
1 INTRODUCTION

Within the last decades, the scientific field of artificial
intelligence has been a rapidly growing field of re-
search. Its methods have been further applied in vari-
ous capacities and varieties in other areas, both for
professional operators, e.g., recognition of abnormal-
ities in X-Ray images, and casual everyday users,
e.g., text auto-completion of digital keyboards on
smartphones. AI methods have also been applied
within the architecture, engineering and construction
(AEC) industry, mostly focusing on optimization dur-
ing the later stages of a construction process, e.g., fi-
nancial, temporal and performance (Abioye et al.
2021). However, the architectural design process, es-
pecially the early stages, are rather untouched be-
cause of its complexity. The architectural design pro-
cess contains a lot of meaningful information of
geometrical and semantic nature. Semantic building
models (BIM) predominantly formalize the result of
a design process. In contrast, we are tracking the steps
of the design process that lead to the final design re-
sult.

In this paper, we propose a novel Deep Learning (DL)
approach as a design auto-completion method, to as-
sist the architect during the design decision making
process. The overall goal of the methods developed
within the ‘metis’ projects is to predict the current and
the future design phase, based on design process seg-
mentation using design phases by Laseau (2000),
Lawson (2005) and Barelkowski (2013), which is an
extended version of the Analysis, Synthesis and Eval-
uation (ASE) model. Accessing the most recent
changes in the design phase and the current status of
the design phase, made tangible through the art of
hand-drawn sketching (Lawson, 2004; Suwa &
Tversky, 1997), the model is able to suggest possible
continuations of the design direction. Furthermore,
we aim to build an auto-completion pipeline that op-
erates in real-time and suggest design steps to the ar-
chitect, in which the user has an option to either reject
or accept the proposition.

2 BACKGROUND AND RELATED WORK

AI assists humans in various domains of both profes-

sional and daily life. Having an intelligent assistant

that will aid the architect during designing, is first

Predicting semantic building information (BIM) with Recurrent Neural
Networks
B. Mete & J. Bielski & PhD C. Langenhan & Prof. F. Petzold
Technical University of Munich, Germany

V. Eisenstadt & Prof. K.D. Althoff
German Research Center for artificial intelligence (DFKI) / University of Hildesheim

ABSTRACT: Recent advances in technology established artificial intelligence (AI) as a crucial domain of computer science for

both industry and research, but also for everyday life. However, while computer-aided architectural design (CAAD) and digital se-

mantic building models (BIM) became essential aspects of the contemporary architectural design process, AI cannot be seen as a

leading supportive computational method due to its absence in the established design software and the challenging acquisition of

proper data. An option to acquire rich design data, for example in the form of time slices and relations of atomic design steps, is the

reproduction of design protocol studies (Lawson, 2004). However, this data is still unstructured and requires a framework for pre-

processing and training artificial neural networks (ANN).

In this paper, we present our research on BIM and AI, dedicated to autocompletion of design steps for architectural design, based on

the methods of the ‘metis’ projects. Autocompletion is achieved through the suggestion of further design steps to improve the quality

and speed of the design process of the early design stages. It is inspired by other autocompletion methods that have been applied for

data-driven decision-making.

Assuming the position of Lawson (Ibid.), we propose an approach for a recurrent neural network (RNN) model to predict future

design steps through sequential learning. Thus, we propose a model based on cognitive sequences of the architectural design process

as relational sequences (Lawson, 2004), using sketch data quantified through custom labelling via an open-source tool assigning the

respective design phase (Lawson, 2004; Laseau, 2000). We adapt to the idiosyncrasies of the user by identifying the current cognitive

processes to predict further mental activities and thus, future design steps.

propounded by Negroponte (1973), which can both

predict and suggest new ideas based on architectural

design knowledge. First immediate obstacle for such

approaches is to collect reproducible data. In order to

overcome this drawback, sketch protocol studies have

been used to trace the architect’s way of thinking dur-

ing a design process (Suwa & Tversky, 1997). As pre-

vious studies only produce qualitative data, a proto-

type tool was implemented and employed. It enables

the development of quantitative results from retro-

spective sketch protocol studies, including custom

categories for manual assigning (Bielski et al., 2022)

Thus, both custom and common parameters, e.g., tim-

ing and pen pressure on a digital drawing board, can

be included for analysing the design process through

the art of sketching.

