (Muccini et al., 2016).

The MAPE-K cycle consists of four phases that are designed as a continuous loop which
can be iteratively instantiated several times:

1. Monitor: The environment in which the managed element is executed is continuously
monitored by using IoT sensor data. The observed data can be manifold, e.g., topology
information, smart home data, and process execution metrics. Throughout the monitor-
ing process, the data is usually continuously processed, e.g., by aggregation or filtering.

3https://www.omg.org/spec/BPMN/2.0.2/
4To illustrate the mapping between BPMN 2.0 service tasks and the corresponding web services, we use as
a naming scheme the executing resource followed by the capability it actuates. Parameter settings are for the
sake of readability not illustrated.

https://www.omg.org/spec/BPMN/2.0.2/


Journal of Intelligent Information Systems

Managed Element

Sensor Actuator

KnowledgeMonitor

Symptom
Change

Plan

Change

RequestAnalyze Plan

Execute

aged Elem

New Order 
Received

M

Product 
Produced

HBW_1_ 
Unload OV_1_Burn

VGR_1_ 
PickUpAnd 
Transport

VGR_1_ 
PickUpAnd 
Transport

HBW_1_ 
Store

Fig. 5 MAPE-K control loop for processes. (Based on: IBM (2006) and Seiger et al. (2019))

In case the process is not fulfilling the specified goals and objectives, Symptoms are
described and the situation is further analyzed in the subsequent phase.

2. Analyze: In this phase, the current situation and the monitored symptoms are checked
in more detail. For instance, reasoning can be performed with the symptoms to infer
higher-level information. The result of this phase is a Change Request that is passed on
to the Plan phase.

3. Plan: Based on the Change Request from the preceding phase, a Change Plan with
corresponding actions is created in this phase. The goal is to create actions that lead
to the managed element fulfilling the specified goals and objectives again. The request
can have various forms, ranging from simple, practical changes, e.g., repetition of the
process execution, to more complex and advanced strategies such as the structural
modification and migration of the process model.

4. Execute: Eventually, the Change Plan is executed by actuators5 in the environment
in which the managed element operates. This usually involves a WfMS as the main
execution engine if the managed element is a process. To lower the risk of the changes
applied to the managed element not restoring the desired state, it is possible to re-run the
complete MAPE-K loop and, especially, to monitor and analyze for remaining or new
upcoming problems. In addition, it is also possible to use appropriate validation tests or
to execute the process in a simulation before execution in the native environment.

Knowledge as part of the MAPE-K control loop is shared between all phases. Rel-
evant knowledge for autonomic systems can be topology information, historical logs,
metrics, symptoms, and policies. The knowledge can also be updated by the phases to
share new information with all phases. Semantic annotations for web services or the used

5The original publication (IBM, 2006) uses the term “effector”, which is not as common in the IoT field as
the term actuator that we use here.
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domain ontology FTOnto6 (Klein et al., 2019) describing the physical smart factory (see
Section 2.1) can also be part of the MAPE-K knowledge.

2.3 Automated planning for business process management in industry 4.0

Implementing a blueprint such as MAPE-K in the context of Cyber-Physical Production
Systems (CPPS) (Monostori, 2014) can be realized by sophisticated methods based on Arti-
ficial Intelligence (AI) that can quickly respond to situations, e.g., failures of machines,
occurring during production. In our research, we use state-of-the-art Workflow Management
Systems (WfMSs) to execute the production processes in the smart factory. However, these
state-of-the-art WfMSs are very limited w.r.t. flexibility and often only provide means to
handle simple, mostly expected situations that must be fully specified in the workflow model
before execution (Reichert & Weber, 2012; Marrella et al., 2017). Since several situations,
including unexpected events, can occur in smart environments (Marrella et al., 2017), more
sophisticated methods for process adaptations are needed that also consider the environ-
mental context of process execution for enabling more adaptive workflow management and
handling failure situations appropriately. A promising approach to remedy these problems
is the use of Automated Planning7 in BPM (Marrella 2017, 2019; Rodrı́guez-Moreno et al.
2007), since “BPM is in need of techniques that go beyond hard-coded solutions” (Marrella,
2019). The work of Marrella (2019) presents three use cases based on the BPM life cycle
(Dumas et al., 2018) in which AI planning can be applied in BPM. In the Design phase of
the life cycle, AI planning can be used to automatically generate process models. More pre-
cisely, planning methods can be applied to generate an imperative process model, since a
plan with its sequential and partial-ordered actions is rather similar to a process (Marrella,
2019). A second application area for combining BPM and AI planning is the Implementation
& Execution phase of the life cycle. During this phase, AI planning is used in cases in which
processes cannot be further executed as planned and adaptations are required. This is espe-
cially the case in dynamic domains such as in smart manufacturing (Wieland et al., 2015;
Malburg et al., 2020b), in smart homes (Seiger et al., 2019), or for knowledge-intensive
processes in emergency management (Marrella et al., 2017). To combine BPM and AI plan-
ning for autonomous process adaptation, real-time monitoring during the process execution
is required to capture situations in which an adaptation is needed (Marrella, 2019). The
third phase of the BPM life cycle is the Diagnosis & Optimization phase, in which planning
techniques can be used for conformance checking (e.g., de Masellis et al., 2022), i.e., trace
alignment. All in all, there are several application scenarios for using AI techniques, such as
automated planning, in BPM. However, all have in common that a suitable representation of
the problem must be specified by using a specification language. For automated planning,
the Planning Domain Definition Language (PDDL) (McDermott et al., 1998) in its several
versions (see Haslum et al. (2019) for a comprehensive overview) is the de facto standard to
express planning problems and enables the use of state-of-the-art planners. A classical plan-
ning problem expressed in PDDL consists of an Initial State in which predicates are used to
describe the current world state, i.e., the current process execution state as well as the state
of the environment. Similarly, the Goal State is defined with predicates that should hold
after the planning process is finished. Moreover, it is possible to use Objects in the planning