Furthermore, in order to process such information in

the context of Machine Learning (ML), the data

should be quantifiable, and categorizable. Lawson

(2004) proposes both temporal and relational seg-

ments for classifying sketch protocols, while intro-

ducing the subclasses Analysis, Synthesis, Evaluation

and Communication for defining the design phases.

In addition to that, Laseau (2000) further partitions

the Synthesis into two different subclasses as the Ex-

ploration and Discovery, while Barelkowski (2013)

focuses on dividing the Analysis into Knowing and

Understanding for a more distinguished look on the

involved knowledge management. This also results in

the separation of the Evaluation as a final decision, as

well as a tool for creating more information as Eval-

uation - (informing) Knowing. Hence, the temporal

categorization of the design decision making process

can be enabled through the relational sequences of de-

sign phases. The state-of-art solution for such a cate-

gorization problem, is to make use of Artificial Neu-

ral Networks (ANNs).
Recurrent Neural Networks (RNNs) are a subset of
ANNs that include loops, hence it considers several
previous input values, while calculating the output.
Therefore, the knowledge can persist in the network,
allowing the network to come up with predictions
within sequential data, such as time sequences. One
example of such a learning problem in real life can be
predicting stock prices by looking at the previous and
the current stock values, or predicting the weather in
the following days by having access to the recent
weather forecast. In that regard, they distinguish
themselves from the ANNs or basic feed-forward
neural networks through integrating loop connections
in order to include data from the past. However, since
neural networks rely on back-propagation that uti-
lizes partial derivatives, having a looped architecture
with a long chain, can cause the gradients for the
learning weights to either drastically increase, or
shrink to 0. This phenomenon is called Vanishing
Gradient Problem. Moreover, being vulnerable to the

Vanishing Gradient Problem, RNNs are prone to fail-
ures while capturing the long-range correlations of se-
quential data (Hochreiter, 1998).
There are several neural network architectures, which
are subsets of the RNNs that is able to overcome the
Vanishing Gradient Problem, such as Gated Recur-
rent Units (GRU) (Cho et al., 2014) and Long-Short
Term Memory (Hochreiter, 1997). However, LSTMs
are much more widely used in the state-of-art net-
works, which facilitates the development and the
maintenance of the project for further improvements.
LSTMs include specific gated cells, illustrated in the
Figure 1, that allow to store and/or remove parts of
the previous information, which enables the model to
improve the handling of the long-term dependencies
within the data. Hence, LSTM architecture provides
a more robust learning scheme for sequential data.

Figure 1. A vanilla LSTM cell that includes three different kinds

of gates (Van Houdt et al., 2020).

3 APPROACH

In this section, we present the approach for our super-

vised learning pipeline. It includes the dataset, the

pre-processing and augmentation of this data, the de-

tails of the proposed RNN architecture based on the

cascaded sequential learning method and finally a

learning criterion, resulting in an implemented cus-

tom loss function.

3.1 Dataset

The dataset consists of five different design processes

made by architects that have been quantified through

our open-source sketch protocol analyser tool (Biel-

ski et al., 2022). Each design process data consists of

a feature vector, a design phase, and a specific

timestamp. All data instances have varying numbers

of timestamps, ranging between 4.000 and 18.000

which spans across 15 minutes. Each data instance

that corresponds to a specific timestamp includes a

feature vector, and the design phase attached to it,

which we will refer to as the label. The labels are

unique, and have a value among our seven design

phases (i.e. Analysis-Knowing, Analysis-Understand-

ing, Synthesis-Exploration, Synthesis-Discovery,

Evaluation, Evaluation- Knowing, Communication)

that represent a more distinguished version of the

phases (see Figure 2) of the common design model

ASE (Analysis, Synthesis, Evaluation (Lawson,

2005). The feature vector consists of distinct infor-

mation related to the design process for each

timestamp. Namely, these information parameters are

the pen pressure and geometric coordinates of the

pen, gathered from a WACOM tablet used as a digital

drawing board during the sketch protocol study, and

the sketched elements (e.g. ‘symbol’, ‘line’) and ob-

jects (e.g. ‘door’, ‘wall’) that are present in the sketch

at the respective timestamp.

Figure 2. The design process as an extended version of the ASE

model (Lawson, 2005).

An important step within our approach is the data pre-
processing. Even though the data is quantified
through the sketch protocol analyzer, there are still
categorical values both in the feature vector and the
labels that have to be encoded as numeric values in
order for the Artificial Neural Network (ANN) to
work with the data. As mentioned before, there are
seven design phases (see above) for the labels, while
each timestamp is being labeled by only one of them.
In order to map that textual information, we are using
a categorical data embedding technique called
‘Dummy Variables’ (Draper & Smith, 1998). In our
case, dummy variables create a vector with a length
of 7 units, where each unique design phase category
is attached to a unique vector element for every
timestamp. The resulting vector is a unit vector,
where only the value that corresponds to the current
design phase is 1, whilst all the remaining vector ele-
ments stay as 0. Therefore, after the embedding, in-
stead of having categorical values, the design phase is
represented with seven unique unit vectors. For en-
coding the feature vector, a similar approach is being
used, called ‘Multi-Hot-Encoding’, which is a gener-
alized version of dummy variables. This approach is
being used, since each categorical feature can appear
more than once in the data, therefore it requires an in-
teger variable rather than a binary variable.

The different features have varying ranges for their
values, which can cause the network to be influenced
more by the numerically large values. To be specific,
while the encoded features have small integer values,
continuous variables like the pen pressure can take
values up to a million, which might prioritize the pen
pressure value during the learning process. Thus, a fi-
nal normalization routine must be performed. For this
purpose, the last part of the pre-processing step is the
L1 normalization, which maps the values of every
feature between 0 and 1. This results in changing the
feature dataset into a common scale, without deform-
ing the numeric relation between the values since it is
a linear map. An exemplary conversion between raw
data and the processed features is shown at Figure 3.

Figure 3. An exemplary representation of the feature map-

ping. The values on the left shows the unprocessed features with

both numeric and non-numeric values. The figure on the right,

is the processed and the final version of the feature vector.

3.2 Model

As explained in the section 3.1 the training data in-

cludes features that are extracted from the design pro-

cess data, and each timestamp is labelled with a

unique design phase. Our model proposes a sequen-

tial prediction scheme, using a fixed number of

timestamps as an input, and aims to predict the cur-

rent and the next design phases as the output.
In order to overcome the shortcomings of common
RNNs, our cascaded model consists of a chain of
“processing blocks”, which consists of an LSTM
cell, followed by a fully connected layer and a Sig-
moid activation function. Each processing block co-
incides with the features in one timestamp, and they
produce an output for their corresponding
timestamps. The overall model comprises a chain of
processing blocks, and the length of this chain is de-
fined with the parameter “processing window size”.
The processing window size parameter is crucial,
since we require a long enough chain that the model
can capture the correlation between the features well,
to predict the next design phase, but short enough that
the training is tractable and feasible. The proposed
processing window size value of this work is 50. The
LSTM cells accept a total number of 41 features and
produce 21 output values. The fully connected layers

accept 21 features and produce 7 output values. Those
7 output values are indicated with the parameter
output size, and it refers to the probabilities for the
predictions of all 7 design phase labels. Simply, the
largest probability value is selected to be the model’s
prediction. The reason why a fully connected layer is
added on top of an LSTM layer is to even capture ex-
tra correlations that the LSTM model itself fails to de-
tect. The overall scheme of the learning model, con-
sisting of the chain of ‘processing blocks’, is
represented at Figure 4.