6https://gitlab.rlp.net/iot-lab-uni-trier/ftonto
7Since Automated Planning is a technique from the field of Artificial Intelligence (AI), it is also often called
AI Planning.

https://gitlab.rlp.net/iot-lab-uni-trier/ftonto
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problem to express possible parameter values for actions (see Haslum et al. (2019) for more
details and Section 3.3 for a concrete example). For describing the planning domain, instan-
taneous actions also called planning operators must be defined. These actions are applied
to the initial state during problem-solving, which in turn leads to a state transition of one
world state to another world state. The planning process terminates after applying several
planning actions if the goal state is reached (Haslum et al., 2019; McDermott et al., 1998).
In general, planning actions are very similar to individual tasks in processes, as they also
cause a change of state. Consequently, generated plans of classical planning problems are
simply sequential chains of tasks as in control-flow oriented processes.

2.4 Related work

In this section, we present as part of the foundations some selected related approaches
that deal with adaptive workflow management. The included publications give a broad
overview of various topics and techniques applied for more adaptive workflows. We divide
the approaches into two groups based on their main contribution: The first group consists of
approaches that deal with adaptive workflow management in general. These works are not
applied in cyber-physical environments or deal with autonomic MAPE-K control loops. In
the second group, we present approaches that also deal with adaptive workflow management
but have a special focus on smart environments. Some of them use autonomic MAPE-K
control loops or advanced AI methods for process adaptation, such as automated planning
for BPM.

The ADEPT framework by Dadam and Reichert (2009) is one of the earliest and most
prominent approaches for adaptive workflow management. The ADEPT system focuses on
process flexibility via process model evolution and ad-hoc changes of process instances.
Thereby, monitoring for process errors and adapting a process is mainly performed manu-
ally. If an error occurs, the user selects a proper ad-hoc change such as inserting or deleting
tasks as well as changing their execution order. Weber et al. (2004) present the CBRFlow
system for adaptive workflow management by using conversational Case-Based Reasoning
(CBR) (Aamodt & Plaza, 1994). If changes to a workflow become necessary due to excep-
tions or environmental changes and the deviation is not defined in the workflow model, the
user adds a case to the case base by answering corresponding questions. The case from the
case base can be retrieved in the future and describes how the situation can be handled,
e.g., by skipping a task, if this situation occurs again. To prevent the case base from get-
ting too large, frequently reused cases are abstracted to rules that can be applied to update
the underlying workflow model. Pesic and van der Aalst (2006) present a declarative way
of modeling workflows by defining constraints between process tasks. Their approach to
self-management is to restrict the model to detect more errors, and to loosen or redefine
restrictions to make the process model more flexible overall. A similar work is presented by
Grumbach and Bergmann (2019) who use CBR for deviation management to enable flexible
workflows. In their approach, users can flexibly deviate from predefined workflows enabled
by declarative constraints but still get guidance in their work through already experienced
situations stored in a CBR system.

The SitOPT approach presented by Wieland et al. (2015) applies situation-aware adap-
tive workflows in the manufacturing domain. So called Situational-Aware Workflows can
be used in failure situations and describe which actions should be performed to resolve the
exception. The situational-aware workflows are stored in a corresponding repository and
must be manually modeled by users, which is a time-consuming and knowledge-intensive
task. In addition, the approach is similar to other approaches that fully specify the process
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model to resolve expected, not unexpected, situations. Similar to this approach, the Case
Management Model and Notation (CMMN)8 can be used to specify cases that are applied in
certain scenarios. By using the proposed metamodel and the notation to create such cases, it
is possible to describe them as a set of actions that should be applied in a particular situation
to achieve a desired outcome. Although this is a proper way to describe expected situations,
unexpected situations cannot be handled appropriately. In addition, the manual effort for
creating cases is a time-consuming and laborious task. Seiger et al. (2019) present the PRO-
tEUS system that enables the execution and adaptation of cyber-physical workflows in smart
home environments. The approach is similar to our work and applies autonomic MAPE-
K control loops to determine if there is a convergence between the assumed cyber process
state and the actual physical process state (Cyber-Physical Consistency). If this is not the
case, resource-based adaptation techniques are used that substitute the acting resource with
another functionally equivalent one and, thus, enable self-healing processes. The SmartPM
system by Marrella et al. (2017) uses automated planning techniques to adapt processes in
case of exceptional situations. The approach is applied to knowledge-intensive emergency
management processes with ad-hoc exceptions. To determine exceptions during process
execution, the expected reality of the process is compared with the physical reality, simi-
lar to the concept of Cyber-Physical Consistency by Seiger et al. (2018, 2019) and Seiger
& Aßmann (2019). If a gap is detected, AI planning is used to create a recovery plan for
the problem situation. Rodrı́guez-Moreno et al. (2007) also present an approach in which
planning techniques are used in BPM, i.e., for semi-automatically generating workflows
for business process reengineering. However, the approach rather aims at enabling the user
to annotate the workflow model in such a way that it can be used for planning, since cre-
ating suitable planning domain descriptions is a time-consuming and knowledge-intensive
task for a domain expert. The user can then, in turn, be supported in the reengineering
task. Another branch of work uses multi-agent techniques for autonomous workflow adap-
tation. One approach is introduced by Richly et al. (2010) in which the task of monitoring
and adapting processes is conducted by using the Belief–Desire–Intention (BDI) software
model in combination with CBR. Multiple BDI agents continuously monitor the execution
of processes and provide feedback to the current state based on already experienced cases
of executions.