Figure 4. The model as a chain of processing blocks: Blue shapes

represent the feature vector for each timestamp fed into the

LSTM cells, yellow blocks represent an individual LSTM cell,

green blocks the fully connected layers, white circle the Sigmoid

activation function, and finally the purple rectangles the proba-

bilities attached for each design phase for each timestamp, while

numerically the largest value eventually becomes the prediction

of the model, and w represents the processing window length.

3.3 Learning Criteria

Each individual data set per sketch data contains more

than 10000 timestamps, but only a handful of design

phase changes. The biggest learning obstacle is to not

overfit the model through the exceeding timestamps

with rare to no changes. Overfitting is a common

problem in ML (Ying, 2019), which arises when the

network specifically learns the training data instead

of the solution to a general and much wider problem.

Along with achieving low accuracy during the evalu-

ation, an overfitted network can be thought of as a

memorizing model, instead of a learning model,

therefore it should be avoided for a general ML prob-

lem. Instead, the most important functionality of the

model is to be able to capture the internal dynamics

of the periods where there is a design phase with bet-

ter accuracy. Thus, in order to mitigate and optimize

the learning process, we implemented a loss function

as a learning constraint. The reason for this is, since a

large portion of the design process data continues to

stay at the same design phase for a long period of

time, and only at several instances, a design phase

change can be observed. This fact makes the intervals

that have a design phase change more crucial in the

learning stage, since the architect’s thought process is

most likely to stay the same, when the architect is still

in the same design phase.

Therefore, instead of using the binary cross-entropy

(BCE) which can be seen in Equation 1, we are pro-

posing a custom loss function that augments the BCE

loss function. Our loss function penalizes the input

sequences that include a phase change, with a large

penalty term that can be hyper-tuned.

𝐵𝐶𝐸 = −∑𝑦𝑖

𝑁

𝑖

log �̂� (1)

𝐶𝐿𝐹 =

{

 −∑∑𝑦𝑖

𝑁

𝑖w

log �̂�, if w ∉ 𝑃 (2)

𝜆 ∗ (−∑∑𝑦𝑖

𝑁

𝑖w

log �̂�) , 𝑖𝑓 𝑤 ∈ 𝑃

The custom loss function we propose, can be seen in

the Equation 2. In the equation P denotes the set that

includes the intervals, in which there is a design phase

change. Therefore, our loss function, calculates the

loss just like the BCE, if the processed batch is not in

an interval where there is a design phase change, but

it penalizes the term with another parameter when the

batch is in an interval with a design phase change.

4 EVALUATION

The model has been implemented using the Tensor-
Flow (Abadi et al., 2016) framework and trained the
final model with 10 epochs, and 3.500 steps per
epoch. The optimizer being used is the Adam
(Kingma & Ba, 2014) with default TensorFlow learn-
ing rate of 0.001. The convergence of the model can
be seen from the loss graph in Figure 5.

Figure 5. The loss function with 10 epochs.

Having access to a limited number of design process

data requires a pertinent evaluation method. We have

selected the k-fold cross validation for our training

and evaluation subroutine, where the data is split into

training, validation and test data. Furthermore, there

is no established or best practices evaluation method

for temporal data, since the whole sequence is needed

for the network to learn the pattern across the data.

Hence, splitting the data instance into two sub-arrays

as train and test sets can cause a significant loss of

information. In order to remedy the shortcoming of

splitting the data into train and test sets for temporal

data, there are several techniques proposed, for exam-

ple successively enlarging both the train and the test

data, across different epochs (Cerqueira, Torgo &

Mozetič, 2020) However, due to the limited amount

of data, we applied another evaluation method, in

which the design processes from different architects

are used for both training and evaluating the data

without separating them into training and test

sketches. Several time intervals, that include a design

phase change, are selected from these sketches as

evaluation intervals. Hence, in the evaluation, we ex-

amine if the model can capture the pattern, since pref-

erably the crucial time intervals are used.