Compared to the proposed approach, some approaches also apply advanced AI tech-
niques for adaptive workflow management but only a few evaluate their work in cyber-
physical environments with real-world run-time behavior. In addition, we present a holistic
framework based on using self-managing MAPE-K control loops (Muccini et al., 2016) in
combination with BPM, which has been only rarely discussed in past research (Seiger et al.,
2019; Seiger & Aßmann, 2019).

3 ImplementingMAPE-K control loops for adaptive workflow
management

In this section, we present, as part of the Develop/Build phase of the DSR (Hevner et al.,
2004) methodology, the proposed approach for using MAPE-K control loops in smart envi-
ronments. The approach is implemented in a physical Fischertechnik smart factory (see
Section 2.1) that demonstrates an exemplary application scenario for smart environments.

8https://www.omg.org/spec/CMMN/1.1/

https://www.omg.org/spec/CMMN/1.1/
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However, the approach can also be used in other smart environments in which the presented
components are applicable. The architecture contains several components which for their
part are independent of each other, i.e., the design of the architecture is similar to a microser-
vice architectural style (Richards & Ford, 2021). An overview of the architecture is given
in Section 3.1. Afterwards, we present in Sections 3.2–3.5 the individual phases of MAPE-
K control loops (see Section 2.2). For each corresponding phase, we describe how it can
be applied in smart environments in general and how the approach is implemented for the
examined smart factory setup in detail.

3.1 Architectural overview

The proposed architecture for applying MAPE-K control loops in smart environments con-
sists of several components that are independent of each other and can be called remotely
from other outside systems. Figure 6 illustrates the architecture of our MAPE-K approach
for cyber-physical environments. As the approach considers a process as managed element
for MAPE-K control loops, the architecture consists of a Workflow Management System on
top of it. The WfMS is one of the central components in the architecture, as it executes the
managed element and the Change Plan that is created after an iteration of the MAPE-K
control loop in the smart environment. Processes are orchestrated in the WfMS by individ-
ual web service invocations. For this reason, a Web Server with (semantic) web services
must be available for remotely accessing the components, i.e., sensors and actuators, of the
Smart Environment. The IoT sensor data that is generated by the smart environment during
process execution is streamed to a Database. Based on this database, a Stream Processing
engine can be used to derive complex events such as situations that influence the execu-
tion of the process, e.g., a pressed button during production that decides which branch in
the process is further executed (see Fig. 4). Another central component in the architecture
is the Workflow Monitor that is responsible for checking if the current states correspond to
the desired states of the processes that are currently executed in the smart environment. For
this purpose, the Workflow Monitor receives the states from the WfMS and combines them
with complex events from the Stream Processing engine. If the Workflow Monitor detects
mismatches between the current and the desired process state, a request for adaptation is
sent to the Adaptation Engine. The adaptation engine, in turn, adapts the process and returns
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Fig. 6 Architecture of proposed MAPE-K approach
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it to the Workflow Monitor. The Workflow Monitor decides if the adaptation is suitable to
handle the current problem situation or not, and if the adaptation is compatible with other
currently running processes. If the adaptation is appropriate, the currently running process
is finally migrated to a new process model and further executed by the WfMS. In the follow-
ing, the components and single phases of MAPE-K control loops for smart environments
are described in more detail. In addition, we describe how the single phases can be imple-
mented by presenting a specific implementation for MAPE-K control loops in the examined
context of a physical smart factory (see Section 2.1).

3.2 Monitor: stream processing

In order to detect changing context that can occur in smart environments, the IoT sen-
sor data must be analyzed in near real-time and high-level events must be derived. These
high-level events can be used to guide the execution of the process in the WfMS. In addi-
tion, stream processing in smart environments builds the basis for more advanced business
process analytics, such as to evaluate the state and performance of currently running pro-
cess instances (zur Muehlen & Shapiro, 2015). We use Complex Event Processing (CEP)
methods for monitoring the smart environment in combination with business process man-
agement (Soffer et al., 2019). By using CEP, it is possible to detect matching patterns in IoT
sensor streams and to derive previously specified events for higher-level systems. Thus, it
is possible to react to suddenly occurring misleading situations in smart environments. The
applicability of CEP methods ranges from simple events such as changes in resource states
to much more complex events such as value changes or other complex patterns in multiple
IoT sensor streams (Seiger et al., 2020; 2022).

Example Listing 1 illustrates an exemplary CEP app for the Siddhi9 platform that is used
in our implementation to monitor the context of the smart factory, i.e., the states of the
machine resources, based on the data handled by Apache Kafka. After the definition of the
machine state streams for all machine resources (Lines 3–5), we consider a time window
of one second of each machine stream (Line 11 and Line 17) and check if the state in the
corresponding time window is unique. If this is the case, the state of the resource has not
changed. In contrast, if the resource state has changed, an event is generated and inserted
into the FactoryStatesStream (Lines 12–13 and Lines 18–19). Finally, this stream consisting
of the events with resource state changes is sent to the Workflow Monitor or another system
specified as publisher in the header (Lines 21–26). For example, if the state changed from
ready to inactive, which indicates a resource breakdown, an event is sent as a Symptom to the
subsequent Analyze phase to check whether the current process execution is affected. The
example from Listing 1 could be easily extended and customized to much more complex
events with the event query language of Siddhi. However, developing suitable CEP apps and
identifying relevant events is a complex and knowledge-intensive task and depends strongly
on the particular domain. For a more comprehensive overview of different CEP methods for
BPM tasks including AI-empowered ones we refer to Soffer et al. (2019).

9https://siddhi.io/

https://siddhi.io/
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Listing 1 Exemplary CEP query for monitoring the resource states

3.3 Analyze: workflowmonitor

During the Analyze phase in the MAPE-K control loop, the current environmental context,
e.g., the changed resource states, is further examined and a Change Request, if necessary, is
created for the following Plan phase. For this purpose, the Workflow Monitor component is
part of the proposed architecture. It has two main sources of information: 1) the WfMS that
delivers the process states of the currently executed processes and 2) the Stream Processing
component that provides information about the context in the smart environment. One main
task of the Workflow Monitor is to combine both information sources and to analyze in more
detail whether the contextual change in the smart environment affects the current process
execution. The component then decides whether simple fixes such as repeating a task (Redo)
are sufficient, or whether more advanced adaptations of the process are required.

To detect deviations during process execution, Cyber-Physical Consistency (Seiger et al.,
2018, 2019; Seiger & Aßmann, 2019), i.e., whether the expected reality corresponds to the
physical reality (Marrella et al., 2017), must be checked. We validate real-world consis-
tency by using semantic annotations from web services (see Section 2.1) used to control the
smart factory. Each web service is annotated with the preconditions that must be satisfied
for executing the activity and with the effects that must hold after a successful execution. If a
precondition or an effect is not satisfied, deviant behavior will occur or has occurred during
process execution. The Workflow Monitor checks whether the resource state change affects
the current process executions by using the data from the WfMS and the semantic annota-
tions of the services. In this context, it can be distinguished between reactive and proactive
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situations: In the first case, a current activity is executed and an error occurs during exe-
cution so that the corresponding effects are not fully satisfied. Thus, the Workflow Monitor
must react to this deviant situation. In the second case, the Workflow Monitor recognizes
an unsatisfied precondition for an activity that is planned to be executed soon. For this pur-
pose, the Workflow Monitor specifies a Change Request to proactively handle this situation.
The approach is generic regarding how to determine deviations between the expected and
the physical process state. For example, also other techniques such as online conformance
checking methods (e.g., van Zelst et al., 2019) or predictive process monitoring approaches
(see Rama-Maneiro et al., 2021 for an overview) can be applied instead of using a checker
for semantic annotations.

Based on the determined situation, the Workflow Monitor decides whether a simple Redo
is sufficient or whether more advanced adaptations are required. In the first scenario, the
Plan phase is executed directly in the workflow monitor component and it communicates
the corresponding commands to the WfMS. In the latter case in which more advanced adap-
tations are necessary, the workflow monitor uses the information provided by the WfMS
and the stream processing component and converts it into a corresponding planning problem
consisting of the current initial state and a goal state that should be reached by creating a
Change Plan. More precisely, the WorkflowMonitor follows three successive steps for doing
this: First, the successfully executed tasks of the current process are examined to gather
information on the state of the product that is produced. Second, the available resources
are determined to get information on the functionalities that can be used for production,
e.g., web services that rely on non-responding resources cannot be used during planning.
Finally, the currently executed process is further analyzed to determine all production steps
that have not been executed successfully or that cannot be executed due to the occurred sit-
uation. Based on this, the planning goal state is generated. More precisely, it is determined
which activities of the production workflow are affected by the occurred error. These activ-
ities and the properties they add to the product, e.g., the drilling of holes, build the basis for
creating the planning predicates contained in the planning goal state.

Example As an example from the smart factory, we assume that the Oven (OV) in the
first shop floor is broken. Figure 7 depicts the process instance created from the process
model shown in Fig. 4. Since the oven is defective, the task OV 1 Burn cannot be exe-
cuted (marked with a red cross). However, due to the defect of the oven, the transport from
the High-Bay Warehouse (HBW) to the oven (see first VGR 1 PickUpAndTransport
task) as well as the transport from the oven to the human review station (see sec-
ond VGR 1 PickUpAndTransport task) cannot be executed too. In contrast to the
OV 1 Burn task, where the resource performing the task is not functional, here, it is
because a precondition is not fulfilled: More precisely, no transport to or from the oven can
be executed, since the oven must be functional for this purpose (see Fig. 3). Both tasks are

Fig. 7 Running process instance of Fig. 4
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thus marked with a yellow cross, since they could generally be executed if the conditions
are satisfied. The goal of the process adaptation, i.e., the change plan, is to continue pro-
cess execution by replacing the part from the first failed tasks to the last failed task with
other, suitable tasks that can currently be executed. Suitable tasks are those tasks that lead
to the same output, e.g., a burn task can only be replaced by another burn task. In Fig. 7, we
mark the part that should be replaced with a dashed red frame. In the following, we describe
how the planning problem is automatically generated. Therefore, Listing 2 shows a part of
the planning problem expressed in PDDL (see Section 2.3) based on the described running
example. To describe the planning problem, the currently executed process and the state of
the factory are converted into the corresponding PDDL constructs: First, a key for the work-
flow (workflow 1) is defined as a PDDL object in Line 2. Afterwards, general settings of the
factory are initialized, e.g., possible transport routes of the Vacuum Gripper Robot (VGR) in
the factory. For the sake of simplicity, they are not shown in Listing 2. Please consider that
these general settings are not dependent on the planning problem itself, but rather on the
smart environment. Lines 6–14 define the current state of the factory. In the example above,
all resources except for the oven in the first shop floor (ov 1) can be used for production.
The state of the executed process, captured by the WfMS, is translated into predicates that
describe the current production state (Lines 17–20).