Our evaluation method consists of creating various

numbers of intervals in different sketches, which will

then be separated arbitrarily as training and test sets.

The important difference is that the intervals are se-

lected among the time sequences which include a de-

sign phase change. That way it can be examined

whether the model can capture the required pattern or

not, since preferably the crucial time intervals are

used while calculating the accuracy, as it was ex-

plained in Section 3.3

Using the described approach, the accuracy is cal-

culated additionally to the prediction results of the de-

sign phases for the entire sketch data.

Figure 6. Exemplary evaluation graph: orange lines indicate the

prediction values for the whole sketch data, while blue lines

represent the ground truth values for the same sketch.

Figure 6 illustrates the prediction values through two

lines for all the data within one sketch. While the blue

line represents the ground truth values for the respec-

tive sketch that indicate the actual design phases of

the architect’s design process, the orange line shows

the design phase predictions of our model. In this cat-

egorical line graph, the y-axis depicts possible design

phases, while the x-axis shows the temporal progress

with timestamps. As it can be seen in Figure 6, the

model predicts the design phases with relatively high

accuracy, i.e., 94%. Only a few errors occurred due to

the similar patterns in transitioning between design

phases. For instance, one repeating error was the

model’s inability to capture the design phase Synthe-

sis-Discovery and instead it mistook said phase as the

Evaluation. This shows that the transition between

the Synthesis-Exploration and the Synthesis-Discov-

ery has similar dynamics to the transition between the

Synthesis-Exploration and the Evaluation.

Finally, Figure 7 highlights the effect of our custom

loss function on evaluation and training success. For

both testing and training, our custom function has im-

proved the accuracy of the predictions significantly,

compared to the models that have been trained with

the same characteristics, but without the BCE loss

function. Therefore, the deep learning method, along

with the custom loss function, achieves successful re-

sults for predicting the current and next design phase

of a given design process.

To sum up, even though, the model continues to oc-

casionally mistake design phase changes due to simi-

lar patterns, specifically Synthesis-Exploration to

Synthesis-Discovery, and Synthesis-Exploration to

Evaluation, the results show a high accuracy for the

prediction of both the current and following design

phase. By implementing a custom loss function,

which emphasizes the use of temporal intervals for

both training and evaluating, we improved the accu-

racy for both types of predictions by 6-8 percent.

Figure 7. Comparison of the evaluation results, using the BCE

loss function, and our proposed custom loss function.

5 CONCLUSION AND FUTURE WORK

The results of our model for both prediction and eval-

uation are visibly accurate with a percentage of 94 at

the end. The implementation of the custom loss func-

tion improved the accuracy by 6-8 percent, compared

to accuracy of the models trained without the BCE

loss function. Thus, we contribute a successful ap-

proach for predicting the current and next design

phase, based on the categorisation by Laseau (2000),

Lawson (2004; 2005) and Barelkowski (2013), using

an RNN trained with quantified design process data,

to the research field. This novel approach includes the

workflow for pre-processing of the design process

data, quantified with the sketch analyser tool, the

LSTM model architecture and finally, interventions

to improve accuracy. Consequently, this novel ap-

proach is transferable for predicting custom temporal

parameters of various nature of design process data,

e.g., design intentions (Lawson, 2004), assigned as

custom labels within the protocol analyser tool.

However, the low number of design process data re-

mains a major limitation for training the model, but

far and foremost for evaluating the model’s behaviour

for projecting more general results and outlook. Since

recruiting a large number of participants and prepar-

ing the dataset with manual labelling proves to be too

resource-inefficient and cumbersome, Generative

Adversarial Networks (GANs) (Goodfellow et al.,

2014) can be employed in the future. GANs are gen-

erative models and, trained with enough information,

can be used to create novel and virtual data. That way,

the data retrieval can be automated and fasten the pro-

cess of dataset preparation.