In order to capture this initial state, the task before the part that should be replaced is
important (see Fig. 7). Consequently, the HBW 1 Unload task is used to derive the initial

Listing 2 Exemplary planning problem for occured failures during manufacturing
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state of the planning problem. This results in the predicates that specify that the bucket with
the workpiece is currently located at the High-Bay Warehouse (HBW) in the first shop floor
(hbw 1 pos) and that the workpiece is currently not burned. Please note that unprocessed
workpieces are automatically considered as steel slabs. For generating the goal state of the
planning problem, each failed task is examined, and it is checked which properties it will
add to the workpiece if it is executed. The OV 1 Burn task burns the workpiece so that
it is a sheet metal with a corresponding size and thickness. The other tasks do not add a
special property to the workpiece, since they only move it from one position to another or
are executed to store the empty bucket in the warehouse (see Fig. 7). For this reason, one
part of the goal state is derived from the OV 1 Burn task (see Line 27–29).10 To ensure
a semantically correct process after adaptation and, thus, to continue process execution,
the first task (HW 1 Human Review) after the part that should be replaced is also used to
derive the goal state, i.e., the correct position of the workpiece (see Line 25). In general, it is
also possible to generate a planning problem in which the completion of the whole process
is captured. In this case, the goal state is created in the same way as described previously,
and the part to be replaced is assumed to reach the last task in the process. Although this is
a further possibility to solve the problem, it increases the planning effort significantly, since
more tasks need to be used during planning. The given metric in Line 31 is used to tell the
planner that we expect a plan in which the total cost of all actions is as low as possible.

In addition to the conversion into a planning problem, the planning domain must be
specified. Please note that the planning domain represents the general knowledge of the
application domain and is therefore not directly dependent on the problem itself. As an
example, Listing 3 shows the planning action that corresponds to the semantic service illus-
trated in Fig. 3. As already mentioned in Section 2.4, it is generally laborious to apply
AI planning to real-world problems, since the knowledge acquisition and modeling effort
to generate the required fully observable planning domain description is high and, thus,
sometimes only incomplete planning domain models can be used (Rodrı́guez-Moreno et al.,
2007; Marrella et al., 2017; Nguyen et al., 2017). For this reason, we use a converter
that translates the semantic service architecture into a planning domain description and,
thus, significantly reduces the high effort required to generate suitable planning domains
by reusing existing knowledge. In Section 2.1, we describe that 256 different parameter
configurations exist for the manufacturing capabilities in the smart factory. Since their pre-
conditions and effects change significantly due to the selected parameters, we implement
for each possible parameter configuration one web service with its semantic annotations.
The resulting 256 services are then converted into corresponding planning actions by
a one-to-one mapping, i.e., each web service is mapped to one corresponding planning
action.

The conversion to planning actions can either be done in an offline phase before pro-
cesses are executed or ad-hoc when the Workflow Monitor detects an error during process
execution. Creating the planning actions ad-hoc has the advantage that some services do
not need to be converted, e.g., if the resource executing the service is not available or if
they are not relevant to the current situation, which reduces the complexity of the planning
problem. On the other hand, an offline conversion reduces the workload for the work-
flow monitor in failure situations and is suitable for simple domains. The planning action

10Please note that we assume the OV 1 Burn task is parametrized to produce a medium-sized, thick sheet
metal.
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Listing 3 Planning action for the pick up and transport service

illustrated in Listing 3 represents the relevant part of parameters, preconditions, and effects
from the semantic service. Please note that the service input parameters (start, end, and
resource) that are modeled as instances in the domain ontology FTOnto (Klein et al.,
2019) are not converted into planning parameters, since they can be specified more effi-
ciently as constants, e.g., hbw 1 pos, and directly used in predicates, e.g., (at ?workflowID
hbw 1 pos). However, the reference to the workflow is automatically added to the planning
action as the parameter workflowID. The time for service execution is considered as the total
cost for executing the action. All in all, we convert all 256 services into corresponding plan-
ning actions in an offline phase and the Workflow Monitor transfers them to the subsequent
Plan phase together with the planning problem as a Change Request.

3.4 Plan: adaptation engine

As stated in Section 2.3, AI planning can be used in BPM to adapt processes. During
the Plan phase in the MAPE-K control loop, an Adaptation Engine is used to generate a
Change Plan that solves the current problem situation w.r.t. the received Change Request.
In the architecture, we propose to use AI planning techniques to implement the adaptation
engine component. For this purpose, we use a REST endpoint to control automated planners
remotely. After receiving the change request with the corresponding planning files from the
workflow monitor, the automated planner tries to solve the problem. The generated plans
are not checked for validity or further processed in the adaptation engine component, but
sent to the workflow monitor that performs these actions. Since the PDDL specification lan-
guage is used, and it is supported by many state-of-the-art planners, we do not suggest a
specific planner.

Example For the exemplary problem described in Section 3.3, two generated plans are
illustrated in Fig. 8. The plan on the right side is generated by using a greedy search algo-
rithm and determines a plan with a total cost of 532. It means that the execution of this
change plan requires a time of 532 seconds in the smart factory. The plan on the left side
is created by using an A* search algorithm with total cost of 447 seconds. In general, the
plans differ in their length as well as their parameter configuration. The plan on the right
side transports and picks up the workpiece at the drilling machine, whereas the left side
plan uses the punching machine, which is closer to the starting position and therefore faster
to reach. In addition, the plan on the right side requires four transport actions to reach the
oven, whereas the plan on the left side needs only two actions.
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Fig. 8 Plans generated by A* search (left) and Greedy search (right) for an exemplary planning problem

3.5 Execute: workflowmonitor & workflowmanagement system

After receiving the generated plans from the Adaptation Engine, the Execute phase of the
MAPE-K control loop is applied to execute the Change Plan in the real-world. For this
purpose, the Workflow Monitor selects one of the created plans based on certain specified
criteria. These could include the costs for executing the plan in the smart environment, the
availability of actuators since the state of the real world might have changed again during
planning, or the impact of process adaptation on other running processes that can thereafter
no longer be executed as planned. Afterwards, the Workflow Monitor converts the Change
Plan into a corresponding sequence of tasks, and adds this sequence to the native BPMN
process model by using an Error Boundary Event. The Error Boundary Event is attached to
the failed task in the process.

Example As a running example, the process depicted in Fig. 4 is currently executed in
the smart factory. We assume, as in previous sections, that the oven on the first shop
floor is defective, which leads to a termination of the process execution at the first
VGR 1 PickUpAndTransport task. This is because the corresponding transport pre-
condition is not satisfied, which requires that the oven must be functional. For the same rea-
son, the second VGR 1 PickUpAndTransport task that transports the workpiece from
the oven to the human workstation is also not executable. Both tasks are thus marked with
a yellow cross that indicates that the performing resource, e.g., the VGR, is active but the
preconditions are not satisfied. In contrast to this, the task OV 1 Burn cannot be executed
since the performing resource is not functional. Thus, we mark this task with a red cross.
Figure 9 depicts a part of the process from Fig. 4 and the left side optimal Change Plan (see
Fig. 8) with a modeled BPMN error event. Since the task VGR 1 PickUpAndTransport
that should transport the workpiece to the oven in the first shop floor failed during process
execution due to the not satisfied semantic service precondition, the Error Boundary Event
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Fig. 9 Adapted sheet metal manufacturing process

is added to this task. The adapted process hence contains the original and planned process
sequence (upper part of the visualization) and the inserted change plan (lower part). We do
not remove the currently non-executable sequence from the process model to retain the
knowledge of this modeled process along with the sequence that can be executed if a failure
occurs at the task VGR 1 PickUpAndTransport. If the same failure occurs in the future,
the knowledge of the performed adaptation and the alternative sequence can be reused.

Before the adapted process model is sent to the WfMS and a migration of the currently
running process instance to the updated model is performed, the process is checked for
syntactic and semantic correctness as well as for executability. More precisely, it is checked
whether the task sequence and parameterization of tasks for execution in the smart factory
are correct. In addition, it is also checked whether all required resources are available for
execution. During the execution of the Change Plan, a further exceptional situation can
occur, which leads to an additional run of the MAPE-K control loop. Consequently, a further
Error Boundary Event is added to the failed task in the native Change Plan. All in all, this
procedure is analogous to the procedure already described and illustrated in Fig. 9.

4 Experimental evaluation

In this section, we describe as part (Justify/Evaluate) of the DSR methodology (Hevner
et al., 2004) the experimental evaluation of the proposed approach, which enables self-
management in the physical Fischertechnik smart factory (see Section 2.1). We evaluate all
phases of the MAPE-K control loop by manufacturing processes that are executed in the
smart factory. The considered scenario is a production component, i.e., a machine resource,
that is suddenly out of order and the MAPE-K implementation reacts to this by monitoring
the changed environmental state and, in turn, the consequences for currently running pro-
cesses (see Section 3.2). Based on this, a planning problem is generated (see Section 3.3), a
suitable plan to adapt the process (see Section 3.4) is searched for, and the execution with the
changed, migrated process in the WfMS is resumed (see Section 3.5). In the following, the
experimental setup is introduced (see Section 4.1). Section 4.2 examines the results of the
evaluation w.r.t. the self-management capabilities as well as the practical applicability and
usefulness of the proposed approach. Finally, we discuss concluding remarks in Section 4.3.

4.1 Experimental setup

We assume that each of the two shop floors in the previously introduced Fischertechnik
smart factory (see Section 2.1) simulates an individual and partly independent production
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line of a real-world production environment in the experiments. The used processes deal
with sheet metal production, as already introduced in Section 2.1. Thereby, each shop floor
executes a single production process at a time, which resembles mass production with
repeating processes. All resources continuously push their state to the database such that it
can be used by the stream processing engine. The production in the two shop floors remains
independent of each other until a problem is encountered in the IoT sensor streams. In this
case, the shop floor where no problem is present can be used to execute the replanned pro-
cess from the other shop floor. To obtain real world (re-)planning problems, a sudden failure
during the production (out of order) is injected in a manufacturing resource of the smart
factory. We use a failure generation engine for this task that can be customized to produce
failures according to certain parameters. The output of the engine is the shop floor which is
affected by the failure, the affected manufacturing resource on this floor,11 and the duration
that this resource is turned off.12 We parameterized the engine to have at most two fail-
ures simultaneously, where each individual failure lasts at least 25 seconds and at most 45
seconds. After this time period, other randomly chosen resources are determined for fail-
ure generation, i.e., during the entire runtime of the processes (approx. 6 to 9 minutes for
each run) several machine resource failures are simulated. Hence, we only experiment with
reactive failure recovery and do not regard the proactive variant.

After a failure occurs in the smart factory, we stop all processes and capture their cur-
rent state to use them as the initial planning state. The further planned production sequence
and the final workpiece properties are also captured to be used as the planning goal state,
analogous to the example in Section 3.3 and Listing 2. We utilize four different production
processes13 throughout the experiment that are executed in pairs of two. The processes P 1.1
and P 1.2 are executed on the first and second shop floor, respectively, and both contain 12
tasks. The processes P 2.1 and P 2.2 are also executed on both shop floors but contain 16 and
19 tasks, respectively, to increase the complexity of the planning problems. Thereby, P 1.1
and P 1.2 use 6 out of 7 different resources and P 2.1 and P 2.2 use all 7 different resources
in the respective shop floor. We generate 20 random problems given these processes (10
for each pair of processes) that should be solved by the proposed MAPE-K approach to
continue production based on the current production state of the processes and by consider-
ing the environmental context, i.e., the failed machine resources and the machine resources
currently still functional. The defective components are marked in the planning problem as
inactive accordingly so that they could not be used during change plan generation. Thus,
other components that are able to perform the required activities to reach the desired goal
must be used by adapting the production processes, possibly by using production capaci-
ties of the other production line. As the adaptation engine (see Sections 3.1 and 3.4) for the
experiments, we use Fast Downward (FD) (Helmert, 2006), which is a state-of-the-art plan-
ner. FD can be configured to use different search algorithms with different search heuristics
during planning. We use two different configurations: A* search with the landmark-cut
heuristic (lmcut) (Helmert & Domshlak, 2009) and a lazy greedy best-first search with a
combination of the fast-forward (hff ) (Hoffmann, 2001) and the context-enhanced additive
heuristic (hcea) (Helmert & Geffner, 2008). The utilized planning domain is generated in