Finally, the ‘metis’ projects aim to ultimately suggest

the next design step to the user (e.g., ‘outlining par-

cel’) during the sketching process to support the ar-

chitectural design decision making. Thus, we plan to

extend the current approach for predicting and sug-

gesting new design phases for further values, such as

design intentions and design steps. The individual

RNN models for each value type will be connected in

a cascading series from the largest segmentation, the

design phases, to the smallest, the design step.

6 ACKNOWLEDGMENTS

We want to thank the DFG for funding the ‘metis’
projects, as well as the study participants for offering
their insight, feedback and design knowledge, as well
as their valuable time and sketches.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
... & Zheng, X. (2016). {TensorFlow}: A System for {Large-
Scale} Machine Learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI 16)
(pp. 265-283).

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado,
J. M. D., Bilal, M., ... & Ahmed, A. (2021). Artificial intelli-
gence in the construction industry: A review of present sta-
tus, opportunities and future challenges. Journal of Building
Engineering, 44, 103299.

Barelkowski, R. (2013). Designing more by knowing less,
Verbeke, J., Pak, B., In Proceedings of the Conference
'Knowing (by) designing' at LUCA, Sint-Lucas School of
Architecture Brussels, 22-23 May 2013 (pp. 522-531).
Ghent, Brussels.

Bielski, J., Langenhan, C., Ziegler, C., Eisenstadt, V., Dengel,

A., and Althoff, K.D. 2022. Quantifying the Intangible - A

tool for retrospective protocol studies of sketching during

the early conceptual de-sign of architecture. In Interna-

tional Conference of the Association for Computer-Aided

Architectural Design Research in Asia (pp. 403-411). Asso-

ciation for Computer-Aided Architectural Design Research

in Asia.
Cerqueira, V., Torgo, L., & Mozetič, I. (2020). Evaluating time

series forecasting models: An empirical study on perfor-
mance estimation methods. Machine Learning, 109(11),
1997-2028.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y.
(2014). On the properties of neural machine translation: En-
coder-decoder approaches. arXiv preprint arXiv:1409.1259.

Draper, N. R., & Smith, H. (1998). “Dummy” variables. Applied
regression analysis, 299-325.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., & Bengio, Y. (2014). Generative ad-
versarial nets. Advances in neural information processing
systems, 27.

Hochreiter, S. (1998). The vanishing gradient problem during
learning recurrent neural nets and problem solutions. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02), 107-116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Laseau, P. (2000). Graphic thinking for architects and design-
ers. John Wiley & Sons.

Lawson, B. (2004). What Designers Know. Boston, MA: Else-
vier/Architectural Press.

Lawson, B. (2005). How Designers Think. 4th edition,
Routledge. ISBN 9780080454979.

Nicholas Negroponte. The Architecture Machine: Toward a
More Human Environment. The MIT Press, Jan. 1973. isbn:
9780262368063. doi: 10.7551/mitpress/8269. 001.0001. url:
https://doi.org/10.7551/mitpress/8269.001.0001.

Suwa, M and Tversky, B 1997, ’What do architects and students
perceive in their design sketches? A protocol analysis’, De-
sign Studies, 18(4), pp. 385-403

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review
on the long short-term memory model. Artificial Intelligence
Review, 53(8), 5929-5955.

Ying, X. (2019, February). An overview of overfitting and its
solutions. In Journal of Physics: Conference Series (Vol.
1168, No. 2, p. 022022). IOP Publishing.

	1 ıNtroductıon
	2 BACKground and related work
	3 APPROACh
	3.1 Dataset
	3.2 Model
	3.3 Learning Criteria

	4 EVALUATION
	5 Conclusıon and future work
	6 AcknowledgmentS