11We have excluded the vacuum gripper robots and the high-bay warehouses as central components since
their failure could never be recovered and would lead to a production stop.
12The problems generated also occur regularly in the smart factory even without simulation, e.g., a defect
caused by the light barrier not working correctly.
13See Appendix A for an example of one of these processes.
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an offline phase before the experiments by a converter based on the 256 semantic services
and the domain ontology FTOnto (see Section 3.3). Moreover, the domain is annotated with
27 relational predicates and one functional numeric fluent, i.e., the total-cost function14 (see
Listing 4 in Appendix A for a list of all used predicates). A virtual machine with an Intel
Xeon Gold 6130 CPU (8 virtual cores) with 2.10 GHz (turboboost 3.70 GHz) with 8 GB
RAM, running Ubuntu 16.04 is used for the experiments.

4.2 Experimental results

The experimental results are focused on the outcome of the plan phase of the MAPE-K
control loop, since the result of this phase requires the proper detection and analysis of the
failure beforehand. We do not present in-depth results of the monitor phase, i.e., failure
detection, as the approach was able to detect all generated random failures.

Similar to Marrella et al. (2017), we examine the generated plans (see Table 1) regarding
the total cost, i.e., the time to execute the change plan in the smart factory, and the length
of the created plans as well as the time for planning. The plan length is the number of
actions, and the total cost is the sum of the individual actions’ cost (in seconds). The time is
further split into the plan time, i.e., solving the specific planning problem with FD, and the
total time, i.e., reporting the planning problem until receiving the Change Plan via REST
(both in milliseconds). The results for the 20 planning problems are grouped by the A* plan
length and averaged per group, resulting in eight groups. Additionally, we show the number
of cases in each group (see leftmost column), e.g., four problems with an A* plan length
of five. Note that four detected problems could not be solved at all, since no other machine
resources are available for recovery. This is the reason why only 16 problems are assessed
in Table 1. We compare planning solutions created by A* and greedy search. The results of
A* are the optimal results w.r.t. plan length and total costs, where a faster but not optimal
greedy search is compared to.

The total times of both approaches are very similar. On average, there is no difference
in time, but individual examples show a difference of up to 15%. These variations are most
likely caused by the overhead that is introduced by using the proposed REST-based setup
and the underlying network communication. When inspecting the plain planning times, dif-
ferences are more noticeable: Greedy search has shorter plan times across all problems, with
an avg. decrease of 43% (range of 25% to 67%). This shows that greedy is significantly
outperforming A* search in plan time. The reduced plan time, in turn, has the drawback
of suboptimal plans. The produced plans of greedy search are 11% longer than the optimal
plans, on average. However, the total cost of the produced plans is more meaningful since it
ultimately determines the runtime and, thus, the overall efficiency of the process in the smart
factory. The average cost of generated plans by greedy is 13% higher than the optimal cost.
These values range from no cost increase for six problems to an increase of 105% in one
case. The overall results underline the individual strengths of greedy and A* search, with
greedy being faster but not guaranteeing optimal results as A* does. The response delays
of both approaches to failures can be considered as real-time, with autonomously recov-
ered processes almost immediately. This shows that the approach allows self-management
of cyber-physical processes in smart factories with low time efforts and with no human
intervention.

14The PDDL 2.1 planning domain, all randomly generated problems, and the used example in Section 3 are
available at https://gitlab.rlp.net/iot-lab-uni-trier/jiis-2022-journal.

https://gitlab.rlp.net/iot-lab-uni-trier/jiis-2022-journal
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Table 1 Experimental results of A* search (optimal) and Greedy search (suboptimal)

A* Search Greedy Search

Problems Plan Total Plan Total Plan Total Plan Total

in Group Length Cost [s] Time [ms] Time [ms] Length Cost [s] Time [ms] Time [ms]

4 5 416.00 8.43 355.00 5.00 416.00 4.43 354.00

4 6 453.50 14.73 373.75 7.00 500.00 6.08 361.25

1 8 319.00 7.60 341.00 9.00 353.00 3.60 389.00

3 9 315.67 8.77 347.33 10.33 330.67 3.57 349.67

1 10 685.00 24.00 352.00 12.00 821.00 4.00 357.00

1 11 381.00 10.40 360.00 19.00 782.00 7.60 348.00

1 13 674.00 28.00 385.00 18.00 921.00 14.40 390.00

1 14 699.00 28.00 355.00 20.00 1004.00 8.00 381.00

In addition to the quantitative evaluation results, we also want to discuss the practical
applicability and usefulness of the proposed approach as part of a qualitative evaluation. For
using the approach in other smart environments or in practice, a service-oriented architec-
ture is inevitably required. Current research already investigates this topic, for example, with
implementations of asset administration shells (Perzylo et al., 2019) that provide similar
functionalities as the used service-oriented architecture in the proposed approach. However,
it is difficult to assess whether such architectures have already paved the way to corporate
practice. The service-oriented architecture that enables the control in a more process-
oriented way is combined with a WfMS, a Workflow Monitor, a Stream Processing engine,
and an Adaptation Engine. Many companies already use WfMSs for their operational pro-
cesses, which can be reused for the proposed approach. Depending on the configuration of
the smart environment, effort is required to define suitable CEP queries to detect deviant
behavior during process execution. As stated in Section 3.2, this depends heavily on the
domain, which is why it is difficult to make a concrete estimation of the costs and effort
here. However, the effort required to implement a corresponding Workflow Monitor and an
Adaptation Engine is manageable: The Adaptation Engine can be realized by established
and openly available planners. To integrate a Workflow Monitor, data from the WfMS must
be captured, which is typically possible by using REST-APIs. This data is combined with
the events stemming from the stream processing engine and further aggregated and ana-
lyzed. In addition, the adaptation must be initiated in the Adaptation Engine based on the
data provided by the workflow monitor. All in all, the use of the proposed approach is pos-
sible in practice with a manageable effort, since existing approaches and implementations
can be reused. However, knowledge of domain experts is inevitably required to be able to
use the approach appropriately.

4.3 Concluding remarks

We want to particularly discuss scalability and process scheduling in the following: The pre-
sented approach is generic and generally scalable w.r.t. cyber-physical environments with
more demanding characteristics such as a higher number of concurrent process executions
or resources. These factors increase the size of the planning problems since more actions
are incorporated during planning. This inevitably increases the overall complexity of the
problem-solving procedure, and planning can become a performance bottleneck (Marrella
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et al., 2017; Bylander, 1991; Borrajo et al., 2014). A possible solution is the use of non-
optimal planning methods such as greedy search. Another possibility is to reuse knowledge
from existing (executed) processes or plans as solution candidates for solving upcoming
process adaptations by using Case-Based Reasoning (CBR) (Weber et al., 2004; Aamodt
& Plaza, 1994) or Case-Based Planning (Borrajo et al., 2014). Instead of generating a
change plan for recovering faulty processes from scratch, best-practice fragments can be
reused by the adaptation engine (Malburg & Bergmann, 2022), which can drastically reduce
adaptation time and enhance the quality of adaptation results (cf. Malburg et al., 2023).
These fragments could, for instance, stem from shop floor workers with deep knowledge
about the production and process adaptations that need to be performed if certain situations
occur (Malburg & Bergmann, 2022). Another aspect to discuss is process scheduling, which
has not been considered in the experiments to reduce complexity. Scheduling is needed to
decide whether and when a replanned process can be executed in an environment where
other processes are already running. To enable planning that considers these circumstances,
a temporal planner (e.g., Eyerich et al., 2009) is needed. Temporal planning would increase
the problem of computational complexity even more, as first experiments have already
shown. However, we assume in the conducted experiments that higher-level systems such
as manufacturing execution systems or enterprise resource planning systems take care of
scheduling the tasks within production, which is inevitable in cyber-physical environments
to manage proper access to constrained resources (Seiger et al., 2022; Malburg et al., 2020a).

5 Conclusion and future work

In this paper, we present an approach for self-management of processes in cyber-physical
environments. The proposed approach is based on MAPE-K control loops that are widely
used in cyber-physical systems (Muccini et al., 2016). For monitoring the environment, we
apply Complex Event Processing methods to derive higher-level events from IoT sensor data
and combine them with the process execution states from the Workflow Management Sys-
tem. Based on this information, failures can be detected during process execution, which in
turn are resolved by applying automated planning techniques. We conduct an experimental
evaluation with a physical smart factory (see Section 2.1) to improve on current research
that often does not address cyber-physical environments and, instead, is mainly based on
artificially generated IoT data. The evaluation shows that the approach can be used in a real-
world smart factory and is able to detect failures and to solve them autonomously in near
real-time with considerable results. Therefore, the presented work also contributes to more
advanced and autonomous process analytics in smart environments.

In future work, we want to address the aspects discussed in Section 4.3 in more detail.
Particularly, the combination of AI planning with Case-Based Reasoning (Aamodt & Plaza,
1994; Borrajo et al., 2014) promises further potential for improvements (cf. Malburg et al.,
2023; Malburg & Bergmann, 2022). Such improvements are especially needed if the plan-
ning problems increase in complexity, for example, in real production lines with even more
complex domains. In this context, we examine possibilities to artificially increase the com-
plexity of the planning domain used for research. This can be achieved, for instance, by expan-
ding the smart factory to include additional components or by integrating the smart factory
with a digital twin of itself which combines the benefits of the physical and virtual worlds.
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Appendix A: Additional information on the experimental evaluation

A.1 Exemplary process

Figure 10 shows P 2.2 as one of the four manufacturing processes that are used in the
experimental evaluation (see Section 4). The process contains 19 tasks and has the goal of
producing a piece of sheet metal with several properties, e.g., burned, milled, deburred, etc.
For simplification reasons these processes do not contain control-flow blocks (XOR, OR,
and AND gateways) which means that all tasks are executed in a single sequence. The other
three processes used in the experiments are similar to this one.

Fig. 10 Manufacturing process p 2.2 used in the experimental evaluation

A.2 Failure generation

As introduced in Section 4.1, we use a failure generation engine that simulates resource
failures throughout process execution on the shop floor. This engine simply deactivates
resources such that they cannot be used anymore. Figure 11 illustrates an example of gener-
ated failures over the time span of 10 minutes for a process execution of P 2.2 (see Fig. 10).
Specifically, it displays the number of machines with failures (vertical axis) within blocks
of 60 seconds (horizontal axis). The depiction indicates that the number of failed resources
within a time frame of 60 seconds is always between 3 and 5. The average number of fail-
ures per block is 3.7 and the average duration of each failure is 35.81 seconds. The average
time between the appearance of two consecutive failures is 20.47 seconds.

Fig. 11 Output of the failure generation engine



Journal of Intelligent Information Systems

A.3 Planning domain description

In the experiments, we use an automatically generated planning domain description consist-
ing of 27 relational predicates and one functional numeric fluent. To illustrate the individual

Listing 4 Part of the planning domain descirption used in the experimental evaluation
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relational predicates, Listing 4 depicts a part of the planning domain description in which the
predicates and the used function are specified. The relational predicate isApplicable
is used to specify whether a resource is able to produce a certain workpiece property, e.g.,
(isApplicable holes quantity 8 dm 2) specifies that the drilling machine in
the second shop floor can drill a workpiece with 8 holes.
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